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The distributions of the quark number and chiral condensate over the gauge fields are computed for

QCD in Euclidean space at nonzero quark chemical potential. As both operators are non-Hermitian the

distributions are in the complex plane. Moreover, because of the sign problem, the distributions are not

real and positive. The computations are carried out within leading order chiral perturbation theory and

give a direct insight into the delicate cancellations that take place in contributions to the total baryon

number and the chiral condensate.
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I. INTRODUCTION

The phase diagram of strongly interacting matter is
determined by the behavior of the chiral condensate h�i
and the quark number hni. These quantities signal the
breakdown of chiral symmetry and the formation of bar-
yonic matter. Not only are the expectation values of � and
n of interest, but also their fluctuations are central to our
understanding of strongly interacting matter since they
may be visible in fluctuations of the observables measured
in heavy ion collisions [1–4].

In Euclidean space, both � and n are complex when
evaluated at nonzero chemical potential for a typical gauge
field background. The reason why n and � take complex
values is that the fermion determinant at nonzero chemical
potential is complex: if we write detðDþ��0þ
mÞ¼ rexpði�Þ, we have

n � d

d�
logdetðDþ��0 þmÞ ¼ d

d�
logrþ i

d

d�
�;

� � d

dm
logdetðDþ��0 þmÞ ¼ d

dm
logrþ i

d

dm
�:

(1)

The fluctuations therefore take place in the complex�- and
n-plane. Since the fermion determinant is also complex
valued for nonzero chemical potential, fluctuations in all
directions of the complex �- and n-plane contribute to the
expectation values h�i and hni, which, of course, are real.
A description of fluctuations of � and n is contained in
their distributions P� and Pn. Here, we derive these dis-
tributions analytically to leading nontrivial order in chiral
perturbation theory. From (1), we see that the imaginary
part of the quark number operator is directly related to the
phase of the fermion determinant. We therefore expect that
the cancellations due to fluctuations of the phase are tightly
linked to the distribution of the quark number in the
imaginary direction. The results presented below confirm
this expectation.

Chiral perturbation theory [5] is the low energy limit of
QCD which describes the strongly interacting theory in
terms of weakly interacting Goldstone modes correspond-
ing to the spontaneous breakdown of chiral symmetry.
Since the pions have zero quark charge, the expectation
value of the quark number in chiral perturbation theory is
automatically zero. The square of the quark number

hn2qi ¼ 1

Z

d2

d�2
Z ¼ hn2i þ

��
dn

d�

��
(2)

is of course also zero since in chiral perturbation theory the
partition function Z is independent of �. The distribution
of the values which the quark number operator takes as the
gauge fields fluctuate is, however, nontrivial even when
evaluated within chiral perturbation theory. To see that this
is necessarily the case, let us consider the second moment
of n i.e. hn2i ¼ R

dxdyðxþ iyÞ2Pnðxþ iyÞ. If the second
moment is nonzero the distribution Pn is nontrivial, i.e. not
a two dimensional �-function at the origin of the complex
n-plane.
Let us emphasize that hn2i is not the average of the

square of the quark number, see (2), rather the second
moment must be thought of as

hn2i ¼ 1

Z

d

d�u

d

d�d

Z (3)

evaluated at degenerate chemical potentials and quark
masses for the up and down quark. Even though there is
an equal number of quarks and antiquarks associated with
each pion, the vacuum expectation value of hn2i, is nonzero
if there are correlations between the quarks and the anti-
quarks of different flavor. Confinement of quarks and
antiquarks into pions strongly suggests that such a corre-
lation exists in chiral perturbation theory, and in fact hn2i
takes a nonzero value even at � ¼ 0, see for example [6].
At zero chemical potential hn2i coincides with the off-
diagonal quark number susceptibility which has been com-
puted analytically by high temperature perturbation theory
[7] as well as by numerical lattice simulations [8].
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Since this is a likely source of confusion let us again
stress thatPn gives the distribution of n, defined in (1), over
the ensemble of gauge fields: If one makes a frequency plot
of the values obtained for n in a lattice QCD ensemble of
gauge fields the shape which emerges is described by Pn.
The first moment measured on this distribution gives the
average quark number. The second moment measured on
this distribution, however, only gives the first of the two
terms which combine to give the square of the quark
number, cf. (2). If we phrase this in terms of the eigenval-
ues zk of �0ðDþmÞ we have

nq ¼ n ¼ X
k

1

zk þ�
; n2q ¼

X
k�l

1

zk þ�

1

zl þ�
;

n2 ¼ X
k;l

1

zk þ�

1

zl þ�
¼

�X
k

1

zk þ�

�
2
:

(4)

So hn2qi is not the average of a square and consequently not
the second moment of a distribution over the gauge fields.
The reason is that n2q contains correlations due to the Pauli

principle.
On a more technical level, the reason for the � depen-

dence of Pnðxþ iyÞ can bee seen from the generating
function of the distributions. These involve quarks with
different chemical potentials, i.e. the isospin chemical
potential, �1 ��2, is nonzero and couples nontrivially
in the generating functions. This point will be explained
explicitly below. The success of chiral perturbation theory
in predicting the behavior of QCD at nonzero chemical
potential has been demonstrated clearly by recent compari-
sons to lattice QCD results both in the p-regime [9–12] and
the �-regime [13–17].

The phase of the fermion determinant may lead to ex-
ponentially large cancellations in the computation of ex-
pectation values. If we would try to measure this
expectation value numerically with lattice QCD simula-
tions, we would be confronted with numerical errors which
are exponentially hard to handle. This is the QCD sign
problem and severely limits first principle studies of the
QCD phase diagram (see [18] for recent reviews of the
QCD sign problem).

The results for the distributions that are derived below
give a direct insight in the cancellations caused by the sign
problem. For example, the vanishing value of the baryon
number (within chiral perturbation theory) is obtained only
after a delicate cancellation between the contribution from
Re½n� and from Im½n�. The range of the fluctuations in the
complex quark number plane which must be taken into
account, in order to obtain the total baryon number, grows
like the four volume. In contrast, the width of the distribu-
tion for the ensemble where the phase of the fermion
determinant is ignored (the phase-quenched ensemble)
only scales like the square root of the volume. The numeri-
cal challenge faced by lattice QCD is to go from the phase-
quenched (simulation) ensemble to the full (target) en-

semble. One therefore needs to sample the far tails of the
distributions. The analytic insight we have obtained here
can in this way help to understand the limitations of present
lattice gauge simulations at nonzero chemical potential and
give hints for future developments. Besides the reweight-
ing method [19–21] discussed here, the results obtained are
also relevant for the complex Langevin method [22–26] as
well as for the density of states method [27–30].
Throughout the paper we will work with two flavors. We

refer to the this theory as the Nf ¼ 1þ 1 theory. The

phase-quenched theory is referred to as 1þ 1� since the
absolute square of the fermion determinant corresponds to
a quark and a conjugate quark.
This paper is organized as follows. First, we consider the

region where 2� is less than the pion mass and the mean
fields do not depend on the chemical potential. We derive
the distribution of the quark number operator as well as
that of the chiral condensate. Results are given both for
QCDwith dynamical quarks and for the partially quenched
case. Implications for lattice QCD are discussed in Sec. VI.
Before concluding, we discuss the distribution of the quark
number operator and chiral condensate for larger values of
the chemical potential. The distribution of the quark num-
ber for imaginary chemical potential is evaluated in the
Appendix.

II. GENERAL DEFINITIONS AND KNOWN
RESULTS FROM CPT

Before starting the actual computation of the distribu-
tions, in this section we introduce notations and explain
why chiral perturbation theory can give information about
QCD at nonzero quark chemical potential.
The quark number operator is the logarithmic derivative

of the fermion determinant with respect to the quark
chemical potential � ¼ �1 þ�2

nð�Þ � Tr
�0

Dþ��0 þm
; (5)

while for � we differentiate with respect to the quark mass
(we consider degenerate flavors)

�ð�Þ � Tr
1

Dþ��0 þm
: (6)

At low temperatures, the QCD partition function and its
low energy limit in the form of a chiral Lagrangian are
independent of � until the chemical potential is sufficient
to balance the energy required to create a baryon. Since the
expectation value of the quark number and the chiral
condensate are derivatives of the partition function with
respect to �, they are independent of � when evaluated in
chiral perturbation theory. On the contrary, expectation
values that cannot be written as derivatives of the partition
function with respect to � may still depend on the chemi-
cal potential. This happens when the generating function
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for the operator under consideration includes quarks with
different values of the chemical potential.

To illustrate this let us compute the expectation value of
n2, the cross correlation introduced above. In order to
obtain n2 we start from the generating function

Z1þ1ð�;�1Þ ¼ hdetðDþ��0 þmÞ detðDþ�1�0 þmÞi
(7)

and differentiate with respect to the two different chemical
potentials

hn2i1þ1 ¼ 1

Z1þ1ð�;�Þ lim
�1!�

d

d�

d

d�1

Zð�;�1Þ: (8)

Since the chemical potentials in the generating function are
different, there is a nonzero component of the isospin
chemical potential ���1. It is this component that in-
duces a nontrivial chemical potential dependence in chiral
perturbation theory and hence a nonzero result after dif-
ferentiation with respect to� and�1. Since the free energy
is an even function of the isospin chemical potential (for
degenerate quark masses) it takes two derivatives to obtain
a nonzero value for �1 ! �.

To one-loop order in chiral perturbation theory, we have

Z1þ1ð�;�1Þ
Z1þ1ð�;�Þ ¼ eG0ð�;�1Þ�G0ð�¼0Þ; (9)

where the one-loop free energy is (the divergent part of G0

is independent of � and does not contribute)

G0ð�;� ~�Þ ¼ Vm2
�T

2

�2

X1
n¼1

K2ðm�n
T Þ

n2
cosh

�ð�þ ~�Þn
T

�
:

(10)

Thus

hn2i1þ1 ¼ lim
�1!�

d

d�

d

d�1

G0ð�;�1Þ: (11)

This quantity is usually referred to as the off diagonal
quark number susceptibility and is denoted by �B

ud.

Below we will use the notation �G0ð�1; �2Þ ¼
G0ð�1; �2Þ �G0ð0; 0Þ and

	I � d

d�1

�G0ð�1;��Þj�1¼�;

�B
ud � d2

d�1d�2

�G0ð�1; �2Þj�1¼�2¼�;

�I
ud � d2

d�1d�2

�G0ð��1; �2Þj�1¼�2¼�;

(12)

for the � derivatives of the free energy and

��B ¼ d

d ~m
�G0ð�;�;m; ~mÞj ~m¼m;

��I ¼ d

d ~m
�G0ð�;��;m; ~mÞj ~m¼m;

�B
S ¼ d2

d ~mdm
�G0ð�;�;m; ~mÞj ~m¼m;

�I
S ¼ d2

d ~mdm
�G0ð�;��;m; ~mÞj ~m¼m;

(13)

for the one-loop contributions to the chiral condensate and
chiral susceptibility. Also for the chiral susceptibility it is
understood that we will only consider the off diagonal
component. Note that all of these quantities are extensive.
For quantities labeled by B, we have that �q ¼ � and

�I ¼ 0, and for the quantities labeled with I �q ¼ 0 and

�I ¼ �. The quark mass dependence of G0 is through m�

via the Gell-Mann–Oakes–Renner relation

m2
� ¼ �ðmþ ~mÞ

F2
: (14)

Let us also stress that all quantities with superscript B are
independent of the chemical potential (in one-loop chiral
perturbation theory).
In Table I we give results for one-loop chiral perturba-

tion theory valid for �<m�=2. The label PQ refers to the
result obtained in a partially quenched ensemble. By defi-
nition this ensemble is generated with the absolute value of
the fermion determinant but we keep the � dependence of
n and � as in the ordinary theory. We will use each of these
results to check the distributions of the quark number
operator and the chiral condensate.

III. THE DISTRIBUTION OF THE QUARK
NUMBER OPERATOR

In this section, we compute the distribution of the quark
number in the 1þ 1 theory. Since

nð�Þ� ¼
�
Tr

�0

Dþ��0 þm

��

¼ �Tr
�0

D���0 þm
¼ �nð��Þ (15)

TABLE I. The first and second moment of n and � to one-loop
order in chiral perturbation theory for �<m�=2. The absolute
value of the mean field result for the chiral condensate is denoted
by �. In the partially quenched (PQ) ensemble, the operators of
the full theory are evaluated for a gauge field background where
the phase of the fermion determinant is ignored.

E ¼ 1þ 1 E ¼ PQ

hniE 0 	I

hn2iE �B
ud 	2

I þ �B
ud

jh�iEj �þ 2��B �þ ��I þ ��B

h�2iE �B
S þ ð�þ 2��BÞ2 �B

S þ ð�þ ��B þ ��IÞ2
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the quark number operator is in general complex (it is
purely imaginary at � ¼ 0). The fluctuations of the quark
number thus occur in the complex plane. We first derive the
distribution of the real part, ðnð�Þ � nð��ÞÞ=2, and of the
imaginary part, ðnð�Þ þ nð��ÞÞ=2, of the quark number.
Then, finally, we compute the full distribution in the com-
plex quark number plane. As we shall see, the distribution
in the complex plane factorizes into the distribution of the
real part and the distribution of the imaginary part.

A. The distribution of the real part of the
quark number

Here, we derive the distribution of the real part of the
quark number defined by

P1þ1
Re½n�ðxÞ �

�
�

�
x� 1

2
ðnð�Þ � nð��ÞÞ

��
1þ1

; (16)

within one-loop chiral perturbation theory for �<m�=2.
First, we represent the �-function as an integral

P1þ1
Re½n�ðxÞ ¼

1

2�

Z 1

�1
dke�ixkheþiðk=2Þðnð�Þ�nð��ÞÞi1þ1:

(17)

Then, we expand the exponential of the trace

heiðk=2Þðnð�Þ�nð��ÞÞi1þ1

¼ X1
j¼0

ðik=2Þj
j!

hðnð�Þ � nð��ÞÞji1þ1:
(18)

This shows that a probability distribution is determined by
its moments which we will compute next.

In order to compute the trace to the jth power we need to
introduce 2j replica quarks (see [31] for an introduction to
the replica trick in chiral perturbation theory)

hðnð�Þ�nð��ÞÞji1þ1

¼ lim
�i!�

lim
ni!0

1

n1 � � �nj d�1
� � �d�j

�
�Yj
i¼1

detðDþ�i�0þmÞni detðD��i�0þmÞni
�
1þ1

:

(19)

In one-loop chiral perturbation theory, the replicated
generating function for the real part is given by (this is
where the assumption�<m�=2 enters: for�>m�=2 the
generating function is in a Bose condensed phase, see
Se. VII)

�Yj
i¼1

detðDþ�i�0 þmÞniðD��i�0 þmÞni
�
1þ1

¼ exp

� Xj
l�m¼1

2nlnmðG0ð�l;�mÞ þG0ð��l;�mÞÞ

þXj
l¼1

2nlðG0ð�l;�Þ þG0ð��l;�ÞÞ
�
: (20)

We now take d�1
� � � d�j

of the generating function, evalu-

ate it at �i ¼ �, and take the replica limits ni ! 0. Note
that the term linear in the nk’s includes G0ð��l;�Þ, and
the derivative with respect to �l does not vanish at �l ¼
�. Therefore terms with even as well as odd values of j
contribute when we evaluate the derivative d�1

� � � d�j
at

�l ¼ �. All terms with the same number of pairs from the
first sum in (20) give the same contribution to the jth
moment. The combinatorial factor for choosing b pairs
out of j is

j
2b

� � ð2bÞ!
b!2b

: (21)

For the moments, we thus find [recall the notation (12)]

hðnð�Þ � nð��ÞÞji1þ1 ¼
XIntðj=2Þ
b¼0

j
2b

� �
ð2b� 1Þ!!½2ð�B

ud þ �I
udÞ�bð2	IÞj�2b

¼ XIntðj=2Þ
b¼0

j
2b

� �
ð2	IÞj�2b 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�B
ud þ �I

udÞ
q Z 1

�1
duð2uÞ2be�u2=ð�B

ud
þ�I

ud
Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�B

ud þ �I
udÞ

q Z 1

�1
dxð2xÞje�ðx�	IÞ2=ð�B

ud
þ�I

ud
Þ; (22)

where Intðj=2Þ is the integer part of j=2. These are the moments of a Gaussian distribution centered at 	I. The distribution
of the real part of the quark number is thus given by

P1þ1
Re½n�ðxÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�B

ud þ �I
udÞ

q e�ðx�	IÞ2=ð�B
ud
þ�I

ud
Þ: (23)

We see that P1þ1
Re½n�ðxÞ is properly normalized. The expectation value of the real part of the quark number equals the isospin

LOMBARDO, SPLITTORFF, AND VERBAARSCHOT PHYSICAL REVIEW D 81, 045012 (2010)

045012-4



number in the phase-quenched theory evaluated at �

hRe½n�i1þ1 ¼
Z 1

�1
dxxP1þ1

Re½n�ðxÞ ¼ 	I; (24)

and the average of the square of the real part of the quark
number is given by

hðRe½n�Þ2i1þ1 ¼
Z 1

�1
dxx2P1þ1

Re½n�ðxÞ

¼ 	2
I þ

1

2
ð�B

ud þ �I
udÞ: (25)

Note that fluctuations of the quark number in the real
direction vanish at � ¼ 0. The reason is that the width of
the distribution of the real part of n goes to 0 for � ! 0.

B. The distribution of the imaginary part of the quark
number

In this subsection, we derive the distribution of the
imaginary part of the quark number defined by

P1þ1
Im½n�ðyÞ �

�
�

�
yþ i

1

2
ðnð�Þ þ nð��ÞÞ

��
1þ1

; (26)

within one-loop chiral perturbation theory for �<m�=2.
As in the previous subsection, the distribution is deter-

mined by its moments which can be shown by representing
the �-function as an integral

P1þ1
Im½n�ðyÞ ¼

1

2�

Z 1

�1
dke�iykheðk=2Þðnð�Þþnð��ÞÞi1þ1 (27)

and expanding the exponential

heðk=2Þðnð�Þþnð��ÞÞi1þ1 ¼
X1
j¼0

1

j!

��
k

2
ðnð�Þ þ nð��ÞÞ

�
j
�
1þ1

:

(28)

The jth power of Im½n� can be computed by introducing j
fermionic replica quarks and j bosonic replica quarks

hðnð�Þþnð��ÞÞji1þ1 ¼ lim
�i!�

lim
ni!0

1

n1 � � �nj d�1
� � �d�j

�
�Yj
i¼1

detðDþ�i�0þmÞni
detðD��i�0þmÞni

�
1þ1

:

(29)

Note that the ratio of the two determinants makes up the
phase factor, detðDð�ÞÞ= detðDð��ÞÞ ¼ expð2i�ð�ÞÞ.
From Eq. (1), we see that the phase indeed generates the
imaginary part of n after differentiation with respect to the
chemical potential.
The replicated generating function within one-loop chi-

ral perturbation theory is given by

�Yj
i¼1

detðDþ�i�0 þmÞni
detðD��i�0 þmÞni

�
1þ1

¼ exp

� Xj
l�m¼1

2nlnmðG0ð�l;�mÞ �G0ð��l;�mÞÞ

þXj
l¼1

2nlðG0ð�l;�Þ �G0ð��l;�ÞÞ
�
; (30)

where we used that�<m�=2 so that pion condensates are
absent in the generating function.
We now take d�1

� � � d�j
of the generating function,

evaluate it at �i ¼ �, and take the replica limit ni ! 0.
The only difference with the previous section is the minus
sign in front of G0ð��l;�mÞ and G0ð��l;�Þ. We thus
find the moments

hðnð�Þ þ nð��ÞÞji1þ1 ¼
XIntðj=2Þ
b¼0

j
2b

� �
ð2b� 1Þ!!½2ð�B

ud � �I
udÞ�bð�2	IÞj�2b

¼ XIntðj=2Þ
b¼0

j
2b

� �
ð�2	IÞj�2b ð�1Þbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�I
ud � �B

udÞ
q Z 1

�1
duð2uÞ2be�u2=ð�I

ud
��B

ud
Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�I

ud � �B
ud

q
Þ
Z 1

�1
dyð2iyÞjeðiyþ	IÞ2=ð�I

ud
��B

ud
Þ: (31)

These are the moments of a Gaussian distribution centered
at i	I. Notice that �

I
ud � �B

ud > 0, which follows from the
explicit expression for the one-loop result [see Eq. (11)].
Since

Imnð�Þ ¼ 1

2i
ðnð�Þ þ nð��ÞÞ; (32)

the distribution of the imaginary part of the quark number

is given by

P1þ1
Im½n�ðyÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�I

ud � �B
udÞ

q eðiyþ	IÞ2=ð�I
ud
��B

ud
Þ: (33)

Note that the distribution takes complex values, as could be
expected because of the phase of the fermion determinant.
Moreover, we have that P1þ1

Im½n�ðyÞ is properly normalized,
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that the expectation value of the imaginary part of the
quark number equals i times the isospin number in the
phase-quenched theory

hIm½n�i1þ1 ¼
Z 1

�1
dyyP1þ1

Im½n�ðyÞ ¼ i	I; (34)

and finally, that the average of the square of the imaginary
part of the quark number is given by

hðIm½n�Þ2i1þ1 ¼
Z 1

�1
dyy2P1þ1

Im½n�ðyÞ

¼ �	2
I þ

1

2
ð�I

ud � �B
udÞ: (35)

In contrast to the real part, the width of the fluctuations of
the imaginary part of n, ð�I

ud � �B
udÞ1=2, remains nonzero

for � ! 0.

C. The distribution of the quark number

We finally turn to the distribution of the full quark
number defined by

P1þ1
n ðx; yÞ �

�
�

�
x� 1

2
ðnð�Þ � nð��ÞÞ

�

� �

�
yþ i

1

2
ðnð�Þ þ nð��ÞÞ

��
1þ1

; (36)

within one-loop chiral perturbation theory for �<m�=2.
In this section, we show that this distribution factorizes into
the distribution of the real and imaginary part of the quark
number.

Factorization occurs if the moments factorize. This can
be easily seen by writing the probability distribution as an
integral over the characteristic function, i.e.

P1þ1
n ðx; yÞ ¼ 1

ð2�Þ2
Z 1

�1
dkxdkye

�ixkx

� e�iykyheiðkx=2Þðnð�Þ�nð��ÞÞ

� eðky=2Þðnð�Þþnð��ÞÞi1þ1: (37)

If the moments of the real and imaginary parts of the quark
number factorize, the expectation values of the exponents
in between the brackets will factorize.

The relevant moments follow from a replicated generat-
ing function as follows:

hðnð�Þ þ nð��ÞÞjðnð�Þ � nð��ÞÞki1þ1

¼ lim
ni!0

1

n1 � � �njþk

d�1
� � �d�jþk

�
�Yj
l¼1

detðDþ�l�0 þmÞnl detðD��l�0 þmÞnl

� Yjþk

l¼jþ1

detðDþ�l�0 þmÞnl
detðD��l�0 þmÞnl

�
1þ1

���������i¼�
: (38)

When we compute this replicated generating function in

one-loop chiral perturbation theory a big simplification
takes place: The contributions from Goldstone particles
with one quark from the first two determinants and the
other from one of the two determinants in the ratio exactly
cancel. The reason is that the one-loop contribution of such
mixed fermionic Goldstone particles occurs with the same
combinatorial factor as the mixed bosonic Goldstone par-
ticles but with the opposite sign. This was first observed in
[6] where it was formulated as the absence of correlations
between the phase factor and the magnitude of the fermion
determinant to one-loop order in chiral perturbation theory.
Hence the moments of the real and imaginary part of the
quark number factorize.
The probability distribution therefore factorizes as

P1þ1
n ðx; yÞ ¼ P1þ1

Re½n�ðxÞP1þ1
Im½n�ðyÞ

¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�I

udÞ2 � ð�B
udÞ2

q e�ðx�	IÞ2=ð�I
ud
þ�B

ud
Þ

� eðiyþ	IÞ2=ð�I
ud
��B

ud
Þ: (39)

To check this first main result let us first note that since the
distributions of the real and imaginary parts of the quark
number are normalized, also the product is normalized.
Moreover, the expectation value of the quark number is
zero

hni1þ1 ¼
Z

dxdyðxþ iyÞP1þ1
n ðx; yÞ

¼
Z

dxxP1þ1
Re½n�ðxÞ þ i

Z
dyyP1þ1

Im½n�ðyÞ
¼ 	I þ ii	I ¼ 0: (40)

We see that the total quark number (which necessarily is
zero in chiral perturbation theory) is obtained only after a
detailed cancellation between the contribution from the
real part and the imaginary part. Such a detailed cancella-
tion also occurs when we compute the average of n2

hn2i1þ1 ¼
Z

dxdyðxþ iyÞ2P1þ1
n ðx; yÞ

¼
Z

dxx2P1þ1
Re½n�ðxÞ �

Z
dyy2P1þ1

Im½n�ðyÞ

þ 2i
Z

dxxP1þ1
Re½n�ðxÞ

Z
dyyP1þ1

Im½n�ðyÞ

¼ 	2
I þ

1

2
ð�I

ud þ �B
udÞ �

�
�	2

I þ
1

2
ð�I

ud � �B
udÞ

�

þ 2i	Ii	I ¼ �B
ud: (41)

Note that, even though the distribution of the baryon
number depends on the isospin density and off diagonal
susceptibility, these quantities drop out when evaluating
the moments of the quark number operator.
Finally, we note that since �I

ud þ �B
ud ! 0 for � ! 0,

the quark number distribution becomes localized on the
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imaginary axis for � ¼ 0. This is in perfect agreement
with the fact that the quark number operator is anti-
Hermitian for � ¼ 0 cf. Equation (15).

IV. THE PQ DISTRIBUTION OF THE QUARK
NUMBER OPERATOR

In this section, we give the result for the partially
quenched distribution of the quark number. To derive
this, all we need to notice is how the terms that mix the
replica quarks and physical quarks contribute to the gen-
erating function.

Real part: For the real part we consider Eq. (20) where
the expectation value is now taken in the 1þ 1� theory.
Since G0ð�l;�Þ is invariant under a change of the sign of
both chemical potentials, we get exactly the same mixing
between the replica sector and the physical sector as be-
fore. Hence the final answer for the distribution of the real
part of n is again the same

PPQ
Re½n�ðxÞ ¼ P1þ1

Re½n�ðxÞ: (42)

Imaginary part: The generating function for the imagi-
nary part (30) changes when we consider the partially
quenched case. This time the two physical flavors make
up an absolute square of the fermion determinant while the
replica flavors make up the phase factor. As we have seen
before, there are no correlations between these two factors
within one-loop chiral perturbation theory. The generating
function for the imaginary part of the quark number in the
partially quenched case is thus given by Eq. (30) but
without the single sum which mixes the replica and the
physical sector. Hence there are no linear terms after
differentiation and the final result is obtained from
Eq. (33) by setting 	I ¼ 0

PPQ
Im½n�ðyÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�I

ud � �B
udÞ

q e�y2=ð�I
ud
��B

ud
Þ: (43)

As it should be (since we take vacuum expectation
values in the 1þ 1� theory), both distributions are real
and positive. The full distribution is again the product of
these two since the factorization only involves replicated
flavors. Thus we find

PPQ
n ðx; yÞ ¼ PPQ

Re½n�ðxÞPPQ
Im½n�ðyÞ

¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�I

udÞ2 � ð�B
udÞ2

q e�ðx�	IÞ2=ð�I
ud
þ�B

ud
Þ

� e�y2=ð�I
ud
��B

ud
Þ: (44)

As a cross-check, we see that

hnPQi1þ1� ¼ 	I (45)

and

hðnPQÞ2i1þ1� ¼ �B
ud þ 	2

I (46)

are in agreement with Table I.
In Sec. VI, we make use of these results when discussing

the problems faced by numerical lattice QCD at � � 0.

V. THE DISTRIBUTION OF THE CHIRAL
CONDENSATE

In this section, we derive the distribution of � and study
how the chiral condensate h�i builds up. As was the case
for the quark number, the operator � is not Hermitian

�ð�Þ� ¼
�
Tr

1

Dþ��0 þm

��

¼ Tr
1

D���0 þm
¼ �ð��Þ: (47)

Therefore we derive the distribution in the complex �
plane. We start by computing the distribution of the real
and of the imaginary part separately. The distribution of the
full chiral condensate then follows as the product of the
two. This is precisely the same which happened for the
baryon density. In fact, the derivation for � is almost
identical to the one for the quark number.
To see that the derivation is analogous to that for the

baryon number, let us start with the distribution of Re½��
and derive the generating function. We evaluate the distri-
bution

P1þ1
Re½��ðxÞ �

�
�

�
x� 1

2
ð�ð�Þ þ �ð��ÞÞ

��
1þ1

(48)

for �<m�=2 to one-loop order in chiral perturbation
theory.
The �-function can be represented as an integral

P1þ1
Re½��ðxÞ ¼

1

2�

Z 1

�1
dke�ixkheþiðk=2Þð�ð�Þþ�ð��ÞÞi1þ1

(49)

and the exponential is expanded

heiðk=2Þð�ð�Þþ�ð��ÞÞi1þ1¼
X1
j¼0

1

j!

��
i
k

2
ð�ð�Þþ�ð��ÞÞ

�
j
�
1þ1

;

(50)

so that the distribution follows from the moments.
The moments can again be expressed in terms of a

replicated generating function. This time, the replica index
labels the masses m1; . . . ; mj,
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hð�ð�Þ þ �ð��ÞÞji1þ1

¼ lim
mi!m

lim
ni!0

1

n1 � � �nj dm1
� � �dmj

�
�Yj
i¼1

detðDþ��0 þmiÞniðD���0 þmiÞni
�
1þ1

:

(51)

We now need to keep track of the mass dependence of the
replicated generating function

�Yj
i¼1

detðDþ��0 þmiÞniðD���0 þmiÞni
�
1þ1

¼ exp

� Xj
l�m¼1

2nlnmðG0ð�;�;ml;mmÞ

þG0ð��;�;ml; mmÞÞ þ
Xj
l¼1

2nl½ml�

þ ðG0ð�;�;m;mlÞ þG0ð��;�;m;mlÞÞ�
�
: (52)

Compared to the generating function for Re½n� in Eq. (20)
there are two differences: (1) The replica index now labels
the quark masses instead of the chemical potentials.
(2) The term linear in the replica number contains the
mean field value � of the chiral condensate. However,
the entire structure of the generating function remains,
and the combinatorics associated with the differentiation
is identical to that for the quark number. Only now, the
physical quantities appearing in the expressions are the
chiral condensates and the chiral susceptibilities. We get

P1þ1
Re½��ðxÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�I

S þ �B
S Þ

q e�ðx�����B���IÞ2=ð�I
Sþ�B

S Þ;

(53)

where we used the definitions in (13).
Likewise, the distribution for the imaginary part of �

P1þ1
Im½��ðyÞ �

�
�

�
yþ i

1

2
ð�ð�Þ � �ð��ÞÞ

��
1þ1

; (54)

follows form that for the imaginary part of the quark
number simply by reidentifying the physical quantities
which appear in the final expression

P1þ1
Im½��ðyÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�I

S � �B
S Þ

q eðiy���Bþ��IÞ2=ð�I
S
��B

S
Þ: (55)

Notice the absence of the mean field value of the chiral
condensate. In the generating function, the mean field
contribution from the fermionic replicas cancels against
the one from the replicated bosonic quarks. In agreement
with the Hermiticity property (47), we see that the width of
P1þ1
Im½�� vanishes for � ! 0 while the width of the distribu-

tion of the real part remains nonzero. From the explicit
expression forG0 it can be easily shown that �

I
S � �B

S > 0.
Since the structure of the generating function is un-

changed the full distribution

P1þ1
� ðx; yÞ �

�
�

�
x� 1

2
ð�ð�Þ þ �ð��ÞÞ

�

� �

�
yþ i

1

2
ð�ð�Þ � �ð��ÞÞ

��
1þ1

(56)

again factorizes

P1þ1
� ðx; yÞ ¼ P1þ1

Re½��ðxÞP1þ1
Im½��ðyÞ: (57)

Thus we have

P1þ1
� ðx; yÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�I

SÞ2 � ð�B
S Þ2

q e�ðx�����B���IÞ2=ð�I
Sþ�B

S Þ

� eðiy���Bþ��IÞ2=ð�I
S��B

S Þ: (58)

As a check of this second main result, we compute the
chiral condensate

h�i1þ1 ¼
Z 1

�1
dxdyðxþ iyÞP1þ1

� ðx; yÞ ¼ �þ 2��B

(59)

and the square of the condensate

h�2i1þ1 ¼
Z 1

�1
dxdyðxþ iyÞ2P1þ1

� ðx; yÞ
¼ �B

S þ ð�þ 2��BÞ2: (60)

We see that the dependence on�I and �I
S has canceled and

the results obtained in Table I are reproduced. The cancel-
lations take place in exactly the same manner as for the
baryon density. We conclude that in both cases the �
dependence of the fluctuations are induced through a cou-
pling to the isospin charge of the pions. These strong
fluctuations in the real part and in the imaginary part
combine and leave the physical observable independent
of the chemical potential.
Finally, we give also the partially quenched distribution

of the chiral condensate

PPQ
� ðx; yÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�I

SÞ2 � ð�B
S Þ2

q e�ðx�����B���IÞ2=ð�I
S
þ�B

S
Þ

� e�y2=ð�I
S
��B

S
Þ: (61)

The partially quenched expectation values from Table I

h�iPQ ¼ �þ ��B þ ��I (62)

and

h�2iPQ ¼ �B
S þ ð�þ ��B þ ��IÞ2 (63)

follow from Gaussian integrations over the distribution
function.
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We will use both the partially quenched results and the
full results to explain how to deal with some of the nu-
merical problems encountered in lattice QCD at nonzero
chemical potential.

VI. NUMERICAL LATTICE QCD AT NONZERO �

Above, we have derived the full and partially quenched
distributions of the quark number operator for �<m�=2.
Here, we discuss how these results can be of use when
measuring the quark number operator by numerical lattice
QCD.

The main problem encountered in numerical lattice
QCD at nonzero chemical potential is that operators may
acquire their expectation values by virtue of extremely
delicate cancellations caused by the complex valued fer-
mion determinant in the path integral. To illustrate the
problem, let us look at the distribution of the quark number
operator, Eq. (39). Notice that the distribution itself takes
complex values, i.e. it is not a probability measure. This
feature is also shared by the unquenched eigenvalue den-
sity of the Dirac operator [32,33] and the distribution of the
phase of the fermion determinant [6]. These complex
oscillations are all important in order to separate the phys-
ics of nonzero baryon chemical potential [34] from that at
isospin chemical potential. Common to the three examples
mentioned above is that the amplitude of the complex
oscillations is exponentially large in the volume.
Moreover, in all three cases, one must integrate over on
the order of V periods of the oscillations in order to obtain a
reliable value of the baryon density or chiral condensate.

Let us illustrate this explicitly using the results derived
above.
The unquenched distribution of the quark number

P1þ1
n ðx; yÞ takes complex values, and, as we have seen in

Eq. (40), both the real part and the imaginary part contrib-
ute to the baryon density. The magnitudes are equal to 	I,
but the signs are opposite so that the total quark number
vanishes. Since the complex oscillations are associated
with the imaginary part y of the quark number n ¼ xþ
iy, let us ask: How large should ymax be in order that

Z ymax

�ymax

dyiyP1þ1
Im½n�ðyÞ � �	I: (64)

The answer is

y2max � 	2
I 	 �I

ud � �B
ud: (65)

Since 	I � V and �I
ud � �B

ud � V, we find that ymax has to

be only slightly larger than 	I. As the period of the oscil-
lations is of order unity, we conclude that we have to
include on the order of V oscillations in the integral. This
can be a hard task to control numerically unless we know
the analytical form of the distributions. The results pre-
sented here give this form to leading order. There will be
corrections to this form in order to induce a nonzero baryon
number, but one should still expect large cancellations
between contributions from the real part and the imaginary
part.
Not only can results from chiral perturbation theory help

to understand the detailed cancellations occurring in the
integral, they can also give hints on which part of the
integrand one needs to sample numerically in lattice
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FIG. 1 (color online). Left panel: The distribution of the imaginary part of the quark number in the partially quenched simulation
ensemble. Right panel: The contribution to the quark number in the 1þ 1 target theory from the imaginary part of n as a function of
ymax, see Eq. (64). Only when ymax is larger than 	I do we find that the contribution from the imaginary part cancels the one from the

real part and leaves hni1þ1 ¼ 0. If 	I � V is much larger than the width of the PQ distribution
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I
ud � �B

ud

q
� ffiffiffiffi

V
p

, then there is a

serious overlap problem. For the plot, we have chosen 	I ¼ 20 and �I
ud � �B

ud ¼ 10, and we already see that, unless one also samples

the far end of the tail, the configurations generated in the PQ simulation ensemble do not have the values of Im½n� required for the
cancellation of the baryon number.
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QCD: Imagine that we have generated an ensemble of
configurations for the phase-quenched weight. Then for
the configurations in our simulation ensemble, the quark

number n is distributed according to PPQ
n ðx; yÞ as given in

Eq. (44). Within the width of this distribution only on the

order of
ffiffiffiffi
V

p
oscillations takes place. The reweighting from

the simulation ensemble to the full theory (target en-
semble) therefore has to lift the far tail of the phase-
quenched distribution. (For illustration, see Fig. 1.)

Even though the sign problem makes it hard to approach
the thermodynamic limit V ! 1, it is worth it to keep in
mind that in a given numerical simulation we work with a
finite volume where the sign problem may be tractable
depending on the value of T and �. We will address this
issue in [35].

In the complex Langevin [22–26] approach to the QCD
sign problem, the real and the imaginary part of the quark
number are themselves complex. In particular, this means
that the imaginary part y is not constrained to the real axis.
Rather as we now show, y will fluctuate parallel to the real
y axis but shifted into the complex y plane by i	I. To show
this, we start from the complex action, obtained from the
one-loop result for the distribution of the quark number

S ¼ � log½P1þ1
Im½n�ðyÞ� ¼ �ðiyþ 	IÞ2=ð�I

ud � �B
udÞ; (66)

where we made use of the result in Eq. (33). The flow
equations for y ¼ aþ ib are given by (the step size is
denoted by �)

anþ1 ¼ an � �Re

�
dS

dy

�
y¼anþibn

þ ffiffiffi
�

p

n

¼ an � �
2an

�I
ud � �B

ud

þ ffiffiffi
�

p

n (67)

and

bnþ1 ¼ bn � � Im

�
dS

dy

�
y¼anþibn

¼ bn � �
2ðbn � 	IÞ
�I
ud � �B

ud

:

(68)

Note that a and b decouple: a fluctuates about zero while b
quickly moves to 	I and stays there, since there is no noise

 to kick it around. The complex Langevin algorithm
therefore will essentially replace

Z 1

�1
dyyP1þ1

Im½n�ðyÞ (69)

by

Z amax

�amax

daðaþ i	IÞe�a2=ð�I
ud
��B

ud
Þ; (70)

where amax is the width of the region sampled by the
algorithm. Since the flow equation for a is just that of the
ordinary real Gaussian expð�a2=ð�I

ud � �B
udÞÞ and com-

pletely decoupled from the imaginary part, the complex
Langevin algorithm should not have any problems in sam-

pling this. In other words, amax is a good deal larger thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I
ud � �B

ud

q
and the integral is close to i	I as desired.

Again there will be corrections to the one-loop results
derived here and complex Langevin must be able to take
these into account correctly in order to obtain the correct
average quark number. However, as long as the average
quark number is much smaller than 	I, the fluctuations in
the complex y plane should be expected to take place in the
neighborhood of i	I. A similar example of a possible
usefulness of complex Langevin was presented in [36,37].
For purely imaginary values of the chemical potential

the sign problem is absent, and the quark number operator
is imaginary. In A, we work out the distribution of the
quark number for imaginary values of the chemical poten-
tial. The result is a Gaussian centered at zero. It is certainly
true that simulations at imaginary � [38–40] are easier—
the reason is the positivity of the measure. This suggests
that simulations at imaginary � are as easy as simulations
at � ¼ 0. Analytical and numerical studies show that the
analytic continuation is well under control at least for
�=T < 1 [38–40], and it would be interesting to interpret
this result in the light of the distributions discussed here.
Analytic continuation to real � has also been studied in
models without the sign problem [41].

VII. DISTRIBUTIONS FOR � >m�=2

The chiral expansion of the generating functions rele-
vant for the baryon distribution take a different form when
�>m�=2. In this domain, the chemical potential induces
a Bose condensate with a nonzero isospin number even at
the mean field level. The derivation presented above is
therefore not valid for �>m�=2. In this section, we
discuss the distributions of the quark number and the chiral
condensate for �>m�=2.

A. The fluctuations of the chiral condensate (� >m�=2)

For �>m�=2, the quark mass is inside the spectrum of
Dþ��0 [33,42–44]. Since an eigenvalue ofDþ��0 can
come very close to the quark mass, the fluctuations of the
chiral condensate are much larger when �>m�=2. In
order to quantify the fluctuations of the chiral condensate
let us consider the moments of the real and the imaginary
part of �. To start we consider the quenched case.
The odd moments of Im½��: Because the quenched

weight does not depend on the sign of � the odd moments
vanish

hð�� ��Þ2pþ1i ¼ 0: (71)

It follows that the quenched distribution of the imaginary
part of the chiral condensate must be an even function; that

is: P
ðNf¼0Þ
Im½�� ðyÞ is symmetric in y.

The even moments of Im½��: The even moments are
nonzero. In fact, as we now show, they are divergent. To
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see this, let us first consider the second moment of the
imaginary part

hð�� ��Þ2i ¼ 2h�2i � 2h���i: (72)

If we express � in terms of the eigenvalues zk of Dþ��0

� ¼ X
k

1

zk þm
(73)

we see that h���i includes an absolute squared pole, which
gives rise to a logarithmic singularity. So we have

hð�� ��Þ2i ¼ �2h���i þOð�0Þ: (74)

Obviously, the logarithmic singularity is only present when
the quark mass is inside the support eigenvalue density. In
fact, it can be shown explicitly within chiral randommatrix
theory that the divergent part of the second moment is
proportional to the eigenvalue density evaluated at the
quark mass

hð�� ��Þ2i ¼ �2

�X
k

1

jzk þmj2
�

¼ �2
Z
C�

d2z�ðz; z�Þ 1

jzþmj2
¼ 4� logð�Þ�Nf¼0ðz ¼ m; z� ¼ mÞ

¼ logð�Þ�ðj�j �m�=2Þ V�
2

�2F2
: (75)

Here, C� is the complex plane excised by a sphere of radius
� centered at �m. The quenched eigenvalue density is the
leading order result from chiral perturbation theory [43].
We conclude that the quenched second moment of Im½�� is
logarithmically divergent if the quark mass is inside the
support of the eigenvalue density, i.e. if �>m�=2.

The higher even moments of � have more severe diver-
gences. The most divergent term is the one with the same
powers of � and ��, so that

hð�� ��Þ2pi ’ ð�1Þp ð2pÞ!
p!p!

hð���Þpi: (76)

In order to understand this better, let us work out the details
explicitly for p ¼ 2. Again, we keep only the leading
divergence

hð�� ��Þ4i ¼ 6hð���Þ2i

¼ 6

� X
g;h;j;k

1

zg þm

1

zh þm

1

z�j þm

1

z�k þm

�
:

(77)

The most singular terms are the diagonal terms with g ¼
h ¼ j ¼ k which lead to a 1=�2 singularity which domi-
nates the integral over the spectral density.

Because the most divergent term is also given by the
diagonal part of the sum for p > 2, it is always propor-
tional to the eigenvalue density. We thus obtain the general
relation (for p ¼ 2; 3; 4; . . . )

hð�� ��Þ2pi � ð�1Þp ð2pÞ!
p!p!

1

2ðp� 1Þ�2ðp�1Þ

� �ðj�j �m�=2Þ V�2

4��2F2
: (78)

We conclude that P
ðNf¼0Þ
Im½�� ðyÞ must be symmetric in y in

order that the odd moments vanish, and it must have a
1=jyj3 tail to reproduce the observed singularities. When
the quark mass is outside the spectrum of the Dirac opera-
tor the same argument applies, but now the spectral density
at z ¼ m is exponentially suppressed, and the singular
terms vanish in the thermodynamic limit. While the singu-
larities tell us about the tail of the distribution, the leading
divergent behavior of the moments does not contain suffi-

cient information to obtain P
ðNf¼0Þ
Im½�� ðyÞ for smaller y. We

have verified the 1=jyj3 tail of P
ðNf¼0Þ
Im½�� ðyÞ by a numerical

simulation of quenched chiral random matrix theory.
So far we have considered the quenched case. As a first

step toward the fully unquenched theory, let us consider the
phase-quenched theory. In this case, the absolute square of
the fermion determinant in the measure,

Q
jjz2j þm2j2,

shifts the singularities. We now have

hð�� ��Þ2i1þ1� � �0; (79)

hð�� ��Þ4i1þ1� � logð�Þ; (80)

and

hð�� ��Þ2pi1þ1� � 1

�2ðp�2Þ (81)

for p > 2. This implies that the far tail of the distribution of
Im½�� drops of like 1=jyj5. The distribution is again even
since the odd moments still vanish because the absolute
square of the fermion determinant does not depend on the
sign of the chemical potential.
Finally, let us briefly look at the unquenched case. Let us

for simplicity take Nf ¼ 1. With a single determinant in

the measure, the odd moments no longer vanishes.
Moreover, the odd moments can now also diverge. For
example,

hð�� ��Þ3iNf¼1 ¼ �h�2��iNf¼1 � logð�Þ: (82)

Again, the logð�Þ singularity is only present when the
quark mass is inside the support of the spectral density,
i.e. for �>m�=2. In general, we have

hð�� ��Þ2pþ1iNf¼1 � 1

�2ðp�1Þ (83)

for p > 1. The diverging odd moments show that the
unquenched distribution of Im½�� is not an even function
of y. We expect that the unquenched distribution of Im½��
takes complex values.
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Unfortunately, due to the divergences, we have not been
able to derive the full distribution of the imaginary part of
the chiral condensate for �>m�=2.

For the real part of �, the main difference is that the odd
moments are nonzero. The leading divergent part of the
even moments is the same (up to a sign) as for the imagi-
nary part.

B. Fluctuations of the quark number (� >m�=2)

The general arguments which gave us information about
the distribution of the chiral condensate also apply to the
quark number for�>m�=2. For�>m�=2, we have that
� is inside the support of the spectrum of �0ðDþmÞ [45],
and this again leads to enhanced fluctuations. A rerun of
the general arguments presented above show that also the
quenched distribution of the real and of the imaginary part
of the baryon number has an inverse cubic tail. Rather than
repeating the arguments, let us instead discuss the cancel-
lations which ensure that the total baryon number remains
zero in the unquenched case (as must be true in chiral
perturbation theory).

Let us first consider the real and imaginary part of the
quark number density for the quenched or phase-quenched
case. The imaginary part of the quark number is given by

2i Im½n� ¼ Tr
�0

�0ðDþmÞ þ�
þ Tr

�0

�0ðDþmÞ ��
:

(84)

Because the spectrum of �0ðDþmÞ is reflection symmet-
ric about the imaginary axis, and the average spectrum for
the quenched and phase-quenched theory is reflection
symmetric both about the real and the imaginary axis, we
find that also for �>m�=2

hIm½n�iNf¼0 ¼ hIm½n�i1þ1� ¼ 0: (85)

The real part of the quark number is given by

2Re½n� ¼ Tr
�0

�0ðDþmÞ þ�
� Tr

�0

�0ðDþmÞ ��
:

(86)

This is the isospin density with a nonvanishing expectation
value in the quenched and phase-quenched theory for �>
m�=2 because of pion condensation. At mean field level in
chiral perturbation theory, the isospin density is [46]

	I ¼ hRe½n�i1þ1� ¼ 2�F2

�
1�

�
m2

�

4�2

�
2
�
: (87)

We now consider the unquenched case with Nf ¼ 2. In

the supersymmetric formalism, the generating function for
Re½n� is given by

Zð�1; �2Þ ¼
�
detð�0ðDþmÞ þ�2Þ detð�0ðDþmÞ ��2Þdet2ð�0ðDþmÞ þ�1Þ

detð�0ðDþmÞ þ�1Þ detð�0ðDþmÞ ��1Þ
�

(88)

with

2hRe½n�i1þ1 ¼ d

d�2

logZð�1; �2Þj�1¼�2¼�: (89)

The generating function undergoes a phase transition to a pion condensed phase at � ¼ m�=2. It can be interpreted as the
average phase factor at �1 for the phase-quenched theory at �2. Such averages were studied in [47]. At the mean field
level, the generating function factorizes as

Zð�1; �2Þ ¼ hdetð�0ðDþmÞ þ�2Þ detð�0ðDþmÞ ��2Þdet2ð�0ðDþmÞ þ�1Þi
hdetð�0ðDþmÞ þ�1Þ detð�0ðDþmÞ ��1Þi : (90)

The imaginary part of the quark number for two flavors can also be obtained from the generating function

2ihIm½n�i1þ1 ¼ d

d�1

���������1¼�2¼�
logZð�1; �2Þ (91)

with

Zð�1; �2Þ ¼
�
detð�0ðDþmÞ þ�1Þ detð�0ðDþmÞ þ�2Þ detð�0ðDþmÞ ��2Þ

detð�0ðDþmÞ ��1Þ
�
: (92)

The partition function (92) is a phase-quenched average phase factor which was studied in [39]. At the mean field level, this
partition function factorizes as
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Zð�1; �2Þ ¼ hdet2ð�0ðDþmÞ þ�1Þ detð�0ðDþmÞ þ�2Þ detð�0ðDþmÞ ��2Þi
hdetð�0ðDþmÞ ��1Þ detð�0ðDþmÞ þ�1Þi : (93)

We observe that the real and imaginary part of the quark
number are obtained from the same generating function.
The mean field analysis of partition function (90) was
outlined in [48]. It is determined by the action

S ¼ 1

4
F2 Tr½U;B�½U�1; B� � TrM�ðUþU�1Þ (94)

with the baryon matrix and the mass matrix given by

B ¼ diagð�1; �1; �2;��2Þ; M ¼ diagðm;m;m;mÞ:
(95)

The ansatz for the mean field can be written as [48]

U ¼ R�1
kl ð�klÞR4kð
kÞRklð�klÞ (96)

with k ¼ 1, 2, 3 and l � k. Here, Rpqð
Þ is a rotation in the
pq plane by angle 
. There is one important difference
with [48], though. Because the quark masses are equal and
the chemical potential are put equal after differentiation,
the integration over �k cannot be done by a saddle point
approximation but has to be performed exactly.

In total there are 6 different saddle points. For�1 ¼ �2,
the action of each of the saddle point is the same and the
dependence on �k cancels. Therefore the integral over �k

has to be performed exactly for �1 � �2, whereas the 
k

are determined by the saddle point equation.
For the real part of the quark number we obtain:

2hRe½n�i1þ1 ¼ �ð12þ 4Þc�F2½cos2 �
� 1�; (97)

where the first term (i.e. 12) originates from the rotation
matrices that mix��2,�2,�1 and the second term (i.e. 4)
from the rotation matrices that mix��2, �1, �1. The real
constant c is a normalization factor. The solution of the
saddle point equation is given by [46]

cos �
 ¼ m2
�

4�2
: (98)

With this, we have

hRe½n�i1þ1 ¼ 8c�F2

�
1�

�
m2

�

4�2

�
2
�
; (99)

which is proportional to the isospin density in the Bose
condensed phase of the phase-quenched theory at mean
field level,cf. (87).

For the imaginary part of the quark number, we obtain
contributions both from the numerator and the denomina-
tor of the generating function. The contribution that origi-
nates from the numerator is given by

ð4þ 4Þ�F2½cos2 �
� 1�; (100)

where again the first and second term correspond to rota-
tion matrices that mix��2,�2,�1 and that mix��2,�1,

�1 in this order. The contribution from the denominator is
given by

� 24c�F2½cos2 �
� 1�: (101)

Since the real and imaginary parts are obtained from the
same generating function, the constant c in the expressions
is the same. For the imaginary part of the quark number, we
thus obtain

2ihIm½n�i1þ1 ¼ 16c�F2½cos2 �
� 1�: (102)

As must be true in chiral perturbation theory, the sum of the
real and imaginary part of the quark number vanishes.
Here, we have shown this by explicitly computing both
contributions. As for �<m�=2, we have found that the
two terms are proportional to the isospin density in the
phase-quenched theory. For �>m�=2, however, the iso-
spin density is far greater due to Bose condensation of
pions.

VIII. CONCLUSIONS

The distribution of the quark number operator and the
chiral condensate for Euclidean QCD at nonzero chemical
potential has been derived to leading order in chiral per-
turbation theory. As the two operators take on complex
values, the distributions are over the complex plane.
Moreover, because of the phase factor of the fermion
determinant, the distributions are not real and positive.
We have shown how the complex oscillations of the un-
quenched distributions lead to large cancellations when
evaluating the baryon density and chiral condensate.
These cancellations give a direct insight into the problems
faced by numerical lattice QCD at nonzero chemical po-
tential. Of course, the net contribution from pions to the
average baryon density is zero within chiral perturbation
theory. Nevertheless, pions contribute manifestly to the
distribution of the quark number and the chiral condensate
and hence to the noise produced in numerical lattice gauge
simulations at nonzero chemical potential.
Most of the results were derived for �<m�=2 to one-

loop order in chiral perturbation theory. Then the distribu-
tions of the chiral condensate and the quark number take a
Gaussian form as one might expect from the central limit
theorem. The unquenched distribution of the imaginary
part of these observables takes on complex values. For
example, for the imaginary part of the quark number, this
distribution is a Gaussian that is shifted in the imaginary
direction by an amount proportional to the volume (the
isospin number in the phase-quenched theory when eval-
uated at the same value of the chemical potential). This is,
of course, not possible in an ordinary reweighting scheme
and the final results for the baryon density instead relies on
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detailed cancellations after taking into account the far tail
of the distribution. However, within the complex Langevin
method the real and imaginary parts of the baryon density
are complexified and the imaginary part could fluctuate
around i times a quantity of order the volume.

For �>m�=2, the distributions of the real and the
imaginary part of the quark number and chiral condensate
develop a power law tail. This extreme enhancement of the
fluctuations is a direct consequence of the quark mass
being inside the spectral support of the Dirac operatorDþ
��0 and the chemical potential being inside the support of
�0ðDþmÞ.

The analytical results provided here may help in inter-
preting state of the art lattice simulations at nonzero chemi-
cal potential. They can be used as a benchmark for attempts
to link the fluctuations of the baryon number to the pres-
ence of the tricritical point. Since we have understood
fluctuations produced, the pions this may help in optimiz-
ing and developing numerical approaches to reduce this
source of noise.
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APPENDIX A: IMAGINARY CHEMICAL
POTENTIAL

In this appendix, we give the result for the distribution of
the quark number operator when evaluated at purely imagi-
nary values of the chemical potential. The fermion deter-
minant is real for imaginary chemical potential, and
numerical simulations are possible for an even number of

flavors [38–40]. In this case, the quark number operator is
anti-Hermitian even when i� is nonzero

nði�Þ� ¼
�
Tr

�0

Dþ i��0 þm

��

¼ �Tr
�0

Dþ i��0 þm
¼ �nði�Þ: (A1)

The distribution is therefore one-dimensional

P1þ1;i�
nði�Þ ðyÞ � h�ðyþ inði�ÞÞi1þ1;i�: (A2)

The derivation of the distribution for �<m�=2 to one-
loop order in chiral perturbation theory is simpler than for
real � since now there are no terms nð�i�Þ which can
couple to the isospin charge of the pions. We find

P1þ1;i�
nði�Þ ðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j�B
udj

q e�y2=j�B
ud
j: (A3)

As must be true within chiral perturbation theory, we find
that

hnði�Þi1þ1;i� ¼ 0: (A4)

Note also that the width of the distribution is independent
of �. As �B

ud is extensive, the distribution of the quark

density becomes a �-function at the origin in the thermo-
dynamic limit.
We also get

hnði�Þ2i1þ1;i� ¼ j�B
udj: (A5)

One can, of course, also consider the distributions of
nði�Þ 
 nð�i�Þ which will be the analytic continuations
of the distributions of the analytic part of the real and
imaginary parts of n.
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