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We study the formation of a black hole and its subsequent evaporation in a model employing a

minisuperspace approach to loop quantum gravity. In previous work the static solution was obtained and

shown to be singularity-free. Here, we examine the more realistic dynamical case by generalizing the

static case with the help of the Vaidya metric. We track the formation and evolution of trapped surfaces

during collapse and evaporation and examine the buildup of quantum gravitationally caused stress energy

preventing the formation of a singularity.
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I. INTRODUCTION

The formation of black hole singularities is an inevitable
consequence of general relativity. As instances of infinite
energy density and tidal forces, black holes have made
headlines, have inspired science fiction movies, and were
studied in thousands of research articles. It adds to the
fascination that we know today black holes are not just a
mathematically possible solution to Einstein’s field equa-
tions, but part of nature. For more than a decade now, we
have had good evidence that our Milky Way, as other
galaxies, hosts many stellar black holes as well as a super-
massive black hole in its center.

From the perspective of quantum gravity, black holes are
of interest because of the infinite curvature towards their
center which signals a breakdown of general relativity. It is
an area where effects of quantum gravity are strong, and it
is generally expected that these effects prevent the forma-
tion of the singularity. Since the black hole emits particles
in the process of Hawking radiation [1], the horizon radius
decreases. In the standard case it approaches the singularity
until both, the singularity and the horizon, vanish in the end
point of evaporation [2]. However, if the singularity does
not exist, this scenario cannot be correct. Since the singu-
larity plays a central role for the causal space-time dia-
gram, its absence in the presence of quantum gravitational
effects has consequences for the entire global structure [3],
and the removal of the singularity is essential for resolving
the black hole information loss problem [4]. To understand
the dynamics of the gravitational and matter fields, it is
then necessary to have a concrete model.

It is thus promising that it has been shown in a simplified
version of loop quantum gravity, known as loop quantum
cosmology [5], a resolution of singularities, the big bang as
well as the black hole singularity [6–8], can be achieved.
The regular static black hole metric was recently derived in
[9], and studied more closely in [10]. A resolution of the
black hole singularity was also obtained in an effective,
noncommutative approach to quantum gravity [11] and in
asymptotically safe quantum gravity [12]. In another work

[13], a two-dimensional model was used to study the
evaporation process in the absence of a singularity.
Here, we will use a four-dimensional model based on the

static solution derived in [9] and generalize it to a dynami-
cal case which then allows us to examine the causal struc-
ture. This generalization holds to good accuracy in all
realistic scenarios. This approach should be understood
not as an exact solution to a problem that requires knowl-
edge of a full theory of quantum gravity, but as a plausible
model based on preliminary studies that allows us to
investigate the general features of such regular black hole
solutions.
Nonsingular black holes were considered already by

Bardeen in the late 1960s and have a long history [14–
29]. We will here use a procedure similar to that in [24].
The rest of the paper is organized as follows. We start in the
next section by recalling the regular static metric we will
be using. In Sec. III we generalize it to a collapse scenario
and discuss its properties. In Sec. IV we summarize the
thermodynamical properties and, in Sec. V, add the evapo-
ration process and construct the complete causal diagram.
The signature of the metric is ð�;þ;þ;þÞ and we use the
unit convention @ ¼ c ¼ GN ¼ 1.

II. THE REGULAR SCHWARZSCHILD METRIC

Let us first summarize the regular black hole metric that
we will be using.
Loop quantum gravity (LQG) is a candidate theory of

quantum gravity. It is obtained from the canonical quanti-
zation of the Einstein equations written in terms of the
Ashtekar variables [30], that is, in terms of an su(2) three-
dimensional connection A and a triad E. The result [31] is
that the basis states of LQG are closed graphs, the edges of
which are labeled by irreducible su(2) representations and
the vertices by su(2) intertwiners. Physically, the edges

represent quanta of area with area �l2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

, where j
is the representation label on the edge (a half integer), lP is
the Planck length, and � is a parameter of order 1 called the
Immirzi parameter. Vertices of the graph represent quanta

PHYSICAL REVIEW D 81, 044036 (2010)

1550-7998=2010=81(4)=044036(7) 044036-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.044036


of 3 volume. The important observation to make here is
that area is quantized and the smallest quanta of area

possible have area
ffiffiffi
3

p
=2�l2P.

The regular black hole metric that we will be using is
derived from a simplified model of LQG [9]. To obtain this
simplified model we make the following assumptions. First
of all, the number of variables is reduced by assuming
spherical symmetry. Then, instead of all possible closed
graphs, a regular lattice with edge lengths �1 and �2 is
used. The solution is then obtained dynamically inside the
homogeneous region (inside the horizon where space is
homogeneous but not static). Analytically continuing the
solution outside the horizon one finds that one can reduce
the two free parameters by imposing that the minimum
area present in the solution corresponds to the minimum
area of LQG. The one remaining unknown constant � is a
parameter of the model determining the strength of devia-
tions from the classical theory, and would have to be con-
strained by experiment. With the plausible expectation that
the quantum graviational corrections become relevant only
when the curvature is in the Planckian regime, correspond-
ing to � < 1, outside the horizon the solution is the
Schwarzschild solution up to negligible Planck-scale cor-
rections, which allows us to believe the legitimacy of the
analytical extension outside the horizon.

This quantum gravitationally corrected Schwarzschild
metric can be expressed in the form

ds2 ¼ �GðrÞdt2 þ dr2

FðrÞ þHðrÞd�; (1)

with d� ¼ d�2 þ sin2�d�2 and

GðrÞ ¼ ðr� rþÞðr� r�Þðrþ r�Þ2
r4 þ a20

;

FðrÞ ¼ ðr� rþÞðr� r�Þr4
ðrþ r�Þ2ðr4 þ a20Þ

;

HðrÞ ¼ r2 þ a20
r2

:

(2)

Here, rþ ¼ 2m and r� ¼ 2mP2 are the two horizons, and

r� ¼ ffiffiffiffiffiffiffiffiffiffiffi
rþr�

p ¼ 2mP. P is the polymeric function P ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
� 1Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
þ 1Þ, with � � 1 the product of

the Immirzi parameter (�) and the polymeric parameter
(�). With this, it is also P � 1, such that r� and r� are very
close to r ¼ 0. The area a0 is equal to Amin=8�, Amin being
the minimum area gap of LQG.

Note that in the above metric, r is only asymptotically
the usual radial coordinate since g�� is not just r2. This
choice of coordinates however has the advantage of easily
revealing the properties of this metric as we will see. But
first, most importantly, in the limit r ! 1 the deviations
from the Schwarzschild solution are of orderM�2=r, where
M is the usual Arnowitt-Deser-Misner mass:

GðrÞ! 1�2M

r
ð1��2Þ; FðrÞ! 1�2M

r
; HðrÞ! r2:

(3)

The Arnowitt-Deser-Misner mass is the mass inferred by
an observer at flat asymptotic infinity; it is determined
solely by the metric at asymptotic infinity. The parameter
m in the solution is related to the mass M by M ¼ mð1þ
PÞ2.
If one now makes the coordinate transformation R ¼

a0=r with the rescaling ~t ¼ tr2�=a0, and simultaneously
substitutes R� ¼ a0=r�, R� ¼ a0=r� one finds that the
metric in the new coordinates has the same form as in
the old coordinates and thus exhibits a very compelling
type of self-duality with dual radius r ¼ ffiffiffiffiffi

a0
p

. Looking at

the angular part of the metric, one sees that this dual radius
corresponds to a minimal possible surface element. It is
then also clear that in the limit r ! 0, corresponding to
R ! 1, the solution does not have a singularity, but in-
stead has another asymptotically flat Schwarzschild region.

FIG. 1 (color online). Penrose diagram of the regular static
black hole solution with two asymptotically flat regions. Both
horizons, located at rþ and r�, are marked in blue and red,
respectively.
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The causal diagram for this metric, shown in Fig. 1, then
has two horizons and two pairs of asymptotically flat
regions, A, A0 and B, B0, as opposed to one such pair in
the standard case. In the region enclosed by the horizons,
space- and timelikeness is interchanged. The horizon at rþ
is a future horizon for observers in the asymptotically flat
B, B0 region and a past horizon for observers inside the two
horizons. Similarly, the r� horizon is a future horizon for
observers inside the two horizons but a past horizon for
observers in A, A0. If one computes the time it takes for a
particle to reach r ¼ 0, one finds that it takes infinitely long
[10]. The diagram shown in Fig. 1 is not analytically
complete, but should be read as being continued on the
dotted horizons at the bottom and top.

The metric in Eq. (2) is a solution of a quantum gravita-
tionally corrected set of equations which, in the absence of
quantum corrections �, a0 ! 0, reproduce Einstein’s field
equations. However, due to these quantum corrections, the
above metric is no longer a vacuum solution to Einstein’s
field equations. Instead, if one computes the Einstein ten-
sor and sets it equal to a source term G�� ¼ 8� ~T��, one

obtains an effective quantum gravitational stress-energy
tensor ~T��. The exact expressions for the components of
~T are somewhat unsightly and can be found in the
Appendix. For our purposes it is here sufficient to note
that the entries are not positive definite and violate the
positive energy condition which is one of the assumptions
for the singularity theorems.

III. COLLAPSE

We will proceed by combining the static metric with a
radially ingoing null dust, such that we obtain a dynamical
space-time for a black hole formed from such dust. Usually
described by the Vaidya metric [32], we will in this sce-
nario have corrections to the Vaidya metric that are negli-
gible in the asymptotic region, but avoid the formation of a
singularity in the strong-curvature region. The metric con-
structed this way in the following is not a strict solution of
the minisuperspace loop quantum cosmology equations.
However, as long as the null dust does not already display
strong quantum gravitational effects by its mass profile,
this solution should hold to good accuracy.1

We start by making a coordinate transformation and
rewrite the static space-time in terms of the ingoing null

coordinate v. It is defined by the relation dv ¼
dtþ dr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞGðrÞp

, which can be solved to obtain an
explicit expression for v. The metric then takes the form

ds2 ¼ �GðrÞdv2 þ 2

ffiffiffiffiffiffiffiffiffiffi
GðrÞ
FðrÞ

s
drdvþHðrÞd�: (4)

Now we allow the mass m in the static solution to depend
on the advanced time,m ! mðvÞ. Thereby, we will assume
the mass is zero before an initial value va and that the mass
stops increasing at vb. We can then, as before, use the
Einstein equations G ¼ 8� ~T to obtain the effective quan-
tum gravitational stress-energy tensor ~T. ~Tv

v and ~Tr
r do

not change when mðvÞ is no longer constant. The trans-
verse pressure ~T�

� ¼ ~T�
� however has an additional term

~T �
�ðmðvÞÞ ¼ ~T�

�ðmÞ � Pr2m0ðvÞ
2�ðrþ 2mðvÞPÞ4 ; (5)

where m0 ¼ dm=dv. Because of the ingoing radiation, the
stress-energy tensor now also has an additional nonzero
component, ~Tr

v, which describes radially ingoing energy
flux

Gr
v ¼ 2ð1þ PÞ2r4ðr4 � a20Þðr� r�ðvÞÞm0ðvÞ

ða20 þ r4Þ2ðrþ r�ðvÞÞ3
: (6)

Notice that also in the dynamical case, trapping horizons
still occur where grr ¼ Fðr; vÞ vanishes [34,35], so we can
continue to use the notation from the static case just that
r�ðvÞ and r�ðvÞ are now functions of v. The r dependence
of this component is depicted in Fig. 2.
This metric reduces to the Vaidya solutions at large

radius, or for � ! 0, a0 ! 0. However, in the usual
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FIG. 2. Gr
v as a function of r for radially ingoing radiation and

m0ðvÞ ¼ 1. The solid line depicts the classical case for �, a0 !
0. The long-dashed line is for mðvÞ ¼ 20, (r� >

ffiffiffiffiffi
a0

p
), and the

short-dashed line is for mðvÞ ¼ 5, (r� <
ffiffiffiffiffi
a0

p
). All quantities are

in Planck units.

1It has been claimed in [33] that, counterintuitively, quantum
gravitational effects could become important already at the
horizon when the collapse proceeds slowly. However, since we
are considering null dust, the collapse is as fast as can possibly
be and these considerations do not apply.

MODEL FOR NONSINGULAR BLACK HOLE COLLAPSE AND . . . PHYSICAL REVIEW D 81, 044036 (2010)

044036-3



Vaidya solutions, the ingoing radiation creates a central
singularity. But as we see here, with the quantum gravita-
tional correction, the center remains regular.

We note that the ingoing energy flux has two zeros, one
at r ¼ r�ðvÞ and one at r ¼ ffiffiffiffiffi

a0
p

, and is negative between

these. What happens is that the quantum gravitational
correction works against the ingoing flux by making a
negative contribution until the effective flux has dropped
to zero at whatever is larger, the horizon’s geometric mean
r� or the location of the dual radius r ¼ ffiffiffiffiffi

a0
p

. The flux then

remains dominated by the quantum gravitational effects,
avoiding a collapse, until it has passed r� and the dual
radius where it quickly approaches what looks like an
outgoing energy flux to the observer in the second asymp-
totic region.

Since in the second asymptotic region A, A0 the mass
assigned to the white hole is inversely proportional to the
Arnowitt-Deser-Misner mass at r ¼ 1, the white hole’s
mass must be decreasing, consistent with the outgoing (or
rather through-falling) energy flux. In this process, the past
horizon will move towards smaller R or larger r,
respectively.

IV. THERMODYNAMICS

Let us now briefly summarize the findings about the
thermodynamical properties of this black hole solution,
discussed in more detail in [10].

Particle creation can take place at the horizons rþ and r�
where there is high blueshift when tracing back light rays.
However, if the vacuum at I� in the black hole’s asymp-
totic region B, B0 is empty of particles as usual, then there
will be no flux from particle creation at r� to Iþ in the
second asymptotic region A, A0. This is a consequence of
causality and energy conservation, which we can see as
follows.

Consider there was a particle creation at r� resulting in a
flux of Hawking radiation towards R ¼ 1. The back-
ground is the time-reversed black hole situation but the
flux is not time-reversed. This would mean a decrease of
the white hole’s mass for the observer at R ¼ 1. However,
since our metric is geodesically complete, the particles
emitted at the white hole’s horizon r� can be traced back
all the way to I� in the black hole’s asymptotic region B,
B0. We recall that the white hole’s mass for the observer in
the A, A0 region is inversely proportional to the black hole’s
mass and see that this particle creation at r� would con-
tribute to an increase of the black hole’s mass correspond-
ing to the decrease of the white hole’s mass. Since there is
particle emission also at the other horizon rþ, we would
have to add both fluxes to obtain the net mass change.

However, we do as usual have a choice for the initial
vacuum state at I� and we will assume as normally that
the vacuum in the black hole’s asymptotic past is empty.
From the above explanation we see now that this can only
be the case if there is no particle flux from r� to the white

hole’s asymptotic region Iþ. To achieve this, we have to
choose the vacuum at I� in the white hole’s asymptotic
region A, A0 such that it contains a constant flux into the
white hole with the effect that there is no outgoing particle
flux created at r�. This is the time-reversed situation of an
evaporating black hole with an empty ingoing vacuum.
This situation is mathematically consistent because parti-
cle production in the curved background only tells us the
relation between the ingoing and outgoing vacuum states,
but not the vacuum states themselves. We thus chose the
vacuum state at I� in the white hole’s asymptotic region A,
A0 such that at r� there is no additional outgoing flux
created.2

Thus, the evaporation proceeds through the Hawking
emission at rþ, and the black hole’s Bekenstein-Hawking
temperature, given in terms of the surface gravity 	 by
TBH ¼ 	=2�, yields [10]

TBHðmÞ ¼ ð2mÞ3ð1� P2Þ
4�½ð2mÞ4 þ a20�

: (7)

This temperature coincides with the Hawking temperature
in the limit of large masses but goes to zero for m ! 0.
The luminosity can be estimated by use of the Stefan-

Boltzmann law LðmÞ ¼ 
AHðmÞT4
BHðmÞ, where (for a

single massless field with 2 degrees of freedom) 
 ¼
�2=60, and AHðmÞ ¼ 4�½ð2mÞ2 þ a20=ð2mÞ2� is the surface
area of the horizon. Inserting the temperature, we obtain

LðmÞ ¼ 16m10
ð1� P2Þ4
�3ða20 þ 16m4Þ3 : (8)

The mass loss of the black hole is given by �LðmÞ,
dmðvÞ
dv

¼ �L½mðvÞ�; (9)

and we can integrate its inverse to obtain the mass function
mðvÞ. The result of this integration with initial condition
mðv ¼ 0Þ ¼ m0 is

v ¼ ð5a60 þ 432a40m
4 þ 34 560a20m

8 � 61 440m12Þ�3

720m9ð1� P2Þ4


� ð5a60 þ 432a40m
4
0 þ 34 560a20m

8
0 � 61 440m12

0 Þ�3

720m9
0ð1� P2Þ4
 :

(10)

In the limit m ! 0 this expression becomes v �
a60�

3=ð144m9ð1� P2Þ4
Þ, and one thus concludes that

the black hole needs an infinite amount of time to com-
pletely evaporate.

2Alternatively, we could demand the vacuum at past infinity in
the second asymptotic region to be free of particles, but then the
vacuum in the black hole region’s past infinity would have to
contain particles. We will not further consider this possibility
here.
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V. COLLAPSE AND EVAPORATION

We are now well prepared to combine formation and
evaporation of the black hole. As in Sec. III, we divide
space-time into regions of advanced time. We start with
empty space before va, let the mass increase from va to vb,
and stop the increase thereafter. Hawking radiation will set
in, but for astrophysical black holes this evaporation will
proceed very slowly, such that we have a long time span
during which the black hole is quasistable and m remains
constant to good accuracy at m0. Then, at some later time,
vc, Hawking radiation becomes relevant and m decreases
until it reaches zero again. As we have seen in the previous
section, it will reach zero only in the limit v ! 1.

We thus have the partition �1< va < vb < vc <1
with

8 v 2 ð�1; vaÞ:mðvÞ ¼ 0; (11)

8 v 2 ðva; vbÞ: ddvmðvÞ> 0; (12)

8 v 2 ðvb; vcÞ:mðvÞ ¼ m0; (13)

8 v 2 ðvc;þ1Þ: d
dv

mðvÞ< 0; (14)

for v ! þ1:mðvÞ ! 0: (15)

Strictly speaking the mass would immediately start drop-
ping without incoming energy flux and thus va ¼ vb, but
stretching this region out will be more illuminating to
clearly depict the long time during which the hole is
quasistable.

To describe the Hawking radiation we will consider the
creation of (massless) particles on the horizon such that
locally energy is conserved. We then have an ingoing
radiation with negative energy balanced by outgoing ra-
diation of positive energy. Both fluxes originate at the
horizon and have the same mass profile which is given
by the Hawking temperature. The area with ingoing nega-
tive density is again described by an ingoing Vaidya solu-
tion, while the one with outgoing positive density is
described by an outgoing Vaidya solution.

The outgoing Vaidya solution has a mass profile that
depends on the retarded time u instead of v and the mass
decreases instead of increases. The retarded time is defined

by du ¼ dt� dr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞGðrÞp

. After a coordinate transfor-
mation, the metric reads

ds2 ¼ �Gðr; uÞdu2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðr; uÞ
Fðr; uÞ

s
dudrþHðrÞd�; (16)

where Fðr; uÞ and Gðr; uÞ have the same form as in the
static case (2), but where m is replaced by a function mðuÞ.
We fix the zero point of the retarded time u so that r ¼ rþ
corresponds to uc ¼ vc. Then there is a static region with
total mass m0 for v > vc, u < uc. Note that since the

space-time described here has neither a singularity nor an
event horizon, we can consider pair creation to happen
directly at the trapping horizon instead of at a different
timelike hypersurface outside the horizon, as described in
[36]. We have in this way further partitioned space-time in
regions, broken down by retarded time:

8 u < uc:mðuÞ ¼ m0; (17)

8 u > uc:
d

du
mðuÞ< 0: (18)

Now that we have all parts together, let us explain the
complete dynamics as depicted in the resulting causal
diagram Fig. 3.
In the region v < va we have a flat and empty region,

described by a piece of Minkowski space. For all times v >
va, the inner and outer trapping horizons are present. These
horizons join smoothly at r ¼ 0 in an infinite time and
enclose a noncompact region of trapped surfaces.
A black hole begins to form at v ¼ va from null dust

which has collapsed completely at v ¼ vb to a static state
with mass m0. It begins to evaporate at v ¼ vc, and the

FIG. 3 (color online). Penrose diagram for the formation and
evaporation of the regular black hole metric. The red and dark
blue solid lines depict the two trapping horizons r� and rþ. The
brown dotted line is the curve of r ¼ ffiffiffiffiffi

a0
p

, and the black dashed

one is r�. The light blue arrows represent positive energy flux;
the magenta arrows negative energy flux.
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complete evaporation takes an infinite amount of time. The
observer at Iþ sees particle emission set in at some re-
tarded time uc which corresponds to the lightlike surface
where the horizon has lingered for a long time. The region
with v > vc is then divided into a static region for u < uc,
and the dynamic Vaidya region for u > uc, which is further
subdivided into an ingoing and an outgoing part.

As previously mentioned, the radially ingoing flux (light
blue arrows) in the collapse region is not positive every-
where due to the quantum gravitational contribution. It has
a flipped sign in the area between r� (black dashed curve)
and r ¼ ffiffiffiffiffi

a0
p

(brown dotted curve), which is grey shaded in

the figure. Likewise, the ingoing negative flux during
evaporation (magenta arrows) has another such region
with flipped sign. It is in this region, between the two
horizons’ geometric mean value r� and the dual radius
corresponding to the minimal area, that the quantum gravi-
tational corrections noticeably modify the classical and
semiclassical case, first by preventing the formation of a
singularity, and then by decreasing the black hole’s tem-
perature towards zero.

VI. CONCLUSIONS

We have investigated a model for collapse and evapora-
tion of a black hole that is entirely singularity-free. The

space-time does not have an event horizon, but two trap-
ping horizons. By generalizing the previously derived
static metric to a dynamical one by use of the Vaidya
metric we found that the gravitational stress-energy tensor
builds up a negative contribution that violates the positive
energy condition and prevents the formation of a singular-
ity. We divided space-time into six different regions de-
scribed by different metrics, and constructed the causal
diagram for the complete evaporation. The value of the
scenario studied here is that it provides a concrete, calcu-
lable, model for how quantum gravitational effects alter the
black hole space-time.
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APPENDIX

The effective energy momentum tensor is defined by
~T�

� ¼ G�
�=8�. The components of the Einstein tensor in

coordinate ðv; r; �; ’Þ are

Gv
v ¼ r2

ða20 þ r4Þ3ðrþ r�Þ3
½2a20r4ðrþ r�Þð6r2 þ 7r�rþ � 7rðr� þ rþÞ � 2rr� � r2�Þ

� a40ð�r�rþr� þ r3� þ 2r2ðr� þ rþ þ 2r�Þ þ 3rð�r�rþ þ r2�ÞÞ
� r8ð�r�rþr� þ r3� þ rðr�rþ þ 2ðr� þ rþÞr� þ 3r2�ÞÞ�;

Gr
r ¼ � r2

ða20 þ r4Þ3ðrþ r�Þ3
½2a20r4ðrþ r�Þð�r�rþ þ r2� þ rðr� þ rþ þ 2r�ÞÞ

þ a40ð4r3 � 2r2ðr� þ rþ � 2r�Þ � r�rþr� þ r3� þ rðr�rþ þ 3r2�ÞÞ
þ r8ð4r2r� þ 3r�rþr� þ r3� þ rðr�rþ � 2ðr� þ rþÞr� þ 3r2�ÞÞ�;

G�
� ¼ r3

ða20 þ r4Þ3ðrþ r�Þ4
½r7ðr2r�rþ þ rð2r2 þ 6r�rþ � 3rðr� þ rþÞÞr�

þ ðr� 2r�Þðr� 2rþÞr2�Þ þ 2a20r
4ðr2ðr� þ rþÞ þ ðr� þ rþÞr2� þ rðr� � r�Þð�rþ þ r�ÞÞ

þ a40ð4r3 � 2r2ðr� þ rþ � 3r�Þ þ 2r�rþr� þ rðr�rþ � 3ðr� þ rþÞr� þ r2�ÞÞ�: (19)
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