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The gravity-scalar field system in spherical symmetry provides a natural setting for exploring

gravitational collapse and its aftermath in quantum gravity. In a canonical approach, we give constructions

of the Hamiltonian operator, and of semiclassical states peaked on constraint-free data. Such states

provide explicit examples of physical states. We also show that matter-gravity entanglement is an inherent

feature of physical states, whether or not there is a black hole.
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I. INTRODUCTION

Black hole thermodynamics, cosmology and, more gen-
erally, unification have all provided strong impetus for
developing a theory of quantum gravity. There appears to
be agreement on at least two features such a theory should
have regardless of the details of the approach. These are
background (or metric) independence and fundamental
discreteness. It may be that other ideas such as holography
arise as a consequence of the first two but this is far from
clear at the present level of understanding.

Progress in quantum gravity has been limited to models
where a complete quantization can be performed, such as
the work on mini-superspace cosmology in the early sev-
enties [1] and its later incarnations in the Hartle-Hawking
approach [2] and loop quantum cosmology [3]. These are
all quantum mechanical systems arrived at by the assump-
tion of spatial homogeneity of spacetime. The extent to
which such models can reveal insights into quantum grav-
ity is not clear [4], although recent developments on sin-
gularity avoidance may be one such feature. More
generally, the hope is that such smaller systems will ulti-
mately become absorbed in a full theory of quantum
gravity in the same way that the Bohr atom has in quantum
electrodynamics.

Going beyond mini-superspace models significantly en-
larges the problem to a true field theory of a constrained
system. The first step in this direction is to a two-
dimensional field theory, where the metric and matter
variables depend on time and one spatial coordinate.
There are a few models of interest in this category, namely,
the Gowdy cosmology, cylindrical gravitational waves, and
the asymptotically flat gravity-scalar field theory. The
quantum theories of the first two models have been studied
in the simplified approximation of one local degree of
freedom [5,6]. These are vacuum models so they are less
interesting physically than the last one, which has the
potential to reveal much about gravitational collapse and
black hole formation in quantum gravity [7–9]. Fur-
thermore, this model is the natural next step beyond just
the quantum mechanics of the Schwarzschild black hole,
on which much has been written [10–15].

This system has a true Hamiltonian that forms a part of
its asymptotic Poincaré symmetries. The model provides
the setting for two important physical scenarios: numerical
studies of gravitational collapse [16,17] and the so-called
information loss paradox, whose origin involves an as-
sumption on the large scale structure of an evaporating
black hole based on semiclassical physics [18]. It concerns
a collapsing low-entropy (or even pure-state) matter that
forms a black hole, which subsequently evaporates within a
finite time, resulting in a highly entropic Hawking radia-
tion [19]. If the correlations between the inside and the
outside of the black hole are not restored during the evapo-
ration process, then the corresponding increase in entropy
is interpreted as a lost ‘‘information.’’ Various arguments
have been advanced to justify or dismiss this phenomenon
[20], as well as possible consequences of either option
[21]. There is the possibility that the existence of a quan-
tum theory of gravity automatically removes the informa-
tion loss ‘‘paradox,’’ since a complete quantization of the
true Hamiltonian would result in the unitary evolution of
the combined matter-gravity system [22], while the en-
tropy flow between subsystems can be interpreted with the
help of quantum information theory [23].
In this paper we build on recent developments [7,8]

aimed at obtaining a compete quantum theory of the
asymptotically flat gravity-scalar field theory in spherical
symmetry. These earlier works used a gauge appropriate
for Painleve-Gullstrand (PG) coordinates (because of their
regularity at the horizon), and provided a construction of
the Hamiltonian and null expansion operators. Not ad-
dressed in these works are the problems of finding physical
states and addressing their dynamics. This is what we study
in this paper.
The outline of this paper is as follows. We first review

the model and its quantization. We then give a prescription
for constructing semiclassical physical states that are
peaked on classical data, and give a new form of the
Hamiltonian operator. (An earlier version of this operator
utilized a Dirac-like trick to write a square root operator.)
Using these we show that physical states exhibit matter-
gravity entanglement. We argue that this may be a robust
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model-independent feature of nonlocality in quantum
gravity.

II. GRAVITY-SCALAR FIELD MODEL

Our starting point is the Arnowitt-Deser-Misner (ADM)
Hamiltonian formulation for general relativity. The phase
space of the model is defined by prescribing a form of the
gravitational phase space variables qab and ~�ab, together
with falloff conditions for these variables, and for the lapse
and shift functions N and Na. The ADM 3þ 1 action for
general relativity minimally coupled to a massless scalar
field is

S ¼ 1

16�G

Z
d3xdt½~�ab _qab þ ~P�

_�� NH � NaCa�:
(1)

The pair ð�;P�Þ are the scalar field canonical variables,

and

H ¼ 1ffiffiffi
q

p
�
~�ab ~�ab � 1

2
~�2

�
� ffiffiffi

q
p

RðqÞ

þ 8�G

�
1ffiffiffi
q

p ~P2
� þ ffiffiffi

q
p

qab@a�@b�

�
’ 0; (2)

Ca ¼ Dc ~�
c
a � 8�G ~P�@a� ’ 0; (3)

where ~� ¼ ~�abqab.
This action (together with the boundary terms; see e.g.

[8,24]) is well defined and determines the falloff conditions
on canonical variables. Below (Sec. II A) we outline the
structure that results from imposition of spherical symme-
try and use of the flat-slice partial gauge fixing. (This is a
summary of the work in [8].) The reason for utilizing this
gauge is that the horizon is not located at a coordinate
singularity. In Sec. II B we present a family of initial data
that will illustrate, in a later section, a construction of
semiclassical physical states of the model.

A. Hamiltonian theory in the flat-slice formalism

The reduction to spherical symmetry utilizes an auxil-
iary flat Euclidean metric eab and unit radial normal sa ¼
xa=r, where r2 ¼ eabx

axb. The parametrization of the
reduced phase space we use is given by the matrices

qab ¼ �ðr; tÞ2sasb þ Rðr; tÞ2
r2

ðeab � sasbÞ; (4)

~�ab ¼ P�ðr; tÞ
2�ðr; tÞ s

asb þ r2PRðr; tÞ
4Rðr; tÞ ðeab � sasbÞ: (5)

As a line element the spatial metric is therefore

ds2 ¼ �2ðr; tÞdr2 þ Rðr; tÞ2d�2; (6)

where the solid angle d�2 arises from the second term in
these expressions.

The PG coordinates are those where equal coordinate
time slices are spatially flat [8,24]. However, it is sufficient
to use the partial gauge fixing � ¼ 1 to obtain the feature
of nonsingular coordinates at the horizon, which is the
feature of PG coordinates we desire. This is what is sum-
marized in the remaining part of this section.
Substituting (5) into the ADM 3þ 1 action with a

minimally coupled scalar field leads to the reduced action

SR ¼ 1

4G

Z
dtdrðPR

_Rþ P�
_�þ P�

_�Þ � 1

4G

�
Z

dtdrðNH þ NrCrÞ �
Z

dtðNr�P�Þjr¼1; (7)

whereN,Nr are the lapse and radial shift functions, and the
reduced Hamiltonian and (radial) diffeomorphism con-
straints H and Cr are

H ¼ 1

R2�

�
1

8
ðP��Þ2 � 1

4
ðP��ÞðPRRÞ

�

þ 2

�2
½2RR00�� 2RR0�0 ��3 þ�R02�

þ
� P2

�

2�R2
þ R2

2�
�02

�
’ 0; (8)

Cr ¼ PRR
0 ��P0

� þ P��
0 ’ 0: (9)

These constraints are first class with an algebra that is
similar to that for the full theory.
We note that this reduction to spherically symmetry is

unusual in that the usual ADM mass integral vanishes due
to the flat slicing condition. It is therefore important to
ensure that the reduced action is functionally differentiable
with a consistent set of falloff conditions on the phase
space variables, and on the lapse and shift functions. This
analysis has been carefully done by one of the authors in
Ref. [8], where these details are explicitly given. The
asymptotic conditions on the phase space variables are

R ¼ rþOðr�1=2��Þ; PR ¼ Ar�1=2=2þOðr�1��Þ;
(10)

� ¼ 1þOðr�3=2��Þ; P� ¼ Ar1=2 þOðr��Þ (11)

� ¼ Br�1=2 þOðr�3=2��Þ; P� ¼ Cr1=2 þOðr��Þ;
(12)

and those on the lapse and shift functions are

Nr ¼ Ar�1=2 þOðr�1=2��Þ; N ¼ 1þOðr��Þ; (13)

where A, B, C are constants. The leading order terms are
solutions of the constraints, so there is no logarithmic
divergence of the action at this order. The mass formula
is the surface term in Eq. (7); the mass parameter arises in
this integral through the momentum P�. It is readily veri-
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fied that if the scalar field is set to zero the Schwarzschild
solution results [8].

B. Partial gauge fixing

We next impose the gauge choice � ¼ 1, which corre-
sponds to a step toward flat-slice coordinates. With this
condition imposed, the Hamiltonian constraint is solved
(strongly) for the conjugate momentum P� as a function of
the phase space variables. This gives

P� ¼ PRRþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPRRÞ2 � X

q
; (14)

where

X ¼ 16R2ð2RR00 � 1þ R02Þ þ 16R2H� (15)

and

H� ¼ P2
�

2R2
þ R2

2
�02: (16)

This effectively eliminates the conjugate pair ð�; P�Þ in
favor of the remaining phase space variables. We must
however obtain the consequence of this for the lapse and
shift functions in the standard way: the evolution equation
for � [8] and the requirement that the gauge � ¼ 1 be
preserved under evolution lead to the equation

N ¼ � 4R2ðNrÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðPRRÞ2 � X
p : (17)

We note that this relation does not lead to any restriction on
the phase space variables, since it is merely a relation
between the lapse N and the shift Nr, neither of which is
absolutely fixed at this stage. We also note that on the
classical space of solutions, the argument of the square
root is positive; in quantum theory, it is, in principle,
possible that fluctuations may make this negative. This,
however, is an issue that is present, in general, in the ADM
variable approach to quantum gravity because the
Hamiltonian constraint contains a factor of

ffiffiffi
q

p
, which

may fluctuate such that the argument is negative. The issue
hinges on how the corresponding operator is defined. We
discuss this below, where we set up the Dirac quantization
problem.

The gauge � ¼ 1 reduced the radial diffeomorphism
constraint to

Cr ¼ �P0
� þ PRR

0 þ P��
0 ’ 0; (18)

with P� given by (14) above. We note that using this
constraint the square root in the latter equation can be
written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPRRÞ2 � X
q

¼
Z r

0
ðPRR

0 þ P��
0Þ � PRR: (19)

To summarize this section, the partially gauged fixed
theory is prescribed by the phase space variables ð�;P�Þ

and ðR;PRÞ and the reduced Hamiltonian

HG
R ¼

Z 1

0
½ðNrÞ0P� þ NrðPRR

0 þ P��
0Þ�dr

¼
Z 1

0
ðNrÞ0

�
RPR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPRRÞ2 � X

q �
dr

þ
Z 1

0
NrðPRR

0 þ P��
0Þdr; (20)

where the surface term in the reduced action (7) has been
written as a bulk term and combined with the remaining
radial diffeomorphism constraint. Together with the
asymptotic conditions given above, the variational princi-
ple is well defined. This is the reduced system we study in
the rest of the paper.
Finally we note that we have not yet fully fixed the gauge

to the flat-slice case since we have not imposed the condi-
tion R ¼ r. We prefer to retain R as a dynamical variable
for developing the quantum theory, since full gauge fixing
leads to a reduced Hamiltonian for the scalar field degrees
of freedom that is nonlocal [8], and so poses a problem for
quantization.

C. Classical data

Finding classical initial data sets is necessary both in
numerical calculations and for the construction of semi-
classical physical states. As one of our aims in this paper is
to present a concrete realization of the latter, it is useful to
see what form such data take before we proceed to a
construction of such states. The data should be an asymp-
totically flat solution of the remaining constraints pre-
scribed by functions �ðrÞ, P�ðrÞ and RðrÞ and PRðrÞ. The
family of data that we exhibit below depends on two
parameters. It is regular at the coordinate origin and may
have trapped surfaces, depending on the parameter values.
We shall see, after describing the quantum theory, that

semiclassical states corresponding to data with trapped
surfaces such as this describe a quantum black hole state.
This occurs because states peaked on classical constraint-
free data satisfy the condition that the expectation value of
the constraint operator vanishes to leading order in a well-
defined expansion (see Sec. V below.)
With the partial gauge fixing � ¼ 1 already imposed as

described in Sec. II B, we fix gauge fully by imposing R ¼
r. This simplifies the constraint to

Cr ¼ �P0
� þ PR þ P��

0 ¼ 0; (21)

with

P� ¼ PRrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPRrÞ2 � X

q
; (22)

where X now reduces to

X � 16R2ð2RR00 � 1þ R02Þ þ 16R2H� ¼ 16r2H�:

(23)
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To find some explicit solutions of interest, we make the
ansatz � ¼ 0. The constraint then becomes a relation
between PR and P�, so one of these may be chosen freely.

To obtain an explicit class of solutions, let us set

16H� ¼ h2ðrÞP2
RðrÞ; (24)

for some function h. Then (22) becomes

P� ¼ PRrð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þ � PRrð1þ gÞ; (25)

and the auxiliary function h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
satisfies

0 � h2 � 1; lim
r!1h

2 ¼ 0: (26)

The constraint is now

P0
Rrþ ðPRrgÞ0 ¼ 0; (27)

which can be rewritten as

ðPRrÞ0 � PR þ ðPRrgÞ0 ¼ 0: (28)

Finally, this may be put into an integrated form by setting

PR ¼ �0
R (29)

to give

�R ¼ c exp

�Z r dx

ð1þ gðxÞÞx
�
: (30)

Thus, given suitable functions g, we can find�R and hence
PR, followed by P� from Eq. (24).

We note that the energy density can be written as

16H� ¼ 2
�RPR

r
��2

R

r2
: (31)

The asymptotic falloff conditions (above) require PR �
1=

ffiffiffi
r

p
, which implies�R � 2PRr and g ! 1. If one wishes

to have regular data at r ¼ 0, then the expansion �R � r�

leads to

0 � 1

�
� 1 � 1; (32)

which bounds the power to

1=2 � � � 1; (33)

while the regularity of H� imposes � ¼ 1, so for r� 0 we

get �R � cr.
To obtain an explicit asymptotically flat solution, let us

consider the choice

1þ g ¼ ð1� 1
2 expð�a=x2ÞÞ�1; (34)

which results in

�R ¼ cr exp

�
� 1

4
E1

�
a

r2

��
; (35)

where the integral exponential function is defined as

E1ðzÞ ¼
Z 1

z

e�t

t
dt: (36)

The asymptotic behavior of �R is as desired,

�R � c4
ffiffiffi
a

p
e�=4

ffiffiffi
r

p
; r ! 1; (37)

where Euler’s gamma is � ¼ 0:57 . . . , and

�R � cr; r ! 0: (38)

From the asymptotic falloff condition

PR ¼ Ar�1=2=2þOðr�1��Þ; (39)

where A is related to the ADM mass as A ¼ 4
ffiffiffiffiffiffiffiffi
2M

p
[8], we

see that c4
ffiffiffi
a

p
e�=4 ¼ A.

The next step in the investigation of the classical prob-
lem is to check for the presence of apparent horizons. In the
gauge we adopted, the expansions of outgoing and ingoing
null geodesics are given as [7]

�� ¼ �4RR0 � P�; (40)

which reduces for the initial data surface to

�� ¼ �4r��R: (41)

By varying parameters of �R it is possible to generate the
regular initial data with or without trapped surfaces, as
shown on Fig. 1.

III. QUANTIZATION

In this section we describe an approach to constructing
the quantum theory of the system described above. We will
be working with the partially gauge fixed theory described
in Sec. II B, where we have the pair of phase space varia-
bles ðR; PRÞ and ð�;P�Þ, and the remaining radial diffeo-

morphism constraint. The quantization we use is a type of
polymer quantization where field configuration and trans-
lation operators are quantized, but there is no direct quan-

1 2 3 4
r

2

2

4

6

8

10

FIG. 1. Expansion of the outgoing null geodesic with (solid
line) and without (dashed line) trapped surfaces on the initial
hypersurface. The solid line corresponds to a ¼ 1, C ¼ 2 and
the dashed line to a ¼ 1, C ¼ 6.
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tization of field momenta. Using the basic operators, we
shall see that there are well-defined prescriptions for writ-
ing the constraint and the Hamiltonian operators.

A. Hilbert space and basic operators

To describe the polymer quantization [25,26] (which
may be viewed as the ‘‘dual’’ to that used in loop quantum
gravity), we begin with the basic variables

Rf ¼
Z 1

0
drfðrÞRðrÞ; U�ðPRÞ ¼ expði�PRÞ; (42)

where fðrÞ is a smearing function and � is a real dimen-
sional constant. These satisfy the canonical Poisson
bracket

fRf;U�ðPRðrÞÞg ¼ i�fðrÞU�ðPRðrÞÞ: (43)

(In defining these observables we have at our disposal a
constant density that ensures the correct density weights in
the integral for Rf and in the exponent of U�. This density

is the phase space variable � which was set to unity when
we performed the partial gauge fixing � ¼ 1.)

We use similar definitions for the variables made from�
and P�, i.e.

�f ¼
Z 1

0
drfðrÞ�ðrÞ; V�ðP�Þ ¼ expði�P�Þ:

The Poisson bracket of these matter variables mirrors that
of the metric variables in (43).

The parameters � and � have the physical dimensions
necessary to make the exponents in the corresponding U
variables dimensionless. This scale will carry over to
quantization. Since we are dealing with a quantization of
gravity and matter, it is natural to suppose that both pa-
rameters are related to the Planck scale. In the following
we will keep them separate.

The Poisson bracket of the metric variables is realized as
an operator relation on a Hilbert space spanned by the basis
states

ja1; a2; 	 	 	 ; ani (44)

where the real numbers ai represent values of the configu-
ration variable R at the radial points ri. The points ri
provide a set where the phase space variables are sampled.
The selection of space points ri may be thought of as a
lattice (or graph in the language used in loop quantum
gravity). Since there is a basis state of this type for every
countable set of points, the Hilbert space is nonseparable.
In the following it will be convenient to work with a fixed
and uniformly spaced set of points, although this is not
necessary.

The inner product is

ha01; a02; 	 	 	 ; a0nja1; a2; 	 	 	 ; ani ¼ 	a0
1
;a1 	 	 		a0n;an (45)

if two states are associated with the same lattice points; if
not, the inner product is zero. This inner product is back-

ground independent in the same way as, for example, the
inner product for the Ising model; the difference is that for
the latter there is a finite dimensional space of spins at each
lattice point.
The configuration and translation operators are defined

by the following expressions:

R̂ fja1; a2; 	 	 	 ani :¼
X
i

aifðriÞja1; a2; 	 	 	 ani; (46)

Û�ðPRðrkÞÞja1; a2; 	 	 	 ani :¼ ja1; a2; 	 	 	 ; ak � �; 	 	 	 ani:
(47)

It is readily verified that the commutator of these operators
as defined provides a faithful realization of the correspond-
ing Poisson bracket. Since the U operators are realized
here as ladder operators for the field excitations, the pa-
rameter � represents the discreteness scale in field configu-
ration space.
This representation is one in which the momentum

operator does not exist. There is however an alternative
�-dependent definition of momentum using the translation
operators (47), given by

P̂ �
RðrkÞ :¼

1

2i�
ðÛ�ðPRðrkÞÞ � Ûy

� ðPRðrkÞÞÞ; (48)

which will be used in the definition of the Hamiltonian
operator.
The representation for the matter variables is similar to

that defined above for the metric variables. We write the
basis states of the matter sector as

jb1; b2; 	 	 	 ; bni:
With the inclusion of matter the kinematical Hilbert space
is the tensor product of geometry and matter Hilbert
spaces, with the basis

ja1; . . . ; aN|fflfflfflfflfflffl{zfflfflfflfflfflffl}
gravity

;b1; . . . ; bN|fflfflfflfflfflffl{zfflfflfflfflfflffl}
matter

i: (49)

With the quantization of the basic variables in hand, we
now turn to defining the composite operators necessary to
write the constraints and the Hamiltonian. For this we first
need to define a localized field operator from Rf and�f. A

localized field may be defined by taking, for example, fðrÞ
in Eq. (42) to be a Gaussian,

Gðr; rk; 
Þ ¼ e�ðr�rkÞ2=
2
(50)

(or a smooth function of bounded support) which is sharply
peaked at a radial point rk. For illustration we will work
with the Gaussian with the understanding that its width
 is
such that the function is effectively zero at all lattice points
except where it is peaked. This is easiest to see with a
uniform lattice such that 
 
 1 in Planck units. With this
in mind we write
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RGðrkÞ � Rk; (51)

with a similar expression for the scalar field �. We also
have the following action of the basic operators (where we
have included explicitly the Planck length):

R̂ kja1; . . . ; aN;b1; . . . ; bNi ¼ 2l2Pakja1; . . . ; aN;b1; . . . ; bNi;
(52)

�̂ kja1; . . . ; aN;b1; . . . ; bNi ¼ 2l2Pbkja1; . . . ; aN;b1; . . . ; bNi:
(53)

The field translation operators Ûkð�Þ � êi�PRk and V̂kð�Þ �
êi�P�k act as

Û kð�Þja1; . . . ; aN; b1; . . . ; bNi
¼ ja1; . . . ; ak � �; . . . aN;b1; . . . ; bNi (54)

and

V̂ kð�Þja1; . . . ; aN; b1; . . . ; bNi
¼ ja1; . . . aN;b1; . . . ; bk � �; . . . ; bNi: (55)

Thus, with the choice of Gaussian smearing functions

sharply peaked at the points rk in the operators R̂f and

�̂f, the basic commutators are

½R̂k; Ûlð�Þ� ¼ �2l2P�	klÛlð�Þ;
½�̂k; V̂lð�Þ� ¼ �2l2P�	klV̂lð�Þ:

(56)

Since R̂k operators have zero in the spectrum (i.e. there
are states such as ja1 	 	 	 ; ak ¼ 0; 	 	 	 ani that have zero
eigenvalue), there is no inverse operator and an indirect
definition is required. This is achieved by Poisson bracket
identities such as

f
ffiffiffiffiffiffiffiffiffi
jRkj

q
; Ulð�Þg ¼ i

2
ffiffiffiffiffiffiffiffiffijRkj

p �Ulð�Þ	kl; (57)

first noted by Thiemann. The operator

K̂ k � 1̂

Rk

�
�

2

2l2P�
2
Ûkð��Þ½

ffiffiffiffiffiffiffiffiffi
jR̂kj

q
; Ûkð�Þ�

�
2

(58)

depends on the parameter � through its dependence on the

translation operators Ûk�. Its action on the basis states is

1̂

Rk

ja1; . . . ; aN;b1; . . . ; bNi

¼ 1

2l2P�
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jak � �j

q
�

ffiffiffiffiffiffiffiffi
jakj

q
Þ2ja1; . . . ; aN;b1; . . . ; bNi:

(59)

A symmetric version of this operator is similarly defined.
Let us now turn to realizing operators corresponding to

spatial derivatives of field variables such as �0 and R0. To
do this in a controlled manner it is easier to first restrict the

choices of points ri so that they define a uniformly spaced
lattice with spacing �. This is the first place where we
explicitly introduce a radial lattice. It also has the effect of
selecting a subspace of the full Hilbert space we defined
above, by working only with a fixed set of radial points. We
can now follow what is done in numerical methods, i.e.

f0ðrkÞ ! fkþ1 � fk
lP�

(60)

and

f00ðrkÞ ! fkþ1 � 2fk þ fk�1

2l2P�
2

; (61)

for any function fk. This first of these suggests the operator

R̂ 0
k ¼

�̂kþ1 � �̂k

lP�
; (62)

with similar expressions for other operators. Such choices
are of course not canonical, and may be viewed as an
additional freedom in realizing a quantum theory.
Lastly the lattice local observable momentum operators

are

P̂Rk � lP
2i�

ðÛkð�Þ � Ûy
k ð�ÞÞ;

P̂2
Rk �

l2P
�2

ð2� Ûkð�Þ � Ûy
k ð�ÞÞ;

(63)

P̂�k � lP
2i�

ðV̂kð�Þ � V̂y
k ð�ÞÞ;

P̂2
�k �

l2P
�2

ð2� V̂kð�Þ � V̂y
k ð�ÞÞ;

(64)

with the action on basis states given by

P̂ �kja; bi ¼ lP
2i�

ðja;b1; . . . ; bk � �; . . . ; bNi
� ja; b1; . . . ; bk þ �; . . . ; bNiÞ (65)

and

P̂2
�kja;bi ¼

l2P
�2

ð2ja; bi � ja; b1; . . . ; bk � �; . . . ; bNi
� ja;b1; . . . ; bk � �; . . . ; bNiÞ: (66)

In constructing more complicated operators the question of
the operator ordering is important. One option is a sym-
metric ordering,

AB ! cAB � ðÂ B̂þB̂ ÂÞ=2: (67)

Another possibility is an order at which, e.g., R̂ is to the

right of P̂R. We will see in the following that it has an
advantage of annihilating the state of zero gravitational
excitations.
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B. Constraint operator

Our goal in this section is to use the above definitions of
basic operators to give a prescription for the reduced
Hamiltonian (20). The main issue is the definition of the

square root
ffiffiffiffi
Y

p
in this Hamiltonian, where

Y ¼ ðPRRÞ2 �R� 16R2H�;

R ¼ 16R2ð2RR00 � 1þ R02Þ:
(68)

An operator representing this expression may be defined
using a Dirac-like trick by suitably extending the kinemati-
cal Hilbert space [25]. However there is an alternative way
to write the constraint (21) such that the square root prob-
lem is bypassed. Substituting for P0

� from Eq. (14) into the

diffeomorphism constraint gives

Cr ¼ �P0
RR� Y0

2
ffiffiffiffi
Y

p þ P��
0 ’ 0: (69)

If supplemented with the requirement Y > 0 (which is the
case for classical solutions), this is equivalent to

� 1
2Y

0 þ ðP��
0 � P0

RRÞ
ffiffiffiffi
Y

p ’ 0: (70)

This implies the constraint

C ¼ Y02=4� ðP��
0 � P0

RRÞ2Y ’ 0: (71)

In this form it does not contain a square root, and it is now
straightforward to construct the corresponding operator
using the basic ones defined above. This path for construct-
ing the constraint operator is one of the results of this
paper, and provides an alternative to the Dirac-like method
used earlier [25] where a square root operator is
constructed.

Before giving a construction of an operator analog of
(71), we note, however, that this constraint may have
quantum solutions, which are not solutions of the original
constraint. There is, however, an obvious check using
Eq. (19): after obtaining a solution, we must check that
the expectation value of the operator analog of

� 1

2
Y0 � ðP��

0 � PRR
0Þ
Z r

0
ðPRR

0 þ P��
0Þdr0 (72)

in the proposed solution does not vanish. As we discuss
below it is possible to construct the corresponding
operator.

Let us first focus on the local operator Ŷk. Its ingredients
include

R̂2
kja; bi ¼ 4l4Pa

2
kja;bi;

K̂2
kja; bi ¼

1

4l4P�
4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jak � �j

q
�

ffiffiffiffiffiffiffiffi
jakj

q
Þ4ja;bi;

(73)

and

ð�̂0
kÞ2ja; bi ¼ 4l2P

�2
ðbkþ1 � bkÞ2ja;bi; (74)

and since all factors of the field Hamiltonian (density)
commute,

Ĥ �k ¼ 1
2P̂

2
�kK̂

2
k þ 1

2R̂
2
kð�̂0

kÞ2: (75)

To complete the construction of Ŷ one needs also

ðR̂0
kÞ2ja;bi ¼

4l2P
�2

ðakþ1 � akÞ2ja; bi (76)

and

R̂ 00
k ja; bi ¼

1

�2
ðakþ1 � 2ak þ ak�1Þja; bi: (77)

The last term is

P2
RR

2 ! 1
2ðP̂2

RR̂
2 þ R̂2P̂2

RÞ; (78)

which acts as

ð dP2
RR

2Þkja;bi ¼ 4l6P
�2

ð2a2kja;bi� ½ðak� �Þ2 þ a2k�ja1; . . . ; ak
� �; . . . ; aN;bi� ½ðak þ �Þ2 þa2k�
� ja1; . . . ; ak þ �; . . . ; aN;biÞ: (79)

Putting these pieces together we get

Ŷ k ¼ ð dP2
RR

2Þk � 16R̂2
kð2R̂kR̂

00
k � 1þ R̂02

k Þ � 16R̂2
kĤ�k:

(80)

To complete the constraint operator Ĉk one also needs the

commuting operators ð dP��
0Þk, ðdP0

RRÞk. Both are obtained

by, e.g., applying the symmetric quantization condition
Eq. (67) to the elementary operators of the previous sec-
tion.

ð dP��
0Þkja; bi ¼ l2P

i��

��
bkþ1 � bk þ 1

2
�

�
ja; . . . ; bk � �; . . .i �

�
bkþ1 � bk � 1

2
�

�
ja; . . . ; bk þ �; . . .i

�
(81)

and

ðdP0
RRÞkja;bi ¼

l2P
i��

�
akj . . . ; akþ1 � �; . . . ;bi �

�
ak � 1

2
�

�
j . . . ; ak � �; . . . ; bi � akj . . . ; akþ1 þ �; . . . ;bi

þ
�
ak þ 1

2
�

�
j . . . ; ak þ �; . . . ; bi

�
: (82)
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C. Hamiltonian operator

The asymptotic Hamiltonian is the surface term in (7)
for which we need to define an operator for P�. A direct
quantization of the Hamiltonian density in Eq. (20) would
require us to define the operator

Ĥ
phys
k ¼ Nr0

k ðdPRRÞk þ jŶkj1=2 þ Nr
kððdP0

RRÞk þ ð dP��
0ÞkÞ;
(83)

which has the square root term jŶkj1=2, just as for the

constraint. Since Ŷk is not diagonal in the basis we are
using, this operator is not easy to define unless we go to a
different basis. However, from the constraint Cr we see
that, classically, on the constraint surface we have

P�ðrÞ ¼
Z r

0
dr0ðP��

0 þ PRR
0Þ: (84)

This suggests that for physical states it is possible to
compute the energy by finding an operator analog of the
right-hand side of this equation. Since the quantization we
are using utilizes a radial lattice, we can write the integral
as a discrete sum over the lattice points rk. It is therefore
reasonable to suggest the definition

P̂ �k ¼ �lP
Xk
i¼1

½ð dP��
0Þi þ ð dPRR

0
iÞ�: (85)

This operator is useful with the type of semiclassical
states we define below in Sec. V. In such states a compu-

tation of the expectation value hc jP̂�kjc i is possible. The
energy of the quantum spacetime would be this expression
evaluated at the farthest lattice point; i.e. we would take the
limit k ! 1 after computing the expectation value. This
would be a possible analog of the classical definition,
where the energy

E ¼ lim
r!1P�ðrÞNrðrÞ: (86)

We note that the asymptotic falloff of Nr is determined by
the classical requirement of functional differentiability [8],

and this behavior of Nr carries over to the quantum theory,
since Nr is not a phase space variable.

IV. PHYSICAL STATES AND ENTANGLEMENT

Initial states of the gravity-matter system should satisfy
the quantum constraint

Ĉjc i ¼ 0; (87)

which is supplemented by the requirement that jc i belong
to the positive part of the spectrum of jŶj. It remains to be
seen whether any of the operator ordering choices allows
for this to be satisfied on a sufficiently large set of states, or
if another realization of the constraint is necessary to
accomplish this. Nevertheless, it is already possible to
make a few remarks. We give here two observations, on
gravity-matter entanglement and on the information loss
problem.
First, in the case of pure gravity (� ¼ P� ¼ 0), the

ordering that puts the R̂ operator to the right results in an
operator form of the constraint (71), which gives

Ĉj0i ¼ ðŶ02=4� P̂02
R R̂

2ŶÞj0i ¼ 0; (88)

where j0i stands for the state with no excitations, i.e. all
ai ¼ bi ¼ 0. This may be viewed as a ‘‘degenerate metric
vacuum’’ because it is the eigenstate of the field operator

R̂k with zero eigenvalue at all points rk.
Second, the presence of the matter-gravity terms in the

constraint turns it into an entangling operator (see e.g.
[23]). This can be seen by considering the constraint in
the form of Eq. (71). It splits cleanly into a gravity part, and
a separate gravity-matter interaction

Ĉ ¼ ĈG � 1M þX
�

ĈG� � ĈM� : (89)

The latter term contains monomials that involve gravity
and matter operators. Consider their action on the basis
states of the kinematical Hilbert spaceH ¼ H G �HM.

The term P̂�kP̂Rk serves as an example:

P̂ k
�P̂

k
Rjai � jbi / ðja1 	 	 	ak � � 	 	 	aNi � ja1 	 	 	aki � � 	 	 	 aNiÞ � ðjb1 	 	 	 bk � � 	 	 	 bMi � jb1 	 	 	 bk þ � 	 	 	 bMiÞ;

(90)

which is a direct product of entangled gravity and matter
modes. However, adding different terms in the constraint
results in a superposition of such direct product states, and
the constraint operator cannot be written as Ĉ ¼ ĈG � ĈM.
Some states of the form jc iG � j’iM may be transformed
into a direct product form,

Ĉðjc iGj’iMÞ ¼ jc 0iGj’0iM; (91)

provided that they satisfy an additional constraint

X
�

ĈG� � ĈM� ðjc iGj’iMÞ / jc 0iGj’iM: (92)

As a result, even if such states exist, they form a lower-
dimensional set than the set of all physical states and, by
themselves, do not form a vector space: their linear combi-
nations are, by definition, entangled. Since we expect the
semiclassical states to be suitably defined coherent states,
we see that these configurations are geometry-matter en-
tangled. This result of course holds regardless of whether a
state corresponds to a classical black hole. The entangle-
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ment prevents the direct product gravity-matter decompo-
sition of a generic physical state.

V. SEMICLASSICAL STATES

Semiclassical states that are peaked at given classical
configurations may be defined for a field theory just as for a
quantum mechanical system. For a constrained system
such as the one we are considering, it is possible to obtain
states that are peaked on classical constraint-free data.
These may be viewed as approximate physical states in a
precise sense.

For a constraint Ĉ in a field theory, the steps we propose
are as follows: (i) begin with an explicit classical solution
of the constraints, such as that given in Sec. II B, (ii) select
sampling points ri (or a lattice), and the corresponding
solution values RðriÞ, �ðriÞ, etc., (iii) construct a Gaussian
state peaked at each field value RðriÞ and �ðriÞ, and finally
(iv) take the product of the Gaussians, one at each point ri,
to give the field theory semiclassical state. This is what we
describe in detail below.

Reasonable requirements for an approximate semiclas-
sical state are that

hĈðrki ¼ 0; hĈðrkÞ2i ¼ 0; (93)

for each sample point rk. We give here a generalization of
the semiclassical states for Friedmann-Robertson-Walker
cosmology given in [27], and show how this can be utilized
for the present model.

Let us consider first a single lattice point rk and the basis
states at this point defined by jaki � jm�ik, where m is an
integer. Let us consider the state at rk defined by the linear
combination

jP0
R; R

0it;�rk ¼ 1

C

X1
m¼�1

e�ðt=2Þð�mÞ2em�R0
eim�P0

R jm�irk : (94)

This is a Gaussian state of width t (measured in Planck
units), where the (real) parameters P0

R and R0 are the field
values corresponding to a classical configuration at the
point rk. The width t is a measure of how strongly peaked
the state is on a given classical configuration; i.e. t 
 1
means that fluctuations around P0, R0 are small. We shall
see in the following that this state has a number of desirable
properties, and because of this, it allows a construction of
approximate physical states of the theory we are consider-
ing. (There may be other non-Gaussian states with such
properties but our purpose here is to point out that this one
is useful.)

The normalization condition for the state gives an ex-
pression for the constant C. It is the convergent sum

C2 ¼ X1
m¼�1

e�t�2m2
e2R

0�m: (95)

Calculation with this state gives the expectation value [27]

hÛ�i ¼ ei�P
0
RðrkÞe�t�2=4Kð�; t; R0Þ; (96)

where

Kð�; t; R0Þ ¼
�1þ 2

P
m�0

cos½2�mR0

�t ð1þ t�
2R0Þ�e��2m2=t�2

1þ 2
P
m�0

cos½2�mR0

�t �e��2m2=t�2

�
:

(97)

Equation (96) together with the definition (48) gives the
expectation value

hP̂�
Ri ¼

sin½P0
RðxkÞ��
�

e�t�2=4Kð�; t; R0Þ: (98)

This formula has the limits

lim
t!0

hP̂�
Ri ¼ sinðP0

RðrkÞ�Þ=�; (99)

lim
�!0

hP̂�
Ri ¼ P0

RðrkÞ: (100)

The first shows that the semiclassical state in field space is
peaked at the corresponding phase space value. The second
shows that the field continuum limit of the momentum
expectation value has the appropriate peaked value in this
state, even though only field translation operators exist in
the representation we are using.
These semiclassical states defined at each point ri can

now be used to give a state for the entire radial lattice given
any classical field configuration RðrÞ, PRðrÞ by taking a
product of the point states over the lattice frkgNk¼1, i.e.

jRðrÞ; PðrÞit;� :¼ YN
k¼1

jRðrkÞ; PRðrkÞit;�rk : (101)

The simplest semiclassical state for both sets of fields is the
product

j�i � jRðrÞ; PðrÞit;�j�ðrÞ; P�ðrÞit;	: (102)

It is not difficult to configure entangled products of semi-
classical states, given two distinct classical solutions of the
constraints.
Given that the expectation values in these states give the

classical peaking values, it follows that the states peaked
on classical constraint-free data, such as those constructed
in Sec. II, satisfy the expectation value

h�jĈj�i ¼ 0þOðt
Þ; (103)

where 
> 1. We note also that the construction we have
given is quite specific, and there is control on the fluctua-

tion hĈ2i, which is itself a function of the width t of the
point Gaussian states. Its value can be tuned to reduce the
fluctuations. It is in this sense that these states are approxi-
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mately physical for sharply peaked states t 
 1. One can
now compute quantities such as the expectation value of
the energy in such states, which is tedious put possible.

Effective equations

One approach for obtaining quantum gravity corrections
is to use semiclassical states to derive ‘‘effective con-
straints.’’ These can then be used to obtain modified equa-
tions of motion in the usual way. This approach is
qualitatively related to the ideas underlying Ehrenfest’s
theorem in quantummechanics. One computes expectation
values of the constraints in states peaked on classical
configurations that are not solutions of the initial value
constraints to obtain

h�;P�; R; PRjĈj�;P�; R; PRi
¼ Cclassicalð�;P�; R; PRÞ þOðt
Þ: (104)

It is understood here that the classical term on the right-
hand side is a function of the phase space configuration on
which the states are peaked. The corrections are functions
of the state’s width t in Planck units.

This approach has been used for homogeneous isotropic
cosmology [28], but requires careful scrutiny in the field
theory case here. One has to check that the Poisson algebra
of the effective constraints closes with the state width
corrections included, since these corrections are also func-
tions of the phase space peaking values of the semiclassical
state. One of the goals of the program presented here is to
obtain consistent effective equations of motion starting
from semiclassical states.

VI. SUMMARYAND DISCUSSION

The paper contains a number of developments beyond
earlier works on the spherically symmetric gravity-scalar
model. One such development is the construction of semi-
classical states for the quantum theory of gravity coupled
to a minimally coupled massless scalar field. These states
may be utilized for constructing semiclassical effective
constraints, which may then be used for classical numerical
evolution. If used in conjunction with constraint-free data,
such as those given in Sec. II B, this construction gives the
first known examples of physical semiclassical states. A
second development is an alternative construction of the
Hamiltonian operator in a fixed time gaugewhich can serve
as a starting point for Monte Carlo simulations of the
quantum theory. Since this model is a two-dimensional
system that is effectively written as a lattice theory, this
method has the potential to reveal interesting nonperturba-
tive quantum phenomena such as phase transitions. This is
presently being studied.

The form of the Hamiltonian also reveals that matter-
gravity entanglement is an inherent feature of evolution in
quantum gravity; the action of the Hamiltonian on a prod-
uct state gives an entangled state after a single evolution
step. In the full quantum problem the constraint operator
forces a bipartite entanglement (with the two subsystems
being the kinematical Hilbert spaces of matter and gravity
degrees of freedom, respectively) already on the initial
physical states. It is tempting to summarize this observa-
tion by modifying Wheeler’s one line description of gen-
eral relativity [29]: quantum gravity tells geometry and
matter how to entangle.
The degree of entanglement may be computed in the

usual way by tracing a density matrix over either matter or
geometry degrees of freedom. If a state describes a black
hole, there is a second entropy that may be calculated,
namely, that obtained by tracing the (pure) density matrix
over both geometry and matter degrees of freedom inside a
trapped region. This of course would be different from the
usual entanglement entropy where the trace in the interior
applies only to the matter degrees of freedom.
It will be apparent to the reader that the extraction of

physical results from this formalism requires further work.
This could proceed along two distinct avenues. The first is
the derivation of semiclassical effective equations where
one would compute expectation values of the constraint
operators in suitable states to obtain ‘‘effective’’ con-
straints. These would then be used as the basis of a quan-
tum gravity corrected classical dynamics which could be
integrated using numerical methods. Among other things it
would be useful to see what becomes of the critical scaling
observed at the onset of black hole formation, especially
the critical solution. Initial results using this approach
[30,31] indicate that black holes form with a mass gap,
but so far there are no results on the critical solution itself;
with expected singularity avoidance, it is likely that this is
replaced by a critical and unstable bound state—a finely
tuned boson star.
The second approach to studying dynamics could utilize

Monte Carlo methods. The quantum model as formulated
here is like a statistical mechanical system, with the dif-
ference that it is still a constrained theory. One can imagine
sampling from phase space such that the samples are
solutions of the constraints up to some threshold, along
with the usual Monte Carlo selection criteria. Such an
approach would have the potential to yield fundamental
information concerning phase transitions.
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