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Jacobi’s action principle is known to lead to a problem of time. For example, the timelessness of the

Wheeler-DeWitt equation can be seen as resulting from using Jacobi’s principle to define the dynamics of

3-geometries through superspace. In addition, using Jacobi’s principle for nonrelativistic particles is

equivalent classically to Newton’s theory but leads to a time-independent Schrödinger equation upon

Dirac quantization. In this paper, we study the mechanism for the disappearance of time as a result of

using Jacobi’s principle in these simple particle models. We find that the path integral quantization very

clearly elucidates the physical mechanism for the timeless of the quantum theory as well as the emergence

of duration at the classical level. Physically, this is the result of a superposition of clocks, which occurs in

the quantum theory due to a sum over all histories. Mathematically, the timelessness is related to how the

gauge fixing functions impose the boundary conditions in the path integral.
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I. INTRODUCTION

A. Background

‘‘It is utterly beyond our power to measure the changes
of things by time. Quite the contrary, time is an abstraction,
at which we arrive by means of the changes of things . . .’’

In this beautiful quote by Mach from The Mechanics [1]
dated 1883, he lays out what has been called his second
principle [2]: that time should be a measure of the changes
of things. Though the argument seems simple, elegant, and
epistemologically sound, it took nearly 100 years before
Barbour and Bertotti (BB) where able to formulate this
principle into a mathematically rigorous theory of time in
1982 [3].1 The reason for this delay can not be attributed to
technical complications, since the mathematics have been
well understood since Jacobi, but rather to conceptual
confusion surrounding how Mach’s principles are imple-
mented in general relativity (GR). Though it was clear that
Einstein was heavily influenced by Mach’s ideas, general
covariance proved to be misleading as a way of implement-
ing relationalism. However, through the papers of Barbour
and collaborators [3,5–7], we now have a clear picture of
how Mach’s ideas can be used to derive GR. From this
work, we know that, in regards to time, Mach’s second
principle can be implemented in GR by using Jacobi’s
principle to determine the classical dynamics of the sys-
tem. The consequences of using such a definition of time in
the quantum theory lead to a problem of time and are the
main concern of this paper. Specifically, we find that, in the
path integral description, each path represents a different

relational clock. Thus, a sum over all paths leads to a kind
of superposition of clocks (the precise definition of this will
be given in Sec. V) resulting in a time independent theory.
Though there are many different problems of time and

many different ways of stating each [8,9], a simple way of
stating the most obvious aspect of the problem of time is to
note that the Wheeler-DeWitt (WDW) equation [10]

½Gabcdðĝ3Þ�̂ab�̂cd þ ðR3ðĝ3Þ ��Þ��½g3� ¼ 0; (1)

in a configuration basis, depends only on the 3-metric g3

and variations with respect to it. Thus, the formal wave
functional �½g3� depends only on the configuration space
variables g3, and is completely independent of any variable
one could interpret as time. As a result, solutions to the
WDW equation are stationary states. This fact leads to
difficulties, for example, in forming an inner product under
which� evolves unitarily and with which one can define a
clear notion of probability.
First encountered in the context of GR, this old but

surprising result is characteristic of any theory that uses
Jacobi’s principle for determining its classical dynamics.
For example, if one uses Jacobi’s principle in nonrelativ-
istic particle mechanics, one finds (see Sec. II A 2) that the
analogue of the WDW equation is the time-independent
Schrödinger equation [Eq. (15)]. As we will see, the result
that one gets a quadratic scalar constraint on the wave
function whose solutions are stationary state comes from
using Jacobi’s principle to implement Mach’s second prin-
ciple in order to define time in a relational way. As a result,
one can study, as wewill do here, this aspect of the problem
of time in GR by considering the much simpler case of
nonrelativistic particles moving through a space dependent
potential using Jacobi’s principle. We will call this theory
Jacobi-Barbour-Bertotti (JBB) theory since it was first
written down by Jacobi but was given an interpretation in

*sgryb@perimeterinstitute.ca
1For a crystal clear account of how Jacobi’s principle can be

thought as a way of implementing Mach’s ideas about time, see
[4].
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terms of Mach’s second principle by BB.2 Because the
configuration space variables are just simple functions,
and not tensor fields on a 3-manifold as is the case in
GR, we will not be able to reproduce certain aspects of
GR such as the infinity of scalar constraints which lead to
Wheeler’s many-fingered time [19]. However, these toy
models provide a simple means for studying the global
aspects of the disappearance of time and can be applied, for
example, directly to symmetry reduced models of GR, like
minisuperspace, which are of primary importance in cos-
mological applications, or any model of gravity with a
fixed lapse, such as Hořava’s theory [20].

B. Summary of results

In this paper we will concern ourselves with two main
tasks: 1) the physical mechanism, from the point of view of
the path integral, for the disappearance of time in the
quantum theory, and 2) the conditions under which one
can recover a notion a time.

Our motivations stem from the following puzzle: as we
will see, the canonical quantization of JBB theory leads to
the time-independent Schrödinger equation whose solu-
tions are stationary states. However, the classical equations
of motion give Newton’s laws with a specific definition of
the Newtonian time in terms of the classical trajectories of
the particles in the system [Eq. (6)]. Aside from the ob-
vious difficulties associated with defining an inner product
for the Hilbert space, it is even less clear why one should
expect to obtain a classical limit with a specific notion of
time, completely equivalent to Newton’s, from a quantum
theory which is completely time independent. How could
Newton’s time be hidden in the time-independent
Schrödinger equation? Alternatively, why is it that, in
Newton’s theory, time is perfectly well described off shell,
while in Jacobi’s theory, which is classically equivalent,
time is only meaningful on shell? What has happened to
time?

In contrast, the path integral for JBB theory is easy to
write down, at least at the formal level. Wewill find that the
analogue of the Newtonian time can be written down in a
straightforward way for this path integral. However, in the
full quantum theory, this quantity contributes to each term
in the sum over all histories leading to a superposition of all
possible clocks: the end result being a timeless theory. In
the stationary phase approximation, the path integral is
dominated by the classical trajectory picking out a unique
clock. We will find that this clock does indeed read out a
time that is equivalent to that used in Newtonian mechan-
ics. This gives a consistent picture for how a time depen-

dent classical theory could be the limiting form of a time-
independent quantum theory. Furthermore, this picture
also tells us how to obtain a unique notion of duration in
the quantum theory. For quadratic potentials, the stationary
phase approximation is exact, and the Newtonian time
along the classical trajectory serves as a unique notion of
duration even in the full quantum theory. Taking a close
look at the path integral thus provides us with a unique
notion of time off shell (for certain potentials) and intuition
as to why this notion of time breaks down in general. This
intuition may be invaluable in suggesting new ways in
which duration may be defined in a time-independent
quantum theory.

C. Earlier work

Admittedly, much has already been written in regards to
the problem of time in quantum gravity. Many of the
preliminary technical results can be found elsewhere in
the literature in a slightly different from. In particular,
Lanczos’ book [21] gives a nice account of Jacobi’s prin-
ciple, and Barbour and Bertotti’s paper [3] describes the
connection to timelessness. The path integral of JBB the-
ory has been explored in [22], and its quantization accord-
ing the procedure of Becchi, Rouet, Stora, and Tyutin
(BRST) has been given in [23]. The path integrals for
minisuperspace models (which are very similar to JBB
theory) as well as a parameterized form of Newtonian
mechanics, which we will be considering and will call
parameterized Newtonian mechanics (PNM), are treated
extensively in [24,25]. However, these papers do not ad-
dress the key results of this paper, which are those that
concern the emergence of time. The results of Sec. V show
that time does indeed emerge when the stationary phase
approximation is exact3 without having to modify the
quantization procedure or make an additional ansatz.
Furthermore, they illustrate the physical mechanism re-
sponsible for the emergence of time in the classical limit
from a fundamentally timeless quantum theory.
In [26] a general procedure for passing from the timeless

JBB-like theories to time-dependent PNM-like theories is
given, which exploits our relation (35). This makes it
possible to define a Hilbert space but at the cost of mod-
ifying the Dirac quantization procedure for reparameteri-
zation invariant theories. In this paper, we are interested in
the emergence of time without having to alter the Dirac
procedure.

D. Outline

The organization of this paper is as follows: We start, in
Sec. II by describing the classical equations of motion of
JBB theory and develop its Hamiltonian formulation. From

2It should be noted that this is different from what is usually
referred to as BB theory [3,11–17] since we are not considering
the spatial symmetries which produce linear constraints analo-
gous to the 3-diffeomorphisms of GR. It can be checked [18] that
the spacial symmetries add nothing to the discussions regarding
time.

3This goes further than the classical limit since certain poten-
tials, like the harmonic oscillator, are exactly described by the
stationary phase approximation.
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this it will be clear that a direct application of Dirac’s
quantization of gauge systems will lead to a time-
independent Schrödinger equation. This will also be nec-
essary for writing down and gauge fixing the phase space
path integral. We will compare JBB theory to a parame-
terized form of Newtonian mechanics. In contrast to JBB
theory, this theory will lead to a time-dependent quantum
theory. The difference between these two theories will
provide a way of understanding the lack of time in JBB
theory. In Sec. IV, we compare the path integrals of each
theory and find that we can write one in terms of the other
via a Fourier transform. In Sec. IV, we use this result to
extract a quantity from the kernel of JBB theory which
becomes equivalent to the Newtonian time on shell. This is
our main result, which we use to show that there exists a
unique notion of duration for quantum systems where the
stationary phase approximation is either good or exact.

II. HAMILTONIAN FORMULATION

Our first task is to write down the canonical form of JBB
theory. Other derivations of this exist in the literature and
can be found, for example, in [13,27–30]. We review the
main results here since we will need them later and so that
we can introduce our notation.

A. Jacobi’s principle and the timeless mechanics of
Barbour and Bertotti

1. Action and equations of motion

In general, Jacobi’s principle is the vanishing of the
variation of an action of the form

S ¼
Z

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab _q

a _qb
q

; (2)

where gab is a metric on a configuration space coordinat-
ized by the q’s. This leads to trajectories which are geo-
desics on configuration space. This form of the action is
sufficiently general to include geometrodynamics (after
adding an integration over space) and minisuperspace.
For our purposes, we are only interested in the global
problem of time so it will be sufficient to consider the
case where the metric is conformally flat

gab ¼ �2VðqÞ�ab; (3)

where the conformal factor VðqÞ just corresponds to the
potential. It will be convenient to extract the constant part
of the potential as this can be interpreted as the negative of
the total energy of the system. Thus, we will write V !
V � E, where it is now understood that V should not
contain a piece constant in q. Because the choice (3)
does not affect the structure of the constraints, the problem
of time is no different here than it is in minisuperspace so
our results regarding time will be generally applicable to
symmetry reduced versions of general relativity.

Using the metric (3), the JBB theory is defined by the
action

SJBB ¼
Z �f

�0

d� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTð�ÞÞðE� VðqijÞÞ

q
; (4)

where Tð�Þ ¼ P
M
j¼1

mj

2 ðdqijð�Þd� Þ2 is the kinetic energy of an

M particle system, Vðqijð�ÞÞ is the potential energy (that

does not depend explicitly on �), and E is the constant part
of V and can be understood as the total energy of the
system. The index i ranges from 1 to d, while j ranges
from 1 to M. In this paper we will only consider the case
M ¼ 1 for the sake of compact notation but it is trivial to
extend the analysis to the more general case. As can be
readily checked, the action (4) is invariant under repara-
meterizations of � and, as such, its apparent dependence on
� is artificial. Thus, SJBB is independent of anything that
one could call a time parameter. It does, however, depend
on a path � in configuration space. This path is gauge
invariant as it represents a collection of points in the
configuration space and is independent of any parameter
that one might use to parameterize it. Nevertheless, we will
artificially introduce �, and all the gauge redundancy that
goes along with it, so that we can use it as a convenient
independent variables in the canonical quantization. This
will give us access to well-known techniques for determin-
ing the correct measure for the path integral.
The classical equations of motion are straightforward to

compute. A variation with respect to qi givesffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� V

p
ffiffiffiffi
T

p d

d�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� V

p
ffiffiffiffi
T

p m
dqi

d�

�
¼ � @V

@qj
�ij; (5)

where �ij is the flat metric with Euclidean signature. We
can then define the reparamaterization invariant quantity

�BB ¼
Z �f

�0

ffiffiffiffi
T

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� V

p d� (6)

first referred to as ephemeris time by Barbour and Bertotti
[3,11] in analogy to the operational definitions of time first
adopted by astronomers [31]. In terms of this quantity, the
equations of motion reduce to Newton’s equations

m
d2qi

d�2BB
¼ � @V

@qj
�ij: (7)

Thus, �BB is equivalent to the Newtonian time but is
defined in terms of a length in configuration space
equipped with a suitably defined metric.4 As such, it is a
measure of duration that uses the relative change in the
positions of the particles in the system and, thus, is a
precise realization of Mach’s second principle. We will

4The metric used to define �BB happens to be the inverse of the
metric used to define the action. Thus, �BB is not minimized by
the action principle.
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call this system of particles a Barbour-Bertotti (BB) clock
since it provides us with a way of measuring �BB.

From the perspective of JBB theory, we start with an
action that depends only on the gauge invariant path �,
which represents the relative positions of particles in the
Universe, and an arbitrary potential VðqÞ defined only on
configuration space. After writing down the classical equa-
tions of motion, we find it convenient to define a gauge
invariant quantity called time (which can be thought of as a
length of �) to describe how the q’s change relative to each
other. In the end, we recover equations of motion equiva-
lent to those of Newton’s theory, for a fixed energy E, in
terms of this invariant quantity. However, in this theory it is
not necessary to define an absolute Newtonian time: the
time emerges as a convenient tool for keeping track of the
relative positions of particles in a system.

2. Hamiltonian formulation

Before quantizing, we must first write down the
Hamiltonian formulation of Eq. (4). To this end, we define
the canonical momenta

pi ¼ @LJBB

@ _qi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� V

T

s
m _qj�ij: (8)

With this definition, it is easy to see that the canonical
Hamiltonian

Hc ¼ pi _q
i �Lðqi; piÞ ¼ 0 (9)

is identically zero as is always the case in a reparameteri-
zation invariant theory.

Equation (8) can be expressed in terms of the quantity _qi

j _qij
and, thus, the momenta pi should be thought of as unit
vectors defining only a direction in phase space. As a
result, the pi’s do not depend on the length of the _qi’s,
and there is an ambiguity in solving for the _qi’s which
results in a primary constraint. In this case, the constraint
takes the form

H ¼ p2

2m
þ VðqÞ � E ¼ 0: (10)

It is quadratic in the pi and can be thought of as a kind of
circle identity in phase space. Because it is the only con-
straint, it is first class. The total Hamiltonian is then
proportional to a constraint

HT ¼ Hc þ Nðq; pÞH ¼ Nðq; pÞH ; (11)

where Nðq; pÞ is an arbitrary Lagrange multiplier.
Next, we define the fundamental Poisson Brackets

fqi; pjg ¼ �i
j �; (12)

which we use to compute Hamilton’s equations of motion

_q i ¼ fqi;HTg ¼ N
pj

m
�ij; (13)

_p i ¼ fpi;HTg ¼ �N
@V

@qi
: (14)

Before moving on we note that a direct application of
Dirac quantization to JBB theory would involve promoting
(10) to an operator constraint acting on the wave function
�ðqÞ: �

p̂2

2m
þ Vðq̂Þ � E

�
�ðqÞ ¼ 0: (15)

This is simply the time-independent Schrödinger equation
and is the result stated in the introduction in Sec. I that the
quantum theory is time independent and leads to a problem
of time. Fortunately, the path integral will be more useful
in understanding the role of time. Before getting to this
however, we will compare JBB theory to another repara-
meterization invariant theory which, in contrast, leads to a
time-dependent quantum theory.

B. Parameterized Newtonian mechanics

1. Action and equations of motion

The reparameterization invariant action of PNM

SPNMðqi; q0Þ ¼
Z �f

�0

d�

�
Tð _qið�ÞÞ
_q0ð�Þ � _q0ð�ÞVðqið�ÞÞ

�
(16)

is defined on extended configuration space, where q0 is
treated as an independent configuration space variable.
Classically (and quantum mechanically as we will see),
q0 will become the Newtonian absolute time. To see how
this happens we vary with respect to qi giving

1

_q0
d

d�

�
1

_q0
m _qi

�
¼ � @V

@qj
�ij: (17)

These are clearly the Newtonian equations of motion with t
replaced by q0. Noting that the action is cyclic in qo (that
is, it only depends on its derivative) a variation with respect
to q0 will produce a conserved quantity. This will be the
total energy of the systemE, and the equation of motion for
q0 is

_q 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

E� V

s
:: (18)

Note the similarities between this theory and JBB theory. If
one substitutes Eq. (18) into Eq. (17) one gets exactly the
equations of motion of JBB theory. Furthermore, Eq. (18)
is the definition of BB’s ephemeris time �BB. In fact, if one
adds the boundary term �E _q0 to SPNM and substitutes
Eq. (18) for _q0 one obtains SJBB.

5 However, there are

5This is a procedure known as the Routhian procedure for
eliminating cyclic variables. See [21] for further details.
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important differences. Firstly, Eq. (18) is an equation of
motion resulting from the variation of an action while
Eq. (6) is a simply a definition. Secondly, in PNM, E is
considered an integration constant resulting from integrat-
ing the equations of motion and is uniquely determined
given a set of boundary conditions for qi and Eq. (17)
while, in the JBB theory, E is treated as a free parameter of
the theory and is used in the definition (6) to uniquely
determine �BB provided the equations of motion (5) are
satisfied. It is as if the roles of energy and time have been
switched in terms of how data is inputted into the theory.
The connection and differences between these two theories
will become very important when trying to see how time
might emerge from the path integral quantization of JBB
theory. In fact, we will see that the kernels of each theory
are related by Fourier transform. The roles of energy and
time are particularly important in regards to GR since the
quantity analogous to the energy is the cosmological
constant.

2. Hamiltonian formulation

We will now write down the Hamiltonian for this sys-
tem. The canonical momenta are

pi ¼ @LJ

@ _qi
¼ 1

_q0
m _qj�ij

p0 ¼ @LJ

@ _q0
¼ �

�
T

ð _q0Þ2 þ V

�
� �E:

(19)

The primary constraint

H ¼ p2
i

2m
þ p0 þ VðqÞ ¼ 0 (20)

is a modification of the circle identity for the pi in the
presence of p0. The total Hamiltonian, HT ¼ Nðq; pÞH ,
is a pure constraint. With the fundamental Poisson
Brackets fq�; p	g ¼ ��

	, Hamilton’s equations of motion

are

_q i ¼ fqi; HTg ¼ N
pj

m
�ij _q0 ¼ fq0; HTg ¼ N; (21)

_p i ¼ fpi; HTg ¼ �N
@V

@qi
_p0 ¼ fp0; HTg ¼ 0: (22)

The _p0 equation implies conservation of energy. Note the
striking similarities between these equations and
Hamilton’s equations for JBB theory. In both theories,
the gauge is fixed by specifying a the function N. From
the _q0 equation of motion, it is clear that N is just the time
gauge which parameterizes the path �. The simplest gauge
that can satisfy the boundary conditions is _N ¼ 0. In this

special gauge, the equations of motion are manifestly
equivalent to Newton’s equations. Note that, in GR, this
is just the proper time gauge found to be very useful in
[30,32]. Note also that our choice of notation for the
Lagrange multiplier N is not accidental. The analogous
quantity in GR is the lapse which, other than a spacial
dependence over the 3-manifold, plays an identical role to
that of the N treated here.

III. ON GAUGE INVARIANCE AND THE PHASE
SPACE PATH INTEGRAL

The presence of the primary first class constraint H in
both JBB theory and PNMwould normally indicate that we
have gauge theories according to the language of Dirac
[33]. However, it was argued by Barbour and Foster in [34]
that H should not be thought of as the generator of trans-
formations that leave the physical state of the system
unchanged. This has also been noticed by Kuchař in [35]
and has important implications in regards to the definition
of observable quantities in reparameterization invariant
theories.
The confusion lies in what one considers the physical

state of the system. If one considers a physical state as a
point in phase space, as is typically done in the
Hamiltonian framework, then H clearly generates physi-
cally distinguishable states. To see this, consider the in-
finitesimal gauge transformations generated by H in JBB
theory. Under H , qi transforms as

qið�Þ ! qið�Þ þ 
ð�Þfqi;H g ¼ qið�Þ þ 
ð�Þpið�Þ�ij

m
;

(23)

which, in general, is clearly a distinct point in phase space.
This point is discussed in detail in [36] where gauge
independent observables are constructed for general rela-
tivity and general reparameterization invariant theories.
If, on the other hand, one were to take the view that

complete histories, or paths � on configuration space,
represent the physical state of a system then H does
indeed generate physically equivalent states. This can be
seen by considering the action of H on a full history. For
simplicity and because we will use the notation later, lets
consider putting the configuration space on a discrete
lattice so that � takes discrete values �K where capital
Roman indices range from 1 to some large number N. We
then define ~qK ¼ ~qð�KÞ and H K ¼ H ð�KÞ. Using the
discrete form of Eq. (23)

qiM ! qiM þ 
M
pi
M

m
(24)

and Hamilton’s first equation, (13), we find that, in a gauge
where NK ¼ ��K
K,
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qiM ! qiM þ ��M _qiM ¼ qiMþ1: (25)

Hence, provided (13) is satisfied the set f ~qKg ! f ~qKþ1g.
Since this is just a relabeling of the set, we see that H
generates reparameterizations of the history which are,
indeed, physically indistinguishable.

In this work we will be treating the path integral for JBB
theory and PNM. Though one should be careful to call
these theories standard gauge theories in light of the pre-
vious discussion and the arguments given in [34,35], as far
as the path integral is concerned, it is still valid to use
standard gauge theory techniques to determine the mea-
sure. The reason for this is that, although the physical states
of the path integral are still the in and out states of the
kernel (which are configuration space points), when com-
puting the path integral itself, one must sum over histories.
Thus, the reparameterization invariance can be treated as a
standard gauge redundancy since it will send the complete
history to a physically equivalent one. We will then be able
to use the standard Faddeev-Popov trick for computing the
measure.

Our last task before doing a path integral quantization of
JBB and comparing it to PNM is to motivate the use of the
phase space path integral. Since the action (4) of JBB is
only artificially dependent on � one might wonder if it
would be simplest to start with a configuration space path
integral with the � dependence removed. In this case, one
would no longer have to consider a gauge theory and all the
technical complications that come along with it.
Unfortunately, the configuration space path integral pro-
vides no simple method for determining the measure. In
most cases, one must solve for the infinitesimal kernel or
integrate the kernel exactly in order to solve for the mea-
sure. In the former, one obtains no more information than
in the canonical quantization. In the latter, the integration is
difficult because of the square roots in the exponential.
Moreover, we will find that the measure [given by Eq. (39)]
is nontrivial making a comparison to PNM difficult except
at the level of the phase space path integral. For these
reasons, we find it convenient to keep the � dependence
so that we can define momenta and compute the phase
space path integral where the precise definition of the
measure is understood.

IV. PATH INTEGRAL QUANTIZATION

We will now use the techniques developed by Faddeev
and Popov [37] for gauge fixing the path integral of JBB
theory and PNM. We will start with PNM since we can
check our results against those of [22] who present a
similar, but not as general, treatment.

A. PNM

We define the kernel kPNMðq00�; q0�Þ as the phase space
path integral (in units where @ ¼ 1)

kPNMðq00�; q0�Þ ¼
Z

Dq��Dp�
�e

i
R

d�ðp�
� _q���H ðq��;p�

�ÞÞ;

(26)

which is a function of the two configuration space points
q00� and q0�. The integration is understood to be over the
true degrees of freedom q�� and p�

�. Since the true degrees
of freedom are, in practice, difficult to solve for explicitly,
we would like to write the theory in terms of the redundant
variables q� and p� then find a gauge fixing condition G
for the first class constraint H . To evaluate the path
integral explicitly and to be rigorous about the boundary
conditions, we will work with discrete values of � and use
the same conventions as Sec. III. This means we should
expect the gauge fixing conditions GK, with Lagrange
multipliers EK, and the first class constraints H K, with
Lagrange multipliers NK. By inspecting Hamilton’s equa-
tions for PNM [(21)] we see that natural gauge fixing
conditions are

G K ¼ fKðqiK; pK
i Þ � _q0K ¼ 0: (27)

In general, the functions fKðqiK; pK
i Þ can be nearly arbitrary

functions on phase space6 with the only restriction being
that they must give a unique solution for _q0k. This has been
easily achieved by requiring that the fK do not depend on
the q0K or on their conjugate momenta pK

0 .

To get the kernel in terms of the partially redundant
variables q� and p�, we must complete N insertions of
the identity

1 ¼
Z

dGKdH
K�ðGKÞ�ðH KÞ; (28)

where the constraints are functions of the variables q� and
p�. Making a change of variables from the set
ðq��; p�

�;G;HÞ ! ðq�; p�Þ we pick up a Jacobian factor,
which is more commonly known as the Faddeev-Popov
determinant. With the gauge fixing conditions (27) and the
first class constraints (24), we get a factor of 1 from
commuting the q0’s of the GK with the p0’s of the HK.
Formally we are left with

½FP�PNM ¼
��������
�
fMðqiK; pK

i Þ;
~p2
N

2m
þ VN

���������: (29)

It is easiest to work out this expression explicitly in specific
gauges and for specific choices of V. Given these consid-
erations and using the Fourier transform definition of the
delta functions, we find

6If one is worried about the presence of the _q0K in the gauge
fixing functions recall that we have access to the full history
given by the set fq�Kg so that we can simply use the definition

_q0K ¼ q0
Kþ1

�q0K
��K

which is a function of phase space.
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kPNMðq00�; q0�Þ ¼
Z 1

�1
dp0

0

2�

d3 ~p0

2�

��0dN0

2�

YN�1

K¼1

dpK
0

2�

d3 ~pK

2�

��KdNK

2�
dq0Kd

3 ~qK
dEK

2�
½FP�PNM

� exp

�
i
XN�1

J¼0

��J

�
pJ
� _q�J � NJ

�
~p2
J

2m
þ pJ

0 þ VJ

�
� EJðfJ � _q0JÞ

��
: (30)

1. Boundary conditions

A word or two about boundary conditions are in order.
The integrations in Eq. (26) are over N p’s but only (N �
1) q’s as is usually the case. This is, of course, because the
boundary conditions impose a constraint on the q’s.
Similarly, although we need N gauge fixing conditions to
make the constraint algebra second class, the boundary
conditions impose a constraint on the functions fK. In
this case they must satisfy,

XN�1

J¼0

fJ ¼ q000 � q00 � �; (31)

reducing the number of independent gauge fixing functions
fK to (N � 1). One can think of the path integral (30) as an
integration over q00 and E0 with the result of imposing the

boundary conditions. As a result, we can remove the
integrals over dq00 and dE0 while keeping the constraint

algebra second class provided we evaluate the result at
q00 ¼ q00 and qN0 ¼ q000. In this way of thinking, we allow

q00 to vary but choose gauge fixing functions fK that

guarantee the boundary conditions are satisfied. Thus, it

is understood that in the sum of Eq. (30) we should take
E0 ¼ 0.

2. Connection to standard quantum mechanics

It is possible to connect to the path integral of Hartle and
Kuchař [22] using the proper time gauge discussed in
Sec. II B 2. To realize this gauge, we choose functions
fK ¼ _tK, which are constants over phase space. The
Faddeev-Popov determinant is easily seen to be 1.
Integrating over the EK gives the infinite product of �
functions

YN�1

K¼1

�ð _q0K � _tKÞ (32)

or, equivalently,7

YN�1

K¼1

�ðq0K � tKÞ: (33)

With this, Eq. (30) becomes

kPNM ¼
Z 1

�1
dp0

0

2�

d3 ~p0

2�

��0dN0

2�

YN�1

K¼1

dpK
0

2�

d3 ~pK

2�

��KdNK

2�
dq0Kd

3 ~qK�ðq0J � tJÞ

� exp

�
i
XN�1

J¼0

��J

�
pJ
� _q�J � NJ

�
~p2
J

2m
þ pJ

0 þ VJ

���
: (34)

This is exactly the form of kPNM in [22]. This confirms that
our method does indeed recover standard quantum theory.
It is just a special case of the more general kernel given by
Eq. (30) which has been obtained using gauge theory
techniques. We make the observation that, unlike in [22],
Eq. (30) allows for more general functions, fK, of phase
space provided one computes the correct Faddeev-Popov
determinant. Thus, our method allows for more compli-
cated gauge choices.

3. kPNM and energy eigenstates

Before leaving PNM I would like to rewrite Eq. (30) in a
form that will allow us to make a connection to JBB theory.

First, integrate over the dpK
0 ’s for K ¼ 1; . . . ; N � 1. This

gives the (N � 1) � functions �ð _q0K � NKÞ. After doing a
change of variables from dq0K to d _q0K with the definition

_q0K ¼ q0
Kþ1

�q0K
��K

, an integration over the d _q0K sets _q0K ¼ NK.

The 0-term should be treated separately since we cannot
integrate over dq00. We use the fact that ��0 _q

0
0 ¼

��PN�1
J¼1 ��0 _q

0
J and call p0

0 � �E to write the final

integral. Putting this all together gives

kPNMðq00�; q0�Þ ¼ kPNMð ~q00; ~q0; �Þ

¼
Z dE

2�
eiE�~kPNMð ~q00; ~q0; EÞ (35)

where,

7In general the t’s can be shifted by the same constant a
making the translational invariance of t in standard quantum
theory manifest.

JACOBI’S PRINCIPLE AND THE DISAPPEARANCE OF TIME PHYSICAL REVIEW D 81, 044035 (2010)

044035-7



~kPNMð ~q00; ~q0; EÞ ¼
Z 1

�1
d3 ~p0

2�

��0dN0

2�

YN�1

K¼1

d3 ~pK

2�

��KdNK

2�
d3 ~qK

dEK

2�
½FP�PNM

� exp

�
i
XN�1

J¼0

��J

�
~pJ � _~qJ � NJ

�
~p2
J

2m
� Eþ VJ

�
� EJðfJ � NJÞ

��
: (36)

Since we know kPNM is the kernel for standard quantum
mechanics from the results of [22],

R
d�ei�EkPNM will give

the kernel for energy eigenstates of energy E. One imme-
diately recognizes ~kPNMðEÞ as this kernel.

B. JBB theory

We now consider the path integral of JBB theory. It is
worth noting that this path integral has been considered
before in different settings. One can find the BRST quan-
tization of JBB theory in Refs. [23,30]. Also, for the BRST
treatment of the relativistic particle (which is nearly mathe-
matically identical to JBB) see [38]. However, while all of
these papers use ghost fields to do the gauge the fixing, we

use the Faddeev-Popov trick directly so that we can be
completely rigorous about boundary conditions. This form
allows us to carefully compare JBB with PNM so that we
can extract time explicitly from the JBB kernel.
Making use of the same techniques used to write the

phase space path integral for PNM, we choose the gauge
fixing functions

GK ¼ fKðqiK; pK
i Þ �

m ~pK � _~qK
p2
K

¼ 0: (37)

The phase space path integral is then

kJBBð ~q00; ~q0; EÞ ¼
Z 1

�1
d3 ~p0

2�

��0dN0

2�

YN�1

K¼1

d3 ~pK

2�

��KdNK

2�
d3 ~qK

dEK

2�
½FP�JBB

� exp

�
i
XN�1

J¼0

��J

�
~pJ � _~qJ � NJ

�
~p2
J

2m
� Eþ VJ

�
� EJ

�
fJ �m ~pJ � _~qJ

p2
J

���
; (38)

where we impose the boundary conditions by evaluating
this at ~qN ¼ ~q00 and ~q0 ¼ ~q0. In the above, as with PNM, it
is understood that E0 ¼ 0. The Faddeev-Popov determi-
nant is easiest to write out in specific gauges. It can be
formally written as

½FP�JBB ¼
��������
�
fM �m ~pM � _~qM

p2
M

;
~p2
N

2m
þ VN

���������: (39)

Boundary conditions

For Sec. V, we will need to know explicitly how the
boundary conditions have been imposed in Eq. (38). This
complication arises because of the fact that, of the three
independent components of the vectors ~qK, one of them is a
pure gauge. Thus, two of the boundary conditions can be
imposed in the usual way; while, the third condition, like
the case of PNM described in Sec. IVA 1, should be
imposed by letting the gauge degree of freedom vary freely
and by choosing gauge fixing functions fK that guarantee
that the boundary conditions will be satisfied.

To see this realized explicitly, we must add to Eq. (38) an
integration over dE0 and d3 ~q0, and we must include the

term expði��0E0ðf0 � ~p0� _~q0
p0

ÞÞ in the integrand. We will

need some notation to split the gauge piece of ~q0 from
the physical piece. For an arbitrary vector ~x, we define

xjj � ~x� ~p0

p0
, and x? � j ~x� ~p0j

p0
. These definitions allow us to

write any vector in terms of a cylindrical coordinates
system where ~p0 points in the z direction. The boundary
conditions for the nongauge degrees of freedom can be
imposed simply by integrating over d�0dq

?
0 and d�Ndq

?
N

after inserting the � functions �ð�q0 ��0Þ�ð ~q0? � q?0 Þ
and �ð�q00 ��NÞ�ð ~q00? � q?N Þ. For the gauge degrees of

freedom, it is a short calculation to show that, choosing f0
such that

mðq00jj � q0jjÞ
p0

þ XN�1

J¼0

��J

�
m _~qJ �

�
~pJ

p2
J

� ~p0

p2
0

�
� fJ

�
¼ 0

(40)

will lead to the appropriate boundary conditions for qjj0 .
Although this seems like an unnecessary amount of work
just to justify the integration over E0 and d3 ~q0, we will see
that the difference between a time dependent kernel and a
time-independent kernel is exactly expressed by the form
of the constraint (40). We can now see that the advantage of
working with this formalism is that it gives us a precise
way to compare the roles of time both theories.

C. Connection between kPNM and kJBB

It is constructive to rewrite kPNMðEÞ and kJBBðEÞ in
special gauges. For PNM, we pick the gauge
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fK ¼ m ~pK � _~qK
p2
K

: (41)

The Faddeev-Popov determinant takes the form

½FP�PNM ¼
��������
�
m ~pM � _~qM

p2
M

; VN

���������: (42)

For JBB theory, we pick

fKðqiK; pK
i Þ ¼ NK: (43)

These conditions lead to the same Faddeev-Popov deter-
minant as PNM. By comparing the integrands, we see that

in these gauges it is manifest that ~kPNMðEÞ ¼ kJBBðEÞ. In
other words, the two kernels are related by the Fourier
transform (35). This agrees with a result derived in [27].
For completeness, we write out the full expression for the
kernels in this gauge:

~kPNMðEÞ ¼ kJBBðEÞ

¼
Z 1

�1
d3 ~p0

2�

��0dN0

2�

YN�1

K¼1

d3 ~pK

2�

��KdNK

2�
d3 ~qK

dEK

2�

��������
�
m ~pK � _~qK

p2
K

; VL

���������
� exp

�
i
XN�1

J¼0

��J

�
~pJ � _~qJ � NJ

�
~p2
J

2m
� Eþ VJ

�
� EJ

�
NJ �m ~pJ � _~qJ

p2
J

���
: (44)

Since these kernels are manifestly the same in the
gauges described above, they must also be the same in
any gauge. Thus, the straightforward path integral quanti-
zation of JBB theory gives the kernel for energy eigenstates
of energy E. We have recovered the standard result ob-
tained by canonical quantization where the solutions are
stationary states and time, it seems, has disappeared.

V. TIME AND THE STATIONARY PHASE
APPROXIMATION

It is now possible to see the difference between the time
dependent kernel of PNM and the time-independent kernel
of JBB theory. In Sec. , we noted that, in order to impose
the boundary conditions, we should choose f0 such that
Eq. (40) is satisfied. Implementing the procedure outlined
in that section we find that we can rewrite kJBB as

kJBBð ~q00; ~q0; EÞ ¼
Z 1

�1
dE0

2�

�Z 1

�1
d3 ~p0

2�

��0dN0

2�
d3 ~q0�ð�q0 ��0Þ�ð ~q0? � q?0 Þ

YN�1

K¼1

d3 ~pK

2�

��KdNK

2�
d3 ~qK

dEK

2�
½FP�JBB

� exp

�
i
XN�1

J¼0

��J

�
~pJ � _~qJ � NJ

�
~p2
J

2m
� ðEþ E0Þ þ VJ

�
� EJ

�
fJ �m ~pJ � _~qJ

p2
J

����
expðiE0�Þ (45)

where,

� ¼ mðq00jj � q0jjÞ
p0

þ XN�1

J¼0

m _~qJ �
�
~pJ

p2
J

� ~p0

p2
0

�
: (46)

The bracketed expression after the dE0 integral is nearly

equal to ~kPNMðEþ E0Þ. If it were and if we were able to

pull the factor eiE
0� through the integral in the bracketed

expression then we would have

k0JBBð ~q00; ~q0; EÞ ¼
Z dE0

2�
eiE

0�~kPNMð ~q00; ~q0; Eþ E0Þ; (47)

which is kPNMð�Þ up to an unobservable global Uð1Þ factor
e�iE�. That is, we would have a theory with time. But eiE

0�

cannot, in general, be moved through the integral since � is

a complicated function of phase space. Furthermore, the
bracketed expression is missing the appropriate boundary
condition � function that would make it exactly equal to
~kPNM. Hence, if we want time to emerge in the quantum
JBB theory, we must: a) find a way to implement the
boundary conditions separately from putting constraints
on the gauge fixing conditions, and b) we must be able to
pull � through the integral over all of phase space. This is
possible in the stationary phase approximation.
In the stationary phase approximation we approximate

the kernel by a sum over the unique history that extremizes
the action.8 That is, we approximate the kernel by a sum

8It is possible, in more general cases, that more than one
solution will minimize the action. In these cases, the emergent
time could be different depending on the observed vacuum state
of the system.
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over the classical history. Because we no longer have an
integral over all of phase space, � can be moved through
the bracketed expression. Furthermore, the boundary con-
ditions are imposed by requiring the classical solution.
Thus, we have succeeded in showing that the stationary
phase approximation gives us a theory with time. However,
this is not a theory with just any time. The emergent time
must be given by Eq. (46) which is a specific function of
the classical history. Using the boundary conditions and
returning to the continuous limit, we see that � ¼ �BB. That
is, the time that is emergent in the stationary phase ap-
proximation is exactly the ephemeris time of the classical
theory. It is the time read off by a BB clock.

On one hand, this should not be surprising since the
stationary phase approximation should simply be recover-
ing the classical limit. On the other hand, this may seem
unexpected in light of the canonical quantization since we
are recovering a classical limit where time is well defined
even though the quantum theory is governed by the time-
independent Schrödinger equation. Somehow, we have
found that time can ‘‘live’’ in the time-independent
Schrödinger equation. Furthermore, the stationary phase
approximation extends much further than just the classical
limit since it is exact for up to quadratic potentials.

It is important to note that, like in the classical theory,
the roles played by time and energy in the way data is
inputted into the stationary kernels of PNM and JBB are
switched. That is, one cannot simply plug a time into the
kernel of JBB just as one cannot simply plug an energy into
the kernel of PNM. However, in the stationary phase
approximation, a unique energy can be calculated for a
unique time simply by inverting Eq. (6) and inserting the
classical history. Thus, the algorithm for comparing the
two theories involves either specifying a time t for
kPNMð ~q00; ~q0; tÞ then calculating the energy EðtÞ by inverting
Eq. (6) to insert into kJBBð ~q00; ~q0; EÞ or specifying an energy
E for kJBBð ~q00; ~q0; EÞ then calculating tðEÞ using Eq. (6) to
insert into kPNMð ~q00; ~q0; tÞ. Specifically, we have shown that,
in the stationary phase approximation, we have the equality

kPNMð ~q00; ~q0; t; EðtÞÞ ¼ eiE�kJBBð ~q00; ~q0; tðEÞ; EÞ: (48)

This agrees with our intuition from the classical theory.
On shell, the emergent time is determined through Eq. (6)
uniquely by specifying the energy E and by imposing the
boundary conditions and the classical equations of motion.
Off shell however, Eq. (6) gives a different Barbour-
Bertotti time for each history since an arbitrary history
will lead, in general, to a very different value of �BB for
a fixed energy. Because we sum over all histories, each
contribution to the kernel will represent a different
Barbour-Bertotti clock leading to a kind of superposition
of clocks.9 This superposition effectively integrates time

out of the theory and leads to solutions of the quantum
theory that are stationary states. From the path integral
perspective, the mechanics responsible for this is very
clear. The classical theory does have a unique notion of
duration because, in the stationary phase approximation,
there is only one time that gives an important contribution
to the kernel: the Barbour-Bertotti time.
Decoherence provides an alternative perspective for

understanding this emergence. Our path integral result
suggests that, in the stationary phase approximation, the
Barbour-Bertotti time decoheres from the other compo-
nents of the superposition making it a useful clock. A
more detailed study of decoherence in the context of
emerging clocks can be found in [39]. We only note here
that our intuition from the path integral seems to agree with
our expectations from decoherence.

VI. OUTLOOK

We have seen that the path integral quantization of JBB
theory leads to a theory whose solutions are energy eigen-
states and are thus governed by the time-independent
Schrödinger equation. By comparing this time-
independent theory to the manifestly time dependent ker-
nel of PNM we were able to see that the timelessness is a
result of a superposition of all possible BB clocks, which
occurs when one sums over all possible histories.
Nevertheless, a unique time can be recovered in the clas-
sical limit or, more generally, in the stationary phase
approximation because the path integral is dominated by
contributions due to the unique classical history. From a
technical perspective, the difference between the time-
dependent PNM theory and the time-independent JBB
theory is in the constraints applied to the gauge fixing
functions to impose the boundary conditions.
However, we still have a lot of work to do before we can

make this notion of time more precise in the quantum
theory. For example, we have not yet demonstrated how
a wave function might evolve unitarily in terms of �BB even
in situations where the stationary phase approximation is
exact. Furthermore, in situations where the stationary
phase approximation fails, it seems that this notion of
time breaks down completely. Nevertheless, we may not
be doomed.
It is well known that (see for instance [39]) in the context

of gravity coupled to a scalar field that one can use a Born-
Oppenheimer (BO) ansatz to show that heavy (ie, semi-
classical) degrees of freedom can provide a kind of BB
clock under which light degrees of freedom evolve accord-
ing to the time dependent Schrödinger equation. These
results are very interesting but they rely on use of the BO
ansatz which has the slight drawback that it makes assump-
tions about the emergent theory that may not necessarily be
implied by the fundamental theory even though they are
consistent with it. One example of such an assumption is
the presence of a complex wave function, which is needed

9Note that it is the action and not the ephemeris time that is
actually being summed over in the path integral.

SEAN GRYB PHYSICAL REVIEW D 81, 044035 (2010)

044035-10



in order to make the BO ansatz but not necessary if one is
starting from the time-independent Schrödinger equation.
For more detailed discussions on this particular point see
[40] and the rebuttal in [39].

An alternative option, which is suggested by the results
of this paper, would be to treat these toy models and
assume only a mass gap between heavy and light degrees
of freedom. Then one could construct a Wilsonian effective
action which would integrate out the heavy particles. The
hope would be that the RG flow towards the IR would turn
the JBB action into the PNM action with a specific ex-
pression for the emergent time. Equations (45) and (46) tell
us exactly how one theory should flow into the other and
suggest the that energy might play the role of an order
parameter. If it works, this ‘‘bottom up’’ approach could
show how a time dependent Schrödinger equation might
emerge for light degrees of freedom without having to
resort to the BO ansatz and could, for example, shed light
on why the complex numbers necessarily arise.
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