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We consider the renormalization of general gauge theories on curved space-time background, with the

main assumption being the existence of a gauge-invariant and diffeomorphism invariant regularization.

Using the Batalin-Vilkovisky formalism, one can show that the theory possesses gauge invariant and

diffeomorphism invariant renormalizability at quantum level, up to an arbitrary order of the loop

expansion. Starting from this point, we discuss the locality of the counterterms and the general

prescription for constructing the power-counting renormalizable theories on curved background.
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I. INTRODUCTION

The quantum field theory (QFT) in curved space is an
important ingredient of our general understanding of the
quantum description of nature. The reason for this is that,
according to general relativity, our space-time is likely to
be curved. Therefore, as far as we think that the QFT
approach is a fundamental one in the description of the
interaction of elementary particles and fields, it must be
considered on a curved space-time background. The con-
sideration of QFT on classical curved background does not
rule out the quantization of gravity, but, in some sense, is at
least equally important. The reason is that we do not know
which one of the existing ways to quantize gravity is close
to reality, while the QFT of matter fields definitely deals
with reality, as the concept of a classical curved space does.

One of the most important aspects of the modern QFT is
the theory of gauge fields and their perturbative renormal-
izations. The gauge invariant renormalizability is the cor-
nerstone in the construction of the very important theories
including the standard model of particle physics. Hence it
is quite interesting to know whether the existing methods
to analyze renormalizability of gauge theories are working
well in curved space. In the previous considerations of the
problem [1,2] (see, also, [3]), it has been assumed that the
gauge-invariant renormalization of the theory is, indeed,
possible due to the existence of both gauge-invariant and
diffeomorphism invariant regularization such as a dimen-
sional one. Starting from this point, it is possible to estab-
lish the prescription for constructing the renormalizable
theories of interacting matter fields on curved background
[1,4] (see, also, [5] for a recent review and for a somehow
more simple treatment of the issue).

The present work is intended to explore, in a more
formal way than was done before, the issue of gauge-
invariant renormalizability in curved space-time. To this

end, we are going to apply the Batalin-Vilkovisky (BV)
formalism. It is well known that this formalism enables one
to prove the gauge-invariant renormalizability of general
gauge theories in a situation when all fields under consid-
eration are quantum ones [6,7] (see, also, [8,9] for an
extensive review and further references). It is, of course,
important to generalize these considerations to the case
when the QFT is defined in the presence of external con-
ditions, in particular, in curved space-time. In this case, one
has to take care about both gauge symmetries and general
covariance. The last symmetry involves both quantum and
external fields, making the consideration more compli-
cated. Our main purpose is to consider the general features
of renormalization of the theory of quantummatter fields in
curved space-time, using the powerful BV formalism. On
the top of that, we will discuss the construction of multi-
plicatively renormalizable theories in curved space, the
subject which was already considered previously (see,
e.g. [4,5] and references therein) in a slightly different
manner.
The paper is organized as follows. In the next section,

we present a very brief review of the antibracket (BV)
formalism in gauge theories. In Sec. III, we consider the
same formalism for gauge theories in curved space. The
gauge-invariant renormalization in curved space-time is
considered in Sec. IV. An important aspect of the theory
is the possibility to use the noncovariant gauge-fixing
conditions, which is discussed in Sec. V. In Sec. VI, we
introduce the quantum gravity completion of the theory to
get some strong arguments supporting the locality of the
counterterms of the quantum theory in curved space. The
power-counting renormalizability and the receipt for con-
structing renormalizable theories in curved space are dis-
cussed in Sec. VII. Finally, in Sec. VIII, we draw our
conclusions.

II. GAUGE THEORIES IN BV FORMALISM

In this section, we present a very brief review of the BV
formalism [10], which will be used in the rest of the paper
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to prove the gauge-invariant and general covariant renor-
malizability of the quantum field theory on curved back-
ground. An extensive review of the formalism can be found
in [8,9], where we mainly collect information (and also fix
notations) which will be needed in further consideration.

A. Preliminaries and terminology

The need for the advanced version of the Lagrangian
quantization formalism was inspired by the discovery of
supergravity theories in 1970s [11]. The gauge transforma-
tions possess linearly-dependent generators and, as a con-
sequence, direct application of the Faddeev-Popov
procedure leads to the violation of unitarity of the physical
S-matrix. Moreover, attempts of covariant quantization of
gauge theories with linearly-dependent generators of
gauge transformations result in the understanding of the
fact that it is impossible to use the Faddeev-Popov rules to
construct a suitable quantum theory [12]. The quantization
of general gauge theories requires taking into account such
aspects as the existence of open algebras and reducible
generators. The quantization can be performed only by
introducing different types of ghosts, antighosts, ghosts
for ghosts (Nielsen, Kallosh ghosts, etc.) [13]. A unique
closed approach to the problem of covariant quantization
that summarized all these attempts was proposed by
Batalin and Vilkovisky [10]. The BV formalism gives the
rules for the quantization of general gauge theories.

The starting point of the BV method is a theory of fields
Aiði ¼ 1; 2; . . . ; nÞ with Grassmann parities "ðAiÞ ¼ "i, for
which the initial classical action S0ðAÞ is assumed to have
at least one stationary point Ai

0

S0;iðAÞjA0
¼ 0; (1)

and to be regular in the neighborhood of A0. Here, we are
using the notations

A0 ¼ fAi
0g and F;iðAÞ ¼ @rFðAÞ

@Ai ;

where the label ‘‘r’’ denotes the right derivative.
Geometrically, Eq. (1) defines a surface� in the space of

functions Ai. We assume the invariance of the action S0ðAÞ
under the gauge transformations �Ai ¼ Ri

�ðAÞ�� in the
neighborhood of the stationary point,

S0;iðAÞRi
�ðAÞ ¼ 0; � ¼ 1; 2; . . . ; m;

0<m< n; "ð��Þ ¼ "�:
(2)

Here, �� are arbitrary functions of space-time coordinates,
and Ri

�ðAÞ are generators of gauge transformations. We
have also used DeWitt’s condensed notations [14], such
that any index includes space-time coordinates, an index of
internal group, a Lorentz index, and so on. Consequently, a
summation over repeated indices includes, along with
summation over internal and Lorentz indices, also an in-

tegration over continuous variables such as space-time
coordinates
It follows from the Noether identities (2) that, first, the

equations of motion are not independent and, second,
(some) propagators do not exist because the Hessian matrix
Hij ¼ S0;ij, corresponding to the action S0, is degenerate at

any point on the stationary surface �,

S0;iðAÞRi
�;jðAÞ þ S0;jiðAÞRi

�ð�1Þ"�"j ¼ 0

) S0;jiR
i
�jA0

¼ 0:

The generators Ri
� are on shell zero-eigenvalue vectors of

the Hessian matrix S0;ij.

The structure of gauge algebra can be found by studying
the commutator of gauge transformations and some con-
sequences from the relations (2). We assume that the set of
generators Ri

�ðAÞ is complete. In this case, one can prove
that the generators algebra has the following general form
(see [15–17]):

Ri
�;jðAÞRj

�ðAÞ � ð�1Þ"�"�Ri
�;jðAÞRj

�ðAÞ
¼ �Ri

�ðAÞF�
��ðAÞ � S0;jðAÞMij

��ðAÞ; (3)

where F�
��ðAÞ are structure functions with the following

symmetry properties:

F�
��ðAÞ ¼ �ð�1Þ"�"�F�

��ðAÞ
and Mij

��ðAÞ are satisfying the conditions

Mij
��ðAÞ ¼ �ð�1Þ"i"jMji

��ðAÞ ¼ �ð�1Þ"�"�Mij
��ðAÞ:

In case Mij
��ðAÞ ¼ 0, one meets a gauge theory with a

closed gauge algebra. If Mij
��ðAÞ � 0, then the gauge

algebra is called open. In this case, due to the symmetry

properties of Mij
��ðAÞ, the quantities
Ri
��;trivðAÞ ¼ S0;jðAÞMij

��ðAÞ
are symmetry generators of the initial action S0ðAÞ which
can be called trivial. They vanish at the extremals of S0ðAÞ,

Ri
��;trivðAÞjS0;i¼0 ¼ 0

and leave the action invariant. At the same time, they are
not connected with an additional degeneration of the initial
action S0ðAÞ because the rank of the Hessian matrix de-
scribing the degeneracy of the initial action is defined at the
extremals S0;i ¼ 0.

Finally, if Mij
��ðAÞ ¼ 0 and F�

�� do not depend on the

fields A, the gauge transformations form a gauge group and
define a Lie algebra.

B. BV quantization: The general procedure

The procedure of the BV quantization for a general
gauge theory involves the following steps. First, the total
configuration space of the fields �A is introduced. For
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irreducible theories, the fields �A include Ai, ghost and
antighost fields C�, and �C� and auxiliary (Nakanishi-
Lautrup) fields B�

�A ¼ ðAi; B�; C�; �C�Þ; "ð�AÞ ¼ "A; (4)

with the following distribution of the Grassmann parities
and ghost numbers

"ðAiÞ ¼ "i; "ðB�Þ ¼ "�; "ðC�Þ ¼ "ð �C�Þ ¼ "� þ 1;

ghðAiÞ ¼ ghðB�Þ ¼ 0; ghðC�Þ ¼ 1; ghð �C�Þ ¼ �1:

To each field �A of the total configuration space, one
introduces corresponding antifield ��

A,

��
A ¼ ðA�

i ; B�
�; C�

�; �C�
�Þ: (5)

The statistics of ��
A is opposite to the statistics of the

corresponding fields �A

"ð��
AÞ ¼ "A þ 1

and ghost numbers of fields and corresponding antifields
are connected by the rule

ghð��
AÞ ¼ �1� ghð�AÞ:

On the space of the fields �A and antifields ��
A, one

defines an odd symplectic structure (,) called the anti-
bracket

ðF;GÞ � �F

��A

�G

���
A

� ðF $ GÞð�1Þ½"ðFÞþ1��½"ðGÞþ1�: (6)

Here, the derivatives with respect to fields are understood
as the right ones and those with respect to antifields as the
left ones.

One can easily verify that the following properties of the
antibracket follow from the definition (6):

(1) Grassmann parity relations "ððF;GÞÞ ¼ "ðFÞ þ
"ðGÞ þ 1 ¼ "ððG;FÞÞ;

(2) Generalized antisymmetry ðF;GÞ ¼ �ðG;FÞ�
ð�1Þð"ðFÞþ1Þð"ðGÞþ1Þ;

(3) Leibniz rule ðF;GHÞ ¼ ðF;GÞH þ
ðF;HÞGð�1Þ"ðGÞ"ðHÞ;

(4) Generalized Jacobi identity ððF;GÞ; HÞ�
ð�1Þð"ðFÞþ1Þð"ðHÞþ1Þ þ cycleðF;G;HÞ � 0.

Furthermore, one can readily check that the antibracket
(6) is invariant under the anticanonical transformation of
variables �, �� with the generating functional X ¼
Xð�;��Þ, "ðXÞ ¼ 1,

�0A ¼ �Xð�;��0 Þ
���0

A

; ��
A ¼ �Xð�;��0 Þ

��A
: (7)

This property of the odd symplectic structure (6) on the
space of �, �� is a counterpart to the invariance property
of the even symplectic structure (the Poisson bracket)
under a canonical transformation of canonical variables
ðp; qÞ. For the first time, the importance of anticanonical

transformations (7) in the formulation of the BV-method
was realized in [6].
As a second step, the nilpotent generating operator � is

introduced according to

� ¼ ð�1Þ"A �l

��A

�

���
A

; �2 ¼ 0; "ð�Þ ¼ 1:

(8)

We will always assume that formal manipulations with
operators such as � can be supported by suitable regulari-
zation scheme. This is a nontrivial requirement since the
operator (8) is not well defined on local functionals. The
reason is that for any local functional S,�S� �ð0Þ and one
faces the so-called problem of �ð0Þ. The usual way to deal
with this problem is to use the dimensional regularization
[18], where �ð0Þ is equal to zero. Recently, a new calculus
for local variational differential operators in local quantum
field theory has been proposed by Shahverdiev, Tyutin, and
Voronov [19], where �ð0Þ does not arise at all.
Note that acting by � on the product of two functionals,

F and G reproduce the antibracket

�½F � G� ¼ ð�FÞ � Gþ F � ð�GÞð�1Þ"ðFÞ
þ ðF;GÞð�1Þ"ðFÞ:

As a third step, the quantum master equation is defined
according to

1

2
ðS; SÞ ¼ i@�S (9)

or, equivalently,

�exp

�
i

@
S

�
¼ 0; (10)

where S ¼ Sð�;��Þ is a bosonic functional satisfying the
boundary condition

Sj��¼@¼0 ¼ S0ðAÞ: (11)

The bosonic functional S is the fundamental object of the
BV-quantization scheme.
The generating functional of the Green functions ZðJÞ is

defined as

ZðJÞ ¼
Z

d� exp

�
i

@
½Seffð�Þ þ JA�

A�
�
;

Seffð�Þ ¼ S

�
�;�� ¼ ��

��

�
:

(12)

Here, � ¼ �ð�Þ is a fermionic gauge functional. For
instance, if the gauge-fixing condition in the Yang-Mills
theory is chosen to be �� ¼ 0, the fermionic gauge func-
tional has the form � ¼ �c���, where �c� is the FP anti-
ghost. Furthermore, in the Eq. (12), JA are the usual
external sources to the fields �A. The Grassmann parities
of these sources are defined in a natural way, "ðJAÞ ¼ "A.
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Note [6], that the gauge-fixing procedure (12) in the BV
quantization can be described in terms of anticanonical
transformation of the variables �, �� (7) in Sð�;��Þ with
the generating functional X

Xð�;��Þ ¼ ��
A�

A þ�ð�Þ:
To discuss some features of the BV quantization, it is

convenient to rewrite the expression for the generating
functional ZðJÞ in the equivalent form

ZðJÞ ¼
Z

d�d���
�
�� � ��

��

�
exp

�
i

@
½Sð�;��Þ þ JA�

A�
�

¼
Z

d�d��d� exp

�
i

@

�
Sð�;��Þ þ

�
��

A �
��

��A

�
�A

þ JA�
A

��
; (13)

where we have introduced the auxiliary (Nakanishi-
Lautrup) fields �A with "ð�AÞ ¼ "A þ 1.

Note, first of all, that the integrand in (13) for JA ¼ 0 is
invariant under the following global transformations:

��A ¼ �A	; ���
A ¼ 	

�S

��A
; ��A ¼ 0: (14)

It is very important to remember that the existence of this
symmetry follows from the fact that the bosonic functional
S satisfies the generating Eq. (9). The transformations (14)
represent the Becchi, Rouet, Stora, and Tyutin transforma-
tions in the space of variables �, ��, �.

The symmetry of the vacuum functional Zð0Þ under the
BRST transformations (14) paves the way for establishing
an independence of the S matrix on the choice of gauge in
the BV quantization. Indeed, suppose Z� � Zð0Þ. We shall
change the gauge� ! �þ ��. In the functional integral
for Z�þ��, we make the change of variables, choosing for
	

	 ¼ � i

@
��:

After simple algebraic calculations, we find that

Z�þ�� ¼ Z�: (15)

In order to derive the Ward identity corresponding to the
BRST-symmetry, it is convenient to consider the extended
generating functional of the Green functions

Z ðJ;��Þ ¼
Z

d� exp

�
i

@
½Sc ð�;��Þ þ JA�

A�
�
; (16)

where

Sc ð�;��Þ ¼ S

�
�;�� þ ��

�
�

�
: (17)

From the above definition, it follows that

Z ðJ;��Þj��¼0 ¼ ZðJÞ;

where ZðJÞ has been defined in (12). From BRST symme-
try follows the Ward identity for the extended generating
functional of the Green functions

JA
�Z
���

A

¼ 0: (18)

Introducing the generating functional of connected the
Green functions W ¼ W ðJ;��Þ ¼ �i@ lnZ, the identity
(18) can be rewritten as

JA
�W
���

A

¼ 0: (19)

The generating functional of the vertex functions (effec-
tive action) � ¼ �ð�;��Þ is introduced in a standard way,
through the Legendre transformation of W ,

�ð�;��Þ ¼ W ðJ;��Þ � JA�
A;

�A ¼ �W
�JA

;
��

��A
¼ �JA:

(20)

Finally, the Ward identity for the generating functional of
the vertex functions can be obtained directly from (19) and
(20), in the form

ð�;�Þ ¼ 0: (21)

The Ward identity (21) has a universal form and plays a
very important role in proof of gauge-invariant renorma-
lizability of general gauge theories [6]. In deriving this
identity all fields under consideration have been assumed
to be quantized. However, it looks evident that the form of
Eq. (21) will be the same in presence of external back-
ground (for example, a gravitational background) fields as
well (see below). In the next section, we will see that this
equation represents a suitable basis for the consideration of
quantum field theory in curved space.

III. GENERAL GAUGE THEORIES IN CURVED
SPACE

Let us consider a theory of gauge fields Ai in an external
gravitational field g	
. The classical theory is described by

the action which depends on both dynamical fields and
external metric

S0 ¼ S0ðA; gÞ: (22)

Here, and below, we use the condensed notation g � g	


for the metric, when it is an argument of some functional or
function. The action (22) is assumed to be gauge invariant,

S0;iR
i
a ¼ 0; �Ai ¼ Ri

aðA; gÞ�a;

�a ¼ �aðxÞ; ða ¼ 1; 2; . . . ; nÞ; (23)

as well as covariant

�gS0 ¼ �S0
�Ai �gA

i þ �S0
�g	


�gg	
 ¼ 0; (24)
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where �a are independent parameters of the gauge trans-
formation, corresponding to the symmetry group of the
theory. The diffeomorphism transformation of the metric in
Eq. (24) has the form

�gg	
 ¼ �g	�@
�
� � g
�@	�

� � @�g	
�
�

¼ �g	�r
�
� � g
�r	�

� ¼ �r	�
 �r
�	:

(25)

Here, �� are the parameters of the coordinates transforma-
tion

�� ¼ ��ðxÞ ð� ¼ 1; 2; . . . ; dÞ: (26)

As usual, an explicit expression for �gA
i depends on

tensor (or spinor) properties of Ai. For example, in the case
of a scalar field A, one has �gA ¼ �@�A�

� while in the

case of a vector field A	, the transformation rule is �gA
	 ¼

A
r
�
	 � �
r
A

	, etc. In general, our interest is to ex-
plore the renormalization properties of the theories which
include all three kind of fields (fermions, vectors, and
scalars), for instance the standard model and its extensions,
including grand unified theories (GUTs), would be cov-
ered. Therefore the notation Ai in (23) and (24) means the
set of fields with the different transformation rules.

The generating functional ZðJ;��; gÞ of the Green func-
tions can be constructed in the form of the functional
integral

Z ðJ;��; gÞ ¼
Z

d� exp

�
i

@
½Sc ð�;��; gÞ þ JA�

A�
�
:

(27)

Here,1 �A ¼ ðAi; Ba; Ca; �CaÞ represents the full set of
fields of the complete configuration space of the theory
under consideration and ��

A ¼ ðA�
i ; B

�
a; C

�
a; �C

�
aÞ are corre-

sponding antifields. Finally, Sc ð�;��; gÞ is the quantum

action constructed with the help of the solution S ¼
Sð�;��; gÞ of the master equation

ðS; SÞ ¼ 0; Sð�;��; gÞj��¼0 ¼ S0ðA; gÞ (28)

in the form

Sc ð�;��; gÞ ¼ S

�
�;�� þ ��ð�; gÞ

��
; g

�
: (29)

In the last Eq. (29), �ð�; gÞ is a gauge-fixing functional.
Note that Sc satisfies the master equation

ðSc ; Sc Þ ¼ 0: (30)

From the gauge invariance of initial action (23), in the
usual manner, one can derive the BRST symmetry and the
Ward identities for generating functionals Z, W , and � in
the form (18), (19), and (21), respectively.
A solution to the master Eq. (28) can be always found in

the form of a series in antifields �� (see [10]),

Sð�;��; gÞ ¼ S0ðA; gÞ þ A�
i R

i
aðA; gÞCa þ �C�

aB
a þ � � � ;

(31)

where dots mean higher order terms in fields Ba, Ca. We
assume that every term in (31) is transformed as a scalar
under arbitrary local transformations of coordinates x	 !
x	 þ �	ðxÞ. It means the general covariance of S ¼
Sð�;��; gÞ,

�gSð�;��; gÞ ¼ �S

��A
�g�

A þ �g�
�
A

�S

���
A

þ �S

�g	


�gg	
 ¼ 0: (32)

Let us choose the gauge-fixing functional � ¼ c ð�; gÞ
in a covariant form

�g� ¼ 0; (33)

and then the quantum action Sc ¼ Sc ð�;��; gÞ obeys the
general covariance too

�gSc ¼ 0: (34)

From the Eq. (34) and the assumption that the term with
the sources JA in (27) is covariant,

�gðJA�AÞ ¼ ð�gJAÞ�A þ JAð�g�
AÞ ¼ 0; (35)

follows the general covariance ofZ ¼ ZðJ;��; gÞ. Indeed,

�gZðJ;��; gÞ ¼ i

@

Z
d�

�
�g�

�
A

�Sc ð�;��; gÞ
���

A

þ �Sc ð�;��; gÞ
�g	


�gg	
 þ ð�gJAÞ�A

�

� exp

�
i

@
½Sc ð�;��; gÞ þ JA�

A�
�
: (36)

Making change of integration variables in the functional
integral, (36),

�A ! �A þ �g�
A; (37)

we arrive at the relation

1We restrict ourself to the case of irreducible close gauge
theories only, in order to simplify the description of the con-
figuration space.
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�gZðJ;��; gÞ ¼ i

@

Z
d�

�
�Sc

��A
�g�

A þ �g�
�
A

�Sc

���
A

þ �Sc

�g	


�gg	
 þ ð�gJAÞ�A þ JAð�g�
AÞ
�

� exp

�
i

@
½Sc ð�;��; gÞ þ JA�

A�
�

¼ i

@

Z
d�½�gSc þ �gðJA�AÞ� exp

�
i

@
½Sc ð�;��; gÞ þ JA�

A�
�
¼ 0: (38)

From (38), it follows that the generating functional of
connected Green functions W ðJ;��; gÞ)

W ðJ;��; gÞ ¼ i

@
lnZðJ;��; gÞ (39)

obeys the property of the general covariance as well as

�gW ðJ;��; gÞ ¼ 0: (40)

Consider now the generating functional of vertex func-
tions � ¼ �ð�;��; gÞ

�ð�;��; gÞ ¼ W ðJ;��; gÞ � JA�
A; (41)

where

�A ¼ �W ðJ;��; gÞ
�JA

; JA ¼ ���ð�;��; gÞ
��A

: (42)

From the definition of �A (42) and the general covariance
of WðJ;��; gÞ, we can conclude the general covariance of
JA�

A. Therefore

�g�ð�;��; gÞ ¼ �gW ðJ;��; gÞ ¼ 0: (43)

IV. GAUGE-INVARIANT RENORMALIZATION IN
CURVED SPACE-TIME

Up to now, we have considered nonrenormalized gen-
erating functionals of the Green functions. The next step is
to prove the general covariance for renormalized generat-
ing functionals. To this end, let us first consider the one-
loop approximation for � ¼ �ð�;��; gÞ,

� ¼ Sc þ ��ð1Þ ¼ Sc þ @½ ��ð1Þ
div þ ��ð1Þ

fin� þOð@2Þ; (44)

where ��ð1Þ
div and

��ð1Þ
fin denote the divergent and finite parts of

the one-loop approximation for �. The divergent local2

term ��ð1Þ
div gives the first counterpart in the one-loop renor-

malized action Sc 1

Sc ! Sc 1 ¼ Sc � @ ��ð1Þ
div: (45)

From (34) and (43), it follows that in one-loop approxima-
tion we have

�g½ ��ð1Þ
div þ ��ð1Þ

fin� ¼ 0 (46)

and therefore ��ð1Þ
div and ��ð1Þ

fin obey the general covariance

independently

�g
��ð1Þ
div ¼ 0; �g

��ð1Þ
fin ¼ 0: (47)

In its turn, the one-loop renormalized action Sc 1 (i.e.,

classical action, renormalized at the one-loop level) is
covariant

�gSc 1 ¼ 0: (48)

Constructing the generating functional of one-loop renor-
malized Green functions Z1ðJ;��; gÞ, with the action
Sc 1 ¼ Sc 1ð�;��; gÞ, and repeating arguments given

above, we arrive at the relation

�gZ1 ¼ 0; �gW1 ¼ 0; �g�1 ¼ 0: (49)

In the last equation, we have introduced the new useful
notation for the renormalized up to the one-loop order
effective action �1. This functional includes the contribu-
tions of one-loop and also higher loop orders, however,
only the one-loop divergences are removed by renormal-
ization. This means that �1 is finite in the Oð@Þ order, but
may be divergent starting from Oð@2Þ and beyond.
The generating functional of vertex functions �1 ¼

�1ð�;��; gÞ which is finite in the one-loop approximation,
can be presented in the form

�1 ¼ Sc þ @ ��ð1Þ
fin þ @

2½ ��ð2Þ
1;div þ ��ð2Þ

1;fin� þOð@3Þ: (50)

Indeed, this functional contains a divergent part ��ð2Þ
1;div and

defines renormalization of the action Sc in the two-loop

approximation

Sc ! Sc 2 ¼ Sc 1 � @
2 ��ð2Þ

1;div: (51)

Starting from (47)–(49), we derive

�g
��ð2Þ
1;div ¼ 0; �g

��ð2Þ
1;fin ¼ 0: (52)

The last equation means that the general covariance con-
dition is satisfied separately for the divergent and finite

parts of ��1 in two-loop approximation. As a consequence,
the two-loop renormalized action Sc 2 ¼ Sc 2ð�;��; gÞ is a
covariant functional

�gSc 2 ¼ 0: (53)2The discussion of locality of the divergent part of effective
action will be given in the next section.
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Applying the induction method, we can repeat the pro-
cedure to an arbitrary order of the loop expansion. In this
way, we arrive at the followings results:

(a) The full renormalized action ScR ¼ ScRð�;��; gÞ,

ScR ¼ Sc � X1
n¼1

@
n ��ðnÞ

n�1;div; (54)

which is local in each finite order in @, obeys the
general covariance

�gScR ¼ 0; (55)

(b) The renormalized generating functional of vertex
functions �R ¼ �Rð�;��; gÞ,

�R ¼ Sc þ X1
n¼1

@
n ��ðnÞ

n�1;fin; (56)

which is finite in each finite order in @, is covariant

�g�R ¼ 0: (57)

It was proved in [6] that the renormalized action ScR

satisfies the master equation

ðScR; ScRÞ ¼ 0 (58)

and the Ward identities for nonrenormalized and renormal-
ized generating functionals of vertex functions have the
form

ð�;�Þ ¼ 0; ð�R;�RÞ ¼ 0: (59)

The last equations mean that the gauge-invariant renor-
malizability (59) of a quantum field theory takes place in
the presence of an external gravitational field, such that the
general covariance of effective action (57) is also pre-
served. In order to use this important result, we have to
perform an additional consideration and check how the
covariance is preserved in case when we use apparently
noncovariant techniques, e.g., related to the representation
of the metric as a sum of the flat one and perturbation. This
subject will be treated in the next section.

V. NONCOVARIANT GAUGES

In many cases, it is interesting to consider the renormal-
ization of quantum field theory in curved space using the
noncovariant gauge-fixing functionals. One important ex-
ample of such consideration can be found in Sec. VII of the
present article, where we discuss power-counting renorma-
lizability in curved space. Let us see how the noncovariant
gauge-fixing can be implemented in the quantum theory.

Our purpose is to investigate the problem of general
covariant renormalizability for general gauge theories in
the presence of an external gravitational field, when one
uses noncovariant gauge-fixing functional � ¼ �ð�; gÞ,

�g� � 0: (60)

As before, we assume that the classical action of the theory
S ¼ Sð�;��; gÞ is covariant, i.e. �gS ¼ 0, but now the

action Sc ¼ Sc ð�;��; gÞ ¼ Sð�;�� þ ��=��; gÞ is

not covariant, �gSc � 0. Our consideration will be essen-

tially based on the known formalism for investigating the
gauge dependence in general gauge theories, given in [6].
Noncovariance of Sc can be described in the form of

anticanonical infinitesimal transformation with the odd
generating functional

Xð�;��; gÞ ¼ ��
A�

A þ �g�ð�; gÞ; (61)

�A ¼ �Xð�0; ��; gÞ
���

A

¼ �A0
;

��0
A ¼ �Xð�0; ��; gÞ

��0
A

¼ ��
A þ ��g�

��A
;

(62)

when

�gSc ¼ ��g�

��A

�Sc

���
A

¼ ð�g�; Sc Þ: (63)

The variation of Sc (63) leads to the variations of gen-

erating functionals of the Green functions Z¼ZðJ;��;gÞ,
connected Green functionsW ¼ W ðJ;��; gÞ, and vertex
functions � ¼ �ð�;��; gÞ in the form

�gZ ¼ i

@
JA

�

���
A

�g�

�
@

i

�

�J
; g

�
Z; (64)

�gW ¼ JA
�

���
A

h�g�i; (65)

�g� ¼ ðhh�g�ii;�Þ; (66)

where the notations

h�g�i ¼ �g�

�
�W
�J

þ @

i

�

�J
; g

�
;

hh�g�ii ¼ �g�

�
�þ i@ð�00Þ�1 �l

��
; g

�
;

�00
AB ¼ �l

��A

�

��B �;

(67)

were used. These results can be immediately reproduced in
the renormalized theory [6]. Namely, for the variation (63),
the corresponding variation of renormalized action �gScR

can be presented in the form

�gScR ¼ ð�g�R; ScRÞ (68)

of the anticanonical transformation with local generating
functional X ¼ ��

A�
A þ �g�R,
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�g�Rð�;��; gÞ ¼ �g�ð�; gÞ

� X1
n¼1

@
n�g�

ðnÞ
n�1;divð�;��; gÞ; (69)

while the variation of renormalized vertex generating func-
tional �g�R has the form

�g�R ¼ ðhh�g�RiiR;�RÞ; (70)

which corresponds to finite anticanonical transformation
with generating function

X ¼ ��
A�

A þ hh�g�RiiR;

hh�g�RiiR ¼ �g�ð�; gÞ þ X1
n¼1

@
n�g�

ðnÞ
n�1;fin: (71)

In the formulas presented above, we have used the nota-

tions �g�
ðnÞ
n�1;div and �g�

ðnÞ
n�1;fin for the divergent and finite

terms, respectively, of the n-loop approximation for the
generating function of an anticanonical transformation
which is finite in (n� 1)th order approximation and is
constructed on the basis of the theory with the action
Sc ðn�1Þ.

The interpretation of the relations (70) and (71) is that
the theory with external gravitational field may have non-
covariance in the renormalized effective action, but it
comes only from the possible noncovariance of the argu-
ments. Here, the expression arguments is used to denote
the full set of the mean fields from which the effective
action depends, as defined in (20). Therefore the violation
of the general coordinate symmetry which can occur be-
cause of the noncovariant gauge fixing can be always
included into the arguments. As a consequence, one can
always define some special set of arguments in terms of
which the quantum dynamics is described in a completely
covariant way. One important aspect of this feature is that
we can actually perform general considerations or make
practical calculations in a noncovariant gauges. After that,
we can always restore the covariance using those parts of
effective action which are not affected by gauge trans-
formation. A practical examples of this technique can be
found in many publications, but here we constructed a
theoretical background for its consistent use. In the next
sections, we will see, also, that this result opens the way for
a practical construction of renormalizable gauge theories in
curved space-time.

Note that there exists another interpretation of the gauge
dependence of effective action (see [20]). Namely, it can be
proved that dependence on the gauge of effective action is
proportional to its extremals, i.e. physical quantities calcu-
lated on shell do not depend on the gauge.

VI. ON THE LOCALITY OF THE
COUNTERTERMS

In most cases, the general consideration of renormaliz-
ability is based on the hypothesis of locality of all neces-
sary counterterms. This statement was first proved in
general form in [21] and is known as Weinberg theorem.
One can find a more pedagogical consideration of this
theorem in the book [22]. It is important for us to under-
stand whether the locality of the counterterms holds for the
case when the external gravitational field is present. It is
easy to see that the arguments of [22] can be taken care-
fully in this case and, in principle, some special attention to
this issue is in order. Here, we present a qualitative con-
sideration which shows that the locality of the counter-
terms still holds in the presence of external gravity.
Let us consider the theory of the matter fields A � Ai

with the action (22), which depends also on the external
metric g � g	
, S0ðA; gÞ. In order to discuss the locality of
the counterterms, it proves useful to parametrize the metric
as

g	
 ¼ �	
 þ h	
; (72)

where we do not need to make special assumptions about
the field h	
. Starting from the parametrization (72) of the

metric, one can construct the diagrammatic representation
of the path integral (27). The relevant Feynman diagrams

include external lines of the fields ~� only and the external
lines of both quantum fields (given by sources in the
Schwinger formalism) and the classical background field
h	
.

How can we know that the presence of the background
field h	
 does not lead to the nonlocal counterterms at

higher orders of the loop expansion? In order to address
this question, let us consider the quantum gravity comple-
tion of the theory. This means, we start from the extended
classical action

Sext0 ¼ S0ðA; gÞ þ SQG; (73)

where SQG is an action of a quantum gravitational field. As

far as we do not care about power-counting renormaliz-
ability of the theory at this stage (see the next section for
the corresponding discussion), SQG can be just the

Einstein-Hilbert action. Another possibility is to include
the higher derivative terms. In fact, as we shall see in a
moment, the result does not depend on the choice of the
action SQG. Let us also remark that the path integral

representation of the quantum gravitational theory includes
a set of ghost and antighost fields (see, e.g., [4,23,24] for
the higher derivative case). For the sake of simplicity, we
will not write these extra fields here, or assume they are
included automatically into ��.

PETER M. LAVROVAND ILYA L. SHAPIRO PHYSICAL REVIEW D 81, 044026 (2010)

044026-8



One can note that the new theory, based on the action
(73), includes internal lines of the metric field h	
 and does

not include external fields. Therefore the Weinberg theo-
rem can be applied, and we can use the result for the
locality of the counterterms at any loop order in the com-
plete theory. In particular, one can prove that only local
solutions of the master equations can be relevant for the
divergences in the case of the fourth derivative quantum
gravity [24]. Moreover, the proof presented in [24] does
not require the details of the action of quantum gravity and
indeed can be generalized for other cases, including the
quantum general relativity.

On the other hand, the theory with the quantum gravity
completion includes all those Feynman diagrams which
give contribution to divergences of the theory with external
metric. Therefore, since the complete theory does not have
nonlocal divergences, the reduced one with external metric
does not have them either. Hence, for the usual quantum
field theory on curved background, we have strong reasons
to assume the locality of the necessary counterterms to all
orders in the loop expansion.

One more observation is in order. All arguments pre-
sented above correspond to the usual quantum field theory
on curved background and can be violated in the case that
we consider the theory with spontaneous symmetry break-
ing [25]. In this case, the nonlocalities show up already at
the classical level, in the induced action of gravity. At the
quantum level, the nonlocal structures get renormalized,
and hence we are forced to introduce an infinite set of
nonlocal counterterms. However, the details of the consid-
eration presented in [25] show that the mentioned non-
localities are always related to the scalar (Higgs) field, such
that the corresponding renormalization becomes local if
this field is treated as an independent one.

VII. POWER-COUNTING RENORMALIZABILITY
AND CONSTRUCTION OF RENORMALIZABLE

THEORIES

In the previous sections, we have shown that the non-
anomalous gauge theory in curved space-time is renorma-
lizable in a sense that the necessary counterterms, in all
orders of the loop expansion, are given by the local,
covariant, and gauge-invariant expressions. This fact en-
ables one to prepare the receipt of constructing the renor-
malizable theories in curved space.

Let us consider the h	
 ¼ g	
 � �	
 parametrization

of the external metric, which enables one to deal with the
usual flat-space Feynman diagrams. Compared to the dia-
grams of the flat-space-time theory, these diagrams have
external lines of the metric field h	
. As far as gravity is a

nonpolynomial interaction, there may be, in principle, an
unrestricted amount of such external lines coming to any
vertex of the diagram. However, the covariance of the
counterterms which we have proven in Sec. V, enables
one to establish the general form of the counterterms.

We start from the case of a scalar field ’ with the
�’4-interaction. The first diagram we will be interested
in is the one-loop correction vertex function. The situation
which occurs in curved space-time is illustrated in the
Fig. 1. One can note that the lines of the field h	
 may

either produce new vertices or be connected to the existing
vertex due to the expansion

ffiffiffiffiffiffiffi�g
p

�’4 ¼ �’4 �
�
1þ 1

2
hþ 1

8
h2 � 1

4
h	
h

	
 þ . . .

�
;

h ¼ h	
g
	
: (74)

It is easy to see that the first kind of diagrams has more
propagators in the loop that the initial flat-space diagram.
The typical examples are the diagrams in the second line in
Fig. 1. It is obvious that the divergence of the diagrams
with larger number of propagators will be smaller. For
instance, the mentioned diagrams in the second line are
all finite. On the other hand, the diagrams with the lines of
h	
 connected only to the vertices will sum up to produce

the logarithmic divergences which will be exactly of the
form of the flat-space divergence, multiplied by the

ffiffiffiffiffiffiffi�g
p

,

defined in (74). Any other form would enter in conflict with
locality and covariance of the divergences which we have
proven in the previous sections.3

As the next step, let us consider the one-loop contribu-
tion to the field propagator, which has quadratic divergence
in the flat-space-time case. The situation which occurs in
curved space-time is illustrated in the Fig. 2. Again, as in
the case of the vertex diagram, one can distinguish the two
kinds of diagrams. The first kind of diagrams has more
propagators in the loop, compared to the initial flat-space
diagram. The typical examples are the last diagram in the
first line and the last two diagrams in the second line on

FIG. 1. The single diagram with quadratic divergences in flat
space generates an infinite set of diagrams with external lines of
h	
. Some of those diagrams have quadratic or logarithmic

divergences, others are finite.

3The explicit calculations in the momentum-subtraction
scheme confirm this conclusion [26]. Also, they show that the
finite part of the vertex function is a nonlocal object, as it usually
happens. Of course, this does not contradict the Weinberg
theorem [21,22] which concerns only the UV divergences.
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Fig. 2. It is obvious that the divergence of the diagrams
with larger number of propagators will be smaller. For
instance, the initial flat-space diagram on Fig. 2 has qua-
dratic divergences and the last diagram in the first line has
only logarithmic divergences, exactly as all other diagrams
with one extra vertex. Moreover, the diagrams with two
extra vertices are all finite.

What are the counterterms needed to cancel the new
logarithmic divergences, e.g., the ones produced by the last
diagram in the first line of Fig. 2? As we already know, this
counterterm must be covariant and local. It is obvious that
there can not be derivatives of the scalar. Furthermore, the
dimensional consideration shows that the correct dimen-
sion of the counterterm can be provided only by including
second derivatives of h	
 functions. As we know, the only

invariant which can be constructed from the second de-
rivatives of the metric is the scalar curvature R. Therefore
the unique possible form of the counterterm is the integral
of

ffiffiffiffiffiffiffi�g
p

R’2; (75)

which is called the nonminimal term.

Finally, let us consider the last possible source of the
one-loop divergences which are the vacuum diagrams. The
generalization of the single one-loop vacuum diagram in
flat space to the curved space-time case is demonstrated in
Fig. 3. It is obvious that the situation is similar to the one
with the previous diagrams, in the sense that inserting the
new vertices will produce less divergent diagrams. The
divergences can be classified by a number of derivatives
of the metric, and we start from the zero-derivative case.
Both the initial diagram and its covariant version have only
quartic divergence for the massless scalar and, also, qua-
dratic and logarithmic divergences in the massive case. All
these divergences can be removed by renormalizing the
covariant cosmological constant term

R
d4x

ffiffiffiffiffiffiffi�g
p

��,

which must be therefore included into the classical action.
Let us note that the diagrams corresponding to the renor-
malization of the covariant cosmological constant term
have only one vertex and no derivatives of the external
h	
 functions.

Since the initial diagram has quadratic divergences, the
ones with one new vertex will have quadratic and (in case
of massive scalar) logarithmic divergence. The analysis is
pretty much the same as in the case of the diagrams from
Fig. 2. It is obvious, from the dimensional reasons and
covariance, that the quadratic divergence will be removed
by the counterterm linear in curvature and the logarithmic
ones by the counterterm proportional to

d4x
ffiffiffiffiffiffiffi�g

p
Rm2; (76)

where m is the mass of the scalar field. All these counter-
terms can be removed by renormalizing the Einstein-
Hilbert term, which is also (along with the cosmological
term) a necessary element of renormalizable theory in
curved space-time.
Finally, there are logarithmically divergent diagrams

with two new vertices and with four derivatives of the
external h	
 functions. The covariance and locality show

that the necessary counterterms have the following form

Z
d4x

ffiffiffiffiffiffiffi�g
p f�1R	
��R

	
�� þ �2R	
R
	
 þ �3R

2

þ �4r2Rg: (77)

It is very important that the possible divergences listed
above represent the complete set and no others can appear.
Moreover, this consideration can be immediately general-
ized for an arbitrary renormalizable (in flat-space-time)
theory including fermions, massless gauge vectors, and
scalars. It is easy to see that the counterterms listed above,
plus covariant generalizations of the familiar counterterms
in flat-space-time, still represent the complete set. Let us
note that the nonminimal term is possible only in the scalar
sector of the theory. According to the consideration per-
formed in Sec. V and VI, the described structure of diver-
gences is compatible with the gauge invariance of the
theory at quantum level.

FIG. 3. The single diagram with quartic divergences in flat
space leads to the diagrams with quartic, quadratic, and loga-
rithmic divergences due to external lines of h	
 with the new

vertices. Even though there are infinitely many new diagrams,
the divergences are well controlled by covariance.

FIG. 2. The single diagram with quadratic divergences in flat
space generates an infinite set of diagrams with external lines of
h	
. Some of those diagrams have quadratic or logarithmic

divergences, others are finite.
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The analysis of the one-loop divergences can be used to
establish the renormalization structure at higher loops. Let
us consider the two-loop divergences. The one-loop sub-
diagrams produce the divergences described above and can
be removed by adding minimal, nonminimal, and vacuum
local counterterms. As far as these counterterms have the
same structure as the classical action, and the nonlocal part
does not influence the second-loop counterterms, the part
of the one-loop diagrams which is relevant for the diver-
gences coming from the last integration, is essentially the
same as in flat-space, plus nonminimal term. Therefore at
the second-loop we meet exactly the same types of coun-
terterms as at the one-loop level, which we have described
above. The only difference will be the renormalization
coefficients which will have higher powers of coupling
constants.

The iteration procedure can be applied to higher loops
and we will always meet the same structure of renormal-
ization in curved space which was already described in [4]
(see further references therein). All in all, we can state that
the an arbitrary renormalizable in flat-space-time theory
can be properly generalized into curved space-time such
that it keeps its renormalizability.

VIII. CONCLUSIONS

We have considered the general scheme of gauge-
invariant and covariant renormalization of the quantum
gauge theory of matter fields in curved space-time. Using
the Batalin-Vilkovisky formalism, we have shown that in
the theory which admits gauge-invariant and diffeomor-
phism invariant regularization, these two symmetries hold
in the counterterms to all orders of the loops expansion.
The locality of the necessary counterterms can be shown
by the use of the Weinberg theorem if we complete the
theory of quantum matter by some version of quantum
gravity theory. As a result, one can always perform renor-
malization of the theory in the gauge invariant and gen-
erally covariant way. Of course, this feature does not
guarantee the multiplicative renormalizability of the the-

ory, exactly as in the flat-space-time quantum theory.
However, starting from a renormalizable theory in flat-
space-time and using a standard prescription [1,4], one
can always arrive at the theory which is renormalizable
in curved space-time as well.
Let us note that the renormalizability of the theory in

curved space should not be understood in such a way that
the quantum theory in curved space is as successful as the
one in flat space. Unfortunately, the real situation is far
from this. Let us remember that the renormalization of the
theory includes the following two steps: (i) removing di-
vergences; (ii) extracting finite part of effective action (or
of the Green functions, etc.). As we have shown in this
paper (see, also, previous publications [1,2,4] and referen-
ces therein), the (i) of the program formulated above can be
completed in a consistent and covariant way, such that the
gauge invariance of the theory can be preserved in the same
way as in flat-space-time.
Unfortunately, the part (ii) of the above program meets

very serious difficulties and here, the situation is, at
present, very far from the one in flat-space-time. One can
see the recent papers [5,27] for the review and discussion
of this interesting and challenging issue, which we will not
elaborate on here. At the same time, one can not under-
estimate the covariance of the renormalized effective ac-
tion, which we have shown to hold in all orders in the loop
expansion. This feature can be very important for it can
provide an essential guide in exploring the possible forms
of the quantum corrections, even if they can not be derived
explicitly.
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