
Non-Abelian black holes inD ¼ 5maximal gauged supergravity
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We investigate static non-Abelian black hole solutions of anti–de Sitter (AdS) Einstein-Yang-Mills-

dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged

supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a

spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations

admit an explicit solution supported by a non-Abelian SUð2Þ gauge potential, which has a logarithmically

growing mass term. In an extremal limit the horizon geometry becomes AdS2 � S3. If the dilaton is also

excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of

the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the

Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to

construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may

be generalized to dimensions other than five.
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Explicit analytic solutions for non-Abelian black hole or
soliton solutions of (gauged) supergravity theories are rare.
The first such example was that of the Chamseddine-
Volkov BPS monopole [1] of four-dimensional N ¼ 4
gauged supergravity. Its type IIB embedding can be inter-
preted as D5-branes wrapped on S2, and the D ¼ 4,N ¼
1 dual field theory interpretation was given in [2]. This
gravitating Bogomol’nyi-Prasad-Sommerfield (BPS) soli-
ton is supported both by the SUð2Þ gauge field and a scalar
field. The ground state of this supergravity truncation does
not have a constant scalar and so there is no AdS4 vacuum.
(For work on non-Abelian BPS black holes and Dirac-
‘t Hooft type monopoles in D ¼ 4, N ¼ 2 ungauged
supergravity, see [3] and references therein.)

Numerical results, which provide evidence for the ex-
istence of regular BPS monopole solutions in D ¼ 5,
N ¼ 4 gauged supergravity, were presented in [4]. The
lift to type IIB superstring theory was interpreted as
D5-branes wrapped on S3, and the dual D ¼ 3, N ¼ 1
field theory interpretation was given in [2]. (These latter
results can also be interpreted as those of D ¼ 7, N ¼ 2
gauged supergravity and its lifts to type IIB and M-theory,
analyzed earlier in [5]. See also the review [6] and refer-
ences therein.) Again these gravitating BPS solitons are
supported both by the SUð2Þ gauge field and a scalar field,
and thus are not asymptotic toAdS5. (For further numerical
analysis of black hole and soliton solutions of D ¼ 5,
N ¼ 4 gauged supergravity, see [7] and references
therein. Non-Abelian BPS solutions in five-dimensional
N ¼ 2 gauged supergravity have been discussed recently
in [8].)

It is believed that maximal (N ¼ 8) gauged supergrav-
ity in D ¼ 5 can be obtained from a Kaluza-Klein reduc-
tion of ten-dimensional type IIB supergravity on S5. The
only complete demonstrations so far are for the consistency
of the maximal Abelian Uð1Þ3 truncation [9], the N ¼ 4
gauged SUð2Þ �Uð1Þ truncation [10], the scalar truncation
in [11,12], and the SOð6Þ truncation [13]. The form of the
full metric reduction ansatz was conjectured in [14].
Non-Abelian solutions in any of the five-dimensional

gauged supergravities that have a known embedding in
type IIB supergravity are of particular interest because
they can be given a ten-dimensional interpretation within
string theory. We can find an exact solution in the SUð2Þ �
Uð1Þ gauged theory, whose type IIB embedding is given in
[10], in which the SUð2Þ Yang-Mills fields carry a mag-
netic charge. Unfortunately, however, the BPS condition
implies that the five-dimensional metric has the wrong
signature.
In this paper we consider static non-Abelian black hole

solutions of five-dimensional maximal (N ¼ 8) gauged
supergravity. We present a consistent truncation of this
theory whose bosonic sector comprises gravity, SUð2Þ �
SUð2Þ gauge fields, and a scalar field whose potential has
an AdS5 minimum. A further consistent truncation to just
an SUð2Þ gauge symmetry, with a fixed cosmological
constant (related to the gauge coupling), results in anti–
de Sitter (AdS) Einstein-Yang-Mills gravity. We show that
with the assumption of a spherically-symmetric ansatz for
the metric and SUð2Þ Yang-Mills potentials, the field equa-
tions for this truncated system may be derived from a
superpotential, and hence we can obtain first-order equa-
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tions of motion. These give rise to an explicit SUð2Þ black
hole solution which is asymptotic to AdS5, but which has a
logarithmically divergent mass term as a consequence of
the nonvanishing (constant) SUð2Þ gauge potential. This
solution was in fact obtained previously in [15].1 We find
that it admits an extremal limit, for which the SUð2Þ gauge
potential remains nonvanishing, and the horizon has the
geometry AdS2 � S2. These results are intriguing, since
the solutions have an embedding into D ¼ 5 maximal
gauged supergravity, and hence admit a further lift to
type IIB string theory.

Although one may expect that with a spherically-
symmetric ansatz the more general system with SUð2Þ �
SUð2Þ gauge fields and a dilatonic scalar should also admit
a description in terms of a superpotential, we have not
succeeded in finding it in this case. We can, nevertheless,
directly study the second-order equations of motion, and
investigate the asymptotic form for the more general solu-
tions with the additional ‘‘scalar charge.’’ We find evidence
that these non-Abelian Yang-Mills solutions again describe
black holes, albeit again with logarithmically divergent
mass.

We also find wormhole solutions of both D ¼ 4 and
D ¼ 5 maximal gauged supergravities. These are static
neutral domain-wall solutions, which are asympotic to
AdS4 and AdS5 respectively. However, in the interior a
scalar field diverges. We obtain these solutions by finding a
superpotential, and then solving the associated first-order
equations of motion. However, these solutions do not have
supersymmetric limits.

We start with the SOð6Þ truncation of D ¼ 5, N ¼ 8
gauged supergravity. It can be obtained from the S5 reduc-
tion of the SLð2;RÞ-singlet sector of type IIB supergravity,
for which the only bosonic fields in ten dimensions are the
metric and the self-dual 5-form. The full nonlinear ansatz
was given in [13]. The five-dimensional theory consists of
the metric, twenty scalars, which are in the 200 representa-
tion of SOð6Þ and are represented by the symmetric uni-
modular tensor Tij, with i being a 6 of SOð6Þ, together with
15 SOð6Þ Yang-Mills gauge fields, represented by the 1-
form potentials Aij, antisymmetric in i and j. The five-
dimensional Lagrangian is given by [13]

L 5 ¼ R � 1� 1

4
T�1
ij �DTjk ^ T�1

k‘ DT‘i � 1

4
T�1
ik T�1

j‘

� Fij ^ Fk‘ � V � 1� 1

48
�i1���i6

�
Fi1i2Fi3i4Ai5i6

� gFi1i2Ai3i4Ai5jAji6 þ 2

5
g2Ai1i2Ai3jAji4Ai5kAki6

�
;

(1)

where the potential V is given by

V ¼ 1

2
g2ð2TijTij � ðTiiÞ2Þ: (2)

The Yang-Mills field strength Fij and covariant derivative
DTij are defined by

Fij ¼ dAij þ gAik ^ Akj;

DTij ¼ dTij þ gAikTkj þ gAjkTik:
(3)

We now perform a further truncation of SOð6Þ to SUð2Þ �
SUð2Þ, by setting

A12 ¼ A3; A23 ¼ A1; A31 ¼ A2;

A45 ¼ ~A3; A56 ¼ ~A1; A64 ¼ ~A2

T11 ¼ T22 ¼ T33 ¼ X; T44 ¼ T55 ¼ T66 ¼ X�1;

(4)

with the remaining fields vanishing. This truncation is
consistent provided that the additional constraint

Fi ^ ~Fj ¼ 0 (5)

is imposed, where

Fi ¼ dAi þ 1

2
g�ijkAj ^ Ak;

~Fi ¼ d ~Ai þ 1

2
g�ijk ~Aj ^ ~Ak:

(6)

The fields satisfy equations of motion that can be derived
from the Lagrangian

L ¼ R � 1� 3

2
X�2 � dX ^ dX� 1

2
X�2 � Fi ^ Fi

� 1

2
X2 � ~Fi ^ ~Fi þ 3

2
g2ðX2 þ X�2 þ 6Þ; (7)

together with the constraint (5).
We may now look for spherically-symmetric static so-

lutions, by making the ansatz

ds25 ¼ ��2dt2 þ d�2 þ 1

4
�2ð�2

1 þ �2
2 þ �2

3Þ;
Ai ¼ g�1��i; ~Ai ¼ g�1 ~��i;

(8)

where the functions �, �, �, ~�, and the scalar X are taken
to depend only on the radial coordinate �. The �i are
SUð2Þ left-invariant 1-forms, satisfying d�i ¼
� 1

2 �
ijk�j ^ �k. Note that the metric ansatz is invariant

under SOð4Þ � SUð2ÞL � SUð2ÞR rotations of the S3 level
surfaces. The Yang-Mills potentials, and field strengths,
are invariant under SUð2ÞL, while they rotate covariantly
under SUð2ÞR. The energy-momentum tensor is therefore
invariant under the full SOð4Þ action.

1Other recent works on non-Abelian solutions in various other
Einstein-Yang-Mills systems can be found in [16–20].
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The Yang-Mills equations imply that

ð�� _�e��Þ� � 4�

�
�ð�� 1Þð2�� 1Þe�� ¼ 0;

ð�� _~�e�Þ� � 4�

�
~�ð~�� 1Þð2~�� 1Þe� ¼ 0;

(9)

where we have defined

X � eð1=2Þ�; (10)

and a dot denotes a derivative with respect to �. The scalar
equation of motion is

ð��3 _�Þ�
2��3

¼ e��

�
g2 � 4 _�2

g2�2
� 16�2ð�� 1Þ2

g2�4

�

� e�
�
g2 � 4 _~�2

g2�2
� 16~�2ð~�� 1Þ2

g2�4

�
; (11)

and the Einstein equations are given by

€�

�
þ 3 _� _�

��
¼

�
2 _�2

g2�2
þ 8�2ð�� 1Þ2

g2�4

�
e�� þ

�
2 _~�2

g2�2
þ 8~�2ð~�� 1Þ2

g2�4

�
e� þ g2ðcosh�þ 3Þ;

€�

�
þ 3 €�

�
¼ �

�
4 _�2

g2�2
� 8�2ð�� 1Þ2

g2�4

�
e�� �

�
4 _~�2

g2�2
� 8~�2ð~�� 1Þ2

g2�4

�
e� þ g2ðcosh�þ 3Þ þ 3

8
_�2;

2

�2
� _� _�

��
� 2 _�2

�2
�

€�

�
¼ 8�2ð�� 1Þ2

g2�4
e�� þ 8~�2ð~�� 1Þ2

g2�4
e� � g2ðcosh�þ 3Þ:

(12)

The constraint (5) implies that

_� ~�ð~�� 1Þ þ _~��ð�� 1Þ ¼ 0: (13)

From this, it follows that

�~� ¼ cð�� 1Þð~�� 1Þ; (14)

where c is an integration constant. Combining (14) and (9),
we obtain the first-order constraint

�2½c� ðc� 1Þ�� _� _� ¼ ðc� 1Þ½4�2ð�� 1Þ2 � �2 _�2�:
(15)

Finding the general solution to the equations of motion is
likely to be very difficult. We can, however, obtain explicit
exact solutions in some special cases.

We first consider the case where the Yang-Mills fields
are nonvanishing, and the integration constant c in (14) is
chosen to be c ¼ 1. Equation (15) then implies that either

_� ¼ 0 or _� ¼ 0. For _� ¼ 0, it follows from (14) that ~� ¼
1� �, and from (9) that the only nontrivial solution is � ¼
1
2 ¼ ~�, in which case the scalar equation (11) implies that

we can also set � ¼ 0. The reduced equations of motion
can now be derived from an effective Lagrangian L ¼ T �
U with

T ¼ 6�0�0

��
þ 6�02

�2
;

U ¼ � 3

32
�2�2

�
� 1

2g2
þ �2 þ 2g2�4

�
;

(16)

where a prime denotes a derivative with respect to �,
defined by d� ¼ 1

8��
3d�.

Expressing the kinetic terms T as

T ¼ 1

2
gij

dXi

d�

dXj

d�
; (17)

where Xi ¼ ð�;�Þ, we find that the potential U can be

written in terms of a ‘‘superpotential’’ W as

U ¼ � 1

2
gij

@W

@Xi

@W

@Xj ; (18)

where

W ¼ 3

4
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mþ �2 þ g2�4 � logðg�Þ

g2

s
: (19)

The parameter M is an integration constant, which can be
chosen arbitrarily. The existence of the superpotential im-
plies that the second-order equations of motion are satis-
fied if the first-order equations dXi=d� ¼ gij@W=ð@XjÞ
hold. Thus we obtain the equations

_� ¼ �ð�1þ 2g2Mþ 2g4�4 þ 2 logðg�ÞÞ
2g2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Mþ �2 þ g2�4 � g�2 logðg�Þp
_� ¼ ��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mþ �2 þ g2�4 � g�2 logðg�Þ

q
:

(20)

These can be solved, giving

ds2 ¼ �fdt2 þ dr2

f
þ 1

4
r2ð�2

1 þ �2
2 þ �2

3Þ;

Ai ¼ 1

2g
�i ¼ ~Ai; f ¼ 1þ g2r2 �Mþ g�2 logðgrÞ

r2
:

(21)

Note that because the superpotential W itself has the
arbitrary constant of integration M, the solution (21) of
the first-order equations is in fact the most general solution
also of the original second-order field equations. The so-
lution describes an SUð2Þ Yang-Mills black hole with
logarithmically divergent mass. The horizon is located at
the largest root of the function f.
The solution has an extremal limit, for which fðrÞ and

f0ðrÞ vanish simultaneously at r ¼ r0, when

M ¼ 1þ ffiffiffi
5

p þ logð8ð7þ 3
ffiffiffi
5

p ÞÞ
8g2

; (22)

and
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g2r20 ¼
1

4
ð ffiffiffi

5
p � 1Þ: (23)

The near-horizon geometry is then a direct product of
AdS2 � S3, with the metric given by

ds2 ¼�2ds22þ�2d�2
3; �2 ¼ 5� ffiffiffi

5
p

40g2
; �2 ¼

ffiffiffi
5

p �1

4g2
:

(24)

It is worth pointing out that it is the Yang-Mills fields that
are responsible for the occurrence of the logarithmic term
in the metric (21). If the Yang-Mills fields are instead set to
zero, the logarithmic term disappears and the solution
becomes the Schwarzschild-AdS black hole. That nonsu-
persymmetric solutions such as the Schwarzschild black
hole can be obtained from first-order equations derived
from a superpotential was previously observed in [21].

The solution can be lifted back to D ¼ 10, by using the
reduction ansatz given in [13]. The ten-dimensional metric
is given by

dŝ210 ¼ ds25 þ
1

g2

��
d	1 þ 1

2
ð	2�3 �	3�2Þ

�
2

þ
�
d	2 þ 1

2
ð	3�1 �	1�3Þ

�
2 þ

�
d	3 þ 1

2
ð	1�2

�	2�1Þ
�
2 þ

�
d	4 þ 1

2
ð	5�3 �	6�2Þ

�
2

þ
�
d	5 þ 1

2
ð	6�1 �	4�3Þ

�
2

þ
�
d	6 þ 1

2
ð	4�2 �	5�1Þ

�
2
�
; (25)

where 	i	i ¼ 1. The Ramond-Ramond (RR) 5-form field
takes a somewhat involved structure, supported by the five-
sphere coordinates; it can be readily derived from the
expressions given in [13]. Thus the type IIB solution is
supported by the RR 5-form with a specific non-Abelian

deformation of the five-sphere coordinates, resulting in an
asymptotically AdS5 space-time supported by D3-brane
fluxes. This structure is different from those of [6,22]
where a five-brane wraps a 2-cycle in the internal Ricci-
flat space, resulting in aD ¼ 4N ¼ 1 dual field theory on
the world-volume of the five-brane.
We may also consider the more general case of non-

Abelian solutions where the dilatonic scalar is also excited.
For simplicity, we consider only the case for � ¼ ~� ¼ 1

2 ,

so that the Yang-Mills equations are trivially satisfied. The
equations of motion for the spherically-symmetric ansatz
can then be derived from the Lagrangian L ¼ T �U, with

T ¼ 6�0�0

��
þ 6�02

�2
� 3

8
�02;

U ¼ � 3

32
�2�2

�
� 1

2g2
cosh�þ 1

2
g2�4 cosh�

þ �2 þ 3

2
g2�4

�
: (26)

Reading off gij using (17), and then expressing U in terms

of a superpotential W as in (18), we find that W is deter-
mined by the equation

�
@Ŵ2

@�
� 8

�
@Ŵ

@�

�
2 ¼ 3g2�4 þ 2�2 þ

�
g2�4 � 1

g2

�

� cosh�; (27)

where

Wð�;�;�Þ ¼ 3��

4
Ŵð�;�Þ: (28)

We have not been able to solve this equation explicitly.
Although we are unable to obtain the exact solution, we

may nevertheless consider its large r expansion, which we
find to be given by

ds2 ¼�N2dt2þdr2

f
þ 1

4
r2ð�2

1þ�2
2þ�2

3Þ; Ai ¼ 1

2g
�i ¼ ~Ai;

N2 ¼ 1þg2r2�
� 1

g2r2
þq2ð8
� 3Þ

32g2r6
�g2ð40
� 1Þ

800g4r8
þq2ð1200
2� 60ð13þ 20g4q2Þ
� 13þ 550g4q2Þ

9600g6r10

�q2ð4492320
2� 56ð56713þ 25200g4q2Þ
þ 3ð63461þ 64400g4q2ÞÞ
39513600g8r12

þ��� ;
f

N2
¼ 1þq2

r4
þq2ð24
� 1Þ

32g4r8
�q2ð120
� 13Þ

225g6r10
þq2ð2016
2� 48ð3þ 8g4q2Þ
� 1þ 160g4q2Þ

3072g8r12
þ��� ;

sinh
1

2
�¼ q

r2

�
1þ 


4g4r4
� 12
� 1

72g6r6
þ 288
2� 128g4q2
� 1þ 32g4q2

2048g8

� 631200
2� 40ð8053þ 3600g4q2Þ
þ 9ð4303þ 4400g4q2Þ
2880000g10r10

1

82944000g12r12
ð8100000
3þ 28800ð256

� 285g4q2Þ
2þ 15ð�508631þ 141600g4q2þ 172800g8q4Þ
1093091þ 18000g4q2� 756000g8q4Þþ �� �
�
;

(29)
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where 
 is given by


 ¼ 1þ g2Mþ logðgrÞ: (30)

Although we have not obtained the exact solution, the form
of the large-r expansion indicates that it describes a black
hole, at least provided that q is sufficiently small or thatM
is sufficiently large. To see this, we note that for the case
q ¼ 0, the solution reduces to the exact one that we dis-
cussed earlier. The horizon is located at rþ, where M ¼
r2þ þ r4þ � logrþ. (Here we set g ¼ 1 for simplicity.) With
q � 0, the horizon is shifted to r0þ where r0þ is defined by
Nðr0þÞ ¼ 0. It is straightforward to see that

r0þ � rþ ¼ O
�
q2

r3þ

�
: (31)

We may alternatively consider a special case where the
Yang-Mills fields are set to zero, so that the solution then
involves only the metric and a scalar field. The scalar
potential fits into the general pattern discussed in the
appendix. Following the discussion in the appendix, we
find that there exists a domain wall solution

ds25 ¼�ðkþ g2r2Þdt2 þ dr2

ðkþ g2r2Þð1þ q2

r4
Þ
þ r2d�2

3;k;

sinh
1

2
�¼ q

r2
; (32)

where k ¼ 1; 0 or ¼ �1 for spherical, flat, or hyperbolic
spatial sections. This solution can also be lifted back to
D ¼ 10, giving rise to a solution of type IIB supergravity,
using the results of [13]:

dŝ210 ¼
�
Xc2 þ s2

X

�
2
�
ds25 þ g�2

�
d�2 þ c2

X2c2 þ s2
d�2

2

þ s2

s2X�2 þ c2
d ~�2

2

��
;

Ĝð5Þ ¼ gðX2c2 þ X�2s2 þ 3Þ�ð5Þ � 2sc

g
X�1 � dX ^ d�;

X ¼ q

r2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

r4

s
; c ¼ cos�; s ¼ sin�; (33)

where the self-dual 5-form is given by F̂ð5Þ ¼ Ĝð5Þ þ �̂Ĝð5Þ.
The domain wall solution (32) is massless and has a

naked singularity at r ¼ 0. As we have shown in the
appendix for a general class of such domain walls in
arbitrary dimensions, we can also add a mass term. The
exact form of the solution is unknown, but the large r
expansion can be obtained straightforwardly. Here we
present the solution in higher orders:

N2 ¼ kþ g2r2 �M

r2
þMq2

4r6
� kMq2

20g2r8

þMq2ð4k2 þ 15g2M� 15g4q2Þ
120g4r10

þ � � � ;
f

N2
¼ 1þ q2

r4
þ 3Mq2

4g2r8
� 8kMq2

15g4r10
þ � � � ;

sinh
1

2
� ¼ 1þ M

4g2r4
� kM

6g4r6

þMð8k2 þ 9g2M� 4g4q2Þ
64g6r8

� kMð120þ 263g2M� 60g4q2Þ
1200g8r10

þ � � � : (34)

As in our previous discussion of the non-Abelian black
holes, since the q ¼ 0 solution here describes the
Schwarzschild-AdS black hole, and the effect of the q
parameter is to modify terms at higher orders in 1=r, it
follows that the solution with q � 0 will still describe a
black hole, at least if q is sufficiently small.
In summary, we have in this paper studied the system of

equations that arises from a consistent truncation of five-
dimensional maximal gauged supergravity, in which just
the metric, a dilatonic scalar, and the gauge fields of
SUð2Þ � SUð2Þ are retained. Consistency requires that
the gauge fields satisfy the constraint (5). Our focus has
been on seeking spherically-symmetric solutions to this
system. In the two special cases where either the dilaton
is set to zero and a further truncation to SUð2Þ gauge
symmetry is performed, or where the dilaton is retained
but the gauge fields are set to zero, we have been able to
describe the system in terms of a superpotential. This
allows us to obtain first-order equations of motion, which
can be straightforwardly solved analytically. The first of
these cases leads to a non-Abelian black hole solution, with
logarithmically-diverging mass, which was first obtained
in [15]. The second case gives rise to a spherically-
symmetric domain wall solution. In the more general
situation where both the Yang-Mills fields and the dilaton
are excited, we have not succeeded in describing the
system in terms of a superpotential. Nevertheless, we
have studied the asymptotic behavior of spherically-
symmetric solutions, and found that more general non-
Abelian black holes arise here also. This discussion is
extended, in an appendix, to gravity plus dilaton systems
in arbitrary dimensions.

M. C., H. L. and C.N. P. are grateful to Sheridan Lorenz
and the Mitchell Family Foundation for hospitality at
Cook’s Branch Conservancy, and H. L. and C.N. P. are
grateful to the Department of Physics and Astromony at
the University of Pennsylvania for hospitality, during the
course of this work. The work of M.C. is supported by
DOE grant DE-FG05- 95ER40893-A020, NSF RTG grant
DMS-0636606 and the Fay R. and Eugene L. Langberg

NON-ABELIAN BLACK HOLES IN D ¼ 5 MAXIMAL . . . PHYSICAL REVIEW D 81, 044023 (2010)

044023-5



Chair. The work of C.N. P. is supported in part by DOE
grant DE-FG03-95ER40917.

APPENDIX: A SPHERICALLY-SYMMETRIC
DOMAIN WALL SOLUTION

In this appendix, we consider a general class of
D-dimensional Lagrangians, given by

LD ¼ e

�
R� 1

2
ð@�Þ2 � V

�
;

V ¼ �ðD� 2Þg2
�
D� 2þ cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD� 3Þ
D� 2

s
�

��
: (A1)

The scalar potential can be expressed in terms of a super-
potential w as

V ¼
�
dw

d�

�
2 � D� 1

2ðD� 2Þw
2;

w ¼ ffiffiffi
2

p ðD� 2Þg cosh
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D� 3

2ðD� 2Þ

s
�

�
:

(A2)

Consider the spherically-symmetric ansatz

ds2 ¼ ��2dt2 þ d�2 þ �2d�2
n;k; (A3)

where n ¼ D� 2, and k ¼ �1, 1, and 0, corresponding to
hyperbolic, flat, and sphere. The scalar and Einstein equa-
tions of motion are given by

ð��n _�Þ:
��n

� dV

d�
¼ 0;

€�

�
þ n _� _�

��
þ V

n
¼ 0;

� €�

�
� n €�

�
� 1

2
_�2 � V

n
¼ 0;

ðn� 1Þk
�2

� _� _�

��
� ðn� 1Þ _�2

�2
�

€�

�
� V

n
¼ 0:

(A4)

These can be derived from the Lagrangian L ¼ T �U,
where the kinetic and potential terms are given by

T ¼ 2ðD� 2Þ�0�0

��
þ ðD� 2ÞðD� 3Þ�02

�2
� 1

2
�02;

U ¼ �2�2ðD�3Þð�2V � ðD� 2ÞðD� 3ÞkÞ:
(A5)

Here, a prime denotes a derivative with respect to a new
radial coordinate �, which is defined by d� ¼ ��nd�. We
find that withU given by (A5), there exists a superpotential
W, à la (18), given by

W ¼ 2ðD� 2Þ��D�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g2�2

q
cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 3

2ðD� 2Þ

s
�

�
:

(A6)

The resulting first-order equations of motion are

_� ¼
g2�� coshð

ffiffiffiffiffiffiffiffiffiffiffiffi
D�3

2ðD�2Þ
q

�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g2�2

p ;

_� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g2�2

q
cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 3

2ðD� 2Þ

s
�

�
;

_� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD� 3ÞðD� 2Þp

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g2�2

q
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 3

2ðD� 2Þ

s
�

�
:

(A7)

Their solution gives

ds2D ¼ �ðkþ g2r2Þdt2

þ dr2

ðkþ g2r2Þð1þ q2

r2ðD�3ÞÞ
þ r2d�2

D�2;�;

sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 3

2ðD� 2Þ

s
�

�
¼ q

rD�3
: (A8)

The form of the scalar potential (A2) appears rather
frequently in gauged supergravities. The corresponding
supersymmetry transformation rules for such a truncated
system are typically given by

�cM ¼ DM"� w

2
ffiffiffi
2

p ðD� 2Þ�M";

� ¼ 1

2
ffiffiffi
2

p @M��M"þ 1

2

dw

d�
":

(A9)

It follows from � ¼ 0 that the existence of supersymme-
try would imply that

_� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD� 3ÞðD� 2Þ

p
g sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 3

2ðD� 2Þ

s
�

�
: (A10)

Comparing this to the last equation in (A7), the only
solution with supersymmetry is when k ¼ 0. In fact it is
easy to see that (A9) cannot be supersymmetric for k � 0.
If it were, there would be a smooth limit when g ¼ 0, and
this would lead to a solution supported by the metric and a
free scalar only, which could not possibly be
supersymmetric.
The scalar potential for D ¼ 4 occurs in four-

dimensional N ¼ 4, SOð4Þ gauged supergravity. The ex-
plicit reduction ansatz that gives this theory from D ¼ 11
supergravity was found in [23]. We can use the ansatz to
lift the (k ¼ 1) solution, given by (A8) withD ¼ 4, back to
D ¼ 11, giving
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dŝ211 ¼ �1=3

�
�ð1þ g2r2Þdt2 þ dr2

ð1þ g2r2Þð1þ q2

r2
Þ

þ r2d�2
2 þ

4

g2

�
d
2 þ c2

c2X2 þ s2
d�2

3

þ s2

s2X�2 þ c2
d ~�2

3

��
;

F̂ð4Þ ¼ �gð2þ X2c2 þ X�2s2Þ�ð4Þ � 4sc

g
X�1 � dX ^ d
;

� ¼ ðc2X2 þ s2Þðs2X�2 þ c2Þ; X ¼ q

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

r2

s
;

(A11)

where c � cos
 and s � sin
.
The domain wall solutions (A8) we obtained so far have

zero mass, and a naked singularity. It is possible for the
solution to have nonvanishing mass, such that the second-
order equations of motion [but no longer the first-order
equations (A7) following from the superpotential (A6)] are
still satisfied. The solution then develops a horizon. We are
unable to find the exact solution for this case. However, the
large r expansion of the solution can be obtained, and is

given by

ds2D ¼�N2dt2þdr2

f
þ r2d�2

D�2;k;

N2 ¼ kþg2r2� M

rD�3
þ ðD� 1ÞMq2

2ð3D� 7Þr3ðD�3Þ

þ � � � ;
f

N2
¼ 1þ q2

r2ðD�3Þ þ
4ðD� 2ÞðD� 3ÞMq2

ðD� 1Þð3D� 7Þr3D�7

þ��� ;

sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 3

2ðD� 2Þ

s
�

�
¼ q

rD�3

�
1þ ðD� 3ÞM

2ðD� 1Þg2rD�1
þ���

�
:

(A12)

For vanishing q, the solution becomes the Schwarzschild-
AdS black hole, while for vanishing M, it reduces to the
singular domain wall described earlier. Since the effect of
introducing q is to modify the behavior only at higher
inverse powers of r, it is clear that for large enough M or
small enough nonzero q, the solution still describes a black
hole.
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