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Domain wall structure which may form in theories with spontaneously broken parity is generically in

conflict with standard cosmology. It has been argued that Planck scale suppressed effects can be sufficient

for removing such domain walls. We study this possibility for three specific evolution scenarios for the

domain walls, with evolution during a radiation dominated era, during a matter dominated era, and that

accompanied by weak inflation. We determine the operators permitted by the supergravity formalism and

find that the field content introduced to achieve desired spontaneous parity breaking makes possible

Planck scale suppressed terms which can potentially remove the domain walls safely. However, the parity

breaking scale, equivalently the Majorana mass scale MR of the right-handed neutrino, does get

constrained in some of the cases, notably for the matter dominated evolution case which would be

generic to string theory inspired models, giving rise to moduli fields. One left-right symmetric model with

only triplets and bidoublets is found to be more constrained than another admitting a gauge singlet.
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I. INTRODUCTION

Existence of right-handed neutrino states [1–4] is a
strong indicator of parity as a fundamental symmetry of
nature, spontaneously broken in low energy physics. The
scale of parity breakdown is as yet unknown. The seesaw
mechanism [5–8] while providing an elegant qualitative
explanation is unable to make a narrow prediction of the
relevant energy scale due to wide variation in the fermion
masses across the generations. In this paper we study the
role of domain walls formed by spontaneous parity break-
ing in determining or constraining the energy scale of
breakdown of this symmetry.

To be specific, we study the implementation of parity in
left-right symmetric models [9–13]. While such models
can descend from an SOð10Þ grand unified theory [14–18],
the scale of such unification is known to be high (�
1016 GeV). On the other hand, the scale of parity breaking
is completely undetermined and could be much lower.
Indeed there are no observational obstructions for the
parity breaking scale (and the associated right-handed
neutrino Majorana mass scale)to be as low as TeV scale
[19–21]. Here we study a particular source of constraint on
this scale imposed by cosmology, with the possibility of
restricting the parity breaking scale to low values. It suffi-
ces for this purpose to focus on the left-right symmetric
model alone, independent of how the model may unify into
SOð10Þ. For the purpose of protecting the low scale theory
from large radiative corrections we impose supersymme-
try. Specifically we investigate the constraints placed on
models incorporating TeV scale supersymmetry.

A robust consequence of approximate left-right symme-
try in the early Universe is the occurrence of transitory

domain walls. It has been proposed [22] that such domain
walls are susceptible to instability arising from nonrenor-
malizable operators suppressed by Planck scale.
Supergravity then introduces two interesting ingredients
not considered in the previous treatments of domain walls.
First, the structure of the nonrenormalizable terms is dic-
tated by the supersymmetry formalism[23–25]. On the
other hand, one has to contend with the danger of gravitino
overabundance [26,27]. In this paper we explore the re-
strictions on the possible energy scale of parity breaking
imposed by these considerations.
We study these effects in the context of two implemen-

tations of left-right symmetry, one where all superfields
carry nontrivial gauge couplings and another, for compari-
son, which contains a gauge singlet. We also study these
models within three different scenarios for the dynamics of
the wall complex. One is a scenario in which the walls
disappear within the radiation dominated era, another
where dominance of moduli keeps the Universe matter
dominated during the domain wall evolution, and a third
wherein the domain walls in fact come to dominate the
Universe for a limited epoch, accompanied by a mild
inflationary phase. In all the scenarios of domain wall
evolution, the left-right symmetric model with a singlet
turns out to be less restricted than the one without singlets.
The model without any singlet turns out, at least in one
scenario of wall evolution, to be sufficiently restrictive that
the parity breaking scale can be no larger than 108 GeV.
The overall lesson is that the new features introduced by
supergravity can have a strong bearing on the scale of
parity breaking for ensuring viable cosmology free of
permanent domain walls.
The alternative to Planck scale suppressed terms for

distinguishing between parity symmetric vacua was
studied in [28,29] wherein the parity breaking operators
are induced at a much lower scale, viz., the supersymmetry
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breaking scale, and signaled by the gauge mediation
mechanism, thus linking the two scales. This avenue for
evading unwanted domain walls remains open for models
that get restricted in the present study.

In the remainder of the paper, in Sec. II we review
cosmology with domain walls. In Sec. III we discuss three
possible scenarios for evolution of domain walls and the
requirement in each case for the successful destabilization
of the wall complex. In Sec. IV we discuss the origin of the
parity breaking terms within supergravity formalism. In
Sec. V we discuss the essentials of supersymmetric left-
right model. In subsection VA we discuss a particular
renormalizable implementation of left-right supersymmet-
ric model and then check for the sufficiency of the induced
Planck scale terms to cause the required destabilization of
the domain walls. The same study is carried out for a recent
implementation of supersymmetric left-right symmetry
including a gauge singlet in subsection VB. In Sec. VI
we summarize the conclusions. Two appendixes A and B
contain the calculations of the Planck scale suppressed
terms for the two left-right symmetric models studied.

II. DISCRETE SYMMETRY BREAKING AND
COSMOLOGY

Spontaneous breakdown of discrete symmetries in uni-
fied models can give rise to domain walls. Stable domain
walls from unified theories have long been recognized as
inconsistent with the observed Universe [30]. In the pres-
ence of several degenerate ground states the domain wall
network in the Universe can be rather complicated. If the
domain walls are stable, the energy density stored in the
network decreases as � / 1=a, resulting in aðtÞ / t2 lead-
ing to a mild inflationary behavior. A more generic possi-
bility is that the walls continue to be destroyed due to
collisions and result in the formation of homogeneous
domains. However even one domain wall of grand unified
scale of the size of the horizon can conflict with cosmol-
ogy. For domain walls arising at symmetry breaking scale
MR, it can be estimated [30,31] that the density perturba-
tion introduced by them would conflict with the known
magnitude of temperature fluctuation �T=T � 10�5 of the
cosmic microwave background if MR * 1 MeV. This im-
passe is overcome if the spontaneously broken discrete
symmetry is also broken explicitly by a small amount.
For example [32], the symmetry � ! �� can be broken
by adding a term ��3 to the Lagrangian which gives a
pressure difference governed by the small parameter �
between the two sides of the domain walls.

The authors of [22] have discussed several similar rea-
sons for considering such gravity induced terms and their
effect in destabilizing domain walls. For the theory of a
generic neutral scalar field �, the effective higher dimen-
sional operators can be written as

Veff ¼ C5

MPl

�5 þ C6

M2
Pl

�6 þ � � � : (1)

Such terms give rise to a pressure difference across a given
domain wall of the amount of the difference in the effective
energy density across the wall, �� ¼ �Veff . Specifically,
the terms odd in � break the discrete symmetry, and the

leading contribution to the difference in pressure is 2C5

MPl
�

h�i5. From cosmological considerations we can separately
estimate the difference �� in the energy density across a
domain wall required for timely removal of the domain
walls. It is found that this has a value smaller by a factor
MR=MPl than the leading order term in the generic effec-
tive potential considered above, leading to the conclusion
that the walls will indeed be removed without conflicting
with cosmology.
This toy example however is only instructional because

in realistic theories, gauge invariance and supersymmetry
significantly constrain the structure of terms that can arise.
In a nonsupersymmetric example [33], gauge invariance
implies that the leading order operator is suppressed by
1=M2

Pl. Further, the terms are products of vacuum expec-

tation values of different scalar fields which may differ
significantly in their mass scales, as will be true in our
study. The exceptional case where the toy example may be
of direct relevance is the presence of one or more gauge
singlet scalar fields in the theory (equivalently, superfields
in a supersymmetric theory) permitting the kind of terms
listed above.
As an illustration of this phenomenon consider the lead-

ing order operator containing several scalar fields, �i

�1�2�3�4�5

MPl

: (2)

Borrowing from a calculation that will be detailed later
[see Eq. (13)], suppose the required constraint for success-

ful removal of domain walls is �� * M11=2
R =M3=2

Pl . Then

the requirement that the operator in Eq. (2) is sufficient for
removing domain walls is that

�1�2�3�4�5

MPl

*
M11=2

R

M3=2
Pl

: (3)

Now suppose that there are only two kinds of fields, one
getting the vacuum expectation value of the order of MR,
the parity breaking scale, and that there are x factors of this
field in the operator, while the other field constitutes the
remaining factors, and gets a TeV scale value v. Then

v5�x *
Mð11=2Þ�x

R

M1=2
Pl

; (4)

so that, taking TeV scale to be v� 103 GeV,

logMR &
24:5� 3x

5:5� x
: (5)

This relation means that if x ¼ 5,MR can be as large as the
Planck scale, while for x ¼ 1,MR is forced to have a value
<105 GeV,
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In our analysis we shall be assuming that parity breaking
occurs at the same mass scale as the mass of the heavy
Majorana neutrinos. The constraints to be derived also
depend on a few ancillary details, specifically the dynamics
of the walls before they disintegrate. The primary impli-
cation of these other details, to be discussed in the follow-
ing, is only the value of the temperature at which the
standard cosmology resumes. In the following we shall
admit the possibility of this more general kind of evolution
and focus attention on two issues. The Universe should be
radiation dominated at temperature 10 MeV and lower in
order to ensure successful big-bang nucleosynthesis
(BBN). Secondly, the danger of gravitino overabundance
is generic to all supersymmetric models. Detailed calcu-
lations [26,34] show that the gravitinos with unacceptable
consequences to observable cosmology are generated en-
tirely after reheating of the Universe subsequent to primor-
dial inflation provided TR * 109 GeV. Thus we make the
requirement that entropy generated from the decay of
domain walls should not raise the temperature of the
Universe above this temperature scale.

III. MODELS OF DYNAMICS OF DOMAIN WALL
COMPLEX

Occurrence of domain walls per se at some epoch in the
early Universe is not ruled out, provided the walls even-
tually get destroyed. Safe disappearance of domain walls
was dealt with in some generality in [22,35], the former in
the context of Planck scale effects, and the latter in the
context of instanton induced effects from QCD. There have
been several model specific studies of the fate of domain
walls, e.g., [36–38] and studies pointing out that transitory
domain walls may in fact form the basis for explanation of
some of the cosmological effects such as leptogenesis
[33,38–40] or address problems such as proliferation of
relics [28,37,38].

For the purpose of this paper we consider three possible
routes through which domain walls may evolve. The first
one consists of domain walls originating in a radiation
dominated era and destabilized and destroyed also within
the radiation dominated era before they begin to dominate
the energy density of the Universe (referred to as the RD
model). The second scenario was essentially proposed in
[37], which consists of the walls originating in a radiation
dominated phase, subsequent to which the Universe enters
a ‘‘matter dominated’’ phase, either due to substantial
production of heavy unwanted relics such as moduli, or
due to the presence of a coherently oscillating scalar field
(referred to as the MD model). Here too walls disappear
before they come to dominate the energy density of the
Universe. Finally, we consider a variant of the MD model
in which the domain walls come to dominate the energy
density of the Universe and continue to do so for a con-
siderable epoch, leading to mild inflationary behavior or

weak inflation [41,42] (referred to as the WI model). We
now describe these in detail.

A. Evolution during a radiation dominated era

The essentials of this scenario are as originally proposed
by Kibble [30] and Vilenkin [32]. Domain walls arise at
some temperature Tc, the critical temperature of a phase
transition at which a scalar field � acquires a nonzero
vacuum expectation value at a scale MR. The energy
density trapped per unit area of the wall is ��M3

R. The
dynamics of the walls is determined by two quantities,
force due to tension fT and force due to friction fF. The
first of these is determined by intrinsic energy per unit area
�, and the average scale of radius of curvature R prevailing
in the wall complex. We estimate fT � �=R. The frictional
force is proportional to the collisions encountered by the
wall with surrounding radiation with energy density �T4,
while the former is navigating through the medium at
speed �. This force is estimated as fF � �T4. The epoch
at which these two forces balance each other sets the time
scale tR � R=�. We may take this as the time scale by
which the wall portions that started with radius of curvature
scale R straighten out. Putting together these statements we
get the following scaling law for the growth of the scale
RðtÞ on which the wall complex is smoothed out:

RðtÞ � ðG�Þ1=2t3=2: (6)

Now the energy density of the domain walls goes as �W �
ð�R2=R3Þ � ð�=Gt3Þ1=2. In a radiation dominated era this
�W becomes comparable to the energy density of the
Universe [�� 1=ðGt2Þ] around time t0 � 1=ðG�Þ.
Next, we consider destabilization of walls due to the

pressure difference �� arising from small asymmetry in
the conditions on the two sides. This effect competes with
the two quantities mentioned above. Since fF � 1=ðGt2Þ
and fT � ð�=ðGt3ÞÞ1=2, it is clear that at some point of
time, �� would exceed either the force due to tension or
the force due to friction. For either of these requirements to
be satisfied before t0 � 1=ðG�Þ, we get

�� � G�2 � M6
R

M2
Pl

�M4
R

M2
R

M2
Pl

: (7)

We may read this formula by defining a factor

F � ��

M4
R

; (8)

where M4
R is the energy density in the wall complex

immediately at the phase transition, which relaxes by
factorF at the epoch of its decay. The factor F is strongly
dependent on the assumed model of evolution of the wall
complex, and is found to be M2

R=M
2
Pl in this model.
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B. Evolution during a matter dominated era

We next take up the model of evolution in which the
scale factor behaves as in a matter dominated era by the
time the domain walls get destabilized. This possibility
was considered in [37] by Kawasaki and Takahashi. The
analysis begins by assuming that the initially formed wall
complex in a phase transition is expected to rapidly relax to
a few walls per horizon volume at an epoch characterized
by Hubble parameter value Hi. Thus the initial energy

density in the wall complex is �ðinÞ
W � �Hi. This epoch

onward, we assume the energy density of the Universe to
be dominated by heavy relics or an oscillating modulus

field, in either of which cases, the scale factor aðtÞ / t2=3.

The energy density for both of these cases scales as �mod �
�ðinÞ
mod=aðtÞ3. If the domain wall (DW) complex remains

frustrated, i.e. its energy density contribution �DW /
1=aðtÞ, it can be seen that [37] the Hubble parameter at
the epoch of equality of DW contribution with contribution
of the rest of the matter is given by

Heq � �3=4H1=4
i M�ð3=2Þ

Pl : (9)

To proceed we assume that the domain walls start decaying
as soon as they dominate the energy density of the
Universe. If the temperature at this particular epoch is
TD, then H2

eq �GT4
D. So from Eq. (9) we find

T4
D � �3=2H1=2

i M�1
Pl : (10)

Let us assume the temperature at which the domain

walls are formed T � �1=3. So

H2
i ¼

8�

3
G�4=3 � �4=3

M2
Pl

: (11)

From Eq. (10), we get

T4
D � �11=6

M3=2
Pl

�M11=2
R

M3=2
Pl

�M4
R

�
MR

MPl

�
3=2

: (12)

Now requiring �� > T4
D, we get

�� >M4
R

�
MR

MPl

�
3=2

: (13)

Thus in this case we find F � ðMR=MPlÞ3=2, a milder
suppression factor than in the radiation dominated case
above.

C. Evolution including weak inflation

The third possibility we consider is that the walls do not
disintegrate by the time they come to dominate the energy
density of the Universe, but in fact go on to dominate the
energy density of the Universe. This domination however
lasts for a limited epoch. Since the Universe evolves as
aðtÞ / t2, it leads to an epoch of mild inflation (as against
exponential) also referred to as thermal or weak inflation.

This possibility has been considered [41,42] in the context
of removal moduli in superstring cosmology [43–45]. Such
a situation is most likely in the case when the �� is
typically small, not large enough to destabilize the walls
sufficiently quickly. But eventually a small pressure differ-
ence will also win over fT or fF, because either the
curvature scale R diverges, as for straightened out walls,
or the translational speed � reduces drastically. Since we
have no microscopic model for deciding which of these is
finally responsible, we introduce a temperature scale TD at
which the walls begin to experience instability. Note that
unlike in the previous example, we will not be able to
estimate TD in terms of other mass scales and will accept
it as undetermined and consider a few reasonable values for
it for our final estimate.
As has been studied above, at Heq the energy density of

the domain wall network dominates energy density of the
Universe. The scale factor at this epoch is characterized by
aeq. Denoting the energy density of the domain walls at the

time of equality as �DWðteqÞ, the evolution of energy

density can be written as

�DWðtdÞ � �DWðteqÞ
�
aeq
ad

�
; (14)

where ad is scale factor at the epoch of decay of domain
walls corresponding to time td. If the domain walls decay
at an epoch characterized by temperature TD, then
�DWðtdÞ � T4

D. So from Eq. (14),

T4
D ¼ �DWðteqÞ

�
aeq

ad

�
: (15)

In the matter dominated era the energy density of the
moduli fields scale as

�d
mod � �

eq
mod

�
aeq
ad

�
3
: (16)

Substituting the value of aeq=ad from Eq. (15) in the above

equation,

�d
mod �

T12
D

�2
DWðteqÞ

: (17)

The energy density of the domain walls dominates this
model universe after the time of equality, �DWðtdÞ> �d

mod.

So the pressure difference across the domain walls when
they start decaying is given by

�� *
T12
D G2

H4
eq

; (18)

where we have used the relation H2
eq �G�DWðteqÞ.

Replacing the value of Heq from Eq. (9), and H2
i �

G�in
DW �M4

R=M
2
Pl,

�� * M4
R

�
T12
D M3

Pl

M15
R

�
: (19)
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The F factor introduced in Eq. (8) turns out in this case to
be ðT12

D M3
PlÞ=M15

R , rather sensitively dependent upon TD.

IV. SUPERGRAVITYAND LEFT-RIGHT
SYMMETRY BREAKING

The possibility that left-right symmetry may remain
unbroken to low scales, and such breaking may be com-
patible with standard cosmology has been studied in an
earlier work [29]. Specifically it was examined whether in
the supersymmetric left-right symmetric model the parity
breaking could be of hidden sector origin, and communi-
cated to the visible sector through gauge mediation at a low
scale. The attempt is to see if several of the puzzles of the
standard model and incorporation of right-handed neutri-
nos are essentially possible within a few orders of magni-
tude of the TeV scale. It was found that messengers of a
particular implementation of gauge mediated supersym-
metry breaking can also communicate left-right symmetry
violation. This is independent of the mechanism for the
left-right symmetry violation in the hidden sector, the
origin of which therefore remains unknown.

The question is, does supergravity have the potential to
address the origin of left-right symmetry violation at a low
scale? There is a folk theorem that discrete symmetries can
be violated by quantum gravity effects. The reasoning runs
as follows. Formation of black hole horizons can cause
unaccounted violation of a global charge, while preserving
gauge charges. We then expect black-holelike virtual states
in quantum gravity which can induce effective terms vio-
lating the global charges. Such induced terms however do
not arise in the process of perturbative renormalization,
since every perturbative term, even in a nonrenormalizable
Lagrangian should obey the expected symmetries. The
effective terms would therefore arise from instantonlike
effects.

Because of discrete nature of the symmetry, the signal of
its breaking would be in the difference in the coefficients of
the terms that get interchanged under the symmetry opera-
tion. The structure of supergravity ensures that at the
renormalizable level gravity couples separately to the left
sector and right sector with no mixing terms. The field
contents are identical and the gauge couplings in the two
sectors are identical at this order. It appears very difficult to
see how supergravity would distinguish between the con-
stants induced in the two sectors. We also note that N ¼ 1
supergravity is finite at one-loop level. This leads us to
suspect that we should not expect parity violating terms
from supergravity, at least in the leading order in 1=MPl.

Thus a justification for considering 1=MPl terms differ-
ing in their coefficients arises from the possibility that such
are a result of gravity mediated supersymmetry breaking
communicated from the hidden sector. For this to work we
must assume one of two possibilities, either that the gauge
group governing the hidden sector does not admit left-right
symmetry as a subgroup or that such symmetry is broken in

the hidden sector. The breaking should then be communi-
cated to the visible sector along with the supersymmetry
breaking. The root cause of the parity breaking then would
remain hidden as in our earlier work. It should be empha-
sized that if this is the case, the terms signaling the break-
ing of parity must be proportional to the scale of
supersymmetry breaking in the hidden sector and vanish
in the limit of exact supersymmetry. In the formalism we
have adopted we choose to order the terms by powers of
inverse MPl, however the induced terms must be under-
stood to also be dependent on the scale of supersymmetry
breaking.
The question of direct breaking of parity within super-

gravity is much less clear. However in this phenomeno-
logical analysis we shall also consider the next-to-leading
order terms that would arise assuming that leading-order
terms somehow do not break parity. According to Eq. (43)
it is found that such terms may suffice only marginally to
solve the problem of unacceptable domain walls in
cosmology.
Regardless of their origin, the structure of the symmetry

breaking terms in the scalar potential will be similar to that
of the terms that can be derived from the superpotential, as
happens in the case of soft supersymmetry breaking terms
[23]. Thus we may use the usual supergravity formalism to
derive the terms through which Planck suppressed left-
right symmetry breaking may get manifested. A similar
approach has been adopted in the context of the minimal
supersymmetric standard model (MSSM) in [46] where the
origin and the effect of higher dimensional operators have
been discussed in the context of collider data. In the
remainder of this section we summarize the essential for-
malism to be used in our calculation. We adopt the notation
described in [23]. The supergravity Lagrangian is obtained
from three functions of complex scalar fields, viz., super-
potential (W), Kähler potential (K), and gauge kinetic
function fab. The F-term contribution to the scalar poten-
tial in supergravity theory

VF ¼ kjiFjF
�i � 3eK=M2

PlWW�=M2
Pl; (20)

where

Fi ¼ �½ðK�1ÞilðW�l þW�Kl=M2
PlÞ	: (21)

Making use of Eq. (21) in Eq. (20) the individual terms in
VF can be written as

VF ¼ ðK�1Þ�kl
�
W�

kW
l þW�

kWKl

M2
Pl

þW�KkW
l

M2
Pl

þW�KkWKl

M4
Pl

�
þ higher order terms. (22)

Here we have considered the first term of Eq. (20). The
scalar potential contains D-term contributions from gauge
interactions which are given by
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VD ¼ 1

2
Re½f�1

ab D̂aD̂b	; (23)

where

D̂ a ¼ �KiðTaÞij�j ¼ ���jðTaÞjiKi (24)

and fab is the gauge kinetic function which is given by

fab ¼ �ab½1=g2a þ fia�i=MPl þ � � �	: (25)

For our purpose it will be sufficient to consider fab ¼
�ab=g

2
a since we do not expect left-right asymmetry to

arise from the gauge sector. In the following we shall
consider the terms arising in the scalar potential from
expanding W and K in the powers of (1=MPl).

V. GRAVITY INDUCED OPERATORS IN LEFT-
RIGHT SUPERSYMMETRIC MODEL

The key difference in any realistic model in comparison
with the generic considerations of [22] is that gauge in-
variance restricts the structure of the nonrenormalizable
terms. For instance in [33] the operators considered were

Vnon-SUSY � c1
1

M2
Pl

ð�y
L�LÞ3 þ c2

1

M2
Pl

ð�y
R�RÞ3: (26)

In other words, gauge invariance requires the terms to be
Oð1=M2

PlÞ rather than Oð1=MPlÞ. A difference in pressure

caused by such operators, after putting vacuum expectation
values of the fields ��MR, would be adequate to remove
the domain walls accompanied by radiation dominated era
evolution, Eq. (7), and even more so the domain walls that
evolved during an effective matter dominated era, Eq. (13).

But in the models we consider, supersymmetry forbids
the kind of terms shown in Eq. (26); on the other hand,
generic parity breaking terms of Oð1=MPlÞ respecting
SUð2ÞL and SUð2ÞR gauge invariance are permitted. This
is due to additional field content with different gauge
charges. This gain in order of 1=MPl is however offset by
the fact that, due to demands of phenomenology, some of
the fields can acquire TeV scale vacuum expectation values
as well. Here we have studied two successful supersym-
metric implementations of left-right symmetry but the
method can be extended to other implementations.

The minimal supersymmetric left-right model is based
on the gauge group SUð3Þc 
 SUð2ÞL 
 SUð2ÞR 

Uð1ÞB�L. The anomaly free B� L global symmetry of
the standard model is promoted to a gauge symmetry.
The quark, lepton, and Higgs superfields for the minimal
supersymmetric left-right model, with their respective
quantum numbers under the gauge group SUð3Þc 

SUð2ÞL 
 SUð2ÞR 
Uð1ÞB�L are given by

Q ¼ ð3; 2; 1; 1=3Þ; Qc ¼ ð3�; 1; 2;�1=3Þ;
L ¼ ð1; 2; 1;�1Þ; Lc ¼ ð1; 1; 2; 1Þ;
�i ¼ ð1; 2; 2; 0Þ; for i ¼ 1; 2;

� ¼ ð1; 3; 1; 2Þ; �� ¼ ð1; 3; 1;�2Þ;
�c ¼ ð1; 1; 3;�2Þ; ��c ¼ ð1; 1; 3; 2Þ;

(27)

where we have suppressed the generation index for sim-
plicity of notation. In the Higgs sector, the bidoublet � is
doubled to have nonvanishing Cabbibo-Kobayashi-
Maskawa matrix, whereas the � triplets are doubled to
have anomaly cancellation. Under discrete parity symme-
try the fields are prescribed to transform as

Q $ Q�
c; L $ L�

c; �i $ �y
i ;

� $ ��
c; �� $ ���

c:
(28)

However, this minimal left-right symmetric model is un-
able to break parity spontaneously [14,15]. Inclusion of
nonrenormalizable terms gives a more realistic structure of
possible vacua [16,17,47]. Such terms were studied for the
case when the scale of SUð2ÞR breaking is high, close to
Planck scale.

A. The ABMRS model with a pair of triplets

Because of the difficulties with the model discussed
above, a ‘‘minimal’’ renormalizable model was developed
by Aulakh et al. early in [16–18] and will be referred to
here as the ABMRS model after the authors. In this model
two triplet fields, � and �c, were added, with the follow-
ing quantum numbers:

� ¼ ð1; 3; 1; 0Þ; �c ¼ ð1; 1; 3; 0Þ; (29)

which was shown to improve the situation with only the
renormalizable terms [17,18,48]. It was shown that this
model breaks down to the minimal supersymmetric stan-
dard model at low scale. This model was studied in the
context of cosmology in [28,38] and, specifically, the
mechanism for leptogenesis via domain walls in [49].
The superpotential for this model including Higgs fields

only is given by

WLR ¼ m� Tr� ��þm� Tr�c
��c þm�

2
Tr�2

þm�

2
Tr�2

c þ�ij Tr	2�
T
i 	2�j þ aTr�� ��

þ aTr�c�c
��c þ 
ij Tr��i	2�

T
j 	2

þ 
ij Tr�c�
T
i 	2�j	2: (30)

Since supersymmetry is broken at a very low scale, we can
employ the F and D flatness conditions obtained from the
superpotential to get a possible solution for the vacuum
expectation values (VEV’s for the Higgs fields,
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h�i ¼ 0; h�i ¼ 0; h ��i ¼ 0;

h�ci ¼ !c 0
0 �!c

� �
;

h�ci ¼ 0 0
dc 0

� �
; h ��ci ¼ 0 �dc

0 0

� �
:

(31)

This solution set is of course not unique. Since the original
theory is parity invariant a second solution for the F and D
flat conditions exists, with left-type fields’ VEV’s ex-
changed with those of the right-type fields [38,49].

With VEV’s as in Eq. (31) the pattern of breaking is

SUð2ÞL 
 SUð2ÞR 
Uð1ÞB�L!MR
SUð2ÞL 
Uð1ÞR

Uð1ÞB�L; (32)

!MB�L
SUð2ÞL 
Uð1ÞY: (33)

The model introduces a new mass scale, m�. However, it
was observed [17] that these terms can be forbidden in the
superpotential by invoking an R symmetry, and then the
corresponding terms appearing in the scalar potential can
be interpreted as soft terms entering only after supersym-
metry breakdown at the electroweak scale. This approach
imposes a condition on the scales of breaking, with respect

to the electroweak scale MW ,

MRMW ’ M2
B�L: (34)

This relation raises the interesting possibility that the scale
ofMR can be as low as 104 to 106 GeV, with corresponding
very low scale 103 to 104 GeV of lepton number violation,
opening the possibility of low energy leptogenesis [19,49].
As discussed in Sec. (IV) we shall proceed to find the

1=MPl terms in the effective potential by expanding Kähler
potential and superpotential in powers of 1=MPl. Here we

include �ð ��Þ, �cð ��cÞ, and �ð�cÞ fields in the expansion
of the Kähler potential and superpotential. The Kähler
potential in this model up to (1=MPl) can be written as

K ¼ Trð��y þ �� ��yÞ þ Trð�c�
y
c þ ��c

��y
c Þ þ Trð��yÞ

þ Trð�c�
y
c Þ þ CL

MPl

ðTr���y þ Tr ��� ��y þ H:c:Þ

þ CR

MPl

ðTr�c�c�
y
c þ Tr ��c�c

��y
c þ H:c:Þ; (35)

where CL and CR are dimensionless constants. The super-
potential can also be expanded in powers of (1=MPl) which
is written as

W ¼ Wren þWnr

¼ m�ðTr� ��þ Tr�c
��cÞ þm�

2
ðTr�2 þ Tr�2

cÞ þ aðTr�� ��þ Tr�c�c
��cÞ þ aL

2MPl

ðTr� ��Þ2 þ aR
2MPl

ðTr�c
��cÞ2

þ bL
MPl

Tr�2 Tr ��2 þ bR
MPl

Tr�2
c Tr ��

2
c þ cL

4MPl

ðTr�2Þ2 þ cR
4MPl

ðTr�2
cÞ2 þ dL

2MPl

Tr�2 Tr� ��þ dR
2MPl

Tr�2
c Tr�c

��c

þ f

MPl

Tr� ��Tr�c
��c þ h1

MPl

Tr�2 Tr�2
c þ h2

MPl

Tr ��2 Tr ��2
c þ j

MPl

Tr�2 Tr�2
c þ k

MPl

Tr�2 Tr�c
��c

þ m

MPl

Tr�2
c Tr� ��; (36)

where the coefficients appearing against the individual
terms are dimensionless constants.

The effective potential resulting from the above modifi-
cations is calculated in Appendix A. We have also exam-
ined theD terms in the effective potential and find that they
do not give rise to Oð 1

MPl
Þ terms. Thus we only need to deal

with F terms. Assuming a phase in which the right-type
fields get a nontrivial VEVand all left-type fields have zero
VEV, the expression for the leading term in 1=MPl, the
scalar potential becomes

VR
eff �

aðcR þ dRÞ
MPl

M4
RMW þ aðaR þ dRÞ

MPl

M3
RM

2
W: (37)

Now due to left-right symmetry, there is also a correspond-
ing phase in which the left-type fields get a VEV, but not
the right-type fields. For this phase the value of the effec-

tive potential is

VL
eff �

aðcL þ dLÞ
MPl

M4
RMW þ aðaL þ dLÞ

MPl

M3
RM

2
W: (38)

The possibility of these two phases of approximately equal
energy density gives rise to domain walls separating such
phases. The pressure difference across the walls is propor-
tional to the difference in energy density between two sides
of the wall, and is given by

��� ½ðcL � cRÞ þ ðdL � dRÞ	M
4
RMW

MPl

þ ½ðaL � aRÞ þ ðdL � dRÞ	M
3
RM

2
W

MPl

� �A M
4
RMW

MPl

þ �0A M
3
RM

2
W

MPl

; (39)
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where �A ¼ ðcL � cRÞ þ ðdL � dRÞ and �0A ¼
ðaL � aRÞ þ ðdL � dRÞ, and the superscript A refers to
the ABMRS model. From Eq. (39), we see that to leading
order in 1=MPl there are two kinds of operators appearing
in ��, differing in powers of (MW=MR).

We shall now compare these operators with the energy
density required for the successful removal of the domain
walls in the three cases labeled as RD, MD, and WI,
respectively, discussed in Sec. II. Comparing Eq. (7) with
individual operators in Eq. (39) and taking the scaleMR as
106 GeV, and taking the more dominant term �, we get the
constraint

�A
RD > 10�10

�
MR

106 GeV

�
2
: (40)

This is easily satisfied at the low scale ofMR proposed. For
MR scale tuned to 109 GeV, needed to avoid the gravitino
problem after reheating at the end of inflation, �RD � 10�4,
is a reasonable constraint. but requires �A

RD to beOð1Þ if the
scale of MR is an intermediate scale 1011 GeV.

Next, comparing Eq. (13) with individual terms in
Eq. (39), the constraint on �A

MD is found to be

�A
MD > 10�2

�
MR

106 GeV

�
3=2

; (41)

which puts a modest requirement on the value of �A
MD for

suitable disappearance of domain walls. However taking
MR � 109 GeV being the temperature scale required to
have thermal leptogenesis, without the undesirable grav-

itino production, leads to �A
MD > 105=2, an unacceptable

requirement. The MD case is in fact generic to supersym-
metric and string inspired models [43–45] due to moduli
production. And we find that in this case the ABMRS
model requires a low scale of MR and nonthermal or
resonant leptogenesis.

In the WI case, Eq. (19) there is extreme sensitivity to
the scales ofMR and TD. Proceeding in same way as above
comparing Eq. (19) with Eq. (39) the constraint on � is
found to be

�A
WI > 10�4

�
106 GeV

MR

�
15
�

TD

10 GeV

�
12
: (42)

This is a reasonable constraint for the proposed median
values of the two mass scales. However the constraint
makes the model rather strongly predictive. The scale of
decay of the wall complex TD can be any value below the
chosen MR scale. Thus if TD � 104 GeV, then MR is
forced to be closer to the gravitino scale 109 GeV. This
can be problematic if the reheating temperature after the
disappearance of the domain walls is comparable to the
temperature scale of the original phase transition. The
Universe would reheat to 109 GeV, raising the possibility
of unacceptable gravitino regeneration.

Finally we consider the possibility, raised in Sec. IV, that
the gravity induced terms are of direct origin, and due to

one-loop finiteness of supergravity, do not give rise to
1=MPl terms in the superpotential or the Kähler potential.
In such a case the most dominant operator to be considered
is suppressed by ð1=MPlÞ2. In the ABMRS case we find,
after substituting the vacuum expectation values, that such
an operator has the magnitude

�Vnext-to-leading order �
M4

RM
2
W

M2
Pl

: (43)

So long as we are considering theories withMR values less
than an intermediate scale 1011 GeV, such terms are sub-
dominant to the ones considered above. However if the
leading terms are absent, the constraint on the coefficient
for the above term for each of the above constraints is
tightened by a factor MPl=MW � 1016. Such a constraint
immediately renders the first two scenarios of domain wall
evolution cosmologically unacceptable. The third case of
weak inflation however continues to be possible for phe-
nomenologically acceptable values of the energy scales.
To summarize the situation for the ABMRS model, we

have found that there is an upper bound on the scale MR if
the wall evolution unfolds during a radiation dominated
epoch or a matter dominated epoch. In the latter case,
which is generic for string theory cosmology with the
presence of heavy moduli fields, the natural value of MR

is required to be significantly lower than 109 GeV. In the
case of an evolution accompanied by a weak inflationary
epoch, there is no upper bound, rather a lower bound on the
scale MR but which is extremely sensitive to the value of
the scale TD at which the walls may finally disappear.

B. The BM model with a single singlet

An independent approach to improve the minimal model
with introduction of a parity odd singlet [50] was adopted
in [14,15]. However this was shown at tree level to lead to
charge-breaking vacua being at a lower potential than
charge-preserving vacua.
Recently, an alternative to this has been considered in

Babu and Mohapatra in [51] where a superfield S ¼
ð1; 1; 1; 0Þ, also singlet under parity, is included in addition
to the minimal set of Higgs required, as in Eq. (27). The

�c,
��c are required for SUð2ÞR 
Uð1ÞB�L symmetry

breaking without inducing R-parity violating couplings.
The singlet field S is introduced so that SUð2ÞR 

Uð1ÞB�L symmetry breaking occurs in the supersymmetric
limit. We refer to this as the BM model, after its authors.
The superpotential is given by

WLR ¼ Wð1Þ þWð2Þ;

where

Wð1Þ ¼ hðiÞ
l LT	2�i	2Lc þ hðiÞ

q QT	2�i	2Qc

þ if�LT	2�Lþ ifLcT	2�cLc þ S½�� Tr� ��

þ �Tr�c
��c þ �0

ab Tr�
T
a	2�b	2 �M2

R	; (44)
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Wð2Þ ¼ M� Tr� ��þM�
� Tr�c

��c þ�ab Tr�
T
a	2�b	2

þMsS
2 þ �sS

3: (45)

In this analysis the terms in Wð2Þ have been assumed to

be zero. Dropping the terms inWð2Þ makes the theory more
symmetric and more predictive. It is observed that drop-
ping quadratic and cubic terms in S leads to an enhanced
R-symmetry. Further, dropping the massive couplings in-
troduced for �’s means that � masses arise purely from
supersymmetry (SUSY) breaking effects, keeping these
fields light and relevant to collider phenomenology.
Dropping the �ab terms for � fields makes it possible to
explain the � parameter of MSSM as being spontaneously

induced from S VEV through terms in Wð1Þ. Additionally,
absence of theWð2Þ terms can be shown to solve the SUSY
CP and strong CP problems.

The presence of linear terms in S inWð1Þ makes possible
the following SUSY vacuum:

hSi ¼ 0; �vR �vR þ ��vL �vL ¼ M2
R; (46)

where vLð �vLÞ and vRð �vRÞ are the VEV’s of the neutral

components of �ð ��Þ and �cð ��cÞ fields, respectively. From
Eq. (46) it is clear that we have a flat direction in the vL �
vR space. Assuming that the flat directions are lifted, we
have two choices, viz.,

vR ¼ �vR ¼ 0; jvLj ¼ j �vLj ¼ MRffiffiffiffiffiffi
��p ; (47)

vL ¼ �vL ¼ 0; jvRj ¼ j �vRj ¼ MRffiffiffiffi
�

p : (48)

The important result is that after SUSY breaking and
emergence of SUSY breaking soft terms, integrating out
heavy sleptons modifies the vacuum structure due to
Coleman-Weinberg type one-loop terms which must be
treated to be of the same order as the other terms in Veff .
Accordingly, it is shown [51] that the Veff contains terms of
the form

Veff
one-loopð�cÞ � �jfj2m2

Lc Trð�c�
y
c ÞAR

1

� jfj2m2
Lc Trð�c�cÞTrð�y

c�
y
c ÞAR

2 ; (49)

where AR
1 and AR

2 are constants obtained from expansion of
the effective potential. Presence of these terms is shown to
lead to the consequence of a preference for the electric
charge-preserving vacuum over the charge-breaking vac-
uum, provided m2

Lc < 0.
Further Eq. (47) also constitutes a valid solution of

Eq. (46). In this vacuum the soft terms can give rise to
the following terms in the effective potential:

Veff
one-loopð�Þ � �jfj2m2

L Trð��yÞAL
1

� jfj2m2
L Trð��ÞTrð�y�yÞAL

2 ; (50)

with AL
1 and AL

2 constants. Thus the choice of known

phenomenology is only one of two possible local choices,
and formation of domain walls is inevitable.
Here we analyze the full superpotential without setting

Wð2Þ terms to zero. As in the ABMRSmodel, we study here
the scalar potential taking supergravity into account.
Including triplet fields and singlet field S, the Kähler
potential in this model up to Oð1=MPlÞ is given by

K ¼ Trð��y þ �� ��yÞ þ Trð�c�
y
c þ ��c

��y
c Þ þ jSj2

þ CL

MPl

ðTr�S�y þ Tr ��S ��y þ H:c:Þ

þ CR

MPl

ðTr�cS�
y
c þ Tr ��cS ��y

c þ H:c:Þ

þ d

MPl

ðS3 þ H:c:Þ: (51)

The superpotential upt o (1=MPl) order is given by

W ¼ Wren þWnr

¼ m�ðTr� ��þ Tr�c
��cÞ þMsS

2 þ �sS
3

þ S½�� Tr� ��þ �Tr�c
��c �M2

R	 þ
aL
2MPl

ðTr� ��Þ2

þ aR
2MPl

ðTr�c
��cÞ2 þ bL

2MPl

Tr�2 Tr ��2

þ bR
2MPl

Tr�2
c Tr ��

2
c þ c

MPl

S4 þ cL
MPl

S2 Tr� ��

þ cR
MPl

S2 Tr�c
��c þ f

MPl

Tr� ��Tr�c
��c

þ h1
MPl

Tr�2 Tr�2
c þ h2

MPl

Tr ��2 Tr ��2
c: (52)

The effective potential has been calculated in Appendix B
considering the term from the effective potential
ðK�1Þ�klW�

kW
l. When the right-type fields get a VEV the

scalar potential can be written as

VR
eff �

aR
MPl

M5
R þ aR

MPl

sM4
R þ CR

MPl

s2M3
R þ CR

MPl

s3M2
R;

(53)

where s is the scale at which S gets a VEV. To calculate the
potential when only the left-type fields get vacuum expec-
tation values, we introduce corresponding coefficients aL,
etc. We then compute the pressure difference across the
walls as

��� ðaL � aRÞM
5
R

MPl

þ � � � þ ðCL � CRÞ s
3M2

R

MPl

� �B M5
R

MPl

þ � � � þ �0B s
3M2

R

MPl

; (54)

where �B ¼ ðaL � aRÞ, �0B ¼ ðCL � CRÞ, superscript B
referring to the BM model and the ellipses (. . .) are in
lieu of terms which, as we explain next, are relatively
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unimportant. According to the BM model, the value s is of
the scale of supersymmetry breaking. If this scale is TeV
scale, then MR is expected to be higher and the �0B terms
are subdominant. In case however the supersymmetry
breaking scale is 1011 GeV, it could be higher than the
scale of MR. In this case the �0B term is expected to
dominate.

In the case of TeV scale supersymmetry breaking, com-
paring the first term in Eq. (54) with Eqs. (7), (13), and (19)
of with Sec. II, we get the corresponding constraints on
possible values of � as

�B
RD > 10�13

�
MR

106 GeV

�
; (55)

�B
MD > 10�6

�
MR

106 GeV

�
1=2

; (56)

�B
WI > 10�8

�
106 GeV

MR

�
16
�

TD

10 GeV

�
12
: (57)

Thus for the proposed MR scale of 106 GeV there is no
serious constraint on �B values. Only in the scenario with
weak inflation, if the TD scale is high, such as 100 GeV, the
value MR � 106 GeV becomes marginal, but due to large
powers of the mass scale present, a small increase in MR

easily offsets the effect of the increase in TD. Overall, the
kind of operators obtained in this particular model provides
no constraint on the mass scale MR, as long as the scale of
supersymmetry breaking is TeV scale.

To check other possibilities, we consider the supersym-
metry breaking scaleMS and hence s to be�1011 GeV. In
this case we get, proceeding as above,

�0B
RD > 10�25

�
MR

106 GeV

�
4
�
1011 GeV

s

�
3
; (58)

�0B
MD > 10�19

�
MR

106 GeV

�
7=2

�
1011 GeV

s

�
3
; (59)

�0B
WI > 10�44

�
TD

10 GeV

�
12
�
106 GeV

MR

�
17
�
1011 GeV

s

�
3
:

(60)

This shows that there is no particular constraint on the
induced parity breaking coefficients due to an increase in
the scale of supersymmetry breakingMS, so long asMR <
s � MS � 1011 GeV.

In summary, the BM model remains mostly unrestricted
by the present considerations. This is due to newer terms
possible with a gauge singlet.

VI. CONCLUSION

Ever since the discovery of massive neutrinos, it has
become a tantalizing possibility that the small neutrino
masses arise from rich physics at a high energy scale,

which in turn would naturally incorporate right-handed
neutrinos. A model that treats this new content symmetri-
cally with the known contents would naturally lead to the
requirement of parity symmetry in the high energy model.
If this discrete symmetry is spontaneously broken it would
lead to formation of domain walls in the early Universe.
We have considered three scenarios for the evolution of

transitory domain wall networks ending in their decay. We
characterize each model by a dimensionless parameter F
which is the ratio of the available pressure difference
across a wall at the time of its decay to the characteristic
energy densityM4

R in the Universe at the time of formation
of the wall complex; see Eqs. (7), (13), and (19). Of the
three scenarios, the first one unfolds entirely in a radiation
dominated universe, in which the dynamics is governed by
the interplay of forces due to friction and tension and the
pressure difference across the walls. Here we find that the
parameter F is given by ðMR=MPlÞ2. The second scenario
unfolds in a matter dominated era, where the domain wall
complex decays as soon as the energy density of the same
dominates the energy density of the Universe. The parame-

ter F in this case is given by ðMR=MPlÞ3=2. The third
scenario is an extension of the second one where we
assume that the domain wall network comes to dominate
the energy density of the Universe and continues to do so
for a finite epoch before it decays. Characterizing the
required pressure difference �� across the domain walls
in this case requires additional input, the ratio of scale
factor values aeq=ad where subscript eq refers to the epoch

at which the domain walls become equally as important as
the rest of the matter and subscript d refers to the epoch at
which the decay of the domain walls occurs. We character-
ize this ratio by an equivalent ‘‘decay temperature’’ TD

defined in Eq. (15). The formula for F in this case shows
very high sensitivity to the mass scales concerned.
For each of these cases we study the viability of the two

specific models of spontaneous parity breaking, the
ABMRS model in Sec. VA and the BM model in
Sec. VB. Each of the particle physics models permits
intrinsic operators whose coefficients must match up to
the required parameter F , resulting in final destabilization
of the wall complex. If the operators available in the model
cannot provide a �� of required magnitude, the wall com-
plex would not be destabilized, leading to unacceptable
cosmology.
The ABMRS model turns out to be more restrictive,

using as it does only nontrivial representations of the gauge
group. In this case a high scale for the parity breaking
becomes conditionally disfavored, though still viable if the
wall evolution leads to a weak inflationary epoch. The BM
model containing a singlet turns out to not be restricted by
the considerations here.
Our main conclusion is that a low scale scenario with

MR � 106 GeV or lower is viable and generic.
Specifically, in the ABMRS model with domain wall evo-
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lution in a matter dominated epoch MR is restricted to
remain less than 108 GeV; Eq. (41). A matter dominated
epoch is generic to string theory inspired models with the
occurrence of moduli fields of mass scale 109 GeV and
hence this restriction is of special interest.

The mechanism studied here is an alternative to an ear-
lier one [29] that studied the possibility of parity breaking
mediated by the messengers in a version of the gauge
mediated supersymmetry breaking scenario. The con-
straints on the parameters for that scenario to ensure dis-
appearance of domain walls were rather stringent. We now
see that wall disappearance by Planck scale suppressed
terms is more plausible. The precise source of parity break-
ing is not identified in our analysis, but assumed to occur in
a hidden sector. Our parity breaking terms are ordered as a
series in 1=MPl, but the terms would also be proportional to

the scale of supersymmetry breaking, and would vanish in
the limit of exact supersymmetry. Our broad conclusion is
that Planck scale suppressed terms can suffice for removal
of unwanted domain walls in realistic theories with broken
supersymmetry, but can imply important constraints on the
concerned energy scales.
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APPENDIX A: ABMRS MODEL

The scalar potential contains D-term contributions from
gauge interactions. From Eq. (23)

VD ¼ 1

2
Reðg2a=�abD̂aD̂bÞ

¼ g2a
2

ReðD̂aD̂aÞ

¼ g2a
2

ReTrðK�ðTaÞ�Þ þ TrðK ��ðTaÞ ��Þ þ TrðK�ðTaÞ�Þ2

¼ g2

8
Re TrðK�	

a�Þ þ TrðK ��	
a ��Þ þ TrðK�	

a�Þ2 þ g02

8
ReTrðK��Þ � TrðK ��

��Þ2

¼ g2

8
Re2Trð�y	a�Þ þ 2CL

MPl

Trð��y	a�Þ þ 2Trð ��y	a ��Þ þ 2CL

MPl

Trð� ��y	a ��Þ þ 4Trð�	a�Þ

þ 2CL

MPl

½Trð�y�	a�Þ þ Trð ��y ��	a�Þ	2 þ g02

8
Re2Trð�y�Þ � 2Trð ��y ��Þ þ 2CL

MPl

Trð���yÞ � 2CL

MPl

Trð ��� ��yÞ2:
(A1)

The D term vanishes after putting the VEV’s for the
corresponding fields. From above it is clear that we cannot
find 1=MPl suppressed terms from VD. So we have to go for
VF to find the desired terms. Here we consider the first term
appearing in Eq. (22), i.e. ðk�1Þ�kl W�

kW
l.

Substituting the Eqs. (36) and (35) in Eq. (22), the terms
which contribute are

VR � adR
2MPl

Tr�2
c Tr�c

��c
��y
c þ aR

MPl

m� Tr�c
��cTr ��c

��y
c

þ aR
MPl

m� Tr�c
��cTr�c�

y
c þ adR

2MPl

Tr�2
c Tr�c�c�

y
c

þ cR
MPl

m�ðTr�2
cÞ2 þ acR

MPl

Tr�2
c Tr�c�c

��c

þ terms higher order in1=MPl: (A2)

In the ABMRS model we have the relation

M2
B�L ’ MRMW ; ! ¼ �

��������
m�

a

��������� MR;

d ¼ �d ¼ ð2m�m�=a
2Þ1=2 � MB�L:

(A3)

After putting the VEV’s for the corresponding fields and
making use of appropriate scale, the terms up to Oð1=MPlÞ
are

VR � aðcR þ dRÞ
MPl

M4
RMW þ aðaR þ dRÞ

MPl

M3
RM

2
W: (A4)

APPENDIX B: BM MODEL

The leading order terms in this model come from the
first term of Eq. (22). Writing explicitly the individual
terms,

VF ¼ ðK�1Þ�c�
y
c
W�

�c
W�c þ ðK�1Þ ��c

��y
c
W�

��c
W

��c

þ ðK�1ÞSS�W�
SW

S: (B1)

Calculating the above terms, the terms in the scalar poten-
tial in lowest order in 1=MPl are given by
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VF � aR
MPl

m� Tr�c
��c Tr ��c

��y
c

þ aR
MPl

��STr�c
��c Tr ��c

��y
c þ CR

MPl

½�2S3 Tr�c�
y
c

þM2
�STr�c�

y
c þ S2ð��M� Tr�c�

y
c

þ �M� Tr�c�
y
c Þ	 þ CR

MPl

�STr�c
��c Tr ��c

��y
c

þ CR

MPl

MsS
2 Tr�c

��c þ CR

MPl

s3 Tr�c
��c

þ other terms: (B2)

After putting the VEV’s for the neutral components of the
triplet field and using the appropriate scale, the term in the
highest power of MR

VR � aR
MPl

M5
R þ aR

MPl

sM4
R þ CR

MPl

s2M3
R

þ CR

MPl

s3M2
R þ other terms: (B3)
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