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We study static spherically symmetric solutions of non-Abelian gauge theory coupled to conformal

gravity. We find solutions for the self-gravitating pure Yang-Mills case as well as monopolelike solutions

of the Higgs system. The former are localized enough to have finite mass and approach asymptotically the

vacuum geometry of conformal gravity, while the latter do not decay fast enough to have analogous

properties.
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I. INTRODUCTION

Conformal gravity [1] (CG) was proposed as a possible
alternative to Einstein gravity (GR), which may supply the
proper framework for a solution to some of the most
annoying problems of theoretical physics like those of
the cosmological constant, the dark matter, and the dark
energy.

It is therefore essential to investigate its predictions and
consequences as far as possible. Here we choose to study
static spherically symmetric solutions of a non-Abelian
gauge system coupled to CG. This report may be regarded
as a sequel to the previous one which dealt with field
systems with global symmetry and perfect fluid sources
[2].

The main ingredient of CG is the replacement of the
Einstein-Hilbert action with the Weyl action based on the
Weyl (or conformal) tensor C���� defined as the totally

traceless part of the Riemann tensor (we use R�
��� ¼

@��
�
�� � @��

�
�� þ . . . ),

C���� ¼ R���� � 1

2
ðg��R�� � g��R�� þ g��R��

� g��R��Þ þ R

6
ðg��g�� � g��g��Þ; (1.1)

so the gravitational Lagrangian is

L g ¼ � 1

2�
C����C

����; (1.2)

where � is a dimensionless parameter. The gravitational
field equations are formally similar to Einstein equations
where the source is the energy-momentum tensor T�� and

in the left-hand side Bach tensorW�� replaces the Einstein

tensor:

W�� ¼ �

2
T��: (1.3)

The Bach tensor is defined by

W�� ¼ 1
3r�r�R�r�r�R�� þ 1

6ðR2 þr�r�R

� 3R��R
��Þg�� þ 2R��R���� � 2

3RR��: (1.4)

Since the Bach tensor is traceless, CG can accommodate
only sources with T�

� ¼ 0. The Yang-Mills (YM) and
Yang-Mills-Higgs (YMH) systems that will be considered
here are of course compatible with this condition.
The general spherically symmetric line element may be

written in terms of a single metric function by exploiting
the conformal symmetry [1]:

ds2 ¼ BðrÞdt2 � dr2=BðrÞ � r2ðd�2 þ sin2�d’2Þ: (1.5)

The nonvanishing components of Ricci tensor and the
Ricci scalar are then

R0
0 ¼ Rr

r ¼ �B00

2
� B0

r
; R�

� ¼ R’
’ ¼ 1� B

r2
� B0

r
;

R ¼ 2ð1� BÞ
r2

� 4B0

r
� B00; (1.6)

and those of the Bach tensor

W0
0 ¼ � 1

3r4
þ B2

�
1

3r4
þ 1

3r2

�
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B
þ

�
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B

�
2 � 2

r

B0

B

�
� 1

3r

� B0B00

B2
þ 1

12

�
B00

B

�
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6

B0B000
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r
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B
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3

B0000
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�
;

(1.7)
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A useful property of these components is

W0
0 �Wr

r ¼ �BðrBÞ0000
3r

; Wr
r þW�

� ¼ BðrBÞ0000
6r

:

(1.10)

In the following we will model the source by a static
spherically symmetric matter distribution, which is a
(traceless) energy-momentum tensor of the form T�

� ¼
diagðT0

0 ; T
r
r ; T

�
�; T

�
�Þ. The ‘‘inertial mass’’ of the matter

fields will be as usual:

MI ¼ 4�
Z 1

0
drr2T0

0ðrÞ: (1.11)

Thanks to (1.10) the gravitational field equations (1.3)
reduce to a single very simple equation,

ðrBÞ0000
r

¼ � 3�

2B
ðT0

0 � Tr
r Þ; (1.12)

which has a similar structure to the fourth-order ‘‘Poisson
equation’’

r2r2u ¼ �h; (1.13)

where hðrÞ is the source term. In the spherically symmetric
case r2r2u ¼ ðruÞ0000=r, and outside a spherical source (or
in a vacuum) uðrÞ is given by uðrÞ ¼ c0 þ c1rþ c2=rþ
�r2. The parameters are related to the source (assumed to
extend within r � a) by

c1 ¼ 1

2

Z a

0
r2hðrÞdr; c2 ¼ 1

6

Z a

0
r4hðrÞdr; (1.14)

while � is free. Note that the volume integral of the matter
density [i.e., of hðrÞ] turns up as the coefficient of the linear
term in the potential rather than the 1=r one. It is related to
the fact that in this theory the potential of a point particle is
linear in accord with the behavior of the Green function.

Similarly, in CG the general solution around a localized
spherically symmetric source is

BðrÞ ¼ c0 þ c1rþ c2=rþ �r2; c20 ¼ 1þ 3c1c2;

(1.15)

where the additional relation between the coefficients
comes from theWr

r ¼ 0 equation which is of a third order.
We can easily express the two parameters of the exterior
solutions by

c1 ¼ 3�

4

Z 1

0
drr2ðT0

0ðrÞ � Tr
r ðrÞÞ=BðrÞ; (1.16)

c2 ¼ �

4

Z 1

0
drr4ðT0

0ðrÞ � Tr
rðrÞÞ=BðrÞ; (1.17)

while � is still not fixed by the source. However, in this
framework � may be considered as a cosmological con-
stant such that R ¼ 4� ¼ �12�. We notice that taking
�> 0 corresponds to gravitational attraction for ‘‘normal’’
matter with positive energy density and positive pressure.

In the absence of a cosmological constant, the gravita-
tional potential is asymptotically linear, which enables one
to explain the galactic rotation curves within this context
[1,3].
Among all the higher order gravitational theories [4,5],

CG is unique in the sense that it is based on an additional
symmetry principle. The conformal symmetry imposes
severe limitations on the allowed matter sources. When
matter is described in terms of a Lagrangian, it is very
much constrained, but the Abelian and non-Abelian (n
generators Ta) Higgs models are essentially still consistent
with the conformal symmetry provided the scalar field
‘‘mass term’’ is replaced with the appropriate ‘‘conformal
coupling’’ term which introduces a nonminimal coupling
to the Ricci scalar R. The matter Lagrangian which we will
use here is therefore

L m ¼ 1

2
ðD��ÞyðD��Þ � 1

12
Rj�j2 � �

4
j�j4

� 1

4
Fa
��F

a��; (1.18)

whereD� ¼ r� � ieAa
�T

a and Fa
�� are the n components

of the Lie algebra-valued field strength Fa
��T

a. The result-

ing field equations are

D�D
��þ �j�j2�þ R

6
� ¼ 0; (1.19)

D�F
a�� ¼ � ie

2
½�yTaðD��Þ � ðD��ÞyTa�� ¼ Ja�:

(1.20)

The gravitational field equations are (1.3) with

T�� ¼ TðminimalÞ
�� þ 1

6ðg��r�r�j�j2 �r�r�j�j2
�G��j�j2Þ; (1.21)

TðminimalÞ
�� being the ordinary (‘‘minimal’’) energy-

momentum tensor of the Higgs model and G�� the

Einstein tensor.
Now we assume spherically symmetric fields in the

simplest nontrivial case of SU(2), namely, ðTaÞbc ¼
�i"abc and� and A� take the ‘‘hedgehog’’ and monopole

forms which may be written most simply in terms of the
spherical unit vectors in 3 space, er, e� and e’:

�a ¼ fðrÞear ;
Aa
�dx

� ¼ 1

e
ðaðrÞ � 1Þðea’d�� ea� sin�d’Þ: (1.22)

The components of the energy-momentum tensor are
[using the � equation (1.19) and the monopole parametri-
zation above]
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T0
0 ¼ 1

3
�s þ 1

3
�sv � 1

3
uþ �v1 þ �v2

� f2

6

�
R0
0 �

R

6

�
þ B0

12
ðf2Þ0; (1.23)

Tr
r ¼ ��s þ �sv þ u� �v1 þ �v2 � f2

6

�
R0
0 �

R

2

�

� 1

12

�
B0 þ 4B

r

�
ðf2Þ0; (1.24)

T�
� ¼ T’

’

¼ 1

3
�s � 2

3
�sv � 1

3
u� �v2 � f2

6

�
R�
� �

R

6

�
þ B

6r
ðf2Þ0;
(1.25)

where we use the following abbreviations,

�s ¼ 1

2
Bf02; �sv ¼ a2f2

r2
; u ¼ �

4
f4;

�v1 ¼ Ba02

e2r2
; �v2 ¼ ð1� a2Þ2

2e2r4
;

(1.26)

and the explicit expressions for the Ricci tensor and scalar
should be obtained from Eq. (1.6).

The field equations for the scalar and vector fields are
the following second-order equations,

ðr2Bf0Þ0
r2

�
�
2a2

r2
þ R

6

�
f� �f3 ¼ 0; (1.27)

where one should again use (1.6) for R, and

ðBa0Þ0 þ ð1� a2Þa
r2

� e2f2a ¼ 0: (1.28)

Since there is only one independent metric component, it
is obvious that not all the field equations (1.3) are inde-
pendent. Actually there is only one independent equation
and we may use the third-order one

Wr
r � �

2
Tr
r ¼ 0: (1.29)

However, a much simpler form is again obtained by using
(1.10), giving therefore the following fourth-order equa-
tion for the metric component BðrÞ:
ðrBÞ0000

r
¼ ��

B

�
2�s � �sv � 2uþ 3�v1 � R

12
f2

þ 1

4

�
B0 þ 2B

r

�
ðf2Þ0

�
: (1.30)

Actually, we can rescale the variables r and f by an
arbitrary length scale l such that we get the dimensionless
variables x ¼ er=l and lf. The coupling constants also
rescale as �=e2 and �=e2, and in terms of these we obtain
the same equations as above with just substituting e ¼ 1

and replacing r by x (or thinking of r as dimensionless).
Since there is no natural scale in the system due to the
conformal invariance, we may use the typical length of the
scalar curvature, say, � ¼ 1=l2, or as we actually did (for
convenience), �l2 ¼ 0:1. Solutions with different values of
� are related to each other by a simple scaling law.

II. PURE YANG-MILLS SOLUTIONS

Self-gravitating pure YM solutions in GR were discov-
ered by Bartnik and McKinnon [6] for asymptotically flat
space-time and generalized in [7] for the case of asymptoti-
cally anti–de Sitter (AdS) space-time. In this section we
will present the analogous of the latter solutions in CG. We
analyze the solutions with the two possibilities of positive
and negative�. Indeed, the negative value of� is a ‘‘wrong
sign’’ choice since it yields a repulsive linear potential of
localized solutions. However, the attractive contribution
(�r2) from the negative cosmological constant is dominant.
Therefore we do not exclude this possibility. As in the GR
case, gravity can balance in certain circumstances the
gauge fields’ self-repulsion to allow for globally regular
solutions.
The relevant set of equations is obtained by substituting

f ¼ 0 in (1.28) and (1.30), and they will have the following
dimensionless form in the particular case under considera-
tion:

xðxBÞ0000 ¼ �3�a02; x2ðBa0Þ0 þ ð1� a2Þa ¼ 0:

(2.1)

We solve the field equations with the boundary condi-
tions

Bð0Þ ¼ 1; B0ð0Þ ¼ 0; B000ð0Þ ¼ 0;

B00ð1Þ ¼ 2�; að0Þ ¼ 1; að1Þ ¼ a0;
(2.2)

which are necessary for regular localized solutions with
finite inertial mass as well as finite mass parameters of the
fourth-order gravity, c1 and c2. The constant � is positive in
order for space-time to be asymptotically AdS.
Implementing these conditions in the field equations (2.1)
leads after some algebraic manipulations to the following
asymptotic behavior of the gauge field:

aðxÞ ¼ a0 þ a1
x
þ a2

x2
þ . . . : (2.3)

For analyzing the asymptotic behavior of the metric tensor
we use the following parametrization,

BðxÞ ¼ �x2 þ B1xþ B0 � 2mðxÞ
x

; (2.4)

where we further define mðxÞ ¼ mð1Þ �QðxÞ=2x. This
form is very useful in getting the general behavior of
BðxÞ and obtaining the following asymptotic expression,
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BðxÞ ¼ �x2 þ a30 � a0 � 2�a2
a1

xþ�4a2a
3
0 þ 3a21a

2
0 þ 4a2a0 � a31 þ 8�a22 � 6a1a3�

2a21

þ ð12a22 � 9a1a3Þa30 � 6a2a
2
1a

2
0 þ 3ða41 � 4a22 þ 3a1a3Þa0 þ 2a2a

2
1 þ 12�ð3a1a2a3 � 2a32 � a31a4Þ

3a31

1

x

� �a21
8

1

x2
� �a1a2

10

1

x3
� �ð3a1a3 þ 2a22Þ

60

1

x4
þ . . . ; (2.5)

with arbitrary parameters �; a0; . . . ; a4. In fact, � and a0
are fixed by the boundary conditions.

Whenever it exists, a solution corresponding to fixed �,
a0, and � has definite values of the parameters a1, a2, a3,
a4. They can be extracted from the numerical results
described below.

Along with Ref. [7] we find that the gauge function aðxÞ
can approach an arbitrary constant (a0) at infinity, leading
to a continuous family of intrinsically different solutions
with continuously varying magnetic charge (or flux)Qm ¼
1� a20. This contrasts the asymptotically flat case (in GR)

where the field aðxÞ should approach only the values
að1Þ ¼ �1 which correspond to vanishing magnetic
charge. Actually, it seems that the analogous asymptoti-
cally flat solutions in CG do not exist. Our solutions
comprise therefore a two-parameter ð�; a0Þ family for
any given �. The parameter � can be set to a fixed value
by an appropriate scaling of the radial variable.

It may be also of some interest to recall the analogous
solutions of the Abelian case which are known in an
explicit form [8]. These solutions may carry both magnetic

and electric charges denoted by p and q,

1

2
F��dx

� ^ dx� ¼ q

r2
dt ^ drþ p sin�d� ^ d’; (2.6)

and the Weyl equations lead to solutions of the form (1.15)
for the field BðrÞ where the relation between the coeffi-
cients is modified by a contribution from the magnetic and
electric charges:

BðrÞ ¼ c0 þ c1rþ c2=rþ �r2;

c20 ¼ 1þ 3c1c2 þ 3�

4
ðp2 þ q2Þ:

(2.7)

In the absence of explicit solutions, we approached the
above nonlinear system of equations numerically and
found that solutions exist for generic values of the parame-
ters � and a0.
Our results are illustrated by Figs. 1–3. The profiles of

solutions with two opposite values of � are presented in
Fig. 1. By inspection of the equations, it turns out that the
sign of � is very much apparent from the behavior of
B00ðxÞ; this is indeed what we observe in the figure.

(a) (b)

FIG. 1 (color online). Profiles of pure YM solutions with � ¼ �0:5. The other parameters are a0 ¼ �1 (or Qm ¼ 0) and � ¼ 0:1.
(a) The gauge components and their corresponding magnetic fields. Also added is the Abelian field strength. (b) The metric functions:
B00, mðxÞ, and QðxÞ.
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Furthermore, the figure shows that the magnetic field as
well as mðxÞ and QðxÞ are also sensitive to the sign. Note
that the two magnetic components, the ‘‘transverse’’
�a0=x [which we denote bðxÞ for further use] and the
‘‘radial’’ ð1� a2Þ=x2, are very similar, but not identical
as shown by a closer inspection. Figure 1 also reveals that
the fields reach their asymptotic values rather gradually
unlike the Bartnik-McKinnon solutions [6] whose structure
clearly split in three different regions of space.

The dependence of several parameters characterizing
the solutions on the central magnetic field bð0Þ and on
the magnetic charge Qm is shown on Fig. 2—again for
two opposite �’s. We note the strong similarity between
our Fig. 2(b) and the corresponding plot of Ref. [7]. The
Qmðbð0ÞÞ curves of Fig. 2(a) have a similar general struc-
ture to that of Ref. [7], but an exact comparison cannot be
made since our solutions are purely magnetic.

An additional plot (Fig. 3), shows the dependence of the
solutions on �. This figure reveals the nonlinear response
to � of the solutions and exhibits, in particular, the asym-
metry between positive and negative �.

A careful inspection of these three figures reveals that
they exhibit a comforting agreement with each other. For
example, the two values of bð0Þ in Fig. 1(a) are equal to
those obtained from the points where Qm ¼ 0 (which
correspond to a0 ¼ �1) in Fig. 2(a). The values of c1
and c2 at the same bð0Þ values in Fig. 2(a) are equal to
those in Fig. 3 taken at � ¼ �0:5.

These solutions fit nicely to the general discussion in the
introduction about localized solutions in CG. The coeffi-
cient of the linear term in the asymptotic expansion (2.5) is

verified to be equal to c1 calculated directly from (1.16).
Similarly, the coefficient c2 of the 1=x term can also be
obtained both ways. Note also thatMI is positive for all �,
but the signs of both c1 and c2 are correlated with that of �.
It is natural to compare the solutions obtained in this

section with the Abelian solutions mentioned above. These
solutions possess both magnetic and electric charges.
The magnetic Abelian solution is embedded in our

system as the very simple solution aðxÞ ¼ 0 [of Eq. (2.1)]

FIG. 3. � dependence of several properties of the pure YM
solutions. The other parameters are a0 ¼ �1 (or Qm ¼ 0) and
� ¼ 0:1. Note that MI is positive for all �, but the signs of both
c1 and c2 are correlated with that of �.

(a) (b)

FIG. 2 (color online). Several properties of pure YM solutions for two opposite values of �: � ¼ �0:5. � ¼ 0:1 (a) Dependence on
the central magnetic field bð0Þ. Note that all lines cross at bð0Þ ¼ 0, which corresponds to the trivial solution with a0 ¼ 1.
(b) Dependence on the magnetic charge Qm.
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which has an inverse-square behavior of the field strength.
The electric solution may be obtained just by duality. In
both cases theWeyl equations lead to the gravitational field
given by Eq. (2.7). In particular, the expansion (2.4) is
truncated to the 1=x term, the field BðxÞ presents a horizon
at some x ¼ xh, both the metric and the magnetic fields are
not defined at the origin.

In contrast, the non-Abelian solutions have nontrivial
aðxÞ; the coupled equations (2.1) lead to the full multipole
series given above for both aðxÞ and BðxÞ. Generic YM
(magnetic) fields are regular at the origin; namely, they
have a2 � 0 (as confirmed numerically). The mass pa-
rameter c2, is nonvanishing and was determined numeri-
cally (the dependence on � is shown on Fig. 3). The next
correction (the 1=x2 term) is also nonzero for generic
solutions.

III. MONOPOLELIKE SOLUTIONS

Monopoles naturally emerge as topological defects in
spontaneously broken theories, and their nonobservation
leads to some constraints on a large number of particle
physics and cosmological models. Similarly, the degree of
physical relevance of CG depends on the results of an
analogous study. This leads us to examine if monopoles
survive in this theory and, in the case they do, to study their
qualitative properties.

Gravitating non-Abelian monopoles (and their black
holes counterparts) were studied by Ortiz [9], Lee, Nair,
and Weinberg [10], and Breitenlohner, Forgacs, and
Maison [11,12] both in asymptotically flat and AdS spaces.

In parallel with the previous section, we obtain here the
counterpart of these solutions in CG. In this case we get
solutions with asymptotically broken symmetry if R tends
to a negative constant (that is, R ! �12�). In fact, this
system has been studied already by Edery, Fabbri, and
Paranjape [13,14] but only for � ¼ �1=2. We go beyond
these first results, addressing the domain of existence of the
solutions in the ð�;�Þ plane and studying some physical
properties of the solutions; this needs, in particular, a better
understanding of the asymptotic behavior of the solutions
as is provided below.

We solve the field equations with the usual boundary
conditions for regular and localized solutions:

Bð0Þ ¼ 1; B0ð0Þ ¼ 0; B000ð0Þ ¼ 0;

B00ð1Þ ¼ 2�; fð0Þ ¼ 0; fð1Þ ¼ f1;

að0Þ ¼ 1; að1Þ ¼ 0:

(3.1)

The new characteristic here (with respect to the GR
case) is that the vacuum expectation value of the Higgs
field is not fixed by the Lagrangian, but by the asymptotic

curvature, namely, f1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
(assuming as usual � >

0).
Performing a detailed asymptotic analysis of the solu-

tions with the above boundary conditions at x ! 1 leads

to several possible types of behavior. A combination of
analytical and numerical considerations reveals that only
one of these possibilities matches with the regularity con-
ditions at the origin. The resulting asymptotic form is then

aðxÞ � a1=x
s þ � � � ; s ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

�

s �
; (3.2)

fðxÞ � f1 þ f1=x
p þ � � � ; p ¼ 1

2

�
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

3�

s �
;

(3.3)

BðxÞ � B0 þ B1x
q þ �x2 þ � � � ;

q ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

3�

s �
:

(3.4)

We note the presence of the parameter � in the expo-
nents of the fields BðxÞ and fðxÞ, but not in aðxÞ. The
additional term with respect to the usual quadratic term
of AdS space-time is therefore nonpolynomial. For �> 0,
the exponents in B, f provide a natural upper limit in the
domain of existence of the solutions:�=� < 3=2. A similar
pattern is also present in the case of the GR monopole [9–
12]. Note also that the condition p > 0 (or q < 2) intro-
duces a lower limit as well, �=� >�4, which is effective
for �< 0. Both conditions can be also viewed as condi-
tions on � for a fixed � since small enough � may violate
them. We have limited our numerical investigation to
values of the parameters �, � such that the field obeys
the form above with a good accuracy. For instance to � 2
½�0:5; 0:5�, � 2 ½0:5; 2�. We expect however the solutions
to exist for arbitrarily large values of � within the above-
mentioned domain. Finally we notice that the limit � ! 0
is singular even together with � ! 0.
The asymptotic behavior above causes the energy den-

sity to decrease only as T0
0 � 1=xp, while the radial pres-

sure decays more rapidly. Therefore, the inertial mass
(1.11) and the mass parameter c2, Eq. (1.17), clearly
diverge; so does the coefficient of the linear term in the
potential c1, Eq. (1.16), for �< 0. For �> 0 the integral
for c1 seems to converge since then p > 1, but simple
integration of the field equation (1.30) shows that it ac-
tually vanishes. As a consequence, the solutions, although
decaying to the vacuum as x ! 1, are not localized
enough to have a finite inertial mass. This can be seen
from the asymptotic behavior of the solutions.
We analyze the solutions with the two possibilities of

positive and negative �. In passing we can note that, in the
case � ¼ 0, gravity decouples from the gauge system.
Since the corresponding vacuum geometry is AdS space,
the scalar and vector fields then constitute a monopole
solution in an AdS background [15,16].
We have constructed the numerical solutions and studied

them for both signs of �. As mentioned already, negative �
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is a ‘‘wrong sign’’ choice since it yields a repulsive linear
potential of localized solutions, but we do not exclude this
possibility since a negative cosmological constant is in-
duced by the spontaneous symmetry breaking and the
attractive �r2 is dominant. The case � ¼ �1=2 is the
one considered by Edery, Fabbri, and Paranjape [13,14].
The relation with their parameter k is � ¼ �k=2.

(Actually, there is also a difference of a
ffiffiffi
2

p
factor between

their f and ours.)
The profiles of typical solutions are shown in Fig. 4 for

� ¼ �0:5. We see a significant difference between the two
signs of �. For negative �, the field fðxÞ approaches its

asymptotic value in a monotonically increasing way (ac-
cordingly, the coefficient f1 is negative). For the opposite
case fðxÞ crosses the value of f1 and then approaches this
value from above. The coefficient f1 is now positive.
Similarly the behavior of the function B00ðxÞ is affected
by the sign. This function starts increasing from its mini-
mal value at the origin for �< 0 and approaches mono-
tonically its asymptotic value 2�; for �> 0, B00ðxÞ starts
decreasing from its maximal value and attains its asymp-
totic value with one oscillation which is not perceptible on
the plot.
Figure 4(b) demonstrates the asymptotic behavior given

in Eqs. (3.2), (3.3), and (3.4). The powers s, p, and q are not

(a) (b)

FIG. 4 (color online). Monopolelike solutions with two opposite values of �: � ¼ �0:5. The other parameters are � ¼ 1 and � ¼
0:1. (a) The profiles of the solutions. (b) Demonstration of the asymptotic behavior of fðxÞ, aðxÞ, and BðxÞ.

FIG. 5 (color online). � dependence of several properties of
monopolelike solutions for two opposite values of �: � ¼ �0:5.
� ¼ 0:1. Note the consistency with Fig. 4; e.g., for �< 0, fðxÞ
increases towards its asymptotical value, so f1 < 0, while for
�> 0, fðxÞ decreases towards its asymptotical value, so f1 > 0.

FIG. 6. � dependence of several properties of monopolelike
solutions. We denote bðxÞ ¼ �a0ðxÞ=x. The other parameters are
� ¼ 1 and � ¼ 0:1.
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shown since they are given in an explicit form. Further
properties of the solutions are presented in Figs. 5 and 6.
More specifically, these figures summarize the dependence
of the asymptotic coefficients on � and on �.

IV. CONCLUSION

We have analyzed several types of spherically symmet-
ric solutions of the SU(2) gauge theory coupled to confor-
mal gravity: pure YM solutions and monopolelike
solutions in the YMH system.

To our knowledge, the pure YM solutions have not been
discussed previously in the literature. These solutions are
well localized and have a well-defined ‘‘inertial mass’’ as
well as finite coefficients c1 and c2 of the ‘‘exterior solu-
tion.’’ Solutions exist for all values of � including 0 and
negative ones, and for all finite a0. Their magnetic charges
are therefore continuous. These solutions contain also the
Abelian purely magnetic solutions [8] in a singular limit.

The monopolelike solutions exhibit a much longer range
behavior due to the scalar field. As a result, their gravita-
tional fields do not approach the vacuum solution (1.15)
and they do not posses a finite inertial mass. They exist for
all values of � in the range �4� < �< 3�=2. These

solutions are the closest possible analogues to the self-
gravitating monopoles in the GR-YMH system. The sig-
nificant differences which still exist seem to emerge mainly
from the fact that the mechanism for symmetry breaking
relies heavily on the presence of the nonminimal coupling
to gravity.
The kind of equations we have solved (fourth-order) is

unconventional but could be treated with a good accuracy
by our numerical methods which in this case are
indispensable.
A natural extension of this work would be to construct

the black hole counterpart of the solutions, i.e., solutions
with the metric function BðrÞ presenting a regular horizon
at r ¼ rh; that is, BðrhÞ ¼ 0. In the case of the monopole, it
would be interesting to study the dependence of the ex-
tremal values of � on the horizon size and to see if the
domain of existence of the conformal monopole–
black hole fits in a pattern similar to the one of Fig. 7 of
Ref. [11].
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