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In strong magnetic fields the transport coefficients of strange quark matter become anisotropic. We

determine the general form of the complete set of transport coefficients in the presence of a strong

magnetic field. By using a local linear response method, we calculate explicitly the bulk viscosities �? and

�k transverse and parallel to the B field, respectively, which arise due to the nonleptonic weak processes

uþ s $ uþ d. We find that for magnetic fields B < 1017 G, the dependence of �? and �k on the field is

weak, and they can be approximated by the bulk viscosity for the zero magnetic field. For fields B >

1018 G, the dependence of both �? and �k on the field is strong, and they exhibit de Haas–van Alphen–

type oscillations. With increasing magnetic field, the amplitude of these oscillations increases, which

eventually leads to negative �? in some regions of parameter space. We show that the change of sign of �?
signals a hydrodynamic instability. As an application, we discuss the effects of the new bulk viscosities on

the r-mode instability in rotating strange quark stars. We find that the instability region in strange quark

stars is affected when the magnetic fields exceed the value B ¼ 1017 G. For fields which are larger by an

order of magnitude, the instability region is significantly enlarged, making magnetized strange stars more

susceptible to r-mode instability than their unmagnetized counterparts.
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I. INTRODUCTION

Neutron stars provide a natural laboratory to study ex-
tremely dense matter. In the interiors of such stars, the
density can reach up to several times the nuclear saturation
density, n0 ’ 0:16 fm�3. At such high densities quarks
could be squeezed out of nucleons to form quark matter
[1–3]. The true ground state of dense quark matter at high
densities and low temperatures remains an open problem
due to the difficulty of solving nonperturbative quantum
chromodynamics (QCD). It has been suggested that
strange quark matter that consists of comparable numbers
of u, d, and s quarks may be the stable ground state of
normal quark matter [4]. This has led to the conjecture that
the family of compact stars may have members consisting
entirely of quark matter (so-called strange stars) and/or
members featuring quark cores surrounded by a hadronic
shell (hybrid stars) [5].

Observationally, it is very challenging to distinguish the
various types of compact objects, such as the strange stars,
hybrid stars, and ordinary neutron stars. Their early cooling
behavior is dominated by neutrino emission which is a
useful probe of the internal composition of compact stars.
Thus, cooling simulations provide an effective test of the
nature of compact stars [6–16]. However, many theoretical
uncertainties and the current amount of data on the surface
temperatures of neutron stars leave sufficient room for
speculations [17–19]. Another useful avenue for testing
the internal structure and composition of compact stars is

astroseismology, i.e., the study of the phenomena related to
stellar vibrations [20–25]. In particular, there are a number
of instabilities which are associated with the oscillations of
rotating stars. Here we will be concerned with the so-called
r-mode instability (see Refs. [22,23] for reviews). This
instability is known to limit the angular velocity of rapidly
rotating compact stars. The r-mode and related instabilities
in rotating neutron stars are damped by the shear and bulk
viscosities of matter; therefore these are important ingre-
dients of theoretically modeling rapidly rotating stars.
Such models and their microscopic input can then be con-
strained via the observations of rapidly rotating pulsars,
such as the Crab pulsar and the millisecond pulsars.
For quark matter in chemical equilibrium, the shear

viscosity is dominated by strong interactions between
quarks. The bulk viscosity, however, is dominated by
flavor-changing weak processes, whereas strong interac-
tions play a secondary role. For normal (nonsuperconduct-
ing) strange quark matter, the bulk viscosity is dominated
by the nonleptonic process [26–30]

uþ s ! uþ d; (1a)

uþ d ! uþ s; (1b)

since the contributions of the leptonic processes uþ e $
dþ � and uþ e $ sþ � are suppressed due to much
smaller phase spaces. The bulk viscosity of various phases
of quark matter has been studied extensively; see
Refs. [24,26–41].
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Compact stars are strongly magnetized. Neutron star
observations indicate that the magnetic field is of the order
of B� 1012–1013 G at the surface of ordinary pulsars.
Magnetars—strongly magnetized neutron stars—may fea-
ture even stronger magnetic fields of the order of
1015–1016 G [42–48]. An upper limit on the magnetic field
can be set through the virial theorem. Gravitational equi-
librium of stars is compatible with magnetic fields of the
order of 1018–1020 G [49–51]. In such a strong magnetic
field, not only the thermodynamical but also the hydro-
dynamical properties of stellar matter will be significantly
affected. In particular, due to the large magnetization of
strange quark matter the fluid will be strongly anisotropic
in a strong magnetic field (we note here that the magneti-
zation of ordinary neutron matter is small [52]). Therefore,
there is a need to develop an anisotropic hydrodynamic
theory to describe strongly magnetized matter in compact
stars. As we show below, the matter is completely de-
scribed in terms of eight viscosity coefficients, which
include six shear viscosities and two bulk viscosities.

In this paper, we will carry out a theoretical study of the
anisotropic hydrodynamics of magnetized strange quark
matter and will calculate the two bulk viscosities. We will
also discuss the implications of the anisotropic bulk vis-
cosities on the r-mode instability in rotating quark stars.

The paper is organized as follows. The formalism of
anisotropic hydrodynamics for magnetized strange quark
matter is developed in Sec. II. In Sec. III we apply the local
linear response method to derive explicit expressions for
bulk viscosities. The stability of the fluid under a strong
magnetic field is analyzed in Sec. IV. Section V contains
our numerical results for the bulk viscosities. The damping
of the r-mode instability in rotating quark stars by the bulk
viscosity is studied in Sec. VI. Section VII contains our
summary. We use natural units @ ¼ kB ¼ c ¼ 1. The met-
ric tensor is g�� ¼ diagð1;�1;�1;�1Þ. We will use the SI
system of units in our equations involving electromagne-
tism; however, we will quote the strength of the magnetic
field in centimeter-gram-second units (Gauss), as is com-
mon in the literature on compact stars.

II. ANISOTROPIC HYDRODYNAMICS

A. Ideal hydrodynamics

Hydrodynamics arises as an effective theory valid in the
long-wavelength, low-frequency limit where the energy-
momentum tensor T��, the conserved baryon current n�B ,
the conserved electric current n�e , the entropy density flux
s�, etc., are expanded in terms of gradients of the four-
velocity u� and the thermodynamic parameters of the
system, such as the temperature T, baryon chemical po-
tential �B, etc. The hydrodynamic equations can be ex-
pressed as conservation laws for the total energy-
momentum tensor T��, as well as baryon and electric
currents, n�B and n�e . The zeroth-order terms in the expan-
sion correspond to an ideal fluid and we shall use the index

0 to label them. In the presence of an electromagnetic field,
the zeroth-order terms can be generally written as [53,54]

T��
0 ¼ T��

F0 þ T��
EM;

T��
F0 ¼ "u�u� � P��� � 1

2ðM��F�
� þM��F�

�Þ;
n
�
B0 ¼ nBu

�; n
�
e0 ¼ neu

�; s
�
0 ¼ su�; (2)

where ", P, nB, ne, and s are the local energy density,
thermodynamic pressure, baryon number density, electric
charge density, and entropy density, respectively, measured
in the rest frame of the fluid. ��� � g�� � u�u� is the
projector on the directions orthogonal to u�.
Here T��

EM ¼ �F��F�
� þ g��F��F��=4 is the energy-

momentum tensor of the electromagnetic field. F�� is the
field-strength tensor which can be decomposed into com-
ponents parallel and perpendicular to u� as

F�� ¼ F��u�u
� � F��u�u

� þ��
�F

����
�

� E�u� � E�u� þ 1
2	

����ðu�B� � u�B�Þ; (3)

where in the second line we have introduced the four-
vectors E� � F��u� and B� � 	����F��u�=2 with

	���� being the totally antisymmetric Levi-Civita tensor.
In the rest frame of the fluid, u� ¼ ð1; 0Þ, we have E0 ¼
B0 ¼ 0, Ei ¼ Fi0, and Bi ¼ �	ijkFjk=2, which are pre-

cisely the electric and magnetic fields in this frame.
Therefore, E� and B� are nothing but the electric and
magnetic fields measured in the frame where the fluid
moves with a velocity u�.
The antisymmetric tensorM�� is the polarization tensor

which describes the response to the applied field strength
F��. For example, if � is the thermodynamic potential of
the system, M�� � �@�=@F��. For later use, we also

define the in-medium field-strength tensor H�� � F�� �
M��. In analogy to F�� we can decompose M�� and H��

as

M�� ¼ ðP�u� � P�u�Þ þ 1
2	

����ðM�u� �M�u�Þ;
H�� ¼ ðD�u� �D�u�Þ þ 1

2	
����ðH�u� �H�u�Þ;

(4)

with P� � �M��u�, M� � 	����M��u�=2, D� �
H��u�, and H� � 	����H��u�=2.

In the rest frame of the fluid, the nontrivial components
of these tensors are ðF10; F20; F30Þ ¼ E, ðF32; F13; F21Þ ¼
B, ðM10;M20;M30Þ ¼ �P, ðM32;M13;M21Þ ¼ M,
ðH10; H20; H30Þ ¼ D, and ðH32; H13; H21Þ ¼ H. Here P
and M are the electric polarization vector and magnetiza-
tion vector, respectively. In the linear approximation they
are related to the fields E and B by P ¼ 
eE and M ¼

mB, with 
e and 
m being the electric and magnetic
susceptibilities. The four-vectors E�; B�; � � � are all space-
like, E�u� ¼ 0; B�u� ¼ 0; � � � , and normalized as

E�E� ¼ �E2; B�B� ¼ �B2; � � � , where E � jEj and

B � jBj.
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Since the electric field is much weaker than the magnetic
field in the interior of a neutron star, we will neglect it in
most of the following discussion. Upon introducing the
four-vector b� � B�=B, which is parallel to B� and is
normalized by the condition b�b� ¼ �1, and the antisym-

metric tensor b�� � 	����b�u�, we can write

F�� ¼ �Bb��; M�� ¼ �Mb��;

H�� ¼ �Hb��;
(5)

with M � jMj and H � jHj.
The Maxwell equation 	����@�F�� ¼ 0 takes the form

@�ðB�u� � B�u�Þ ¼ 0: (6)

Its nonrelativistic form, which is known as the induction
equation, is given by

@B

@t
¼ r� ðv� BÞ; r �B ¼ 0; (7)

where v is the three-velocity of the fluid. Contracting
Eq. (6) with b� gives

�þD lnB� u�b�@�b� ¼ 0; (8)

where � � @�u
� and D � u�@�. The second Maxwell

equation can be written as

@�H
�� ¼ n�e ; (9)

whose nonrelativistic form is

r �D�H � r � v ¼ n0e;

r� ðH�D� vÞ � @D

@t
�H� @tv ¼ ne;

(10)

where n0e is the electric charge density and ne is the
corresponding current. It is useful to rewrite the energy-
momentum tensor in the following form [55–57],

T
��
F0 ¼ "u�u� � P?��� þ Pkb�b�;

T
��
EM ¼ 1

2B
2ðu�u� ���� � b�b�Þ;

��� � ��� þ b�b�;

(11)

where ��� is the projection tensor on the direction per-
pendicular to both u� and b�. We have defined the trans-
verse and longitudinal pressures P? ¼ P�MB and
Pk ¼ P relative to b�; here P is the thermodynamic pres-

sure. In the absence of a magnetic field, the fluid is iso-
tropic and P? ¼ Pk ¼ P. In the local rest frame of fluid,

we have b� ¼ ð0; 0; 0; 1Þ (without loss of generality, we
choose the z axis along the direction of the magnetic field);
hence the electromagnetic tensor takes the usual form,
while T��

F0 ¼ diagð"; P?; P?; PkÞ.
Next we would like to check the consistency of the terms

that appear in T��
F0 with the formulas of standard thermo-

dynamics involving electromagnetic fields. By using the
thermodynamic relation

" ¼ Tsþ�BnB þ�ene � P; (12)

and the conservation equations for n�B0, n
�
e0, and s

�
0 in ideal

hydrodynamics, one can show that the hydrodynamic
equation u�@�T

��
0 ¼ 0 together with the Maxwell equa-

tion (8) implies

D" ¼ TDsþ�BDnB þ�eDne �MDB; (13)

which is consistent with the standard thermodynamic rela-
tion

d" ¼ Tdsþ�BdnB þ�edne �MdB: (14)

One should note that the potential energy �MB has al-
ready been included in our definition of ". Otherwise, new
terms �MB, �DðMBÞ, and �dðMBÞ should be added to
the left-hand sides of Eqs. (12)–(14), respectively. Thus,
we conclude that our hydrodynamical equations are con-
sistent with well-known thermodynamic relations.

B. Navier-Stokes-Fourier-Ohm theory

By keeping the first-order terms of the derivative expan-
sion of conserved quantities, one obtains the Navier-
Stokes-Fourier-Ohm theory. In this theory, T��, n�B , n

�
e ,

and s� can be generally expressed as

T�� ¼ T
��
0 þ h�u� þ h�u� þ ���;

n
�
B ¼ nBu

� þ j
�
B ;

n�e ¼ neu
� þ j�e ;

s� ¼ su� þ j�s ;

(15)

where h�, ���, j�B , j
�
e , and j�s are the dissipative fluxes.

They all are orthogonal to u�; this reflects the fact that the
dissipation in the fluid should be spatial. We shall assume
that j

�
s can be expressed as a linear combination of h�, j

�
B ,

and j
�
e [58,59]. This allows us to incorporate the fact that

the entropy flux is determined by the energy-momentum
and baryon number diffusion fluxes. Thus,

j�s ¼ h� � �Bj
�
B � �ej

�
e ; (16)

with the coefficients , �e, and �B being functions of
thermodynamic variables.
Next, the hydrodynamic equations are specified by uti-

lizing the conservation laws of the total energy-momentum
T��, the baryon number density flow n

�
B , electric current

n
�
e , and the second law of thermodynamics,

@�T
�� ¼ 0; @�n

�
B ¼ 0;

@�n
�
e ¼ 0; T@�s

� � 0:
(17)

To discuss the dissipative parts, let us first define the
four-velocity u�, since it is not unique when energy ex-
change by thermal conduction is allowed for. We will use
the Landau-Lifshitz frame in which u� is chosen to be
parallel to the energy density flow, so that h� ¼ 0. Upon
projecting the first equation of Eq. (17) on u� and after
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some straightforward manipulations, we find

ð"þ PÞ�þD"� ���@�u� þMDB ¼ j�eu
�F��: (18)

Combining Eq. (18) and (12), and the second equation in
Eq. (17), we arrive at

T@�s
� ¼ ���w�� þ ð�B � T�BÞ@�j�B � Tj

�
Br��B

þ ð�e � T�eÞ@�j�e � j�e ðTr��e þ E�Þ;
(19)

where r� � ���@
� and w�� � 1

2 ðr�u� þr�u�Þ. For a
thermodynamically and hydrodynamically stable system,
Eq. (19) should be non-negative. This implies

�B ¼ ��B; �e ¼ ��e; ��� ¼ �����w��;

j�B ¼ ����Tr��B; j�e ¼ ����ðTr��e þ E�Þ;
(20)

where � � 1=T, ����� is the rank-four tensor of viscosity
coefficients, and ��� and ��� are thermal and electrical
conductivity tensors with respect to the diffusion fluxes of
baryon number density and electric charge density. By
definition, ����� is symmetric in the pairs of indices �,
� and �, �. It necessarily satisfies the condition
�����ðB�Þ ¼ �����ð�B�Þ, which is Onsager’s symmetry
principle for transport coefficients. Similarly, the tensors
��� and ��� should satisfy the conditions ���ðB�Þ ¼
���ð�B�Þ and ���ðB�Þ ¼ ���ð�B�Þ. Furthermore, all
the tensors of transport coefficients �����, ���, and ���

must be orthogonal to u� by definition.
As we have seen, the appearance of the magnetic field

makes the system anisotropic. Such anisotropy is specified
by the vector b�, so that the tensors �����, ���, and ���

should be in general expressed in terms of u�, b�, g��, and
b��. All independent irreducible tensor combinations hav-
ing the symmetry of ����� and which are orthogonal to u�

are [60](see also the Appendix)

ðiÞ������;

ðiiÞ������ þ������;

ðiiiÞ���b�b� þ ���b�b�;

ðivÞb�b�b�b�;
ðvÞ���b�b� þ ���b�b� þ ���b�b� þ ���b�b�;

ðviÞ���b�� þ ���b�� þ ���b�� þ���b��;

ðviiÞb��b�b� þ b��b�b� þ b��b�b� þ b��b�b�;

ðviiiÞb��b�� þ b��b��: (21)

All independent irreducible tensor combinations having
the symmetry of ��� and ��� and which are orthogonal
to u� are

ðiÞ���;

ðiiÞb�b�;
ðiiiÞb��:

(22)

In accordance with the number of tensors (21) and (22), a
fluid in a magnetic field in general has eight independent
viscosity coefficients, three independent thermal conduc-
tion coefficients, and three independent electrical conduc-
tivities. They may be defined as the coefficients in the
following decompositions for the viscous stress tensor,
heat flux, and electric charge flux:

��� ¼ 2�0ðw�� � ����=3Þ þ �1ð��� � 3
2�

��Þð�� 3
2�Þ

� 2�2ðb����b� þ b����b�Þw��

� �3ð2b��b��w�� ����w�
� ����w�

�Þ
� 2�4ð���b�� þ���b��Þw��

þ 2�5ðb��b�b� þ b��b�b�Þw��

þ 3
2�?�

���þ 3�kb�b�’; (23)

j�B ¼ �Tr��B � �1b
�b�Tr��B � �2b

��Tr��B; (24)

j
�
e ¼ �ðr��e þ E�Þ � �1b

�b�ðr��e þ E�Þ
� �2b

��ðr��e þ E�Þ; (25)

where � � ���w��, ’ � b�b�w��, and ��� is con-

structed so that the �’s are the coefficients of its traceless
parts; i.e., they can be regarded as shear viscosities. �’s are
the coefficients of the parts with nonzero trace and can be
considered as bulk viscosities. The �’s and �’s are thermal
and electrical conductivities, respectively.
Now the divergence of entropy density flux (19) can be

explicitly written as

T@�s
� ¼ 2�0ðw�� � 1

3�
���Þðw�� � 1

3����Þ þ �1ð�� 3
2�Þ2 þ 2�2ðb�b�w�� � b�b�w

��Þðb�b�w�� � b�b
�w��Þ

þ �3ðb��w�
� � b��w�

�Þðb��w
�
� � b��w

�
�Þ þ 3

2�?�
2 þ 3�k’2 � �T2r��Br��B þ �1T

2ðb�r��BÞ2
� �ðTr��e þ E�ÞðTr��e þ E�Þ þ �1ðTb�r��e þ E�b�Þ2: (26)
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One should note that the terms corresponding to the transport coefficients �4, �5, �2, and �2 in Eqs. (23)–(25) do not
contribute to the divergence of the entropy density flux. For stable systems, all the other transport coefficients must be
positive definite according to the second law of thermodynamics. In Sec. IV we will demonstrate explicitly that negative
bulk viscosities �? or/and �k indeed cause an instability in the hydrodynamic evolution of strange stars.

To conclude this section, we compare our definition of the viscosity coefficients in Eq. (23) with the definition given in
Ref. [60] for nonrelativistic fluid, which reads

�ij ¼ 2~�ðwij � �ij�=3Þ þ ~��ij�þ ~�1ð2wij � �ij�þ �ijwklbkbl � 2wikbkbj � 2wjkbkbi þ bibj�þ bibjwklbkblÞ
þ 2~�2ðwikbkbj þ wjkbkbi � 2bibjwklbkblÞ þ ~�3ðwikbjk þ wjkbik � wklbikbjbl � wklbjkbiblÞ
þ 2~�4ðwklbilbjbk þ wklbjlbibkÞ þ ~�1ð�ijwklbkbl þ bibj�Þ; (27)

where bij � 	ijkbk and the remaining notations are self-
explanatory.

Our viscosity coefficients in Eq. (23) are related to the
coefficients in Eq. (27) by

�0 ¼ ~�þ ~�1; �1 ¼ 3
4 ð~�1 þ 1

2
~�1 � 3

2
~�Þ;

�2 ¼ ~�2 � ~�1; �4 ¼ 1
2 ~�3; �5 ¼ ~�4;

�? ¼ ~� þ 1
3
~�1; �k ¼ ~� þ 4

3
~�1:

(28)

In Ref. [60] there is no term that corresponds to our�3. The
reason is that Ref. [60] considers the combination of
vectors (viii) in Eq. (21) as dependent on the others; in
the Appendix we will show that (at least for relativistic
fluids) all the combinations (i)–(viii) are linearly indepen-
dent. Note that the transport coefficients in Eq. (26) appear
as prefactors of quadratic forms; therefore the second law
of thermodynamics requires that these coefficients must be
positive definite for stable ensembles. This is not manifest
in Eq. (27).

III. BULK VISCOSITIES

The typical oscillation frequency of neutron stars is of
the order of magnitude of the rotation frequency, 1 s�1 &
! & 103 s�1. The most important microscopic processes
which dissipate energy on the corresponding time scales
are the weak processes.

The compression and expansion of strange quark matter
with nonzero strange quark mass will drive the system out
of equilibrium. The processes (1a) and (1b) are the most
efficient microscopic processes that restore local chemical
equilibrium. Therefore, the bulk viscosities are determined
mainly by the processes (1a) and (1b). In this section we
will derive analytical expressions for the bulk viscosities
�? and �k [61].

Let us imagine an isotropic flow vðtÞ � ei!t which char-
acterizes the stellar oscillation. If there are no dissipative
processes, such an oscillation will drive the system from
one instantaneous equilibrium state to another instanta-
neous equilibrium state. The appearance of dissipation
changes the picture: during the oscillations the thermody-
namic quantities will differ from their equilibrium values.

Let us explore how the thermodynamic quantities evolve
during the flow oscillation.
In general, we can write the change of baryon density

nB � ðnu þ nd þ nsÞ=3 induced by the oscillation of the
fluid as

nBðtÞ ¼ nB0 þ �nBðtÞ; �nB ¼ �n
eq
B þ �n0B; (29)

where nB0 is the static (time-independent) equilibrium
value, �neqB denotes the equilibrium value shift from nB0
due to the volume change, and �n0B denotes the instanta-
neous departure from the equilibrium value. Because pro-
cesses (1a) and (1b) conserve baryon number, �n0BðtÞ can
be set to zero, if we neglect other microscopic processes.
Then �nB can be determined through the continuity equa-
tion of ideal hydrodynamics,

�nBðtÞ ¼ �nB0
i!

�: (30)

Since processes (1a) and (1b) also conserve the sum nd þ
ns, a similar argument leads to the relation

�nd þ �ns ¼ �nd0 þ ns0
i!

�: (31)

When the system is driven out of chemical equilibrium,
the chemical potential of the s quark will be slightly differ-
ent from that of the d quark. Let us denote this difference
by �� ¼ �s ��d ¼ ��s � ��d, with ��f being the

deviation of �f from its static equilibrium value. Up to

linear order in the deviation we find

��ðtÞ ’
�
@�s

@ns

�
0
�ns �

�
@�d

@nd

�
0
�nd; (32)

where nf denotes the number density of quarks of flavor f

and the subscript 0 indicates that the quantity in the bracket
is computed in static equilibrium state. �ns and �nd are the
deviations of s-quark and d-quark densities from their
static equilibrium value. In the final expressions they
should be functions of �.
The instantaneous departure from equilibrium is re-

stored by the weak processes (1a) and (1b). Adopting the
linear approximation, this can be described by
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�d � �s ¼ ���; � > 0; (33)

where �d and �s are the rates of processes (1a) and (1b),
respectively. If the weak processes are turned off, one
should have

_�n
eq
f ¼ �nf0� ¼ nf0

_�nB
nB0

; (34)

where the dot denotes the time derivative. After turning on
the weak processes, we have

_�n u ¼ _�nB; _�nd ¼ nd0
_�nB
nB0

þ ���ðtÞ;

_�ns ¼ ns0
_�nB
nB0

� ���ðtÞ:
(35)

This system of coupled linear first-order equations is
closed by substituting Eqs. (30)–(32). It is then easy to
obtain the solution,

�nu ¼ �nu0
�

i!
;

�nd ¼ � i!nd0 þ �ð@�s=@nsÞ0ðnd0 þ ns0Þ
i!þ �A

�

i!
;

�ns ¼ � i!ns0 þ �ð@�d=@ndÞ0ðnd0 þ ns0Þ
i!þ �A

�

i!
;

(36)

where the coefficient A is defined by

A ¼
�
@�s

@ns

�
0
þ

�
@�d

@nd

�
0
: (37)

The parallel and transverse components of the pressure
Pk and P? can be written as

Pk ¼ Pk
eq þ �Pk

0; P? ¼ P?
eq þ �P?

0; (38)

and

Pk=?
eq ’ Pk=?

0 þX
f

�
@Pk=?
@nf

�
0
�neqf þ

�
@Pk=?
@B

�
0
�B;

�Pk=?
0 ’ X

f

�
@Pk=?
@nf

�
0
�n0f; (39)

where

�n0f � �nf � �neqf : (40)

The small departure of the magnetic field �B can be
calculated by the variation of Eq. (8). One finds

�B ¼ � 2

3

B

i!
�: (41)

A direct calculation then gives

�n0u ¼ 0; �n0d ¼
�Ck

i!þ �A

�

i!
;

�n0s ¼ � �Ck
i!þ �A

�

i!
;

(42)

where we introduced the coefficient Ck as

Ck ’ nd0

�
@�d

@nd

�
0
� ns0

�
@�s

@ns

�
0
: (43)

Now we obtain

�Pk=?
0 ¼ ��CkCk=?

i!þ �A

�

i!
; (44)

with C? defined as

C? ’ Ck � XB; X ¼
�
@M
@nd

�
0
�

�
@M
@ns

�
0
: (45)

Then the deviation of T�� from its equilibrium value can
be written as

�T�� ¼ �Re�P?
0��� þ Re�Pk

0b�b�: (46)

For isotropic flows, we have

��� ¼ �?����� �kb�b��: (47)

By comparing the above two expressions, we obtain

�k ¼
�Ck

2

!2 þ �2A2
; (48)

and

�? ¼ �C?Ck
!2 þ �2A2

: (49)

Expressions (48) and (49) show that the bulk viscosities �?
and �k are functions of the perturbation frequency !, the

weak rate �, and the thermodynamic quantities Ck, C?, A.
From the derivation above we can convince ourselves that
these expressions should be valid also in the case of color-
superconducting matter. For the zero magnetic field,
Eq. (49) reduces to Eq. (48), which, with parameters Ck,
A, and � taken in the absence of magnetic field, gives the
expression for the usual bulk viscosity �0 defined in iso-
tropic hydrodynamics.
Both �? and �k attain their maxima in the limit of zero

frequency, �max
k ¼ C2

k=ð�A2Þ, �max
? ¼ CkC?=ð�A2Þ; and

the maxima are inversely proportional to the weak inter-
action rate. At high frequency, ! � �A, �? and �k fall off
as 1=!2. For practical applications to cold strange stars,
where the chemical potential is much larger than the
temperature, the quantities Ck, C?, and A can be evaluated

in the zero-temperature limit. Their dependence on tem-
perature is weak. Contrary to this, the coefficient � de-
pends strongly on temperature: for normal quark matter, �
has a power-law dependence on T (see Sec. V); for a fully
paired color-superconducting phase, the weak rate is ex-

HUANG et al. PHYSICAL REVIEW D 81, 045015 (2010)

045015-6



ponentially suppressed by a Boltzmann factor e��=T with
� being the superconducting gap. Consequently, �? and �k
depend exponentially on T [24,32–37,40,41].

Before we find the numerical values for the bulk vis-
cosities, we first need to analyze the stability of magnetized
strange quark matter. We observe that according to Eq. (49)
negative values of �? are a priori not excluded. In the
following we analyze the consequences and implications
of negative �? on the stability of the system.

IV. STABILITYANALYSIS

A. Mechanical stability

Stable equilibrium in a self-gravitating fluid, such as in
strange quark stars, is attained through the balance of
gravity and pressure. The gravitational equilibrium re-
quires that both components of the pressure Pk and P?
should be positive (otherwise the star will undergo a gravi-
tational collapse). At zero temperature, the one-loop ther-
modynamic pressure P ¼ T lnZ=V of noninteracting
strange quark matter, where Z is the grand partition func-
tion, is given by

P¼ X
f¼u;d;s

NcqfB

4�2

Xnfmax

n¼0

�n

�
�f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2nqfB

q

�ðm2
f þ 2qfBnÞ ln

�f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2qfBn

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 2qfBn
q �

; (50)

where qf is the absolute value of electric charge, �f and

mf are the chemical potential and the mass of quark of

flavor f, n labels the Landau levels, �n ¼ 2� �0n is the

degree of degeneracy of each Landau level, and nfmax ¼
Int½ð�2

f �m2
fÞ=ð2qfBÞ� is the highest Landau level for

quarks of flavor f. By differentiating Eq. (50) with respect
to B one can easily get the magnetization as

M¼X
f

Xnfmax

n¼0

�n

Ncqf

4�2

�
�f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2nqfB

q

�ðm2
f þ 4nqfBÞ ln

�f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2nqfB

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 2nqfB
q �

: (51)

In Fig. 1 we illustrate the magnetization as a function of
magnetic field at zero temperature. The parameters are
chosen as

�u ¼ �d ¼ �s ¼ 400 MeV; ms ¼ 150 MeV;

mu ¼ md ¼ 5 MeV:
(52)

On average, the magnetization increases when B grows and
eventually becomes constant when B> Bc, where

Bc � Maxffð�2
f �m2

fÞ=ð2qfÞg: (53)

However, the detailed structure of the magnetization ex-
hibits strong de Haas–van Alphen oscillations [63]. This
oscillatory behavior is of the same origin as the de Haas–
van Alphen oscillations of the magnetization in metals and
originates from the quantization of the energy levels asso-
ciated with the orbital motion of charged particles in a
magnetic field. The irregularity of this oscillation shown in
Fig. 1 is due to the unequal masses and charges of u, d, and
s quarks.
When B> Bc, all quarks are confined to their lowest

Landau level and their transverse motions are frozen. In
this case, the longitudinal pressure Pk / B, so the magne-

FIG. 1. The magnetization of strange quark matter as function
of the magnetic field B.

FIG. 2 (color online). The parallel Pk (dashed black curve) and
transverse P? (solid red curve) pressures of strange quark matter
as functions of the magnetic field B in units of the pressure P0 for
zero magnetic field.
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tization M � @P=@B ¼ P=B is independent of B, and the
transverse pressure P? ¼ P�MB of the system vanishes.
This behavior is evident in Fig. 2.

Thus, we conclude that when all the quarks are confined
to their lowest Landau level, the transverse pressure van-
ishes. The system therefore becomes mechanically un-
stable and would collapse due to the gravity [64]. This
phenomenon establishes an upper limit on the magnetic
field sustained by a quark star. Given �d � 400 MeV, this
upper limit is roughly Bc � 1020 G as shown in Fig. 2.

B. Thermodynamic stability

The thermodynamic stability requires that the local en-
tropy density should reach its maximum in the equilibrium
state [65]. The total energy density of the fluid and the
magnetic field is

"total ¼ Tsþ�fnf � Pþ B2

2
; (54)

and the corresponding first law of thermodynamics, in
variational form, is

�"total ¼ T�sþ�f�nf þH�B; (55)

where H is the strength of the magnetic field and � stands
for a small departure of a given quantity from its equilib-
rium value. Varying Eq. (55) on both sides and taking into
account that "total, nf, and B are independent variational

variables, one obtains

�2s ¼ � 1

T
��f�nf � 1

T
�H�B ¼ � 1

T
�xT
�x; (56)

where �x ¼ ð�nu; �nd; �ns; �BÞ and


 ¼

@�u

@nu
0 0 @�u

@B

0 @�d

@nd
0 @�d

@B

0 0 @�s

@ns

@�s

@B
@H
@nu

@H
@nd

@H
@ns

@H
@B

0
BBBBB@

1
CCCCCA

0

: (57)

The thermodynamical stability criteria require that �s ¼ 0,
�2s 	 0, or, equivalently, 
 is positive definite. Taking into
account the relation ð@H=@nfÞ0 ¼ �ð@�f=@BÞ0, it is easy
to show that these criteria are equivalent to the requirement�

@nf
@�f

�
0
� 0;

�
@M

@B

�
0
	 1: (58)

From Eq. (50) we obtain

nf0 ¼
NcqfB

2�2

Xnfmax

n¼0

�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2nqfB

q
;

@nf0
@�f

¼ NcqfB

2�2

Xnfmax

n¼0

�n

�fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2nqfB

q ;

(59)

then it is evident that the condition ð@nf=@�fÞ0 � 0 is

always satisfied. However, ð@M=@BÞ0 is divergent when
B approaches a n � 0 Landau level for each flavor quark
from below,

�
@M

@B

�
0
! NcqfB

�2

ðnqfÞ2
�f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2nqfB

q ;

when B ! Bf
n � �2

f �m2
f

2nqf
� 0þ: (60)

This shows that strange quark matter will be thermody-

namically unstable just below each Landau level Bf
n (n �

0) for every flavor f. The first three thermodynamically
unstable windows (TUWs) associated, respectively, with
Bd
1 , B

u
1 , and Bs

1 are illustrated in the logB�� plane in
Fig. 3 for our parameters (52). The TUW is actually very
narrow. One may conjecture that such an instability may
lead to formation of magnetic domains [63]. The presence
of possible magnetic domains in neutron star crusts was
discussed in Ref. [66]; furthermore, such a possibility for
color-flavor-locked quark matter was pointed out in
Ref. [67]. We will not pursue here the study of domain
structure and related physics, since among other things,
this will require us to specify the geometry of the system.

C. Hydrodynamic stability

In this subsection we address the problem of hydrody-
namic stability within the theory presented in Sec. II. The
fluid is said to be stable if it returns to its initial state after a
transient perturbation. Otherwise, i.e., when the perturba-
tion grows and takes the fluid into another state, the fluid is
unstable. Our particular goal here is to determine whether a

FIG. 3 (color online). The first three thermodynamically un-
stable windows for strange quark matter in the logB��d plane
for T ¼ 0 and �u ¼ �d.
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small, plane-wave perturbation around a homogeneous
equilibrium state grows for nonzero �? and �k [58]. All

the other transport coefficients are set to zero. For this
purpose, it is sufficient to solve the hydrodynamic and
Maxwell equations that are linearized around the homoge-
neous equilibrium state

@��T
�� ¼ 0; @��n

�
B ¼ 0; @��n

�
e ¼ 0;

@��H
�� ¼ 0; 	����@��F�� ¼ 0;

(61)

where

�T�� ¼ �T��
F0 þ �T��

EM þ ����;

�T��
F0 ¼ �"u�u� � �P?��� þ �Pkb�b�

þ ð"þ P?Þð�u�u� þ u��u�Þ
þ ðPk � P?Þð�b�b� þ b��b�Þ;

�T��
EM ¼ B�Bðu�u� ���� � b�b�Þ

þ B2ð�u�u� þ u��u� � �b�b� � b��b�Þ;
���� ¼ �?�����þ �kb�b��’þ �?�����

þ �k�ðb�b�Þ’;
�n

�
B ¼ �nBu

� þ nB�u
�;

�n
�
e ¼ �neu

� þ ne�u
�;

�H�� ¼ �Hb�� þH�b��;

�F�� ¼ �Bb�� þ B�b��;

���� ¼ �b�b� þ b��b� � �u�u� � u��u�;

�� ¼ 1
2�

��ð@��u� þ @��u�Þ;
�’ ¼ 1

2b
�b�ð@��u� þ @��u�Þ: (62)

Upon linearizing the normalization conditions u�u� ¼ 1,

b�b� ¼ �1, u�b� ¼ 0, one finds that the perturbed var-

iables need to satisfy the constraints

�u�u� ¼ �b�b� ¼ u��b� þ �u�b� ¼ 0: (63)

In the equations above the perturbations are assumed to
have the form �Q ¼ �Q0 expðikxÞ, where �Q0 is constant,
and the unperturbed quantities are independent of space
and time. The hydrodynamic and Maxwell equations need
to be supplemented by an equation of state in order to close
the system. The linearized equation of state is given by

�P ¼ c2s�"þM�B; (64)

where c2s � ð@P=@"ÞB is the speed of sound.
In the most general case Eqs. (61)–(64) constitute 15

independent equations, but the equations associated with
the conservation of nB and ne are decoupled from the
others if the equation of state is taken in the form (64).
Therefore, we are left with 13 equations. We work in the
rest frame of the equilibrium fluid, u� ¼ ð1; 0; 0; 1Þ and
b� ¼ ð0; 0; 0; 1Þ and choose as independent variables

�Yi ¼ f�u1; �u2; �u3; �b0; �b1; �b2; �"; �Pk; �P?;

�B; �M; ��; �’g: (65)

(N.B. One can choose other independent variables, but the
results do not change). The 13 linear equations can be
collected into the following matrix form:

Gij�Yj ¼ 0: (66)

The matrix G has the following form:

G¼

�k2 k1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 k2 �k1 0 0 0 0 0 0 0

�Hk0 �Hk0 0 0 Hk3 Hk3 0 0 0 k1þ k2 �k1� k2 0 0
k3 k3 0 0 �k0 �k0 0 0 0 0 0 0 0
Bk1 Bk2 0 0 0 0 0 0 0 �k0 0 0 0
�hk1 �hk2 �hk3 �HBk3 0 0 k0 0 0 Bk0 0 0 0
�hk0 �hk0 0 0 HBk3 HBk3 0 0 k1þ k2 Bðk1þ k2Þ 0 ��?ðk1þ k2Þ 0
0 0 �hk0 �HBk0 HBk1 HBk2 0 k3 0 �Bk3 0 0 �kk3
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 �1 1 M B 0 0
ik1 ik2 0 0 0 0 0 0 0 0 0 1 0
0 0 �ik3 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 �c2s 1 0 �M 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

;

(67)

where h ¼ "þ PþHB is the total enthalpy. The expo-
nential plane-wave solutions for frequencies k0 and wave
vectors k satisfy the dispersion relations given by

detG ¼ 0: (68)

For the modes propagating parallel (longitudinal modes) or
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perpendicular (transverse modes) to the magnetic field,
Eq. (68) has simple solutions.

1. Transverse modes, k3 ¼ 0. There are two types of
transverse modes. One is solely determined by the
Maxwell equations and has the following dispersion rela-
tion,

k0 ¼ 
k?; (69)

where k2? ¼ k21 þ k22, and describes simply an electromag-

netic wave. Another solution has the dispersion relation

k0 ¼
i�?k2? 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð"þ PkÞð"þ P?Þc2sk2? � k4?�

2
?

q
2ð"þ PkÞ

� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"þ P?
"þ Pk

s
csk? þ i�?k2?

2ð"þ PkÞ ; (70)

where the second approximate relation is valid in the long-
wavelength limit. This solution represents a sound wave
propagating perpendicular to the magnetic field. The speed

of this sonic wave is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"þ P?Þ=ð"þ PkÞ

q
cs and is smaller

than the speed cs of a ordinary sound wave. It is seen that
positive �? implies dissipation of the sonic wave, i.e., a
decay of the initial disturbance. We conclude that the fluid
flow is stable in the case. However, we see that for negative
�?, the initial disturbance grows and the fluid is unstable.
Thus, we conclude that negative transverse bulk viscosity
implies hydrodynamic instability via growth of transverse
sound waves.

2. Longitudinal modes, k1 ¼ k2 ¼ 0. We find three types
of longitudinal modes. The first one is again the electro-
magnetic wave with the dispersion relation

k0 ¼ 
k3: (71)

The second one is a transverse wave oscillating perpendic-
ularly to the magnetic field, but traveling along the mag-
netic field lines. It has the dispersion relation

k0 ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BH

"þ Pk þ BH

s
k3: (72)

This mode is the Alfven wave whose speed is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BH=ð"þ Pk þ BHÞ

q
. The third longitudinal mode has

the following dispersion relation:

k0 ¼
i�kk23 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð"þ PkÞ2c2sk23 � k43�

2
k

q
2ð"þ PkÞ

� 
csk3 þ i�kk23
2ð"þ PkÞ : (73)

This mode represents an ordinary sound wave with dis-

sipation due to the longitudinal bulk viscosity �k. It is
obvious that if �k < 0 this mode will not decay, but rather

grow, thus leading to hydrodynamic instability.
In the next section, we will show that for certain values

of the parameters, the transverse bulk viscosity �? could be
indeed negative. We emphasize here that this does not
imply a violation of the second law of thermodynamics,
but rather this manifests a hydrodynamic instability of the
ground state; i.e., small perturbations will take the system
via this hydrodynamic instability to a new state. A candi-
date state is the one which has inhomogeneous (domain)
structure. Both the structure of the new state and the
transition from the homogeneous to the inhomogeneous
state are interesting problems which are beyond the scope
of this study. However, wewould like to point out a number
analogous cases where a negative transport coefficient
indicates instability towards formation of a new state
with domain structure. One such case is the negative
resistivity (also known as the Gunn effect) in certain semi-
conducting materials [68,69]. Another case is the negative
(effective) shear viscosity, which is extensively studied in
the literature [70–73]. Finally, negative bulk viscosity has
been investigated in different contexts in [74,75].

V. RESULTS FOR THE BULK VISCOSITIES

In order to calculate the bulk viscosities, we need to
determine the coefficients A, Ck, C?, and �. From

Eqs. (50), (51), and (59) we obtain in a straightforward
manner

A ¼
�
NcqsB

2�2

Xnsmax

n¼0

�n

�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

s �m2
s � 2nqsB

p ��1

þ
�
NcqdB

2�2

Xndmax

n¼0

�n

�dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

d �m2
d � 2nqdB

q ��1
;

Ck ¼ nd0

�
NcqdB

2�2

Xndmax

n¼0

�n

�dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

d �m2
d � 2nqdB

q ��1

� ns0

�
NcqsB

2�2

Xnsmax

n¼0

�n

�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

s �m2
s � 2nqsB

p ��1
;

C? ¼ Ck �
�
@M

@�d

=
@nd0
@�d

� @M

@�s

=
@ns0
@�s

�
B; (74)

where

@M

@�f
¼ Ncqf

2�2

Xnfmax

n¼0

�n

�2
f �m2

f � 3nqfBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

f �m2
f � 2nqfB

q : (75)

The rate � of the weak processes (1a) and (1b) should
also be affected by a strong magnetic field. The major
effect of a magnetic field on � is to modify the phase space
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of weak processes (1a) and (1b) [76,77]. Taking this into
account, one obtains

� ¼ 64�5

5
~G2�dT

2

�
quB

2�2

Xnumax

n¼0

�n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

u �m2
u � 2nquB

p �
2

�
�
qdB

2�2

Xndmax

n¼0

�n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

d �m2
d � 2nqdB

q �

�
�
qsB

2�2

Xnsmax

n¼0

�n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

s �m2
s � 2nqsB

p �
; (76)

where ~G2 � G2
Fsin

2�Ccos
2�C ¼ 6:46� 10�24 MeV�4 is

the Fermi constant.
(1) When the magnetic field is much smaller than the

typical chemical potential, say, qdB � �2
d, its effect

on the bulk viscosities is negligible. For typical
parameters (52), this condition holds up to B�
1017 G. In this case, the system is practically iso-
tropic; �k and �? are effectively degenerate with the

isotropic �0, the bulk viscosity of unmagnetized
matter. The zero magnetic field limit results can be

obtained easily by replacing
Pnfmax

n¼0 qfB ! 2k2Ff, and

B ! 0. The bulk viscosity for zero magnetic field �0
as function of oscillation frequency ! for various
temperatures is shown in Fig. 4. The ‘‘shoulder’’
structure and the temperature dependence of �0 are
easily understood from Eq. (48) and have been
widely discussed in the literature [24,28–37,40,41].

(2) When the magnetic field is extremely large, say,
B � Bc � 1020 G, for our choice of parameters
(52), all the quarks are confined in their lowest
Landau level. In this case we obtain

A ¼ 2�2

Ncqd�dB
ðkFd þ kFsÞ; Ck ¼ m2

s �m2
d

�d

;

C? ¼ 0; � ¼ 4G2q2uq
2
dB

4T2

5�3�2
ukFs

; (77)

and therefore

�? ¼ 0; �k � 45m4
s�

2
ukFs

16� ~G2q2uB
2T2ðkFs þ kFdÞ2

:

(78)

We used the parameters (52) and assumed physi-
cally interesting frequencies !< 104 s�1. The bulk
viscosity �? vanishes as a consequence of vanishing
P? when B> Bc. Since �k is now inversely propor-

tional to B2 it approaches zero for large B.
Therefore, both �? and �k are suppressed for large

B. In constrast, Pk is enhanced by the extremely

large magnetic field (see Fig. 2).
(3) When the magnetic field is strong, but not strong

enough to confine all the quarks to their lowest
Landau level, the situation becomes complicated.
For our chosen parameters (52), this situation
roughly corresponding to the interval 1017 G<B<
1020 G. In this case, a finite number of Landau
levels is occupied, and the essential observation is
that Ck andC? can be negative. The behaviors of Ck
and C? are shown in Fig. 5 as functions of B. Let us
concentrate on the few levels just above the value
1019 G. When B grows passing over Bd

n or Bs
n for

each n, both Ck and C? change their sign. More

importantly, they have always opposite signs.
Therefore, in this region, �? is negative, which leads
to hydrodynamic instability (see the analysis in
Sec. IVC).

FIG. 4 (color online). The isotropic bulk viscosity �0 at zero
magnetic field as a function of the oscillation frequency ! for
�u ¼ �d ¼ 400 MeV at T ¼ 0:01 (solid blue curve) 0.1
(dashed red curve), and 1 (dotted black curve) MeV.

FIG. 5 (color online). Coefficients Ck (dashed blue curve) and
C? (dotted red curve) as functions of B at zero temperature.
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The numerical values of the bulk viscosities �k and �?
are shown in Fig. 6 as functions of B. The parameters are
those given in Eq. (52). We also fix the temperature T ¼
0:1 MeV and oscillation frequency ! ¼ 2�� 103 s�1.
Both �k and �? have ‘‘quasiperiodic’’ oscillatory depen-

dence on the magnetic field. The two boundaries of each

‘‘period’’ correspond to a pair of neighboring Bf
n, f ¼ u, d,

s, and n ¼ 0; 1; 2 � � � , and hence the period is roughly
�B� 2qfB

2=k2Ff for large B. Therefore, on average, the

period increases as B grows. The amplitude of these oscil-
lations also grows with increasing magnetic field until B ’
Bc. Thereafter all the quarks are confined to their lowest
Landau levels and �? vanishes. From Fig. 6 we see that the
magnitudes of �? and �k can be 100 to 200 times larger

than their zero-field value �0. Because of the unequal

masses and charges of u, d, and s quarks, �k and �? behave

very irregularly. We illustrate the zoomed-in curves around
B ¼ 1017 and B ¼ 1018 G in the subpanels, which look
more regular. The quasiperiodic structures are more evi-
dent in these subpanels.
The most unusual feature seen in Fig. 6 is that for a wide

range of field values, the transverse bulk viscosity �? is
negative. Therefore, strange quark matter in this region is
hydrodynamically unstable. Besides this hydrodynamical

instability, near each Bf
n, there is a narrowwindow in which

thermodynamical instability arises. We depict �k and �? in

these unstable regions by dashed red curves. The solid blue
curves correspond to the stable regime.
The magnetic field in a compact star need not be homo-

geneous and may have a complicated structure with poloi-
dal and toroidal components. Furthermore, the fields will
be functions of position in the star because of the density
dependence of the parameters of the theory. Furthermore,
the instabilities, described above, may lead to fragmenta-
tion of matter and formation of domain structures, where
the regions with magnetic fields are separated from those
without magnetic field by domain walls. Accordingly, only
the averaged viscosities over some range of magnetic fields
have practical sense for assessing the large-scale behavior
of matter. Averaging over many oscillation periods in the
stable region, we find that the averaged values of �k and �?
are much more regular, with their magnitudes restricted
from 0 to several �0 (see Fig. 7). In obtaining the curves in
Fig. 7, we have eliminated the viscosities lying in the
unstable regime. The solid black curves are obtained by
averaging over a short period �log10ðB=GÞ ¼ 0:05. The
period was chosen such that the most rapid fluctuations are
smeared out, but the oscillating structures over a larger
scale are intact. The dashed red curves correspond to
averaging over an even longer period, �log10ðB=GÞ ¼
0:5. The result of long-period averaging is that �k first

increases slowly and then drops down quickly once B>
1018:5 G; similarly, �? first slowly decreases and then
drops down very fast for B� 1018:5 G. Such a dropping
behavior reflects the fact that a large number of quarks are
beginning to occupy the lowest Landau level.
We note that the appearances of thermodynamic, me-

chanical, and hydrodynamical instabilities are all induced
by the Landau quantization of the quark levels, i.e., are
quantum mechanical in nature. More precisely, they are all
due to the interplay between the Landau levels and the

Fermi momentum (reflected in the quantity Bf
n).

Additionally, the hydrodynamical instability requires that
the quark matter is paramagnetized. Although we did our
analysis by using the free quark gas approximation,
Eq. (50), it should be valid as long as there are sharp
Fermi surfaces (low temperature), quantized Landau levels
(high magnetic field), and paramagnetization. The appear-
ances of these instabilities are expected to be a robust
feature for such systems.

FIG. 6 (color online). Bulk viscosities �k and �? scaled by the
isotropic bulk viscosity �0 as functions of the magnetic field B at
fixed frequency ! ¼ 2�� 103 s�1 and temperature T ¼
0:1 MeV. The dashed red curves correspond to viscosities lying
in the unstable regions and would be not physically reachable.
Subpanels show the amplifications around 1017 and 1018 G. Our
parameters are given in Eq. (52).
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We also checked that if one imposes the neutrality
condition, i.e., the condition 2nu ¼ nd þ ns, there is only
minor quantitative change, while the qualitative conclu-
sions are almost unchanged. Our choice of chemical po-
tential �u ¼ �d ¼ 400 MeV roughly corresponds to the
choice of nB � 4� 5n0 for neutral strange quark matter.

VI. r-MODE INSTABILITY WINDOW

The purpose of this section is to discuss the damping of
the r-modes of Newtonian models of strange stars by
dissipation driven by the bulk viscosities �? and �k. As is
well-known, rotating equilibrium configurations of self-
gravitating fluids are susceptible to instabilities at high
rotation rates. Starting from the mass-shedding limit and
going down with the rotation rate, the first instability point

corresponds to the dynamical instability of the l ¼ 2 and
m ¼ 2 mode. This bar-mode instability is independent of
the dissipative processes inside the star and occurs at
values of the kinetic to potential energy ratio T=W �
0:27 [78]. For smaller rotation rates two secular instabil-
ities with l ¼ 2 arise, each corresponding to a sign of m ¼

2. For incompressible fluids at constant density the T=W
values for the onset of secular instabilities coincide. One
instability is driven by the viscosity; the other instability is
driven by the gravitational radiation. For realistic stars the
T=W values for the onset of these instabilities do not
coincide; relativity and other factors shift the viscosity-
driven instability to higher values of T=W. At the same
time the gravitational radiation instability is shifted to
lower values of T=W. The gravitational radiation instabil-
ity arises for the modes which are retrograde in the corotat-
ing frame, while prograde in the (distant) laboratory frame.
The underlying mechanism is the well established
Chandrasekhar-Friedman-Schutz (CFS) mechanism
[79,80]. The bulk and shear viscosities can prevent the
development of the CFS instabilities, except in a certain
window in the rotation and temperature plane.
In the following we shall concentrate on axial modes of

Newtonian stars, the so-called r-modes, which are known
to undergo a CFS-type instability. Our main goal will be to
assess the role of strong magnetic fields and bulk viscosity
on the stability of these objects. We shall adopt the formal-
ism of Refs. [22,81,82] for our study of the damping of the
r-modes by bulk viscosity. For the sake of simplicity we
shall describe both fluid mechanics and gravity in the
Newtonian approximation.
The equations that describe the dynamical evolution of

the star are

@t�þr � ð�vÞ ¼ 0; (79a)

@tvþ v � rv ¼ �rðh��Þ � �rU; (79b)

r2� ¼ �4�G�; (79c)

where h is defined by the integral

hðPÞ �
Z P

0

dP0

�ðP0Þ : (80)

The quantity � is the mass density of the fluid which is
assumed to satisfy a barotropic equation of state, � ¼
�ðPÞ. � is the gravitational potential and G is the gravita-
tional constant. The potential U is used to determine the
velocity field v.
The oscillation modes of a uniformly rotating star can be

completely described in terms of two perturbation poten-
tials �U � U�U0 and �� � ���0, where U0 and�0

are the potentials that correspond to the equilibrium con-
figuration of the star. We assume that the time and azimu-
thal angular dependence of any perturbed quantity is
described by / ei ~!tþim’, where m is an integer and ~! is
the frequency of the mode in the laboratory frame. Let �

FIG. 7 (color online). The averaged bulk viscosities �k and �?
scaled by the isotropic bulk viscosity �0 as functions of the
magnetic field B at fixed frequency ! ¼ 2�� 103 s�1 and
temperature T ¼ 0:1 MeV. The solid black curve corresponds
to averaging over a short period [�log10ðB=GÞ ¼ 0:05], while
the dashed red curve corresponds to averaging over a long period
[�log10ðB=GÞ ¼ 0:5]. The viscosities lying in the unstable re-
gions have been eliminated in the averaging.
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denote the rotation frequency of the star and ! denote the
frequency of the perturbed quantity measured in the coro-
tating frame [which corresponds to the ! in Eqs. (48) and
(49) because we will work in the corotating frame]. For
small � there is a simple relation between �, ~!, and !
[81,82],

! ¼ ~!þm�: (81)

By linearizing the Euler equation (79b) around the equi-
librium configuration, the velocity perturbation �va is
determined by [81,82]

�va ¼ iQabrb�U: (82)

The tensor Qab is a function of ~! and the rotation fre-
quency � of the star,

Qab ¼ 1

ð ~!þm�Þ2 � 4�2

�
ð ~!þm�Þ�ab

� 4�2

~!þm�
zazb � 2iravb

0

�
; (83)

where z is a unit vector pointing along the rotation axis of
the equilibrium star, which we assume to be parallel to the
magnetic field, i.e., zi ¼ bi in Cartesian coordinate system.
Here v0 ¼ r�sin�’̂ is the fluid velocity of the equilibrium
star.

Having the linearized Euler equation, one proceeds to
the linearization of the mass continuity equation (79a) and
the equation for the gravitational potential (79c); one finds

rað�Qabrb�UÞ ¼ �ð ~!þm�Þð�Uþ ��Þd�=dh;
r2�� ¼ �4�Gð�Uþ ��Þd�=dh: (84)

These equations, together with the appropriate boundary
conditions at the surface of the star for �U and at infinity
for ��, determine the potentials �U and ��.

For slowly rotating stars, Eq. (84) can be solved order by
order in �,

�U ¼ R2�2

�
�U0 þ �U2

�2

�G�
þOð�4Þ

�
;

�� ¼ R2�2

�
��0 þ ��2

�2

�G�
þOð�4Þ

�
;

(85)

where R is the radius of a nonrotating star. Since we need
only the perturbed velocity, we will focus on �U in the
following discussion. The zeroth-order contribution to the
r-mode is generated by the following form of the potential
�U0,

�U0 ¼ �

�
r

R

�
mþ1

Pm
mþ1ðcos�Þei ~!tþim’; (86)

~! ¼ �ðm� 1Þðmþ 2Þ
mþ 1

�; (87)

where � is an arbitrary dimensionless constant and Pm
l ðxÞ

are the associated Legendre polynomials. It has been
shown that the most unstable mode is the one with m ¼
2 [22,83]; therefore we shall consider only this case in the
following discussion. Substituting �U0 into Eq. (82) one
obtains the first-order perturbed velocity,

�v0 ¼ �0R�
�
r

R

�
m
YB

mmð�; ’Þei!t; (88)

where �0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðmþ 1Þ3ð2mþ 1Þ!=mp

and YB
lmð�; ’Þ is

the magnetic-type spherical harmonic function,

Y B
lmð�;’Þ ¼

r�rYlmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp : (89)

It is straightforward to check that the first-order per-
turbed velocity satisfies

@�v0z

@z
¼ 0; r � �v0 ¼ 0; (90)

therefore it does not contribute to the dissipation due to the
bulk viscosities �? and �k. In order to see how the bulk

viscosities damp the r-mode instability one must consider
next-to-first order, i.e., the third-order perturbed velocity
which is generated by the potential �U2. One cannot
determine analytically �U2 from Eqs. (84) and (85), but
the angular structure of �U2 can be well represented by the
following spherical harmonics expansion [82],

�U2 ¼ �f1ðrÞP1
mþ1ðcos�Þei ~!tþim’

þ �f2ðrÞPm
mþ3ðcos�Þei ~!tþim’: (91)

The functions f1ðrÞ and f2ðrÞ have been determined nu-
merically in Ref. [82]. A useful approximation is provided
by the following simple expressions,

f1ðrÞ ¼ �0:1294

�
r

R

�
3 � 0:0044

�
r

R

�
4 þ 0:1985

�
r

R

�
5

� 0:0388

�
r

R

�
6
; (92)

f2ðrÞ ¼ �0:0092

�
r

R

�
3 þ 0:0136

�
r

R

�
4 � 0:0273

�
r

R

�
5

� 0:0024

�
r

R

�
6
; (93)

which excellently fit the numerical result. We will use
Eqs. (92) and (93) in the following numerical calculation.
The energy of r-modes comes both from the velocity

perturbation and the perturbation of the gravitational po-
tential. For slowly rotating stars, the main contribution
comes from the velocity perturbation [22,23,83,84].
Then, the energy of the r-mode measured in the corotating
frame is

~E ¼ 1

2

Z
��v � �vd3r: (94)
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Assuming spherical symmetry, we have

~E ¼ 1

2
�02�2R�2mþ2

Z R

0
�r2mþ2dr: (95)

This energy will be dissipated both by gravitational radia-
tion and by the thermodynamic transport in the fluid
[22,23],

d ~E

dt
¼

�
d ~E

dt

�
G
þ

�
d ~E

dt

�
T
: (96)

The dissipation rate due to gravitational radiation is given
by [22,23,85]�

d ~E

dt

�
G
¼ � ~!ð ~!þm�ÞX

l�2

Nl!
2l½j�Dlmj2 þ j�Jlmj2�;

(97)

where

Nl ¼ 4�Gðlþ 1Þðlþ 2Þ
lðl� 1Þ½ð2lþ 1Þ!!�2 : (98)

�Dlm and �Jlm are the mass and current multipole mo-
ments of the perturbation,

�Dlm ¼
Z

��rlY
lmd

3r;

�Jlm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
l

lþ 1

s Z
rlð��vþ ��vÞ � YB

lmd
3r:

(99)

Taking into account Eq. (87) one obtains

~!ð ~!þm�Þ ¼ � 2ðm� 1Þðmþ 2Þ
ðmþ 1Þ2 �2 < 0; (100)

which implies that the total sign of ðd ~E=dtÞG is positive:
gravitational radiation always increases the energy of the
r-modes.

In order to compare the relative strengths of different
dissipative processes, it is convenient to introduce the
dissipative time scales defined by

�i � � 2 ~E

ðd ~E=dtÞi
; (101)

where the index i labels the dissipative process.
The lowest-order contribution to ðd ~E=dtÞG comes from

the current multipole moment �Jll. For the most important
case l ¼ m ¼ 2, this leads to the following time scale
(derived for a simple polytropic equation of state P / �2)
[82,83]:

1

�G
¼ � 1

3:26

�
�2

�G�

�
3
s�1: (102)

The bulk viscosities �? and �k dissipate the energy of the
r-mode according to

�
d ~E

dt

�
�?

¼ � 3

2

Z
�?

��������@�vx

@x
þ @�vy

@y

��������2

d3r;

�
d ~E

dt

�
�k
¼ �3

Z
�k
��������@�vz

@z

��������2

d3r:

(103)

Accordingly, the time scales ��? and ��k are given by

��?;�k ¼ � 2 ~E

ðd ~E=dtÞ�?;�k
: (104)

Currently, the shear viscosities �1–�5 of strange quark
matter are not known. In order to determine the damping of
the r-mode by shear viscosity, we take as a crude estimate
the value of �0 in the absence of a magnetic field [62]

�0 ’ � ¼ 5:5� 10�3��5=3
s �14=3

d � T�5=3; (105)

where �s is the coupling constant of strong interaction. We
will choose the value �s ¼ 0:1 and apply Eq. (105) to
highly degenerate 3-flavor quark matter with equal chemi-
cal potentials of all flavors (�u ’ �d ’ �s). The contribu-
tion to the energy dissipation rate ~E due to shear viscosity
� now becomes�

d ~E

dt

�
�
¼ �

Z
�jwij � �ij�=3j2d3r: (106)

Assuming a uniform mass density star, the time scale ��
can be simply expressed as [85]

1

��
¼ 7�

�R2
: (107)

The total time scale �ð�; TÞ is given by the following
sum,

1

�
� 1

�G
þ 1

��?
þ 1

��k
þ 1

��
; (108)

which characterizes how fast the r-mode decays. Most
importantly, if the sign of � is negative the amplitude of
the r-mode will not decay; rather it will increase with time.
Thus, it is important to determine the critical angular
velocity �c for the onset of instability

1

�ð�c; TÞ ¼ 0: (109)

At a given temperature, stars with�>�c will be unstable
due to gravitational radiation.
Figure. 8 shows the critical angular velocity �c of a

strange quark star with mass M ¼ 1:4M� and radius R ¼
10 km as a function of the magnetic field B near 1018 G.
The temperature is fixed as T ¼ 0:001 MeV and other
parameters are taken according to Eq. (52). In obtaining
Fig. 8, we have taken into account the thermodynamical
and hydrodynamical stability conditions. The solid blue
curves correspond to the thermodynamically and hydro-
dynamically stable region, while the dashed red curves
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correspond to unstable regions. The critical angular veloc-
ity is strongly oscillating with increasing B. This behavior
is due to the oscillating nature of the bulk viscosities �k and
�? as shown in Fig. 6. Thus, this macroscopic behavior
originates from a purely quantum mechanical effect,
namely, the Landau quantization of the energy levels of
quarks. As discussed for the bulk viscosities �k and �?
shown in Fig. 7, averaging is needed to obtain physically
relevant quantities. In Fig. 9 we show the averaged critical
angular velocity at various temperatures. The solid black
curves are obtained by averaging over a short period
� logðB=GÞ ¼ 0:05, whereas the dashed red curves corre-
spond to averaging over a long period � logðB=GÞ ¼ 0:5.
It is seen that after short-period averaging, the critical
angular velocity (solid black curves) shows regular oscil-
lation, the amplitude of which is growing as the B field
increases. The critical angular velocity�c displays a sharp
drop for fields B 	 1018:5 G (dashed red curves), which is
the consequence of the sharp drop of �k and �? shown in

Fig. 7. Thus, we conclude that for extremely large mag-
netic fields, the critical angular velocity at which the
r-mode instability sets in could be significantly lower
than in the absence of magnetic field.

Figure. 10 shows the window of the r-mode instability in
the�� log10T plane for a strange quark star of massM ¼
1:4M� and radius R ¼ 10 km. The regions above the
respective curves correspond to the parameter space where
the r-mode oscillations are unstable; i.e., a star in this
region will rapidly spin down by emission of gravitational
waves. The dashed green curve corresponds to vanishing
bulk viscosities �k ¼ �? ¼ 0. The solid black curve rep-

resents the (in)stability window of an unmagnetized
strange quark star. The curves with symbols show the
typical instability window for magnetic fields around

FIG. 8 (color online). The critical angular velocity �c of a
strange quark star as a function of magnetic field B at tempera-
ture T ¼ 0:001 MeV. The dashed red lines correspond to the
unstable, while the solid blue lines correspond to the stable
regime.

FIG. 9 (color online). The averaged critical angular velocity
�c of a strange quark star as a function of magnetic field B at
various temperatures T ¼ 0:001, 0.1, and 10 MeV. The solid
black curve corresponds to averaging over a short period
[� logðB=GÞ ¼ 0:05], while the dashed red curve corresponds
to averaging over a long period [� logðB=GÞ ¼ 0:5].
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1017 G (the red curve marked by triangles) and 1018:8 G
(the blue curve, marked by circles). The symboled curves
are obtained by using the bulk viscosities averaged over the
period �log10ðB=GÞ ¼ 0:5. For low temperatures, T <
0:3 keV, the r-mode instability is suppressed mainly by
the shear viscosity; at these low temperatures the bulk
viscosities are an insignificant source of damping, inde-
pendent of how large the magnetic field is. However, for
larger temperatures the bulk viscosities dominate the
damping of r-mode oscillations. For magnetic fields below
B� 1017 G, the critical rotation frequency is almost inde-
pendent of the B field. The r-mode instability window
increases as the magnetic field grows. For fields B>
1018 G it is a very sensitive function of the field, as a
consequence of the rapid variation of the bulk viscosities
with the field. Asymptotically, the instability window can
become significantly larger than the window at the zero
magnetic field (see also Fig. 9). For completeness, Fig. 10
also shows the observed distribution of low mass x-ray
binaries (LMXBs) by the shadowed box, which corre-
sponds to the typical temperatures (2� 107–3� 108 K)
and rotation frequencies (300–700 Hz) of the majority of
observed LMXBs [86]. It is seen that even in the case of
extremely large magnetic fields, our instability window is
consistent with the current LMXB data.

VII. SUMMARY

In this paper we have studied anisotropic hydrodynamics
of strongly magnetized matter in compact stars. We find
that there are in general eight viscosity coefficients: six of

them are identified as shear viscosities, and the other two,
�? and �k, are bulk viscosities [see Eq. (23)]. We applied

our formalism to magnetized strange quark matter
and gave explicit expressions for the bulk viscosities
[Eqs. (48) and (49)] due to the nonleptonic weak reactions
(1a) and (1b). Because of the Landau quantization of the
energy levels of charged particles in a strong magnetic
field, the magnetic field dependence of �k and �? is very

complicated and exhibits ‘‘quasiperiodic’’ de Haas–
van Alphen–type oscillations (see Fig. 6). For a magnetic
field B 	 1017 G the effect of the magnetic field on the
transport coefficients is small and the bulk viscosities can
be well approximated by their zero-field values. For large
fields 1017 	 B 	 1020 G the viscosities are substantially
modified; �? may even become negative for some values of
the B field. We showed that negative �? render the fluid
hydrodynamically unstable.
For a number of reasons (density dependence of parame-

ters along the star profile, formation of domains, intrinsic
multicomponent nature of the magnetic field) the depen-
dence of the transport coefficients on the magnetic fields is
needed at different resolutions (i.e., they require some
suitable averaging over a range of magnetic fields). We
have provided such averages over an increasingly larger
scale. We find that if the averaging period is small the bulk
viscosities show regular oscillations, the amplitudes of
which increase with magnetic field (see the solid black
curves in Fig. 7). These oscillations are smoothed out if we
further increase the averaging scale. At this larger scale the
most interesting feature is the rapid drop in the bulk
viscosity of the matter due to the confinement of quarks
to the lowest Landau level; this occurs for magnetic fields
in excess of B> 1018:5 G (see the dashed red curves in
Fig. 7).
As an application, we utilized our computed anisotropic

bulk viscosities to study the problem of damping of r-mode
oscillations in rotating Newtonian stars. We find that the
instability window increases as the magnetic field is in-
creased above the value B> 1017 G. By increasing the
field one covers the entire range of parameter space which
lies between the two extremes: the case when bulk viscos-
ity vanishes (dashed green curve in Fig. 10, which corre-
sponds to extremely large magnetic fields B * 1019 G for
which the bulk viscosity drops to zero), and the case when
the magnetic field is absent (solid black curve in Fig. 10).
The found novel dependence of the r-mode instability
window on the magnetic field may help to distinguish
quark stars from ordinary neutron stars with strong mag-
netic fields, since the latter are much more difficult to
magnetize. It would be interesting to see whether the
objects that lie in between these extremes, e.g., hybrid
configurations featuring quark cores and hadronic enve-
lopes (see Ref. [87] and references therein), may interpo-
late smoothly between the physics of ordinary and strange
compact objects.

FIG. 10 (color online). The r-mode instability window for a
strange quark star. The star is stable below the respective curves.
The dashed green curve corresponds to vanishing bulk viscos-
ities �k ¼ �? ¼ 0. The solid black curve represents the window

of unmagnetized strange quark matter. The curves with symbols
show the typical behavior of the instability window when the
magnetic fields are around 1017 G (red curve) and 1018:8 G (blue
curve). The shadowed box represents typical temperatures (2�
107–3� 108 K) and rotation frequencies (300–700 Hz) of the
majority of observed LMXBs [86].
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APPENDIX: LINEAR INDEPENDENCE OF
COMPONENTS IN EQ. (21)

The purpose of this appendix is to show explicitly that
the eight different decompositions in Eq. (21) are linearly
independent. To this end, let us write down a general linear
combination of the eight different decompositions,

a1ðiÞ þ a2ðiiÞ þ � � � þ a8ðviiiÞ ¼ 0: (A1)

If (i)–(viii) are linearly independent, the coefficients a1–a8
should all vanish for any values of the vectors u� and b�.
First, it is easy to see that the components (vi) and (vii) are
independent of the other components, because they have
odd parity under reflection b� ! �b�, whereas the other
six components have even parity under this transformation.

Besides that, it is obvious that (vi) and (vii) are indepen-
dent of each other. Therefore, we only need to treat the
linear equation

a1ðiÞ þ � � � þ a5ðvÞ þ a8ðviiiÞ ¼ 0: (A2)

By contracting the indices � and �, we obtain the follow-
ing three conditions:

3a1 þ 2a2 � a3 þ 2a8 ¼ 0;

3a3 � a4 þ 4a5 þ 2a8 ¼ 0;

3a1 þ 2a2 � 12a3 þ a4 � 4a5 ¼ 0:

(A3)

Contracting Eq. (A1) with b� and b� we find the following
two additional conditions:

a1 þ a3 ¼ 0; 2a2 � a3 þ a4 � 4a5 ¼ 0: (A4)

Contracting the indices � and � in Eq. (61), we obtain one
further condition:

a1 þ 4a2 � 2a3 þ a4 � 6a5 ¼ 0: (A5)

The nontrivial solution of the set of Eqs. (A2)–(A5) is

a1 ¼ a3 ¼ 0; a2 ¼ a4=2 ¼ a5 ¼ �a8: (A6)

Then, we have the following condition,

a2ðb��b�� þ b��b�� ������� �������Þ ¼ 0:

(A7)

The only possible solution is a2 ¼ 0, which thus proves the
independence of (i)–(viii).
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[72] A. Cēbers, Phys. Rev. Lett. 92, 034501 (2004).
[73] J.-C. Bacri, R. Perzynski, M. I. Shliomis, and G. I. Burde,

Phys. Rev. Lett. 75, 2128 (1995).
[74] S. P. Das, H. J. Bussemaker, and M.H. Ernst, Phys. Rev. E

48, 245 (1993).
[75] K. Tankeshwar, J. Phys. Condens. Matter 6, 9295 (1994).
[76] S. Chakrabarty, D. Bandyopadhyay, and S. Pal, Int. J.

Mod. Phys. A 13, 295 (1998).
[77] Z. Xiao-Ping, Z. Xia, and L. Xue-Wen, arXiv:astro-ph/

0507390.
[78] M. Saijo, M. Shibata, T.W. Baumgarte, and S. L. Shapiro,

Astrophys. J. 548, 919 (2001).
[79] S. Chandrasekhar, Phys. Rev. Lett. 24, 611 (1970).
[80] J. L. Friedman and B. F. Schutz, Astrophys. J. 222, 281

(1978).
[81] J. R. Ipser and L. Lindblom, Astrophys. J. 355, 226 (1990).
[82] L. Lindblom, G. Mendell, and B. J. Owen, Phys. Rev. D

60, 064006 (1999).
[83] L. Lindblom, B. J. Owen, and S.M. Morsink, Phys. Rev.

Lett. 80, 4843 (1998).
[84] B. J. Owen, L. Lindblom, C. Cutler, B. F. Schutz, A.

Vecchio, and N. Andersson, Phys. Rev. D 58, 084020
(1998).

[85] B. A. Sa’d, arXiv:0806.3359.
[86] E. F. Brown, L. Bildsten, and P. Chang, Astrophys. J. 574,

920 (2002).
[87] N. Ippolito, M. Ruggieri, D. Rischke, A. Sedrakian, and F.

Weber, Phys. Rev. D 77, 023004 (2008).

ANISOTROPIC HYDRODYNAMICS, BULK VISCOSITIES, . . . PHYSICAL REVIEW D 81, 045015 (2010)

045015-19


