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Analytical solutions of Maxwell equations in background spacetime of a black hole in a braneworld

immersed in an external uniform magnetic field have been found. The influence of both magnetic and

brane parameters on the effective potential of the radial motion of a charged test particle around a slowly

rotating black hole in a braneworld immersed in a uniform magnetic field has been investigated by using

the Hamilton-Jacobi method. An exact analytical solution for dependence of the radius of the innermost

stable circular orbits (ISCO) rISCO from the brane parameter for the motion of a test particle around a

nonrotating isolated black hole in a braneworld has been derived. It has been shown that the radius rISCO is

monotonically growing with the increase of the module of the brane tidal charge. A comparison of the

predictions on rISCO of the braneworld model and of the observational results of ISCO from relativistic

accretion disks around black holes provided the upper limit for the brane tidal charge & 109 cm2.
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I. INTRODUCTION

The idea that our Universe might be a three-brane [1],
embedded in a higher dimensional spacetime, has recently
attracted much attention. For astrophysical interests, static
and spherically symmetric exterior vacuum solutions of the
braneworld models were initially proposed by Dadhich
et al. [2,3] which have the mathematical form of the
Reissner-Nordström solution, in which a tidal Weyl pa-
rameter Q� plays the role of the electric charge squared of
the general relativistic solution. The so-called Dadhich-
Maartens-Papodopoulos-Rezania (DMPR) solution was
obtained by imposing the null energy condition on the
three-brane for a bulk having a nonzero Weyl curvature.

Observational possibilities of testing the braneworld
black hole models at an astrophysical scale have been
intensively discussed in the literature during the last sev-
eral years, for example, through the gravitational lensing
[4–9], the motion of test particles [10], and the classical
tests of general relativity (perihelion precession, deflection
of light, and the radar echo delay) in the Solar System [11].
The role of the tidal charge in orbital models of high-
frequency quasiperiodic oscillations observed in neutron
star binary systems has been also studied [12]. In paper
[13] the energy flux, the emission spectrum, and accretion
efficiency from the accretion disks around several classes
of static and rotating braneworld black holes have been
obtained. The complete set of analytical solutions of the
geodesic equation of massive test particles in higher di-
mensional spacetimes which can be applied to braneworld
models is provided in the recent paper [14]. Recently the
deflection angle of light rays caused by a massive black
hole in a braneworld in the weak lensing approach has been

derived, up to the second order in perturbation theory
[15,16]. The influence of the tidal charge onto profiled
spectral lines generated by radiating tori orbiting in the
vicinity of a rotating black hole has been studied in paper
[17]. Authors showed that with lowering the negative tidal
charge of the black hole, the profiled line becomes flatter
and wider, keeping their standard character with flux
stronger at the blue edge of the profiled line. The role of
the tidal charge in the orbital resonance model of quasi-
periodic oscillations in black hole systems has been inves-
tigated in paper [18]. The influence of the tidal charge
parameter of the braneworld models on some optical phe-
nomena in rotating black hole spacetimes has been exten-
sively studied in paper [19].
A braneworld corrections to the charged rotating black

holes and to the perturbations in the electromagnetic po-
tential around black holes are studied in [20,21]. Our
preceding paper [22] was devoted to the stellar magnetic
field configurations of relativistic stars in dependence on
brane tension. Here we plan to study electromagnetic fields
and particle motion around a rotating black hole in a
braneworld immersed in a uniform magnetic field. The
study of the particle orbits could provide an opportunity
for constraining the allowed parameter space of solutions,
and to provide a deeper insight into the physical nature and
properties of the corresponding spacetime metrics.
Therefore, this may open up the possibility of testing
braneworld models by using astronomical and astrophys-
ical observations around black holes, in particular, obser-
vationally measured ISCO radii around black holes in
principle may give definite constraints on the numerical
value of the brane tidal charge. The motion of test particles
near black holes immersed in an asymptotically uniform
magnetic field and some gravity surrounding structure,
which provides the magnetic field has been intensively
studied in paper [23]. The author has calculated the binding
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energy for spinning particles on circular orbits. The bound
states of the massive scalar field around a rotating black
hole immersed in the asymptotically uniform magnetic
field is considered in paper [24].

The paper is organized as follows. In Sec. II we look for
exact solutions of vacuumMaxwell equations in the space-
time of the rotating black hole in a braneworld immersed in
a uniform magnetic field. In Sec. III the motion of charged
particles around a black hole in a braneworld immersed in
a uniform magnetic field has been studied in the slow
rotation approximation. We obtain the effective potential
for any particle with a specific angular momentum, orbit-
ing around the black hole, as a function of the magnetic
field, and of the tidal charge of the black hole. The exact
expression for the dependence of the radius of an inner-
most stable circular orbit from the brane charge has been
found in Sec. IV for the test particle moving in the equa-
torial plane of the black hole in a braneworld when both
rotation and magnetic parameters are neglected for the
simplicity of calculations. Then we present a clear deriva-
tion of the capture cross section of slowly moving test
particles by a black hole in a braneworld. The exact ex-
pressions for the critical angular momentum of the test
particle and corresponding radius of unstable circular or-
bits of the particle around the black hole have been pre-
sented. For different tidal charges, the values of the radii of
the marginally stable orbits around a black hole in a brane-
world are also plotted. The conclusion and discussion of
the obtained results can be found in Sec. V.

We use in this paper a system of units in which c ¼ 1, a
spacelike signature ð�;þ;þ;þÞ, and a spherical coordi-
nate system ðt; r; �; ’Þ. Greek indices are taken to run from
0 to 3, Latin indices from 1 to 3, and we adopt the standard
convention for the summation over repeated indices. We
will indicate vectors with bold symbols (e.g. B).

II. ROTATING BLACK HOLE IN A BRANEWORLD
IMMERSED IN A UNIFORM MAGNETIC FIELD

The spacetime metric of the rotating black hole in a
braneworld in coordinates t, r, �, ’ takes the form (see e.g,
[20])

ds2 ¼ ��� a2sin2�

�
dt2

þ ð�þ a2sin2�Þ2 � �a2sin2�

�
sin2�d’2 þ�

�
dr2

þ �d�2 � 2
�þ a2sin2���

�
asin2�d’dt; (1)

where � ¼ r2 þ a2cos2�, � ¼ r2 þ a2 � 2MrþQ�, Q�
is the bulk tidal charge,M is the total mass, and a is related
to the angular momentum of the black hole.

It is not difficult to show that the electromagnetic cor-
rections created by the external magnetic field being pro-
portional to the electromagnetic energy density are rather

small for black holes. Indeed if B is the external magnetic
field around a black hole in a braneworld of total massM at
radius r, these corrections are at most

B2r3

8�Mc2
’ 2:5� 10�3

�
B

103 G

�
2
�3 �MJ

M

��
r

1:5 km

�
3
:

(2)

A Killing vector �� being an infinitesimal generator of
an isometry satisfies to the equation

��;� þ ��;� ¼ 0; (3)

which can be used in order to rewrite the equation

��;�;� � ��;�;� ¼ ���R����; (4)

which defines the Riemann curvature tensor R���� in the

form

��;�
;� ¼ ��R��

�� ¼ R�
��

�: (5)

For the spacetime of the rotating black hole in the brane-
world the right-hand side of Eq. (5) can be expressed as
R�

��
� ¼ 	� and consequently the Maxwell equations as

F��
;� ¼ �2��;�

;� þ 2	� ¼ 0; (6)

where 	� ¼ fQ�=M; 0; 0; 0g (see [13,20,25]) and the elec-
tromagnetic field tensor F�� can be selected as

F�� ¼ C0ð��;� � ��;�Þ þ f��

¼ �2C0ð��;�Þ þ a�;� � a�;�: (7)

Here C0 is constant and 4-potential a� being responsible
for the tidal charge can be found from the equationha� ¼
	�.
Finally, one can express the electromagnetic potential as

a sum of two contributions

A� ¼ ~A� þ a�: (8)

where ~A� is the potential being proportional to the Killing

vectors. To find the solution for ~A� we exploit the existence
in this spacetime of a timelike Killing vector ��

ðtÞ and

spacelike one ��
ð’Þ being responsible for stationarity and

the axial symmetry of geometry, such that they satisfy the
Killing equations (3) and consequently the wavelike equa-
tions (in vacuum spacetime)h�� ¼ 0, which gives a right

to write the solution of vacuumMaxwell equationsh ~A� ¼
0 for the vector potential ~A� of the electromagnetic field in
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the Lorentz gauge in the simple form ~A� ¼ C1�
�
ðtÞ þ

C2�
�
ð’Þ [26]. The constant C2 ¼ B=2, where the gravita-

tional source is immersed in the uniform magnetic field B
being parallel to its axis of rotation. The value of the
remaining constant C1 ¼ aB can be easily calculated
from the asymptotic properties of spacetime (1) at the
infinity (see e.g. our preceding paper [27] for the details
of typical calculations).

The second part a� of the total vector potential of the
electromagnetic field is produced by the presence of the
tidal charge and has the following solution: a� ¼
fkQ�=r; 0; 0; 0g, where expression for the constant k ¼
�aB=6M2 can be easily found from the asymptotic prop-
erties of spacetime (1) at the infinity [27].

Finally the components of the 4-vector potential A� of
the electromagnetic field will take a form

A0 ¼ aB

2�
½ð2� sin2�Þða2sin2�� �Þ ��sin2��

�
�
1� 2Mr�Q�

�

�
kQ�

r
;

A1 ¼ A2 ¼ 0;

A3 ¼ Bsin2�

2�
½ð�� �� a2Þð2� sin2�Þa2

þ �ð�þ sin2�Þ� � 2Mr�Q�

�

kQ�

r
asin2�: (9)

The nonvanishing orthonormal components of the elec-
tromagnetic fields measured by zero angular momentum
observers (ZAMO) with the four-velocity components

ðu�ÞZAMO � Kffiffiffiffiffiffiffiffi
��

p
�
1; 0; 0;

a2sin2�

�� a2sin2�
� 1

�
;

ðu�ÞZAMO �
ffiffiffiffiffiffiffiffi
��

p
K

ð1; 0; 0; 0Þ;
(10)

are given by expressions

Er̂ ¼ aB

�2

�
2ðM� rÞ þMsin2�þ sin4�

�� a2sin2�
ð�� �þ a2sin2�Þ

�
r�þ a2ð2� sin2�Þ r�� a2rþ ðM� rÞ�

�

�

þ r

�
ð2� sin2�Þ½�2 þ ð�� a2sin2�Þð2� sin2�Þ�

�
K

� kQ�asin2�
�3r2

�
4Q�r2 � 8Mr3 ��2 þ 4Mr3 �Q��� 2Q�r2

�� a2sin2�
a2sin2�

�
K; (11)

E�̂ ¼ aB sin2�

2�2
ffiffiffiffi
�

p
�
a2sin2�����þ a2sin2�� �þ �

�
a2ð2� sin2�Þ þ a2sin2�� �þ �

�csc2�� a2

�
�
ð�þ a2ð2þ cos2�Þ ��Þa2sin2�þ �ð�þ a2sin2�Þ � �� �þ a2

�
a2ð�þ a2sin2�Þð2� sin2�Þ

��
K

þ kQ�a sin2�
r�

ffiffiffiffi
�

p
�
2Mr�Q�

�

r2 þ a2

�

asin2�

�� a2sin2�
� 1

�
K; (12)

Br̂ ¼ B csc�

2K�
½ð�þ a2ð2þ cos2�Þ ��Þa2sin2�

þ�ð�þ a2sin2�Þ ����þ a2

�
a2ð�þ a2sin2�Þ

� ð2� sin2�Þ
�
þ 2Mr�Q�

�

r2 þ a2

Kr
kQ�asin2�;

(13)

B�̂ ¼ B sin�
ffiffiffiffi
�

p
K�

�
r�þ a2ð2� sin2�Þ

� r�� a2rþ ðM� rÞ�
�

�
þ

ffiffiffiffi
�

p
K

� Q��þ 4Mr3 � 2Q�r2

r2�
kQ�asin2�; (14)

which depend on the angular momentum and tidal
charge in a complex way and where we have used K ¼
ðð�þ a2sin2�Þ2 � a2�sin2�Þ1=2. In the limit of flat space-
time, i.e. for M=r ! 0, Ma=r2 ! 0, and Q�=r2 ! 0,
expressions (11)–(14) give the following limiting expres-
sions: Br̂ ¼ B cos�, B�̂ ¼ B sin�, Er̂ ¼ E�̂ ¼ 0, which
coincide with the solutions for the homogeneous magnetic
field in Newtonian spacetime. Here ^ (hat) stands for the
orthonormal components of the electric and magnetic
fields. The uniform magnetic field in the background
of a five dimensional black hole has been extensively
studied in [28]. In particular, authors presented exact ex-
pressions for two forms of an electromagnetic tensor
and the electrostatic potential difference between the
event horizon of a five dimensional black hole and the
infinity.
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III. CHARGED PARTICLE MOTION IN THE
VICINITY OF A ROTATING BLACK HOLE IN A

BRANEWORLD

In this section we investigate in detail the motion of
charged particles around a rotating black hole in a brane-
world in an external magnetic field given by a 4-vector
potential (9) with the aim to find a way for astrophysical
evidence for either the existence or nonexistence of a tidal
charge Q�. For simplicity of calculations we assume pa-
rameter a to be small, and obtain the exterior metric for a
slowly rotating compact object in the braneworld in the
following form:

ds2 ¼ �A2dt2 þH2dr2 þ r2d�2 þ r2sin2�d’2

� 2 ~!ðrÞr2sin2�dtd’; (15)

here

A2ðrÞ �
�
1� 2M

r
þQ�

r2

�
¼ H�2ðrÞ; (16)

is the corresponding metric function of the tidal charged
compact object of the solution [2] for the metric outside the
gravitating object and ~!ðrÞ ¼ !ð1�Q�=2rMÞ ¼
2Ma=r3ð1�Q�=2rMÞ.

The Hamilton-Jacobi equation

g�


�
@S

@x�
þ eA�

��
@S

@x

þ eA


�
¼ �m2; (17)

for the motion of the charged test particles with massm and
charge e is applicable as a useful computational tool only
when the separation of variables can be effected.

Since the spacetime of the rotating object in a brane-
world admits such separation of variables (see e.g. [29]) we
shall study the motion around the source described with
metric (15) using the Hamilton-Jacobi equation when the
action S can be decomposed in the form

S ¼ �EtþL’þ Sr�ðr; �Þ; (18)

since the energy E and the angular momentum L of a test
particle are constants of motion in the spacetime (15).

Therefore the Hamilton-Jacobi equation (17) with action
(18) implies the equation for the inseparable part of the
action as

1

2A2

�
Eþ a

r

�
2ML
r2

�Q�L
r3

þA2eBþA2ek
Q�

r

��

�
�
2Eþ aeBA2 þA2ek

Q�

r
� aeB

�
2M

r
�Q�

r2

�
sin2�

�

þ
�
Lþ 1

2
eBr2sin2�

��
eB

2
þA2ek

Q�

r
þ L

r2sin2�

� aE
r2A2

�
2M

r
�Q�

r2

��
þA2

�
@Sr�
@r

�
2 þ 1

r2

�
@Sr�
@�

�
2 ¼�m2:

(19)

It is not possible to separate variables in this equation in
the general case but it can be done for the motion in the
equatorial plane � ¼ �=2 when the equation for radial
motion takes the form

�
dr

d�

�
2 ¼ E2 � 1� 2VeffðE;L; r; �; a;Q�Þ: (20)

Here � is the proper time along the trajectory of a particle,
E and L are energy and angular momentum per unit mass
m, and

VeffðE;L; r; �; a;Q�Þ ¼ aEL
r2

�
2M

r
�Q�

r2

�

þ
�
L2

2r2
þ �L

2
þ �2r2

8
þ aE�

þ �Q�a�
M2r

�
A2 �M

r
þ Q�

2r2
(21)

is the effective potential, where � ¼ eB=m is the magnetic
parameter.
Figure 1 shows the radial dependence of the effective

potential of the radial motion of a charged particle on an
equatorial plane of a slowly rotating black hole in a brane-
world immersed in a uniform magnetic field for different
values of the parameter of the magnetic field (left graph)
and tidal charge (right one). One can obtain now how
magnetic and brane parameters change the character of
the motion of the charged particle. Both magnetic and tidal
parameters are responsible for shifting the shape of the
effective potential to the observer in infinity, which means
the minimum distance of the charged particles to the
central object increases. A module of the tidal charge
increases parabolic and hyperbolic orbits start to become
unstable circular orbits, while a magnetic parameter gives
the opposite effect (Fig. 1) (see e.g. our preceding research
[27]). Thus the radial profile of Veff for different values of
the tidal charge Q�, running between �0:01 and �0:03
shows that by increasing the module of Q� from 0.01 to
0.03 we also lower the potential barrier, as compared to the
Schwarzschild case, as expected for the potential of the
Reissner-Nordström–type black holes.
The choice of the brane parameter’s sign is stipulated

according to the following reason: the negative bulk cos-
mological constant contributes to acceleration toward the
brane, reflecting its confining role on the gravitational field.
In order for U to reinforce confinement, it must be nega-
tive. An effective energy densityU ¼ Q�=r4 on the brane
arising from the free gravitational field in the bulk, where 
is the positive constant, needs not be positive. Indeed, U <
0 is the natural case. In other words, the negative tidal
charge Q� < 0 is the physically more natural case.
Furthermore, Q� < 0 ensures that the singularity is space-
like, as in the Schwarzschild solution, whereas Q� > 0
leads to a timelike singularity, which amounts to a quali-
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tative change in the nature of the general relativistic
Schwarzschild solution (see, for more details, [2]).

IV. MOTION OF TEST PARTICLE AROUND A
BLACK HOLE IN A BRANEWORLD

In order to find the exact analytical solution for radius
rISCO we assume that the external magnetic field is absent
and a black hole in a braneworld is nonrotating when
metric (15) can be written in the diagonal form as

ds2 ¼ ��

r2
dt2 þ r2

�
dr2 þ r2d�2 þ r2sin2�d’2; (22)

where � ¼ r2 � 2MrþQ� does not include terms being
proportional to the angular momentum of a black hole.
Now using the Hamilton-Jacobi method described in
Sec. III one can easily find the equation of motion of the
test particle in the equatorial plane of the black hole in a
braneworld as

dt

d�
¼ E

r2

�
; (23)

�
dr

d�

�
2 ¼ E2 � �

r2

�
1þL2

r2

�
; (24)

d’

d�
¼ L

r2
: (25)

Using Eqs. (24) and (25) and introducing a new variable
u ¼ 1=r one can obtain the following equation:�

du

d’

�
2 ¼ �Q�u4 þ 2Mu3 �

�
1þ Q�

L2

�
u2

þ 2M

L2
u� 1� E2

L2
¼ fðuÞ; (26)

which defines the trajectory of the test particle around a

black hole in a braneworld. The condition of the occur-
rence of circular orbits is

fðuÞ ¼ 0; f0ðuÞ ¼ 0:

From these equations, it follows that the energy E and
angular momentum L of a circular orbit of radius rc ¼
u�1
c is given by

E 2 ¼ ð1� 2MuþQ�u2Þ2
1� 3Muþ 2Q�u2

; (27)

L 2 ¼ M�Q�u
2Q�u3 � 3Mu2 þ u

: (28)

Figure 2 shows the radial dependence of both the energy
and the angular momenta of the test particle moving on
circular orbits in the equatorial plane. One can easily see
that the presence of the brane parameter forces test particle
to have bigger energy and angular momentum in order to
be kept on its circular orbit. It is a consequence of the
increase of the gravitational potential of the central object
in a braneworld.
From Eqs. (27) and (28) one can easily find the mini-

mum radius for circular orbits rmc

rmc >
4Q�

3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q�p ; (29)

or if we expand this expression in degrees of Q�=M2, it
takes the following form:

rmc � 3M� 2Q�

3M
� 4Q�2

27M3
þO

�
Q�3

M5

�
: (30)

In the limiting case when Q� tends to zero rmc ¼ 3M
which coincides with the Schwarzschild limit. The mini-
mum radius for a stable circular orbit will occur at the point
of inflexion of the function fðuÞ, or in other words, we must
supplement conditions fðuÞ ¼ f0ðuÞ ¼ 0 with the equation
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FIG. 1 (color online). Radial dependence of the effective potential of the radial motion of the charged particles around a slowly
rotating black hole in a braneworld immersed in a uniform magnetic field for the different parameter of the magnetic field � (left graph)
and tidal charge Q� (right graph).
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f00ðuÞ ¼ 0. Then one can easily obtain the equation

4Q�2u3 � 9MQ�u2 þ 6M2u�M ¼ 0; (31)

and its solution in the form

r ¼ 4Q�

3Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B3

p � rISCO; (32)

where

A ¼ 8MQ� � 9M3;

B ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4MQ� � 5M3ÞðMQ� �M3Þ

q
;

(33)

or if we expand this expression in degrees of Q�=M2, it
takes the following form:

rISCO � 6M� 1:5
Q�

M
þ 0:0078

Q�2

M3
þO

�
Q�3

M5

�
: (34)

To the best of our knowledge the analytical expression
(32) is the original one. It defines the limit of the stability of
the innermost circular orbit in the vicinity of a black hole in
a braneworld. The existence of such orbits around black
holes immersed in an external magnetic field is well de-
scribed in paper [23]. The critical value of the ISCO radii is
rISCO ¼ 6M, which corresponds to the ISCO of a spinless
test particle in the Schwarzschild spacetime.

After discussing the effective potential of the radial
motion of test particles around a black hole immersed in
the external magnetic field, the authors of paper [23] con-
cluded that the minimum value of the test particle angular
momentum corresponds to the orbit with the innermost
stable circular radius. Numerical solutions with similar
results for rISCO around a rotating black hole in a brane-
world and circular orbits in accretion disks have been
studied in papers [13,20], respectively.

The dependence of the minimum radius for circular
orbits rmc and radius of ISCO around a black hole from

the brane tidal charge is plotted in Fig. 3, where the values
related to the Schwarzschild black hole correspond to
Q� ¼ 0. One can easily see from the plots that the presence
of the tidal charge forces the radius of the stable orbits to be
shifted away from the central object in the direction of an
observer at infinity which confirms the earlier results of
Aliev and Gümrükçüoǧlu [20].
The variation of Q� also modifies the position of the

marginally stable orbit, as shown by the shift of the ISCO,
which is presented in the left plot in the Fig. 3. The negative
decreasing charges lead to the increase of ISCO radius. By
decreasing the value ofQ� from 0 to�5, we shift the radius
of ISCO to bigger and bigger values. The lower values of
the potential for Q� involve a lower specific energy of the
orbiting particles. As we decrease Q� from 0 to �5, ISCO
radius is increasing from values greater than the radius of
the marginally stable orbit for the Schwarzschild geometry
to bigger ones. The efficiency has an opposite trend with
compare to angular momentum: for negative tidal charges
it has bigger values than in the case of the Schwarzschild
black holes.
Next, we will give a clear derivation of the capture cross

section of slowly moving test particles a hole in a brane-
world. (Slow motion means that E ’ 1 at the infinity.) The
critical value of the particle’s angular momentum, Lcr,
hinges upon the existence of a multipole root of the poly-
nomial fðuÞ in (26) [30]. For convenience hereafter we
rewrite Eq. (26) in terms of dimensionless parameters as
radial coordinate r ! r=M, momentum L ! L=M, and
tidal charge Q� ! Q�=M2:

r3 �L2 þQ�

2
r2 þL2r�Q�L2

2
¼ 0: (35)

The cubic equation (35) has a multiple root if and only if its
discriminant vanishes. After simple algebraic transforma-
tions one can easily obtain the following equation for a
particle angular momentum:
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FIG. 2 (color online). Radial dependence of energy (left graph) and angular momentum (right graph) of circular orbits around a
black hole in a braneworld for the different values of the brane tension Q�. For comparison we have also plotted the Schwarzschild
dependence, corresponding to Q� ¼ 0.
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L6ð1�Q�Þ �L4ð3Q�2 � 20Q� þ 16Þ
�L2Q�2ð8þ 3Q�Þ �Q�4 ¼ 0; (36)

which has an exact solution in the form

L 2
cr ¼

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B1=2þ

ffiffiffiffi
D

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B1=2�

ffiffiffiffi
D

p
3

q
� ð20Q��3Q�2�16Þ2

3ð1�Q�Þ ; D � 0;

2
ffiffiffiffiffiffiffi
�A1

3

q
cosf13 arccos½�B1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðA1=3Þ2
p Þ�g � ð20Q��3Q�2�16Þ2

3ð1�Q�Þ ; D < 0:
(37)

Here we have introduced the following notations:
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FIG. 3 (color online). Dependence of the lower limit for the radii of circular orbits rmc (left graph) and ISCO rISCO (right graph) from
the tidal charge Q�.
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FIG. 4 (color online). (a). Orbits of the test particle falling into a central black hole for different values of the tidal charge Q�.
(b). Stable circular orbit of the test particle around a black hole in a braneworld. In all plots horizons are shown with dashed lines.
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A1 ¼ �ð20Q� � 3Q�2 � 16Þ2
3ð1�Q�Þ2 � 8Q�2 þ 3Q�3

1�Q� ;

B1 ¼ 2
ð20Q� � 3Q�2 � 16Þ2

27ð1�Q�Þ3

� ð20Q� � 3Q�2 � 16Þ2ð8Q�2 þ 3Q�3Þ
1�Q� � Q�4

1�Q� ;

D ¼ A3
1

27
þ B2

1

4
:

In the limiting case, i.e. when the tidal charge vanishes the
solution of Eq. (36) is L ¼ 4, which coincides with the
critical angular momentum for the particle capture cross
section for a Schwarzschild black hole [31]. As a particle
with a critical angular momentum travels from infinity
toward the black hole in a braneworld, it spirals into an
unstable circular orbit of radius given as

ruc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
L2 þQ�

6

�
3 �L

�
L2 þQ�

6

�
þL2Q�3

s

þL2 þQ�

6
: (38)

Finally in Fig. 4 we present the shapes of different kinds
of trajectories of test particles around a black hole in a
braneworld, which are given by Eq. (26). The trajectories
of test particles falling to the central black hole in a brane-
world for different values of the brane parameter are shown
in Fig. 4(a). From the plot one can obtain that increase of
the module of the brane parameter causes orbits to shift to
an observer at the infinity, which is a consequence of an
increase of the radius of the event horizon by braneworld
effects. Figure 4(a) illustrates the sample of unstable cir-
cular orbits of the particles, while Fig. 4(b)) shows the
shape of the circular orbits around a black hole in the
braneworld.

V. CONCLUSION

We have concentrated here on the basic physical prop-
erties of particle motion and a magnetic field in the back-
ground spacetime metric of the braneworld black holes.
The motivation for this research is caused by the fact that
testing strong field gravity and the detection of the possible
deviations from standard general relativity, signaling the
presence of new physics, remains one of the most impor-
tant objectives of observational astrophysics. Because of
their compact nature, black holes provide an ideal environ-
ment to perform precise relativistic measurements, in par-
ticular, the observational possibilities for testing the
DMPR solution of the vacuum field equations in brane
world models.

Here the physical parameters of the effective potential
and ISCO have been explicitly obtained for several values

of the parameters characterizing the vacuum DMPR solu-
tion of the field equations in the braneworld models. We
have found the original exact expression for the lower limit
of the innermost stable circular orbits of the test particle
around a black hole in a braneworld. (Before ISCO, be-
havior in braneworld models was investigated only nu-
merically [13,20].) Then we have plotted the dependence
of the ISCO radius from the brane tidal charge and particle
trajectories around a black hole in a braneworld.
The best constraints on the braneworld black hole pa-

rameters were recently obtained from the classical tests of
general relativity (perihelion precession, deflection of
light, and the radar echo delay, respectively) [11]. The
existing observational solar system data on the perihelion
shift of Mercury, on the light bending around the Sun
(obtained using long-baseline radio interferometry), and
ranging to Mars using the Viking lander, were applied to
the relativistic effects in DMPR spacetime, constrained the
numerical values of the brane parameter. The strongest
limit jQ�j & 108 cm2 was obtained from Mercury’s peri-
helion precession.
The recent measurements of the ISCO radius in accre-

tion disks around black holes may also give alternate
constraints on the numerical values of the brane tidal
charge. All the astrophysical quantities related to the ob-
servable properties of the accretion disk can be obtained
from the black hole metric and observations in the near
infrared or x-ray bands have provided important informa-
tion about the spin of the black holes [32–34]. It was stated
that rotating black holes have spins in the range 0:5 & a &
1, that is, according to the observations ISCO radii are
essentially shifted towards the central objects and there is
not any effect measured from the brane tidal charge which
acts in the opposite direction.
Because of the differences in the spacetime structure, the

braneworld black holes present some important differences
with respect to their disc accretion properties, as compared
to the standard general relativistic Schwarzschild and Kerr
cases. Therefore, the study of the innermost stable orbits in
the vicinity of compact objects is a powerful indicator of
their physical nature. Since the ISCO radius in the case of
the braneworld black holes is different compared to the
standard general relativistic case, the astrophysical deter-
mination of these physical quantities could discriminate, at
least in principle, between the different gravity theories,
and give some constrains on the existence of the extra
dimensions. Finally, since there was no braneworld effect
on stable orbits around black holes on the scale of the
rotational parameter a order of 108 cm2, we may conclude
that from an astrophysical point of view on the basis of a
comparison of observations of ISCO in accretion disks
around black holes and ISCO analysis around a black
hole in a braneworld that the brane tidal charge has an
upper limit & 109 cm2. We roughly estimated that one
order less magnitude of Q� may not affect the observatio-
nal data on ISCO data around black holes.
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[11] C. G. Böhmer, T. Harko, and F. S. N. Lobo, Classical

Quantum Gravity 25, 045015 (2008).
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