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The accretion-induced collapse (AIC) of a white dwarf may lead to the formation of a protoneutron star

and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear

disruption of accreting white dwarfs in type Ia supernovae. In the AIC scenario, the supernova explosion

energy is expected to be small and the resulting transient short-lived, making it hard to detect by

electromagnetic means alone. Neutrino and gravitational-wave (GW) observations may provide crucial

information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the

GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations

using a microphysical finite-temperature equation of state and an approximate treatment of deleptoniza-

tion during collapse. Investigating a set of 114 progenitor models in axisymmetric rotational equilibrium,

with a wide range of rotational configurations, temperatures and central densities, and resulting white

dwarf masses, we extend previous Newtonian studies and find that the GW signal has a generic shape akin

to what is known as a ‘‘type III’’ signal in the literature. Despite this reduction to a single type of

waveform, we show that the emitted GWs carry information that can be used to constrain the progenitor

and the postbounce rotation. We discuss the detectability of the emitted GWs, showing that the signal-to-

noise ratio for current or next-generation interferometer detectors could be high enough to detect such

events in our Galaxy. Furthermore, we contrast the GW signals of AIC and rotating massive star iron core

collapse and find that they can be distinguished, but only if the distance to the source is known and a

detailed reconstruction of the GW time series from detector data is possible. Some of our AIC models

form massive quasi-Keplerian accretion disks after bounce. The disk mass is very sensitive to progenitor

mass and angular momentum distribution. In rapidly differentially rotating models whose precollapse

masses are significantly larger than the Chandrasekhar mass, the resulting disk mass can be as large as

�0:8M�. Slowly and/or uniformly rotating models that are limited to masses near the Chandrasekhar

mass produce much smaller disks or no disk at all. Finally, we find that the postbounce cores of rapidly

spinning white dwarfs can reach sufficiently rapid rotation to develop a gravitorotational bar-mode

instability. Moreover, many of our models exhibit sufficiently rapid and differential rotation to become

subject to recently discovered low-Erot=jWj-type dynamical instabilities.
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I. INTRODUCTION

Single stars with main-sequence masses M & 100M�
end their nuclear-burning lives as electron-degenerate ob-
jects or with central electron-degenerate cores. More spe-
cifically, the end state is a carbon-oxygen or oxygen-neon
white dwarf (WD) in the case of low-mass stars (i.e., with
M & 6–8M�), or a degenerate oxygen-neon or iron core
embedded in an extended nondegenerate stellar envelope
in the case of more massive stars (i.e., 6–8M� & M &
100M�) (see, e.g., [1–3] and references therein).
Electron-degenerate spherically symmetric objects be-
come unstable to radial contraction once their mass ex-

ceeds the Chandrasekhar mass which, assuming zero
temperature and no rotation, is given by MCh ¼
1:4575ðYe=0:5Þ2M�, where Ye is the number of electrons
per baryon, or ‘‘electron fraction’’ [4,5]. The effective
Chandrasekhar mass MCh;eff of a WD or a stellar core

increases somewhat with WD/core entropy (e.g., [2]) and
can grow considerably by rotation, in which case it is
limited only by the onset of nonaxisymmetric instability
(e.g., [5–7]).
The iron core of a massive star is pushed over its

Chandrasekhar limit by the ashes of silicon shell burning
and undergoes collapse to a protoneutron star (PNS), ac-
celerated by photodisintegration of heavy nuclei and elec-
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tron capture [8]. In a high-density sub-Mch oxygen-neon
core of a less massive star, electron capture may decrease
MCh;eff , also leading to collapse [9,10]. In both cases, if an

explosion results, the observational display is associated
with a type II/Ibc supernova (SN).

On the other hand, a carbon-oxygen WD can be pushed
over its stability limit through merger with or accretion
from another WD (double-degenerate scenario) or by ac-
cretion from a nondegenerate companion star (single-
degenerate scenario). Here, the WD generally experiences
carbon ignition and thermonuclear runaway, leading to a
type Ia SN and leaving no compact remnant [11]. However,
at least theoretically, it is possible that massive oxygen-
neon WDs1 formed by accretion or merger, and, depending
on initial mass, temperature, and accretion rate, also
carbon-oxygen WDs, may grow to reach their MCh;eff or

reach central densities sufficiently high ( *
109:7–1010 g cm�3) for rapid electron capture to take place,
triggering collapse to a PNS rather than thermonuclear
explosion [7,10,15–25]. This may result in a peculiar, in
most cases probably subenergetic, low-nickel-yield and
short-lived transient [17,26–30]. This alternative to the
type Ia SN scenario is called ‘‘accretion-induced collapse’’
(AIC) and will be the focus of this paper.

The details of the progenitor WD structure and forma-
tion and the fraction of all WDs that evolve to AICs are
presently uncertain. Binary population synthesis models
[25,31,32] and constraints on r-process nucleosynthetic
yields from previous AIC simulations [27,33] predict
AIC to occur in the Milky Way at a frequency of �10�5

to �10�8 yr�1 which is �20–50 times less frequent than
the expected rate of standard type Ia SNe (e.g., [34–37]). In
part as a consequence of their rarity, but probably also due
to their short duration and potentially weak electromag-
netic display, AIC events have not been directly observed
(but see [38,39], which discovered peculiar SNe that can be
interpreted as resulting from AIC).

The chances of seeing a rare galactic AIC are dramati-
cally boosted by the possibility of guiding electromagnetic
observations by the detection of neutrinos and gravitational
waves (GWs) emitted during the AIC process and a sub-
sequent SN explosion. GWs, similar to neutrinos, are ex-
tremely difficult to observe, but can carry ‘‘live’’
dynamical information from deep inside electromagneti-
cally opaque regions. The inherent multidimensional na-
ture of GWs (they are lowest-order quadrupole waves)
makes them ideal messengers for probing multidimen-
sional dynamics such as rotation, turbulence, or neutron
star pulsations [40–42]. The detection prospects for a GW

burst from an AIC are significantly enhanced if theoretical
knowledge of the expected GW signature of such an event
is provided by computational modeling. In reverse, once a
detection is made, detailed model predictions will make it
possible to extract physical information on the AIC dy-
namics and the properties of the progenitor WD and,
hence, will allow ‘‘parameter estimation’’ of the source.
Early spherically symmetric (one-dimensional, or 1D)

simulations of AIC [26,43,44] and more recent axisym-
metric (2D) ones [27–29] have demonstrated that the dy-
namics of AIC is quite similar to standard massive star core
collapse: During collapse, the WD separates into a sub-
sonically and homologously collapsing (v / r) inner core
and a supersonically collapsing outer core. Collapse is
halted by the stiffening of the equation of state (EOS) at
densities near nuclear matter density and the inner-core
rebounds into the still infalling outer core. An unshocked
low-entropy PNS of inner-core material is formed. At its
edge, a bounce shock is launched and initially propagates
rapidly outward in mass and radius, but loses energy to the
dissociation of heavy nuclei as well as to neutrinos that
stream out from the optically thin postshock region. The
shock stalls and, in the AIC case (but also in the case of the
oxygen-neon core collapse in super-asymptotic-giant-
branch stars [45,46]), is successfully revived by the depo-
sition of energy by neutrinos in the postshock region (i.e.,
the ‘‘delayed-neutrino mechanism’’ [8,47]) or by a combi-
nation of neutrino energy deposition and magnetorota-
tional effects in very rapidly rotating WDs [29]. But even
without shock revival, explosion would occur when the
WD surface layer is eventually accreted through the shock.
Following the onset of explosion, a strong long-lasting
neutrino-driven wind blows off the PNS surface, adding
to the total explosion energy and establishing favorable
conditions for r-process nucleosynthesis [26–29,48]. If the
progenitor WD was rotating rapidly (and had a rotationally
enhanced MCh;eff), a quasi-Keplerian accretion disk of

outer-core material may be left after the explosion [28].
Metzger et al. [30,49] recently proposed that this may lead
to nickel-rich outflows that could significantly enhance the
AIC observational display.
Rotating iron core collapse and bounce is the most

extensively studied and best understood GW emission
process in the massive star collapse context (see, e.g.,
[50] and the historical overview in [42]). However, most
massive stars (perhaps up to �99% in the local universe)
are likely to be rather slow rotators that develop little
asphericity during collapse and in the early postbounce
phase [51–53] and produce PNSs that cool and contract
to neutron stars with periods above�10 ms and parameter
� ¼ Erot=jWj & 0:1% [53], where Erot is the rotational
kinetic energy and jWj is the gravitational binding energy.
This not only reduces the overall relevance of this emission
process, but also diminishes the chances for postbounce
gravitorotational nonaxisymmetric deformation of the PNS

1Previously, such WDs were expected to have a significant
central 24Mg mass fraction, and hence were referred to as
oxygen-neon-magnesium WDs. Recent work based on up-do-
date input physics and modern stellar evolution codes suggests
that the mass fraction of 24Mg is much smaller than previously
thought (e.g., [12–14]).
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which could boost the overall GW emission [42].
Axisymmetric rapidly rotating stars become unstable to
nonaxisymmetric deformations if a nonaxisymmetric con-
figuration with a lower total energy exists at a given � (see
[54] for a review). The classical high-� instability devel-
ops in Newtonian stars on a dynamical time scale at � *

�dyn ’ 27% (the general-relativistic value is � * 25%

[55,56]). A ‘‘secular’’ instability, driven by fluid viscosity
or GW backreaction, can develop already at � * �sec ’
14% [54]. Slower but strongly differentially rotating stars
may also be subject to a nonaxisymmetric dynamical in-
stability at � as small as �1%. This instability at low �
was observed in a number of recent 3D simulations (e.g.,
[57–65]), and may be related to corotation instabilities in
disks, but its nature and the precise conditions for its onset
are presently not understood [66,67].

Stellar evolution theory and pulsar birth spin estimates
suggest that most massive stars are rotating rather slowly
(e.g., [51,53], but also [52,68] for exceptions). Hence,
rotating collapse and bounce and nonaxisymmetric rota-
tional instabilities are unlikely to be the dominant GW
emission mechanisms in most massive star collapse events
[42]. The situation may be radically different in AIC:
Independent of the details of their formation scenario,
AIC progenitors are expected to accrete significant
amounts of mass and angular momentum in their pre-
AIC evolutions [7,21–23,69]. They may reach values of
� of up to�10% prior to collapse, according to the recent
work of Yoon and Langer [7,23], who studied the precol-
lapse stellar structure and rotational configuration of WDs
with sequences of 2D rotational equilibria. Depending on
the distribution of angular momentum in the WD, rota-
tional effects may significantly affect the collapse and
bounce dynamics and lead to a large time-varying quadru-
pole moment of the inner core, resulting in a strong burst of
GWs emitted at core bounce. In addition, the postbounce
PNSmay be subject to the high-� rotational instability (see
[70,71] for an investigation via equilibrium sequences of
PNSs formed in AIC) or to the recently discovered low-�
instability.

Most previous (radiation-)hydrodynamic studies of AIC
have either been limited to 1D [26,43,44] or were 2D, but
did not use consistent 2D progenitor models in rotational
equilibrium [27]. Fryer, Holz, and Hughes [72] presented
the first estimates for the GW signal emitted by AIC based
on one model of [27]. Drawing from the Yoon and Langer
AIC progenitors [7,23], Dessart et al. [28,29] have recently
performed 2D Newtonian AIC simulations with the multi-
group flux-limited diffusion (MGFLD) neutrino-radiation-
(M)HD code VULCAN/2D [73–75]. They chose two repre-
sentative WD configurations for slow and rapid rotation
with central densities of 5� 1010 g cm�3 and total masses
of 1:46M� and 1:92M�. Both models were set up with the
differential rotation law of [7,23]. The 1:46M� model had
zero rotation in the inner core and rapid outer-core rotation

while the 1:92M� was rapidly rotating throughout (ratio
�max;initial=�center;initial � 1:5). Dessart et al. [28,29] found
that rapid electron capture in the central regions of both
models led to collapse to a PNS within only a few tens of
milliseconds and reported successful neutrino-driven [28]
and magnetorotational explosions [29] with final values of
� (i.e., a few hundred milliseconds after core bounce) of
�6% and �26%, for the 1:46M� and 1:92M� models,
respectively.2 The analysis in [28,42,61] of the GW signal
of the Dessart et al.models showed that the morphology of
the AIC rotating collapse and bounce gravitational wave-
form is reminiscent of the so-called type III signal first
discussed by Zwerger and Müller [76] and associated with
small inner-core masses and a large pressure reduction at
the onset of collapse in the latter’s polytropic models.
In this paper, we follow a different approach from that of

Dessart et al. [28,29]. We omit their detailed and computa-
tionally expensive treatment of neutrino radiation transport
in favor of a simple, yet effective, deleptonization scheme
for the collapse phase [77]. This simplification, while
limiting the accuracy of our models at postbounce times*
5–10 ms, (i) enables us to study a very large set of pre-
collapse WD configurations and their resulting AIC dy-
namics and GW signals and, importantly, (ii) allows us to
perform these AIC simulations in general relativity, which
is a crucial ingredient for the accurate modeling of dynam-
ics in regions of strong gravity inside and near the PNS.
Furthermore, as demonstrated by [50,78,79], general rela-
tivity is required for qualitatively and quantitatively correct
predictions of the GW signal of rotating core collapse.
We focus on the collapse and immediate postbounce

phase of AIC and perform an extensive set of 114 2D
general-relativistic hydrodynamics simulations. We ana-
lyze systematically the AIC dynamics and the properties
of the resulting GW signal. We explore the dependence of
nonrotating and rotating AIC on the precollapse WD rota-
tional setup, central density, core temperature, and core
deleptonization, and study the resulting PNS’s susceptibil-
ity to rotational nonaxisymmetric deformation.
Furthermore, motivated by the recent work of Metzger
et al. [30,49], who discussed the possible enhancement of
the AIC observational signature by outflows from PNS
accretion disks, we study the dependence of disk mass
and morphology on WD progenitor characteristics and
rotational setup.
We employ the general-relativistic hydrodynamics code

COCONUT [78,80] and neglect MHD effects since they were

shown to be small in the considered phases unless the
precollapse magnetic field strength is extremely large (B *
1012 G, e.g., [29,81,82]). We employ a finite-temperature
microphysical nuclear EOS in combination with the afore-

2These numbers are for the non-MHD simulations of [28]. In
the MHD models of [29], an � dynamo builds up toroidal
magnetic field, reducing the overall rotational energy and �.
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mentioned deleptonization treatment of [77]. The precol-
lapse 2D rotational-equilibrium WDs are generated ac-
cording to the prescription of Yoon and Langer [7,23].

The plan of the paper is as follows. In Sec. II, we
introduce the numerical methods employed and discuss
the generation of our 2D rotational-equilibrium precol-
lapse WD models as well as the parameter space of WD
structure and rotational configuration investigated. In
Sec. III, we discuss the overall AIC dynamics and the
properties of the quasi-Keplerian accretion disks seen in
many models. Section IV is devoted to a detailed analysis
of the GW signal from rotating AIC. There, we also assess
the detectability by current and future GW observatories
and carry out a comparison of the GW signals of AIC and
massive star iron core collapse. In Sec. V, we study the
postbounce rotational configurations of the PNSs in our
models and assess the possibility for nonaxisymmetric
rotational instabilities. In Sec. VI, we present a critical
summary and outlook.

II. METHODS AND INITIAL MODELS

A. The general-relativistic hydrodynamics code

We perform our simulations in 2þ 1 dimensions using
the COCONUT code [80,83] which adopts the conformally
flat approximation of general relativity [84]. This has been
shown to be a very good approximation in the context of
stellar collapse to PNSs [63,64,85]. COCONUT solves the
metric equations as formulated in [86] using spectral meth-
ods as described in [80]. The relativistic hydrodynamics
equations are solved via a finite-volume approach, piece-
wise parabolic reconstruction, and the Harten, Lax,
van Leer, and Einfeld approximate Riemann solver [87].
COCONUT uses Eulerian spherical coordinates fr; �g and for
our purposes assumes axisymmetry. For the computational
grid, we choose 250 logarithmically spaced, centrally con-
densed radial zones with a central resolution of 250 m and
45 equidistant angular zones covering 90�. We have per-
formed test calculations with different grid resolutions to
ascertain that the grid setup specified above is appropriate
for our simulations. The space between the surface of the
star and outer boundary of the finite difference grid is filled
with an artificial atmosphere. We assume a constant den-
sity and stationary atmosphere in all zones where density
drops below a prescribed threshold of 7� 105 g cm�3, a
value marginally larger than the lowest-density value in the
EOS table employed in our calculations (cf. Sec. II A 1).
The atmosphere is reset after each time step in order to
ensure that it adapts to the time-dependent shape of the
stellar surface. We note that with the current computational
setup COCONUT preserves integral quantities to sufficient
precision with variations in the total angular momentum
and rest mass below a few percent throughout an entire
calculation. For further details of the formulations of the
hydrodynamics and metric equations as well as their nu-

merical implementation in COCONUT, the reader is referred
to [50,80,86].
The version of COCONUTemployed in this study does not

include a nuclear reaction network. Hence, we, like Dessart
et al. [28,29], ignore nuclear burning which may be rele-
vant in the outer core of AIC progenitors where material is
not in nuclear statistical equilibrium (NSE), but still suffi-
ciently hot for oxygen/neon/magnesium burning to occur.
This approximation is justified by results from previous
work of [26,45] that included nuclear burning and did not
observe a strong dynamical effect.

1. Equation of state

We make use of the finite-temperature nuclear EOS of
Shen et al. (‘‘Shen et al. EOS’’ in the following, [88,89])
which is based on a relativistic mean-field model and is
extended with the Thomas-Fermi approximation to de-
scribe the homogeneous phase of matter as well as the
inhomogeneous matter composition. The parameter for the
incompressibility of nuclear matter is 281 MeV and the
symmetry energy has a value of 36.9 MeV. The Shen et al.
EOS is used in tabulated fashion and in our version
(equivalent to that used in [50,90]) includes contributions
from baryons, electrons, positrons, and photons.
The Shen et al. EOS table used in our simulation has

180, 120, and 50 equidistant points in log10�, log10T, and
Ye, respectively. The table ranges are 6:4� 105 g cm�3 �
� � 1:1� 1015 g cm�3, 0:1 MeV � T � 100:0 MeV,
and 0:015 � Ye � 0:56. Our variant of the Shen et al.
EOS assumes that NSE holds throughout the entire
f�; T; Yeg domain. In reality, NSE generally holds only at
T * 0:5 MeV. At lower temperatures, a nuclear reaction
network and the advection of multiple chemical species
and accounting for their individual ideal-gas contributions
to the EOS is necessary for a correct thermodynamic
description of the baryonic component of the fluid.
However, since the electron component of the EOS is
vastly dominant in the central regions of AIC progenitors
(and also in the central regions of iron cores), the incorrect
assumption of NSE at low temperatures can lead to only a
small error in the overall (thermo)dynamics of the collapse
and early postbounce phase.

2. Deleptonization during collapse and neutrino pressure

To account for the dynamically highly important change
of the electron fraction Ye by electron capture during
collapse, we employ the approximate prescription pro-
posed by Liebendörfer [77]. Liebendörfer’s scheme is
based on the observation that the local Ye of each fluid
element during the contraction phase can be rather accu-
rately parametrized from full radiation-hydrodynamics
simulations as a function of density alone. Liebendörfer
demonstrated the effectiveness of this parametrization in
the case of spherical symmetry, but also argued that it
should still be reliable to employ a parametrization �Yeð�Þ
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obtained from a 1D radiation-hydrodynamics calculation
in a 2D or 3D simulation, since electron capture depends
more on local matter properties and less on the global
dynamics of the collapsing core. On the basis of this argu-
ment, a �Yeð�Þ parametrization was applied in the rotating
inner-core-collapse calculations of [50,63–65,79]. Here,
we use the same implementation as discussed in [50] and
track the changes in Ye up to the point of core bounce.
After bounce, we simply advect Ye. Furthermore, as in
[50], we approximate the pressure contribution due to
neutrinos in the optically thick regime (� * 2�
1012 g cm�3) by an ideal Fermi gas, following the pre-
scription of [77]. This pressure contribution and the energy
of the trapped neutrino radiation field are included in the
matter stress-energy tensor and coupled with the hydro-
dynamics equations via the energy and momentum source
terms specified in [64].

The deleptonization scheme described here is applicable
only until core bounce and can track neither the postbounce
neutrino burst (see, e.g., [91]) nor neutrino cooling/heating
and the postbounce deleptonization of the PNS. The dy-
namics in the very early postbounce evolution (up to
�10 ms) are unlikely to be dramatically affected by this
limitation, but it should be kept in mind when interpreting
results from later postbounce times.

For our AIC simulations we obtain �Yeð�Þ data from the
2D Newtonian radiation-hydrodynamics simulations car-
ried out by Dessart et al. [28] with the VULCAN/2D code
[73,74,82] in its MGFLD variant. We use these data be-
cause of their ready availability, but point out that the
microphysics [92] used in VULCAN/2D does not yet include
the updated electron capture rates of [93]. Moreover,
VULCAN/2D presently does not treat velocity-dependent

terms in the transport equation and neglects neutrino-
electron scattering, both of which my have some impact
on the evolution of Ye in the collapse phase [91,94]. In
Fig. 1 we plot representative �Yeð�Þ trajectories obtained
from VULCAN/2D AIC simulations. At nuclear density,
these data predict Ye � 0:18, which is low compared to
Ye * 0:22–0:26 seen in simulations of iron core collapse
[50,77,91,94] and oxygen-neon core collapse [45]. This
difference is not fully understood, but (i) could be physical
and due to the WD initial data used here and in [28] or
(ii) may be related to the radiation transport approxima-
tions and microphysics treatment in VULCAN/2D. To mea-
sure the importance of these uncertainties in �Yeð�Þ, we
perform calculations with systematic variations of �Yeð�Þ
due either to changes in the precollapseWD temperature or
to an ad hoc scaling (see Sec. II C 3).

Since AIC progenitors may be extremely rapidly rotat-
ing, it is not clear that the �Yeð�Þ parametrization is indeed
independent of the specific model and rotational setup. The
�Yeð�Þ trajectories shown in Fig. 1 result from the collapse
simulations of the slowly rotating 1:46M� model and of the
rapidly rotating 1:92M� model of Dessart et al. The very

close agreement of the two curves suggests that rotational
effects have only a small influence on the prebounce
deleptonization and confirm the supposition of [77] at the
level of the MGFLD and microphysics treatment in
VULCAN/2D. All �Yeð�Þ data used in this study are available

from [95].

B. Precollapse white dwarf models

For constructing 2D WD models in rotational equilib-
rium with a given rotation law, we follow [23] and employ
the self-consistent field (SCF) method [6,96–98] in
Newtonian gravity. For the purpose of the SCF method,
we assume that the WD is cold and has a constant Ye of 0.5.
After finding the 2D equilibrium configuration, we impose
a temperature and Ye distribution motivated by previous
work [26,28]. Ideally, the WD initial model should be
evolved in a multidimensional stellar evolution code with
a finite-temperature EOS and accounting for weak pro-
cesses such as neutrino cooling and electron capture.
Because of the unavailability of such self-consistent AIC
progenitors, we resort to the treatment that we discuss in
detail in the remainder of this section.

1. Implementation of the self-consistent field method

Our implementation of the Newtonian SCF method has
been tested by reproducing the WD models presented in
[23,97], and finding excellent agreement. The compactness
parameter GM=Rc2 of the highest-density WD models
considered here reaches �5� 10�3; hence general-
relativistic effects at the precollapse stage are small and
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FIG. 1 (color online). Average electron fraction Ye in the
innermost 2 km in the collapsing WD as a function of density
obtained from 2D MGFLD simulations with the VULCAN/2D

code for models 1:46M� and 1:92M� of Dessart et al. [28].
Both models were set up with the same initial dependence of
temperature on density and a temperature T0 ¼ 1:0� 1010 K
(see Sec. II B for details).
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the error introduced by Newtonian WDmodels is therefore
negligible. Hereafter we will assume that the Newtonian
mass of the equilibrium model represents the baryon mass
accounted for when solving the general-relativistic
equations.

The equation governing the stellar equilibrium is given
by Z

��1dPþ��
Z

�2$d$ ¼ C; (1)

where � is the gravitational potential, � is the angular
velocity, $ is the radial cylindrical coordinate, and C is a
constant that will be determined from boundary conditions
using the SCF iterations as discussed below.

White dwarfs are stabilized against gravity by electron
degeneracy pressure. For constructing precollapse WDs,
we assume complete degeneracy for which the WD EOS
(e.g., [6]) is given by

P ¼ A½xð2x2 � 3Þðx2 þ 1Þ1=2 þ 3sinh�1x�;
x ¼ ð�=BÞ1=3;

(2)

where A ¼ 6:01� 1022 dyn cm�2 and B ¼ 9:82�
105Y�1

e g cm�3. We set Ye ¼ 0:5, assuming at this stage
that no electron capture has taken place. The integralR
��1dP in Eq. (1) is the enthalpy H which, given our

choice of WD EOS, can be expressed analytically as

H ¼ 8A

B

�
1þ

�
�

B

�
2=3

�
: (3)

With this, Eq. (1) trivially becomes

H ¼ C��þ
Z

�2$d$: (4)

Following the SCF method, we proceed to first produce
a trial density distribution �ðr; �Þ and impose a rotation law
(discussed in the following Sec. II B 2).

We then calculate C by using the value for the maximum
density and the angular velocity at the center of the star
�ð$ ¼ 0Þ ¼ �c;i. Based on the trial density distribution,

we calculate H via Eq. (4) and then update the density
distribution based on H using the analytic expression (3).
This updated density distribution in turn results in a new
value for H. We iterate this procedure until all the maxi-
mum absolute values of three relative differences of H, �,
and � become less than 10�3.

2. Progenitor rotational configuration

Our axisymmetric progenitor WD models are assumed
either to be in uniform rotation or to follow the differential
rotation law proposed by Yoon and Langer [23]. The latter
argued that the rotation law of a WD that accretes matter at
high rates (> 10�7M� yr�1) is strongly affected by angu-
lar momentum transport via the dynamical shear instability
(DSI) in the inner region, and due to the secular shear

instability (as well as Eddington-Sweet circulations [99])
in the outer layers. According to their results, the shear rate
in the core remains near the threshold value for the onset of
the DSI. This results in a characteristic rotation law which
has an absolute maximum in the angular velocity just
above the shear-unstable core. We define$p as the position

of this maximum. This position is linked to layers with a
density as low as several percent of the WD central density
so that

�ið$ ¼ $p; z ¼ 0Þ ¼ fp�c;i; (5)

and where, following [23,28], we choose fp ¼ f0:05; 0:1g
in our models. (Note that the differential rotation law
adopted for the models of [28] had fp ¼ 0:05.) In the inner

regions with $<$p, we have

�ð$Þ ¼ �c;i þ
Z $

0

fsh�DSI;crit

$0 d$0; (6)

where�c;i is the angular velocity at the center and �DSI;crit

is the threshold value of the shear rate in the inner core for
the onset of the DSI. fsh is a dimensionless parameter ( �
1:0) describing the deviation of the shear rate from�DSI;crit.

We compute �DSI;crit assuming homogeneous chemical

composition and constant temperature, in which case
�DSI;crit can be estimated as [cf. Eq. (7) of [7]]

�2
DSI;crit ’ 0:2

�
g

109 cm s�2

��
�

0:01

��
Hp

8� 107 cm

��1
�rad

0:4

�
;

(7)

where g is the free-fall acceleration, Hp is the pressure

scale height ( ¼ �dr=d lnP), rad is the adiabatic tempera-
ture gradient [ ¼ �ð@ lnT=@ lnPÞs where s is the specific
entropy], and � ¼ ð@ ln�=@ lnTÞP. The quantities �, Hp,

and rad are computed using the routines of Blinnikov,
Dunina-Barkovskaya, and Nadyozhin [100].
At the equatorial surface, the WD is assumed to rotate at

a certain fraction fK of the local Keplerian angular velocity
�K:

�ðReÞ ¼ fK�KðReÞ; (8)

where Re is the equatorial radius of the WD and where we
have set fK ¼ 0:95. In the region between $p and Re, we

again follow [23] and adopt the following rotation law:

�ð$Þ=�K ¼ �ð$pÞ=�Kð$pÞ þ Cð$�$pÞa; (9)

where the constant C is determined for a given value of a as

C ¼ fK ��ð$pÞ=�Kð$pÞ
ðRe �$pÞa : (10)

The choice of the exponent a does not have a strong impact
on the WD structure because of the constraints imposed by
�ð$pÞ and�ðReÞ at each boundary. In our study, we adopt
a ¼ 1:2. For further details, we refer the reader to Sec. 2.2
of [23].

E. B. ABDIKAMALOV et al. PHYSICAL REVIEW D 81, 044012 (2010)

044012-6



Saio and Nomoto [22] argued that turbulent viscosity
resulting from a combination of a baroclinic instability
(see, e.g., [101]; neglected by Yoon and Langer [7,23])
and the DSI is so efficient in transporting angular momen-
tum that the angular velocity becomes nearly uniform in
the WD interior, while only surface layers with mass &
0:01M� rotate differentially [22]. Piro [102], who also
considered angular momentum transport by magnetic
stresses, confirmed these results. Hence, in order to study
the suggested case of uniform precollapse WD rotation, we
complement our differentially rotating WD models with a
set of uniformly rotating AIC progenitors.

3. Initial temperature profile

Because our initial models are constructed by imposing
hydrostatic equilibrium [Eq. (1)] with a barotropic EOS
[Eq. (2)], the WD structure is independent of temperature.
However, the latter is needed as input for the finite-
temperature nuclear EOS used in our AIC simulations.
We follow Dessart et al. [28] and impose a scaling of the
temperature with density according to

Tð$; zÞ ¼ T0½�c;i=�ð$; zÞ�0:35; (11)

where ð$; zÞ are cylindrical coordinates and �0 is the
density at which the stellar temperature equals T0.

4. Initial electron fraction profile

For the purpose of constructing AIC progenitor WDs in
rotational equilibrium, we assume that no electron capture
has yet taken place and set Ye ¼ 0:5. A real AIC progeni-
tor, however, will have seen some electron captures on Ne/
Mg/Na nuclei (e.g., [10]) before the onset of dynamical
collapse. In addition, electrons will be captured easily by
free protons that are abundant at the temperatures of the
WD models considered here. Hence, a Ye of 0.5 is rather
inconsistent with real WD evolution. Dessart et al. [28],
who started their simulations with Ye ¼ 0:5 models, ob-
served an early burst of electron capture. This led to a
significant initial drop of Ye that leveled off after 5–10 ms
beyond which the Ye profile evolved in qualitatively simi-
lar fashion to what is known from iron core collapse (see
Fig. 1, which depicts this drop of Ye at low densities). To
account for this, we adopt as initial �Yeð�Þ a parametrization
obtained from the equatorial plane of the models of Dessart
et al. [28] at �7 ms into their evolution when the initial
electron capture burst has subsided. We use these �Yeð�Þ
data for the Ye evolution of the low-density (� < �c;i) part

of the WD during collapse.

C. Parameter space

The structure and thermodynamics of the AIC progeni-
tor and the resulting dynamics of the collapse depend on a
variety of parameters that are constrained only weakly by
theory and observation (e.g., [7,19,23]). Here, we study the

dependence on the central density, rotational configuration,
and core temperature. In the following we lay out our
parameter choices and discuss the nomenclature of our
initial models whose key properties we summarize in
Table I.

1. Progenitor white dwarf central density

In order to investigate the impact of the precollapse
central WD density �c;i on the collapse dynamics, we

consider sequences of WD models with central densities
in the range from 4� 109 g cm�3 to 5� 1010 g cm�3.
This range of densities is motivated by previous studies
arguing that WDs in this range of �c;i may experience AIC

[7,19,28].
We therefore choose a set of four central densities, i.e.,

4� 109, 1� 1010, 2� 1010, 5� 1010 g cm�3, and corre-
spondingly begin our model names with letters A, B, C, D.
We perform AIC simulations of nonrotating (spherically
symmetric) WDs with central density choices A–D and
restrict the rotating models to the limiting central density
choices A and D.
In Fig. 2 we plot radial density profiles of our nonrotat-

ing WD models to show the strong dependence of the WD
compactness on the choice of central density. This aspect
will prove important for the understanding of the collapse
dynamics of rapidly rotating models.

2. Progenitor white dwarf rotational configuration

Since the rotational configuration of AIC progenitor
WDs is constrained only poorly, we consider uniformly
rotating (�i ¼ �c;i everywhere) as well as a variety of

differentially rotating WD configurations. To denote the
general rotation type, we use the letter U (D) for uniform
(differential) rotation as the second letter in each model
name.
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FIG. 2 (color online). The radial profile of the rest-mass den-
sity for nonrotating white dwarf models AU0, BU0, CU0, and
DU0.
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TABLE I. Summary of the initial WD models:�c;i is the central angular velocity and�max;i ¼ �ð$pÞ,M0 is the total rest mass, and
J is the total angular momentum. jWij and Erot;i are the gravitational energy and rotational kinetic energy of the WD, respectively. Re

and Rp are the equatorial and polar radii.

Initial model�c;i [rad=s]�max;i [rad=s] �c;i [10
10 g cm�3 ] M0 [M�] J [1050 ergs] jWij [1050 ergs] Erot;i [10

50 ergs] �i [%] Re [km] Re=Rp

AU0 0.000 0.000 0.4 1.390 0.00 37.32 0.00 0.00 1692 1.000

AU1 1.000 1.000 0.4 1.394 0.09 37.50 0.04 0.11 1710 0.988

AU2 1.800 1.800 0.4 1.405 0.16 37.90 0.15 0.38 1757 0.953

AU3 2.000 2.000 0.4 1.409 0.18 38.04 0.18 0.48 1775 0.943

AU4 3.000 3.000 0.4 1.437 0.29 39.04 0.44 1.12 1938 0.848

AU5 3.500 3.500 0.4 1.458 0.36 39.78 0.64 1.60 2172 0.748

BU0 0.000 0.000 1.0 1.407 0.00 51.44 0.00 0.00 1307 1.000

CU0 0.000 0.000 2.0 1.415 0.00 65.28 0.00 0.00 1069 1.000

DU0 0.000 0.000 5.0 1.421 0.00 89.11 0.00 0.00 813 1.000

DU1 2.000 2.000 5.0 1.423 0.03 89.25 0.03 0.04 817 0.995

DU2 3.000 3.000 5.0 1.425 0.05 89.42 0.08 0.09 822 0.988

DU3 3.500 3.500 5.0 1.426 0.06 89.53 0.11 0.12 825 0.983

DU4 5.000 5.000 5.0 1.432 0.09 90.00 0.22 0.24 840 0.963

DU5 7.000 7.000 5.0 1.442 0.13 90.87 0.44 0.49 871 0.920

DU6 9.000 9.000 5.0 1.458 0.17 92.12 0.77 0.83 931 0.853

DU7 9.500 9.500 5.0 1.462 0.18 92.50 0.86 0.94 956 0.828

AD1 0.000 2.881 0.4 1.434 0.28 38.74 0.41 1.07 2344 0.71

AD2 0.327 3.204 0.4 1.443 0.31 39.04 0.49 1.26 2382 0.69

AD3 1.307 4.198 0.4 1.477 0.42 40.25 0.81 2.01 2521 0.64

AD4 2.287 5.174 0.4 1.526 0.56 42.01 1.27 3.01 2707 0.58

AD5 3.000 5.903 0.4 1.575 0.69 43.77 1.74 3.97 2888 0.54

AD6 3.267 6.173 0.4 1.595 0.75 44.47 1.95 4.38 2964 0.53

AD7 3.920 6.833 0.4 1.659 0.93 46.77 2.59 5.55 3200 0.47

AD8 4.247 7161 0.4 1.706 1.05 48.45 3.02 6.24 3366 0.44

AD9 5.227 8.155 0.4 1.884 1.58 54.69 4.88 8.92 4008 0.35

AD10 5.554 8.485 0.4 1.974 1.87 57.80 5.85 10.13 4338 0.313

DD1 0.000 7.688 5.0 1.446 0.13 90.85 0.51 0.60 1097 0.73

DD2 3.000 10.70 5.0 1.467 0.19 92.52 0.95 1.00 1156 0.69

DD3 6.000 13.73 5.0 1.498 0.26 95.05 1.61 1.70 1238 0.63

DD4 9.000 16.74 5.0 1.544 0.35 98.70 2.57 2.60 1353 0.56

DD5 12.00 19.77 5.0 1.612 0.48 104.08 4.01 3.90 1528 0.48

DD6 15.00 22.81 5.0 1.716 0.68 111.95 6.31 5.60 1819 0.39

DD7 18.00 25.84 5.0 1.922 1.10 126.69 10.77 8.50 2430 0.28

AD1f1 0.000 2.305 0.4 1.422 0.23 38.33 0.30 0.79 2283 0.730

AD1f2 0.000 1.723 0.4 1.413 0.19 38.03 0.22 0.58 2233 0.753

AD1f3 0.000 1.152 0.4 1.406 0.15 37.79 0.16 0.41 2188 0.770

AD1f4 0.000 0.576 0.4 1.401 0.11 37.64 0.11 0.29 2151 0.785

AD3f1 1.307 3.610 0.4 1.457 0.36 39.56 0.62 1.58 2434 0.673

AD3f2 1.307 3.032 0.4 1.441 0.31 39.01 0.47 1.22 2361 0.700

AD3f3 1.307 2.457 0.4 1.428 0.26 38.56 0.36 0.90 2298 0.723

AD3f4 1.307 1.883 0.4 1.417 0.21 38.20 0.26 0.70 2243 0.745

AD6f1 3.267 5.574 0.4 1.555 0.64 43.13 1.54 3.57 2798 0.555

AD6f2 3.267 5.003 0.4 1.522 0.55 41.96 1.23 2.93 2666 0.590

AD6f3 3.267 4.423 0.4 1.494 0.47 41.00 0.97 2.37 2554 0.625

AD6f4 3.267 3.842 0.4 1.472 0.41 40.20 0.76 1.89 2462 0.655

AD9f1 5.227 7.564 0.4 1.772 1.23 50.92 3.71 7.28 3574 0.400

AD9f2 5.227 6.978 0.4 1.691 1.00 48.13 2.89 6.01 3264 0.448

AD9f3 5.227 6.392 0.4 1.630 0.84 46.00 2.29 4.98 3029 0.493

AD9f4 5.227 5.808 0.4 1.584 0.71 44.38 1.83 4.12 2851 0.533

AD10f1 5.554 7.896 0.4 1.833 1.41 53.06 4.35 8.20 3793 0.370

AD10f2 5.554 7.305 0.4 1.741 1.13 49.93 3.37 6.74 3434 0.420

AD10f3 5.554 7.721 0.4 1.665 0.93 47.28 2.64 5.58 3149 0.468

AD10f4 5.554 6.134 0.4 1.611 0.78 44.40 2.10 4.62 2942 0.510

AD11f2 6.000 7.756 0.4 1.815 1.35 52.60 4.16 7.90 3696 0.380

AD12f3 7.000 8.175 0.4 1.914 1.65 56.27 4.23 9.30 4010 0.340

AD12f4 7.000 7.586 0.4 1.798 1.29 52.29 3.99 7.64 3574 0.393

AD13f4 8.000 8.585 0.4 2.049 2.09 61.30 6.75 11.01 4436 0.295
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The low-density uniformly rotating model sequence
AUf1–5g is set up with initial angular velocities �c;i

from 1 to 3:5 rad s�1, where the latter value corresponds
to rotation very close to the mass-shedding limit. The more
compact uniformly rotating sequence DUf1–7g is set up
with precollapse �c;i from 2 to 9:5 rad s�1, where, again,

the latter value corresponds to near-mass-shedding
rotation.

Model sequences ADf1–10g, DDf1–7g are differentially
rotating according to the rotation law discussed in
Sec. II B 2 and specified by Eqs. (6) and (9), with the
parameter choice fsh ¼ 1 and fp ¼ 0:1 for the AD se-

quence and fsh ¼ 1 and fp ¼ 0:05 for the DD sequence.

We recall that fp is the fraction of the central density where

the angular velocity has a global maximum. While fp ¼
0:1 is the standard choice of [23], we adopt fp ¼ 0:05 for

the high-density sequence DD to be in line with the pa-
rameter choices made for the models of Dessart et al. [28].
Test calculations with AD models show that the variation
of fp between 0.05 and 0.10 affects the rotational configu-

ration of the outer WD layers only and does not have any
appreciable effect on the AIC dynamics. For the ADf1–10g
sequence, we chose�c;i in the range from 0 to 5:6 rad s�1,

resulting in maximum angular velocities �max;i in the

range of 2.88 to 8:49 rad s�1. The higher-density
DDf1–7g sequence rotates with �c;i in the range from 0

to 18 rad s�1, corresponding to maximum� in the range of
7.69 to 25:84 rad s�1. The values of �c;i and�max;i for the

individual AD and DD models are given in Table I. As
representative examples resulting from our assumed rota-
tion law, we plot in Fig. 3 for models AD3, AD5, and AD10
the angular velocity and the ratio of the angular velocity to

the local Keplerian value as a function of cylindrical radius
and of the enclosed rest mass. In Fig. 4, we plot the color
maps of the rest-mass density on the r� � plane for the
representative precollapse WD models AD1, AD5, and
AD10.
In order to study the effect of variations in the degree of

differential rotation, we vary the dimensionless shear pa-
rameter fsh for a subsequence of AD models and append
suffixes ff1–4g to their names corresponding to fsh ¼
f0:8; 0:6; 0:4; 0:2g, respectively. Figure 5 shows the behav-
ior of the initial angular velocity distribution with decreas-
ing fsh in the rapidly differentially rotating model AD10.
An important point to mention is the large range of

precollapse WD masses covered by our models.
Depending on the initial central density and the rotational
setup, our WDs’ masses range from a sub-MCh value of
1:39M� in the nonrotating low-�c;i model AU0 to a rota-

tionally supported super-MCh mass of 2:05M� in the rap-
idly differentially rotating model AD13f4. The maximum
mass in our sequence of uniformly rotating WDs is
1:462M� and is obtained in model DU7.
To conclude the discussion of our initial rotational con-

figurations, we present in Fig. 6 for all models the initial
values (�i) of the parameter � as a function of their
precollapse central angular velocity �c;i. Differentially

rotating WD models can reach �i of up to �10% while
staying below the mass-shedding limit. This number is
more than a factor of 2 larger than what seems possible
in massive star iron core collapse (see, e.g., [50]), making
these rapidly rotating AIC progenitor models potential
candidates for a dynamical nonaxisymmetric rotational
instability during their postbounce AIC evolution (see
Sec. V).

3. Progenitor white dwarf core temperature and �Yeð�Þ
parametrization

We use Eq. (11) to set up the initial temperature distri-
bution as a function of density. Dessart et al. chose �0 ¼
�c;i ( ¼ 5� 1010 g cm�3 in their models) and T0 ¼
1010 K for their 1:46M� model, and T0 ¼ 1:3� 1010 K
for their 1:92M� model. These values (i) are similar to
what was used in the earlier work of Woosley and Baron
[26] and (ii) work well with the tabulated EOS employed
and the assumption of NSE, but may be higher than the
temperatures prevailing in accreting precollapse WDs in
nature (see, e.g., [7,10,22]).
While the fluid pressure is affected very little by differ-

ent temperature distributions, this is not the case for the
free proton fraction which increases strongly with T in the
range from 109 to 1010 K and at precollapse core densities.
This increase of the proton fraction can lead to enhanced
electron capture during AIC and in this way may have a
significant influence on the AIC dynamics. In order to test
the sensitivity of our AIC simulations on the assumed T0,
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FIG. 3 (color online). Upper panels: angular velocity as a
function of equatorial radius (left panel) and enclosed mass
coordinate (right panel) for three representative precollapse
WD models AD3, AD5, and AD10. Lower panels: angular
velocity normalized to the local Keplerian value as a function
of equatorial radius and enclosed mass for the same models.
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we not only study models with T0 ¼ 1010 K (at �0 ¼ 5�
1010 g cm�3, hereafter the ‘‘high-T’’ models), but perform
also simulations for models set up with T0 ¼ 5� 109 K (at
�0 ¼ 5� 1010 g cm�3, hereafter the ‘‘low-T’’ models). To
obtain the �Yeð�Þ parametrization (see Sec. II A 2) for the
latter temperature, we reran with VULCAN/2D the 1:46M�
AIC model of Dessart et al. up to core bounce with the
same setup as discussed in [28], but using the lower value
of T0. We do not indicate the two different initial tempera-
tures in the model names, but list the results obtained in the
two cases side-by-side in Table II.

In addition to variations in deleptonization due to dif-
ferences in the precollapse WD thermodynamics, we must

also consider the possibility of unknown systematic biases
that lead to small values of Ye in the inner core at bounce
(see Sec. II A 2). In order to study the effect that larger
values of Ye in the inner core have on the AIC dynamics,
we perform a set of test calculations with scaled �Yeð�Þ
trajectories. We implement this by making use of the fact
that Yeð�Þ is to good approximation a linear function of
logð�Þ (see Fig. 1). We change the slope of this function
between � ¼ 5� 1010 g cm�3 and �¼2:5�1014 gcm�3

by increasing Yeð� ¼ 2:5� 1014 g cm�3Þ by 10% and
20%. We pick these particular scalings, since the 20%
increase yields inner-core values of Ye at bounce that are
very close to those obtained in 1D Boltzmann neutrino
transport simulations of oxygen-neon core collapse
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FIG. 4 (color online). Color map of the rest-mass density for the precollapse white dwarf models AD1 (left panel), AD5 (center
panel), and AD10 (right panel). The apparent ruggedness of the WD surface layers is a result of the finite resolution of our
computational grid and the mapping procedure in the visualization tool. The ruggedness has no influence on the collapse and
postbounce dynamics of the inner core.
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TABLE II. Summary of key quantitative results from our AIC simulations. �max;b is the maximum density in the core at the time of
bounce tb, jhjmax is the peak value of the GW signal amplitude, while �ic;b is the inner-core parameter � at bounce. Models marked by

unfilled/filled circles ( � = � ) undergo a pressure-dominated bounce with/without significant early postbounce convection. Models
marked with the cross sign (� ) undergo centrifugal bounce at subnuclear densities. The values left/right of the vertical separator (j)
are for the models with low/high temperature profiles.

Collapse model �max;b [1014 g cm�3] tb [ms] jhjmax [10�21 at 10 kpc] �ic;b [%]

AU0 �j� 2:782j2:807 214:1j204:9 0:27j0:20 0:00j0:00
AU1 �j� 2:697j2:719 214:9j205:5 0:78j0:62 1:27j1:20
AU2 �j� 2:628j2:629 216:7j206:9 2:33j1:90 3:75j3:56
AU3 �j� 2:610j2:613 217:3j207:4 2:79j2:29 4:49j4:28
AU4 �j� 2:525j2:508 221:4j210:8 5:01j4:23 8:48j8:19
AU5 �j� 2:461j2:444 224:2j212:9 5:90j5:05 10:46j10:17
BU0 �j� 2:805j2:800 100:9j95:3 0:19j0:16 0:00j0:00
CU0 �j� 2:782j2:788 56:3j51:4 0:20j0:24 0:00j0:00
DU0 �j� 2:797j2:781 27:5j25:2 0:34j0:42 0:00j0:00
DU1 �j� 2:786j2:777 27:6j25:2 0:23j0:27 0:18j0:17
DU2 �j� 2:774j2:763 27:6j25:2 0:24j0:31 0:39j0:38
DU3 �j� 2:756j2:758 27:6j25:2 0:31j0:27 0:53j0:51
DU4 �j� 2:728j2:719 27:6j25:3 0:64j0:55 1:07j1:03
DU5 �j� 2:669j2:658 27:7j25:3 1:21j1:07 2:04j1:97
DU6 �j� 2:642j2:640 27:8j25:4 1:97j1:73 3:27j3:17
DU7 �j� 2:627j2:619 27:9j25:5 2:17j1:92 3:61j3:50
AD1 �j� 2:661j2:679 218:7j208:5 2:24j1:75 2:96j2:62
AD2 �j� 2:620j2:616 220:1j209:5 2:85j2:30 3:93j3:55
AD3 �j� 2:547j2:547 225:5j213:7 4:62j3:93 7:20j6:71
AD4 �j� 2:447j2:442 232:9j219:4 5:89j5:19 10:58j10:01
AD5 �j� 2:361j2:389 241:1j225:5 6:37j5:68 13:09j12:33
AD6 �j� 2:324j2:355 246:7j229:7 6:39j5:78 14:03j13:18
AD7 �j� 2:226j2:228 260:0j238:8 6:00j5:73 16:34j15:23
AD8 �j� 2:145j2:167 264:3j240:9 6:01j5:70 17:48j16:30
AD9 �j� 1:817j1:911 319:7j267:3 3:40j4:00 23:38j20:69
AD10 �j� 1:629j1:790 393:6j284:5 2:36j3:54 24:41j21:25
DD1 �j� 2:779j2:772 27:5j25:2 0:46j0:37 0:70j0:58
DD2 �j� 2:684j2:686 27:7j25:3 1:24j1:06 1:95j1:81
DD3 �j� 2:642j2:638 27:8j25:5 2:41j2:08 3:76j3:56
DD4 �j� 2:586j2:571 28:1j25:7 3:78j3:29 5:93j5:71
DD5 �j� 2:526j2:498 28:4j25:9 5:22j4:61 8:27j8:09
DD6 �j� 2:457j2:425 28:8j26:3 6:52j5:82 10:57j10:51
DD7 �j� 2:389j2:352 29:2j26:5 7:58j6:81 12:75j12:79
AD1f1 �j� 2:718j2:733 217:1j207:2 1:57j1:24 2:06j1:80
AD1f2 �j� 2:759j2:767 215:8j206:2 0:96j0:75 1:26j1:10
AD1f3 �j� 2:787j2:795 214:9j205:5 0:47j0:36 0:59j0:49
AD1f4 �j� 2:803j2:803 214:4j205:0 0:26j0:18 0:14j0:12
AD3f1 �j� 2:560j2:564 222:5j211:5 4:09j3:41 6:26j5:81
AD3f2 �j� 2:583j2:597 220:1j209:6 3:46j2:85 5:23j4:85
AD3f3 �j� 2:622j2:631 218:2j208:1 2:76j2:25 4:17j3:87
AD3f4 �j� 2:656j2:662 216:7j207:0 2:03j1:63 3:10j2:90
AD6f1 �j� 2:356j2:377 237:6j222:9 6:47j5:77 13:20j12:52
AD6f2 �j� 2:395j2:399 233:1j219:7 6:41j5:63 12:31j11:79
AD6f3 �j� 2:421j2:424 229:1j216:7 6:28j5:43 11:47j11:06
AD6f4 �j� 2:463j2:444 225:7j214:1 5:95j5:12 10:56j10:20
AD9f1 �j� 1:913j1:994 282:0j250:9 3:88j5:77 20:80j18:84
AD9f2 �j� 2:000j2:073 265:1j241:7 5:25j6:17 20:10j18:09
AD9f3 �j� 2:092j2:115 253:9j234:6 6:96j6:41 18:44j17:45
AD9f4 �j� 2:159j2:166 244:7j228:3 7:30j6:74 17:67j16:74
AD10f1 �j� 1:797j1:899 303:4j261:3 3:99j4:14 23:71j21:04
AD10f2 �j� 1:901j1:980 272:4j245:2 4:15j5:91 21:07j19:30
AD10f3 �j� 1:984j2:042 261:2j239:3 5:52j6:39 20:40j18:53
AD10f4 �j� 2:096j2:098 249:8j231:7 7:32j6:67 18:70j17:83
AD11f2 �j� 1:734j1:845 296:9j257:6 3:78j4:13 24:23j21:65
AD12f3 �j� 0:319j1:555 372:3j249:4 1:61j4:08 22:88j23:08
AD12f4 �j� 1:432j1:677 298:1j257:9 3:14j4:44 24:58j22:97
AD13f4 �j� 7� 10�4j0:312 331:8j322:9 0:40j2:01 15:39j24:02
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[45,103]. The 10% scaling yields values in between those
of [28,45,103] and, hence, allows us to study trends in AIC
dynamics with variations in deleptonization in between
constraints provided by simulations. We will not list the
results of these tests in our summary tables, but discuss
them wherever the context requires their consideration
(i.e., Secs. III A, III B, and IV).

D. Gravitational-wave extraction

We employ the Newtonian quadrupole formula in the
first moment of momentum density formulation as dis-
cussed, e.g., in [80,83,104]. In essence, we compute the
quadrupole wave amplitude AE2

20 of the l ¼ 2, m ¼ 0 mode

in a multipole expansion of the radiation field into pure-
spin tensor harmonics [105]. In axisymmetric AIC, this
quadrupole mode provides by far the largest contribution to
the GWemission, and other modes are at least one or more
orders of magnitude smaller. Of course, should nonaxisym-
metric instabilities develop (which we cannot track in our
current 2D models), these would then provide a consider-
able nonaxisymmetric contribution to the GW signal.

The GW amplitude is related to the dimensionless GW
strain h in the equatorial plane by

h ¼ 1

8

ffiffiffiffiffiffi
15

�

s �
AE2
20

r

�
¼ 8:8524� 10�21

�
AE2
20

103 cm

��
10 kpc

r

�
;

(12)

where r is the distance to the emitting source.
We point out that although the quadrupole formula is not

gauge invariant and is only valid in the weak-field slow-
motion limit, it yields results that agree very well in phase
and to �10%–20% in amplitude with more sophisticated
methods [104,106,107].

In order to assess the prospects for detection by current
and planned interferometric detectors, we calculate char-
acteristic quantities for the GW signal following [40].
Performing a Fourier transform of the dimensionless GW
strain h,

ĥ ¼
Z 1

�1
e2�ifthdt; (13)

we can compute the (detector-dependent) integrated char-
acteristic frequency

fc ¼
�Z 1

0

hĥ2i
Sh

fdf

��Z 1

0

hĥ2i
Sh

df

��1
; (14)

and the dimensionless integrated characteristic strain

hc ¼
�
3
Z 1

0

Sh;c
Sh

hĥ2ifdf
�
1=2

; (15)

where Sh is the power spectral density of the detector and

Sh;c ¼ ShðfcÞ. We approximate the average hĥ2i over ran-
domly distributed angles by ð3=2Þĥ2. From Eqs. (14) and
(15) the optimal single-detector signal-to-noise ratio
(SNR) can be calculated as

SNR 	 hc
hrmsðfcÞ ; (16)

where hrms ¼
ffiffiffiffiffiffiffiffi
fSh

p
is the value of the root-mean-square

strain noise for the detector.

III. COLLAPSE DYNAMICS

The AIC starts when the progenitor WD reaches its
effective Chandrasekhar mass and pressure support is re-
duced due to electron capture in the core. Similar to the
case of massive star iron core collapse (e.g.,
[76,83,108,109] and references therein), the collapse evo-
lution can be divided into three phases:
Infall. This is the longest phase of collapse and, depend-

ing on model parameters, lasts between �25 ms and
�300 ms. The inner part of the WD core (the ‘‘inner
core’’), which is in sonic contact, contracts homologously
(vr / r), while the ‘‘outer core’’ collapses supersonically.
Figure 7 shows the time evolution of the central density for
the nonrotating high-T AIC models. In the infall phase, the
core contracts slowly, which is reflected in the slow in-
crease of �c.
Plunge and bounce. The short dynamical ‘‘plunge’’

phase sets in when �c reaches �1012 g cm�3, and the
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FIG. 7 (color online). Evolution of the maximum (central)
density for the nonrotating low-T models AU0, BU0, CU0,
and DU0. The inset plot displays a zoomed-in view of the
maximum density around the time of core bounce on a linear
scale. As is clearly discernible from this figure, the collapse
dynamics in the plunge and bounce phase are essentially inde-
pendent of the initial WD central density. Time is normalized to
the time of bounce tb.
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peak radial infall velocity is�0:1c. At this point, neutrinos
begin to be trapped in the inner core. The latter rapidly
contracts to reach nuclear densities (�nuc ’ 2:7�
1014 g cm�3) at which the nuclear EOS stiffens, decelerat-
ing and eventually reversing the infall of the inner core on a
millisecond time scale. Because of its large inertia and
kinetic energy, the inner core does not come to rest imme-
diately. It overshoots its equilibrium configuration, then
bounces back, launching a shock wave at its outer edge into
the still infalling outer core. The bounce and the reexpan-
sion of the inner core is also evident in the time evolution
of �c shown in Fig. 7 which, at core bounce, reaches a
value of�2:8� 1014 g cm�3 in the nonrotating AIC mod-
els, after which the core slightly reexpands and settles
down at �2:5� 1014 g cm�3. As pointed out by extensive
previous work (see, e.g., [8,50,110–112] and references
therein), the extent of the inner core at bounce determines
the initial kinetic energy imparted to the bounce shock, the
mass cut for the material that remains to be dissociated,
and the amount of angular momentum that may become
dynamically relevant at bounce.

Ringdown. Following bounce, the inner core oscillates
with a superposition of various damped oscillation modes
with frequencies in the range of 500–800 Hz, exhibiting
weak low-amplitude variations in �c (Fig. 7). These oscil-
lations experience rapid damping on a time scale of 10 ms
due to the emission of strong sound waves into the post-
shock region which steepen into shocks. The newly born
PNS thus rings down to its new equilibrium state.

The ringdown phase is coincident with the burst of
neutrinos that is emitted when the bounce shock breaks
out of the energy-dependent neutrinospheres (see, e.g.,
[28,91]). The neutrino burst removes energy from the
postshock regions and enhances the damping of the PNS
ringdown oscillations (e.g., [53]), but, due to the limita-
tions of our present scheme (see Sec. II A 2), is not ac-
counted for in our models.

A. Nonrotating AIC

The set of nonrotating AIC models that we consider here
consists of models AU0, BU0, CU0, DU0. As noted in
Sec. II C 1, these models have different central densities
with values in the range from 4� 109 to 5� 1010 g cm�3

which, because of the strong dependence of the WD com-
pactness on the central density, corresponds to a range of
WD radii from 1692 to 813 km (see Fig. 2). Once mapped
onto our computational grid and after the initial �Yeð�Þ
parametrization is applied (see Sec. II B 4), all WD models
start to collapse by themselves and no additional artificial
pressure reduction is necessary. This is in contrast to
previous work that employed a simple analytic EOS and
required an explicit and global change of the adiabatic
exponent to initiate collapse (e.g., [76,78]).

The free-fall collapse time �ff of a Newtonian self-
gravitating object of mean density �mean is proportional

to ��1=2
mean . For our set of spherically symmetric AIC mod-

els we find a scaling �ff / ��0:87
c , where �c is the pre-

collapse central density of the WD. This stronger scaling
is due to the fact that WD cores are not constant den-
sity objects and that the collapse is not pressure-
less. Furthermore, the pressure reduction initiating
and accelerating collapse is due primarily to electron

capture which scales roughly with �5=3 (e.g., [8]).
Hence, lower-density WDs collapse only slowly, spending
much of their collapse time near their initial equilibrium
states.
In Fig. 7, we plot the evolution of the central densities of

the nonrotating high-T models. Despite the strong depen-
dence of the collapse times on the initial central densities,
the evolution of �c around bounce does not exhibit a
dependence on the initial central density. Moreover, the
mass and the size of the inner core is rather insensitive to
the initial value of �c.
These features, somewhat surprising in the light of

the strong dependence of the collapse times on the initial
value of �c, are a consequence of the fact that the inner-
core mass is determined primarily not by hydrodynamics,
but by the thermodynamic and compositional structure
of the inner core set by nuclear and neutrino physics
[8]. However, an important role is played also by the fact
that an increase (decrease) of the central density of an
equilibrium WD leads to a practically exact homologous3

contraction (expansion) of the WD structure in the inner
regions [mð$Þ & 1M�] in the nonrotating case (this can
be seen in Fig. 11), at least in the range of central densities
considered in this paper (as we shall see in Sec. III B,
this feature also holds to good accuracy in the case of
rotating WDs). These aspects, in combination with the
homologous nature of WD inner-core collapse, make
the size and dynamics of the inner core in the bounce phase
practically independent of the central density of the initial
equilibrium WDs. Early analytical work [8,110,111]
demonstrated (neglecting thermal corrections [114] and
rotation) that the massMic of the inner core is proportional
to Y2

e in the infall phase during which the fluid pressure
is dominated by the contribution of degenerate electrons.
Around bounce, at densities near nuclear matter den-
sity, the nuclear component dominates and the simple
Y2
e dependence does not hold exactly any longer. As dis-

cussed in Sec. II B 4, we adopt the parametrization �Yeð�Þ
as extracted from the simulations of Dessart et al. [28]
which predict very efficient electron capture, resulting
in an average inner-core Ye at bounce of �0:18 in the
high-T models. This is significantly lower than in standard
iron core collapse where the inner-core Ye at bounce is
expected to be around �0:25–0:30 [91,94,115]. In our
nonrotating AIC models, we find inner-core masses at

3For a discussion of homology in the stellar structure context,
see [113].
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bounce Mic;b � 0:27M�
4 (see Fig. 13) which are, as ex-

pected, significantly smaller than in iron core collapse
(where Mic;b � 0:5M� [94,115,116]). Because of their

small mass, our AIC inner cores have less kinetic energy
at bounce and reach lower densities than their iron-core
counterparts. For example, the nonrotating AIC models
exhibit central densities at bounce of �2:8�
1014 g cm�3, while in nonrotating iron core collapse, maxi-
mum densities of * 3� 1014 g cm�3 are generally
reached at bounce in simulations (e.g., [50]). In addition
toMic;b, the bounce density depends also on the stiffness of

the nuclear EOS whose variation we do not explore here
(see, e.g., [50,117]).

Since the free proton fraction at precollapse and early
collapse densities grows rather rapidly with temperature in
the range from �109 to �1010 K (e.g., [118]), the effi-
ciency of electron capture is sensitive to the temperature of
WDmatter. For example, in the low-T models, the value of
Ye drops to ’ 0:32 when the density reaches 1012 g cm�3,
while in the high-T models, we obtain Ye ’ 0:3 at that
time. Because of this dependence of Ye on T, the inner core
masses of low-T models are larger by �10% compared to
those of high-T models. Moreover, since the electron de-

generacy pressure is proportional to ðYe�Þ4=3 [8], the col-
lapse times of the low-T models are longer by �5%. We
find similar systematics in test calculations in which we
modify the �Yeð�Þ trajectories of low-T models to yield
larger Ye at bounce (see Sec. II C 3). An increase of the
inner-core Ye by 10% (20%) leads to an increase of Mic;b

by �11% (� 25%).
It is important to note that the nonrotating AIC models

discussed above, as well as all of the other models consid-
ered in this study, experience prompt hydrodynamic ex-
plosions. The bounce shock, once formed, does slow down,
but never stalls and steadily propagates outwards. While
the shock propagation is insensitive to the initial WD
temperature profile, it shows significant dependence on
the initial WD central density: Owing to the greater initial
compactness and the steeper density gradient of the higher-
density models, the shock propagation in those models is
faster and the shock remains stronger when it reaches the
WD surface. For example, in the lowest-density progenitor
model AU0, the shock reaches the surface within�120 ms
after its formation, while in the highest-density model
DU0, it needs only �80 ms. We point out that Dessart

et al. [28,29] and previous AIC studies [26,27] reported
significant shock stagnation in the postbounce phase of
AIC due to the dissociation of infalling material and neu-
trino losses from the postshock region. Our present com-
putational approach includes dissociation (through the
EOS, see Sec. II A 1), but does not account for neutrino
losses in the postbounce phase. Hence, the ‘‘prompt’’ ex-
plosions in our models are most likely an artifact of our
incomplete treatment of the postbounce physics.

B. Rotating AIC

The AIC of rotating models proceeds through the same
stages as AIC without rotation and exhibits similar general
features, including the well defined split of the WD into an
inner core that is in sonic contact and collapses quasiho-
mologously,5 and a supersonically infalling outer core.
Conservation of angular momentum leads to an increase
of the angular velocity � / $�2 and of the centrifugal
acceleration acent ¼ �2$ / $�3. The latter has an oppo-
site sign to gravitational acceleration, and hence provides
increasing centrifugal support during collapse, slowing
down the contraction and, if sufficiently strong, leading
to centrifugally induced core bounce only slightly above
nuclear density or even at subnuclear density [109,119].
Just as in the case of nonrotating AIC, models of set A

collapse more slowly than D models because of the depen-
dence of the collapse times on the initial central densities.
However, due to centrifugal support, the collapse times
grow with increasing precollapse rotation. This is visual-
ized in Fig. 8 in which we plot the time to core bounce as a
function of the initial central angular velocity �c;i. The

maximum angular velocity of uniformly rotating models is
limited by the WD surface mass-shedding limit and is
�3:5 rad s�1 (� 9:5 rad s�1) in model AU5 (DU7). The
effect of rotation on the collapse time of uniformly rotating
models) is small, and the time to core bounce increases by
�5% from zero to maximum precollapse rotation in model
set A. The more compact D models collapse much faster
than their lower initial density A counterparts and, in
addition, experience a smaller spin-up of their more com-
pact inner cores. Hence, uniformly rotating D models are
less affected by rotation and their collapse times vary by
only �0:8% from zero to maximum rotation.
As mentioned in Sec. II B 2, WD models that rotate

differentially according to the rotation law of Yoon and
Langer [7,23] have an angular velocity that increases from
its central value�c;i with$ up to a maximum�max;i at the

cylindrical radius $p, beyond which � decreases to sub-

Keplerian values at the surface (see Fig. 3). The rate at
which � increases in the WD core is controlled by the

4We define the inner core as the region which is in sonic
contact at the time of bounce, i.e.,

Mic;b 	
Z
jvrj<cs

�WdV; (17)

where W is the Lorentz factor and dV is the invariant 3-volume
element. The bounce time is defined as the time when the radial
velocity of the outer edge of the inner core becomes positive.
Note that such a measure of the inner core is strictly valid only at
the time of bounce.

5The collapse is quasihomologous because in this case the
relation between the infall velocity vr depends on both the radial
coordinate and on the polar coordinate [76].
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shear parameter fsh, which we choose in the range from 0.2
to 1. The case fsh ¼ 0:2 corresponds to a nearly uniformly
rotating inner region, while fsh ¼ 1 corresponds to strong
differential rotation with �ð$pÞ=�c;i � 2–3. In mass co-

ordinate, this corresponds to a ratio �ðMic;bÞ=�c;i of

�1:4–2:4, where Mic;b ’ 0:3M� is the approximate mass

that constitutes the inner core at bounce in a nonrotating
WD model.

In contrast to uniformly rotating models, differentially
rotating WDs are not limited by the mass-shedding limit at
the surface. As a result, �c;i can in principle be increased

up to the point beyond which the precollapse WD inner
core becomes fully centrifugally supported and does not
collapse at all. For model set AD, this maximum of �c;i is

�8 rad s�1 (the low-T model AD13f4, which becomes
centrifugally supported already at a central density of
�7� 1010 g cm�3) while the more compact DD models
still collapse rapidly at�c;i � 18 rad s�1 (model DD7). As

shown in Fig. 8, the most rapidly rotating AD model
(AD13f4) reaches core bounce after a time which is
�55% larger than a nonrotating A model. For the most
rapidly rotating DD model this difference is only �5%.

In Fig. 9 we plot the maximum density �max;b at bounce

as a function of the inner-core parameter �ic;b at bounce.

Slowly to moderately rapidly rotating WDs that reach
�ic;b & 15% are only mildly affected by rotation, and their

�max;b decrease roughly linearly with increasing �ic;b, but

stay close to �nuc. The effect of rotation becomes nonlinear
in more rapidly rotating WDs. Models of our set that reach
�ic;b * 18% (i.e., AD models with �c;i * 5 rad s�1)

undergo core bounce induced partly or completely centri-
fugally at subnuclear densities.
As shown in Fig. 10, �ic;b is a monotonic function of

�c;i, but is very sensitive to both the rotation law and the

initial WD compactness. Our most rapidly uniformly rotat-
ing models AU5 and DU7 (both near the mass-shedding
limit) reach �ic;b of �10:5% and �3:6%, respectively.

Hence, uniformly rotating WDs always undergo core
bounce due to the stiffening of the nuclear EOS and with
little influence of rotation on the dynamics.
In models where centrifugal effects remain subdominant

during collapse, �ic;b grows practically linearly with �c;i.

This relationship flattens off for models that become par-
tially or completely centrifugally supported near bounce.
�ic;b grows with increasing rotation up to �24:5% (model

AD13f4), beyond which any further increase in precollapse
rotation leads to a decrease of �ic;b, since the inner core

becomes fully centrifugally supported before reaching
high compactness and spin-up. In other words, there exists
a ‘‘centrifugal limit’’ beyond which centrifugal forces
dominate, and as a result, increasing precollapse rotation
leads to a decreasing �ic;b at core bounce. This result is

analogous to what previous studies [50,108] found in the
rotating core collapse of massive stars and has consequen-
ces for the appearance of nonaxisymmetric rotational in-
stabilities in PNSs. This will be discussed in more detail in
Sec. V.
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FIG. 9 (color online). The maximum density �max;b at bounce
as a function of the inner-core parameter �ic;b at bounce for the

entire set of high-T AIC models. Because of the increasing role
of centrifugal support, �max;b decreases monotonically with

increasing rotation (see the main text for details). The symbol
convention for the various sets is explained in the caption of
Fig. 8.
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FIG. 8 (color online). Times to core bounce from the onset of
collapse as a function of initial central angular velocity �c;i.

Shown are the results of the high-T model sequence (the low-T
models exhibit identical systematics). Models denoted by an
unfilled (filled) circle undergo a pressure-dominated bounce
with (without) significant prompt postbounce convection.
Models marked by a cross undergo centrifugal bounce at sub-
nuclear densities, and models marked with a small (large)
symbol are of set A (D). The colors correspond to various
precollapse rotational configurations (see the legend in Fig. 9).
Note that due to their much higher initial compactness, the high-
density D models (shown in the inset plot) have much shorter
collapse times than their lower-density A counterparts.
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The influence of the precollapse compactness on the
dynamics of rotating AIC can also easily be appreciated
from Fig. 10. The higher-density, more compact WDs of
set D spin up much less than their A counterparts since
their inner cores are already very compact at the onset of
collapse. Hence, a higher-density WD that reaches a given
value of �ic;b must have started out with a larger�c;i than a

lower-density WD reaching the same �ic;b. For the particu-

lar choice of initial central densities represented by D and
A models and in the case of uniform or near-uniform
rotation, the ratio between the �c;i of a D and A model

required to reach the same �ic;b is�5:3. This factor can be
understood by considering Fig. 11 in which we plot the
enclosed mass as a function of equatorial radial coordinate
re of selected A and D initial WD configurations with slow
and rapid rotation. The important thing to notice is that the
WD core structure (M & 0:5M�) is insensitive to the rota-
tional configuration and obeys a homology relation. Stated
differently, for a model of set D, a homologous expansion
in the radial direction by a factor of �2:3 yields an object
whose inner part is very similar to a lower-density A
model. In turn, the collapse of A models corresponds to a
�2:3 times greater contraction of the WD core compared
to their D model counterparts and a spin-up that is greater
by a factor of �ð2:3Þ2 ’ 5:3. This explains the strong
dependence of the inner-core angular velocity and �ic;b

on the initial central density observed in Fig. 10.
Furthermore, it suggests that one can find A–D model pairs
that differ greatly in their precollapse angular velocities,
but yield the same rotational configuration at bounce. An
example for this is shown in Fig. 12 in which we plot for
the uniformly rotating model pair AU2-DU7 the equatorial
angular velocity profile at the time of bounce as well as the
evolution of the central density around the time of bounce.
AU2 and DU7 have practically identical angular velocity
profiles and their core structure, core mass, and �ic;b agree

very closely. As can be seen in the inset plot of Fig. 12, this
results in nearly identical �c time evolutions around
bounce and demonstrates that WDs with quite different
precollapse structure and rotational setup can produce
identical bounce and postbounce dynamics. This can also
occur for pairs of differentially rotating models and is an
important aspect to keep in mind when interpreting the GW
signal from AIC discussed in Sec. IV.
Figure 13 shows the mapping between �ic;b and the

inner-core mass Mic;b at bounce for all high-T models.

Rapid (differential) rotation not only increases the equilib-
rium mass of WDs (see Table I), but rotational support also
increases the extent of the region in sonic contact during
collapse. Hence, it may be expected that Mic;b grows with

increasing rotation. However, for WDs below�ic;b & 13%,

Mic;b is essentially unaffected by rotation and stays within

0:02M� of the nonrotating value of 0:28M�. Only when the
effects of rotation become strong at �ic;b * 13%–18%
does Mic;b increase roughly linearly with �ic;b. WDs that
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FIG. 10 (color online). The inner-core parameter �ic;b at the
time of bounce for all low-T AIC models plotted as a function of
the precollapse central angular velocity �c;i. For models with

slow to moderately rapid rotation, �ic;b increases roughly line-
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further increase of the progenitor rotation results in a decrease of
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undergo centrifugal bounce have �ic;b * 18% and corre-

spondingly large inner cores that are more massive than
�0:5M�. Such values ofMic;b are accessible only to differ-

entially rotating WDs.
Also for rotating models, the dependence of the AIC

dynamics on the initial temperature of AIC progenitor
WDs is simple and straightforwardly understood from

the nonrotating results discussed in Sec. III A. These
show that the low-T models yield inner cores that are
�10% larger in mass than in their twice-as-hot high-T
counterparts. Because of their larger mass, the inner cores
of collapsing low-T AIC progenitors also contain a larger
amount of angular momentum. At fixed rotation law and
�c;i, they reach values of �ic;b that are larger by up to�5%
(in absolute value). Hence, lower-T WDs become affected
by centrifugal support, bounce centrifugally, and reach the
centrifugal limit at lower �c;i than their higher-T counter-

parts. Along the same lines behave test calculations in
which we impose increased inner-core values of Ye (see
Secs. II A 2 and II C 3). The increased Ye leads to more
massive and more extended inner cores which, in turn, are
more likely to experience a centrifugal support.
To conclude our discussion of rotating AIC, we summa-

rize for the reader that the PNSs born from the set of
differentially (uniformly) rotating AIC models considered
here have average angular velocities6 in the range from 0 to
�5 radms�1 (� 3:3 radms�1), while their pole to equator
axis ratios vary from 1 to �0:4 (� 0:6).7 Some of the
rapidly rotating WDs produce PNSs with a slightly off-
center maximum in density, though the density distribution
of the inner regions does not exhibit a pronounced toroidal
geometry. The clearest deviation from a centrally peaked
density distribution is produced in the case of model AD10,
which reaches �ic;b ’ 21:3% (�ic;b ’ 24:4%) in its high-T
(low-T) variant. In this model, the point of highest density
after bounce is located at r ’ 0:94 km, but the maximum
value is larger than the central density value by only
�0:3%. For models with less rapid rotation, the off-center
maximum is much less pronounced, and completely dis-
appears for �ic;b below �20%.

C. Shock propagation and the formation of
quasikeplerian disks

As pointed out earlier (see Sec. III A), all AIC models
considered in this study undergo weak hydrodynamic ex-
plosions. This is an artifact of our approach that neglects
postbounce neutrino emission, but is unlikely to strongly
affect the results presented in this section, since in the
MGFLD simulations of [28], the shock stalls only for a
very short period and a weak explosion is quickly initiated
by neutrino heating.
In moderately rapidly and rapidly rotating AIC (with

�ic;b * 5%), the shock propagation is significantly af-
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FIG. 12 (color online). Angular velocity profiles in the equa-
torial plane at the time of core bounce and time evolution of the
central density �c (in the inset) for models AU2 and DU7. The
initial angular velocity of model DU7 is larger by a factor of
�5:3 than that of model AU2, but the latter experiences a �5:3
greater spin-up during collapse. As a result, these models pro-
duce inner cores with almost identical rotational configurations
and similar masses in the bounce phase. This is reflected in an
identical evolution of the central densities at bounce.

6The average angular velocity �� of the differentially rotating
models considered here is computed using the approximation
�� ¼ Jic=Iic, where Jic is the inner-core angular momentum and
Iic is the (Newtonian) inner-core moment of inertia.

7The PNS formed in the AIC of WDs is surrounded by hot
low-density material in the early postbounce phase, making it
hard to define the boundary of the PNS unambiguously. For the
present rough estimate of the axis ratio, we assume a density
threshold of 1012 g cm�3 to mark the boundary of the PNS.
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fected by centrifugal effects. The material near the equa-
torial plane of rotating WDs experiences considerable
centrifugal support, and its collapse dynamics is slowed
down. As a consequence, the bounce is less violent and the
bounce shock starts out weaker near the equatorial plane
than along the poles. Centrifugal support of low-latitude
material also leads to reduced postbounce mass accretion
rates near the equatorial plane, facilitating steady propa-
gation of the shock at low latitudes. In the polar direction,
where centrifugal support is absent, the shock propagates
even faster due to the steeper density gradient and smaller
polar radius of the WD. This quickly leads to a prolate
deformation of the shock front in all rotating models, and
the shock hits the polar WD surface much before it breaks
out of the equatorial envelope. This is shown in Fig. 14,
where we plot the equatorial and polar profiles of the radial
velocity and specific entropy per baryon for model DD7 at
various postbounce times. Because of the prolateness of
the shock front, it breaks out of the polar surface�130 ms
before reaching the WD’s equatorial surface. Moreover,

due to the anisotropy of the density gradient and the initial
shock strength, the specific entropy of the shock-heated
material is larger by a factor of �2–3 along the polar
direction.
The asphericity of the shock front and the anisotropy of

the shock strength become more pronounced in AIC with
increasing rotation [53,78]. As pointed out in Sec. III A,
due to the their greater initial compactness and thus steeper
density gradients, the shock propagates faster in D models:
In model DD1, for example, the shock reaches the surface
in the equatorial plane within �88 ms, while for model
AD1, the corresponding time is �143 ms.
Rapid rotation, and, in particular, rapid differential ro-

tation, increases the maximum allowable WD mass. The
most rapidly uniformly rotating WDs in our model set (i.e.,
models DU7 and AU5) have an equilibrium mass of
�1:46M�, which is only slightly above MCh in the non-
rotating limit. Our most rapidly differentially rotatingWDs
(models AD13f2 and DD7), on the other hand, reach
equilibrium masses of up to �2M�. Much of the rotation-
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ally supported material is situated at low latitudes in the
outer WD core, falls in only slightly during collapse, and
forms a quasi-Keplerian disklike structure. The equatorial
bounce shock is not sufficiently strong to eject much of the
disk material and ‘‘wraps’’ around the disk structure, pro-
ducing only a small outflow of outer disk material at vr &
0:025c. This is in agreement with Dessart et al. [28], who
first pointed out that rapidly rotating AIC produces PNSs
surrounded by massive quasi-Keplerian disklike structures
in the early postbounce phase. As recently investigated by
Metzger, Piro, and Quataert [49] (but not simulated here),
the hot disk will experience neutrino cooling on a time
scale of �0:1 s, driving the disk composition neutron-rich
to reach Ye � 0:1 [28,49], depleting the pressure support
and leading to limited contraction of the inner parts of the
disk. The outer and higher-latitude regions expand with a
neutrino-driven wind [28]. As discussed by [49], subse-
quent irradiation of the disk by neutrinos from the PNS
increases its proton-to-neutron ratio, and Ye may reach
values as high as �0:5 by the time the weak interactions
in the disk freeze out. The disk becomes radiatively in-
efficient, � particles begin to recombine, and a powerful
disk wind develops, blowing off most of the disk’s remain-
ing material. Metzger, Piro, and Quataert [49] argue that,
depending on disk mass, the outflows synthesize of the
order of 10�3–10�2M� of 56Ni, but very small amounts of
intermediate-mass isotopes, making such AIC explosions
spectroscopically distinct from 56Ni outflows in standard
core-collapse and thermonuclear SNe.

Our results, summarized in Table III, show that the
masses and the geometry of the disks produced in AIC
are sensitive to the angular momentum distribution in the
precollapse WDs. In models with uniform rotation below
the mass-shedding limit, only a very small amount of low-
latitude material rotates at near-Keplerian angular veloc-
ities. Therefore, most of the outer-core material of such
models undergoes significant infall, so that uniformly ro-
tating WDs will generally produce small disks. The largest
disk mass for uniform rotation is Mdisk � 0:03M�

8 and is
produced in model AU5 which rotates near the mass-
shedding limit. Since the angular velocity of the outer
($>$p) core of differentially rotating models is set to

reach nearly Keplerian values [cf. Eq. (9)], most of the
outer WD envelope has substantial centrifugal support and
thus the differentially rotating models yield significantly
larger Mdisk. For example, model AD4 which has �ic;b and

total angular momentum comparable to model AU5 yields
a disk mass of �0:2M�.
The total mass of the disk and its equatorial radius (the

disk thickness Hdisk) grow with increasing rotation (see
Table III). Slowly rotating models such as AD1 have little
centrifugally supported material and acquire spheroidal
shape soon after bounce, resulting in a disk mass as small
as �0:03M�. More rapidly rotating models such as AD10
produce significantly more strongly flattened disks, with
Re � 2700 km, Hdisk � 800 km, and a disk mass Mdisk of
�0:8M�. Because of the greater initial compactness of the
higher-density D models, their disks are less massive and
have smaller equatorial radii when compared to A models.
Hence, when considering twoWDs of set A and D with the
same total angular momentum, the mass and equatorial
extent of the disk in the D model will be smaller by a factor
of �1:5–2.

TABLE III. Summary of properties of the quasi-Keplerian
disks formed in the set of AIC models AD, AU, DD, and DU.
Hdisk is the thickness and Re is the equatorial radius of the disk,
whileMdisk is its mass. These quantities are computed at the time
when the shock reaches the WD surface in the equatorial plane.
The disk parameters do not vary significantly between the two
choices of WD temperature considered in this study.

Collapse model Re [km] Hdisk=Re Mdisk [M�]

AU1 347 0.928 & 10�3

AU2 401 0.903 & 10�3

AU3 447 0.848 & 10�3

AU4 732 0.577 0.002

AU5 907 0.484 0.030

DU1 248 0.980 & 10�3

DU2 249 0.971 & 10�3

DU3 249 0.952 & 10�3

DU4 261 0.916 & 10�3

DU5 291 0.801 & 10�3

DU6 332 0.701 & 10�3

DU7 350 0.671 0.007

AD1 866 0.479 0.030

AD2 935 0.452 0.038

AD3 1118 0.437 0.093

AD4 1321 0.410 0.222

AD5 1558 0.374 0.323

AD6 1638 0.370 0.356

AD7 1784 0.377 0.470

AD8 1912 0.382 0.507

AD9 2278 0.342 0.607

AD10 2700 0.296 0.805

DD1 360 0.669 0.005

DD2 402 0.597 0.008

DD3 461 0.525 0.019

DD4 554 0.466 0.054

DD5 670 0.436 0.161

DD6 853 0.374 0.279

DD7 1313 0.255 0.507

8We point out that because the disks do not settle down to
exact equilibrium right after bounce or not even after shock
passage, it is hard to introduce an unambiguous definition of the
disk mass. In the present study, we define the disk as the structure
that surrounds the PNS at $> 20 km with densities below
1011 g cm�3 and angular velocity �> 0:58�K. The latter con-
dition ensures that the disk cannot contract by more than a factor
of �3 as a result of cooling.
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These results indicate that massive disks of Mdisk *
0:1M� are unlikely to be compatible with the assumption
of uniformly rotating accreting WDs argued for by
[22,102]. In order to produce disks of appreciable mass
and significant 56Ni outflows in AIC, the progenitor either
must be an accreting WD obeying a differential rotation
law similar to that proposed by [7,23] or may be the
remnant of a binary-WD merger event. However, for the
latter, the differential rotation law is unknown and may be
very different from what we consider here (for a discussion
of binary-WD merger simulations, see, e.g., [120] and
references therein).

IV. GRAVITATIONAL-WAVE EMISSION

In Fig. 15, we present the time evolution of the GW
strain h at an assumed source distance of 10 kpc for a
representative set of AIC models evolved with the �Yeð�Þ
parametrization obtained from [28]. The GW signals of all
models have the same overall morphology. This general
AIC GW signal shape bears strong resemblance to GW
signals that have been classified as ‘‘type III’’ in the past
[42,76,78], but also has features in common with the GW
signals predicted for rotating iron core collapse (‘‘type I,’’
[50]).

The GW strain h in our AIC models is positive in the
infall phase and increases monotonically with time, reach-
ing its peak value in the plunge phase, just�0:1 ms before
bounce. Then, h rapidly decreases, reaching a negative
peak value within �1–2 ms. While the first positive peak
is produced by rapid infall of the inner core, the first
negative peak is caused by the reversal of the infall veloc-
ities at bounce. Following the large negative peak, h oscil-
lates with smaller amplitude with a damping time of
�10 ms, reflecting the hydrodynamical ringdown oscilla-
tions of the PNS. Although all AIC models of our base line
set produce type III signals, we can introduce three sub-
types whose individual occurrence depends on the parame-
ter �ic;b of the inner core at bounce:

Type IIIa. In slowly rotating WDs (that reach �ic;b &
0:7%), strong prompt convective overturn develops in the
early postbounce phase, adding a lower-frequency contri-
bution to the regular ringdown signal (e.g., models AD1f4,
DU3). The largest-amplitude part of this GW signal type
comes from the prompt convection. Nevertheless, the GW
signal produced by the bouncing centrifugally deformed
inner core is still discernible, with the first positive peak
being generally larger by a factor of �2 than the first
negative peak. Subsequent ringdown peaks are smaller by
a factor of * 3. We point out that the observed prompt
postbounce convection is most likely overestimated in our
approach, since we do not take into account neutrino losses
and energy deposition by neutrinos in the immediate post-
shock region, whose effect will quickly smooth out the
negative entropy gradient left behind by the shock and thus
significantly damp this early convective instability in full

postbounce radiation-hydrodynamics calculations (see,
e.g., [42,94,121]).
Type IIIb. In moderately rapidly rotating WDs that reach

0:7% & �ic;b & 18% and still experience a pressure-

dominated bounce, convection is effectively suppressed
due to a sufficiently large positive specific angular momen-
tum gradient (e.g., [122]). Hence, there is no noticeable
convective contribution to the postbounce GW signal (see,
e.g., models AD1, AU4, DD7, AD8). For this signal sub-
type, the peak GW strain jhjmax is associated with the first
positive peak, while relative values of the amplitudes of the
first several peaks are similar to type IIIa.
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FIG. 15 (color online). Evolution of the dimensionless GW
strain h (in units of 10�21 at a source distance of 10 kpc) as a
function of postbounce time for representative models with
different precollapse rotation profiles, central densities, and
temperatures (low-T models with solid black lines and high-T
with dashed red lines). Models with slow and (almost) uniform
precollapse rotation (e.g., AD1f4 or DU3) develop considerable
prompt postbounce convection visible as a dominating lower-
frequency contribution in the waveform. Centrifugal effects
damp this prompt convection and the waveforms of models
with moderately rapid rotation (e.g., AD1, AU4, DD7, and
AD8) and of rapidly rotating models (e.g., AD9 or AD10)
exhibit no such contribution to the signal.
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Type IIIc. If rotation is sufficiently rapid and leading to
�ic;b * 18%, the core bounces at subnuclear densities due

to strong centrifugal support. This is reflected in the GW
signal by an overall lower-frequency emission and a sig-
nificant widening of the bounce peak of the waveform (see,
e.g., models AD9, AD10). In some models of this subtype,
the negative peak can be comparable to or slightly exceed
that of the first positive peak in the waveform. This reflects
the fact that the plunge acceleration is apparently reduced
more significantly by rotation than is the reexpansion
acceleration at core bounce. The postbounce ringdown
peaks in all type IIIc models are smaller by a factor of *
2 compared to the bounce signal. As pointed out in
Sec. III B, uniformly rotating models do not rotate suffi-
ciently rapidly to experience centrifugal bounce. Hence,
they do not produce a type IIIc signal.

The AIC GW signal morphology is affected only
slightly by variations in WD temperature and their result-
ing changes in the inner-core Ye that are on the few-percent
level for the range of precollapse temperatures considered
here. In test calculations with more substantially increased
inner-core values of Ye (see Secs. II A 2 and II C 3) and, in
turn, significantly larger values of Mic;b, we find signals

that are intermediate between type III and type I.
Key quantitative results from our model simulations are

summarized in Tables. II and IV. The waveform data for all
models are available for download from [123].

A. Peak gravitational-wave amplitude

Across our entire model set, the peak GW amplitude
jhjmax covers a range of almost 2 orders of magnitude, from
�10�22 to�10�20 (at distance to the source of 10 kpc; see
Table II). jhjmax depends on various parameters and it is
difficult to provide a simple description of its systematics
that encompasses all cases. In order to gain insight into
how jhjmax depends on�c;i, on differential rotation, on the

initial �c, on the precollapse WD temperature, and on the
degree of deleptonization in collapse, we describe below
the effects of variations in one of these parameters while
holding all others fixed.

(i) In a sequence of precollapse WDs with fixed differ-
ential rotation, �c, and T0, the peak GW amplitude
jhjmax increases steeply with �c;i in slowly rotating

models that do not come close to being centrifugally
supported. When centrifugal effects become dy-
namically important, jhjmax saturates at �7�
10�21 (at 10 kpc) and then decreases with increasing
�c;i. This reflects the fact that such rapidly spinning

inner cores produced by AIC cannot reach high
densities and high compactness and that the
slowed-down collapse decreases the deceleration at
bounce, thus reducing jhjmax and pushing the GW
emission to lower frequencies.

(ii) In a sequence of precollapse WDs with fixed �c;i,
T0, and �c, an increase in the degree of WD differ-

ential rotation leads to an increase in the amount of
angular momentum present in the WD inner core at
bounce. This translates into an increase of jhjmax in
models that do not become centrifugally supported
and experience a pressure-dominated bounce. The
transition to centrifugal bounce is now reached at
lower values of �c;i (see Sec. III B), so that the

centrifugal saturation of jhjmax described above in
(i) is reached at much smaller values of �c;i.

(iii) In a sequence of precollapseWDs with fixed�c;i, T0,
and differential rotation and varying �c, models with
lower (higher) �c yield larger (smaller) values of
jhjmax. This is because models that are initially less
compact spin up more during collapse (cf. the dis-
cussion in Sec. III B). However, this systematics
holds only as long as the model does not become
centrifugally supported, which happens for lower
(higher) �c WDs at smaller (greater) �c;i.

(iv) When only the WD temperature is varied, we find
that for slowly to moderately rapidly rotating WDs,
high-T models generally reach smaller jhjmax than
their low-T counterparts. This is because high-T
WDs yield smaller inner cores at bounce, which
hold less angular momentum and, as a consequence,
are less centrifugally deformed (see Table II and in
Fig. 15). However, this behavior reverses in rapidly
rotating WDs for which low-T models are more
centrifugally affected and, hence, yield a smaller
jhjmax than their high-T counterparts.

(v) If the degree of deleptonization is decreased by an ad
hoc increase of inner-core Ye (see Secs. II A 2 and
II C 3) and all else is kept fixed, Mic;b increases and

for slowly to moderately rapidly rotating WDs,
jhjmax increases. As for the low-T case discussed in
the above, this behavior reverses in rapidly rotating
WDs for which high-Ye models are more centrifu-
gally affected and yield smaller jhjmax than their
lower-Ye counterparts.

To demonstrate the dependence of jhjmax on the overall
rotation of the inner core at bounce, we plot in Fig. 16
jhjmax as a function of the inner-core parameter �ic;b at

bounce for our high-T models. jhjmax depends primarily on
�ic;b and is rather independent of the particular precollapse

configuration that leads to a given �ic;b. For small �ic;b far

away from the centrifugal limit, we find jhjmax / �0:74
ic;b ,

where we have obtained the exponent by a power-law fit of
high-T models with 1% & �ic;b & 13%. This finding is in

qualitative agreement with what [50] saw for iron core
collapse. The overall maximum of jhjmax is reached in
WDs that yield �ic;b � 16%, beyond which jhjmax de-

creases with increasing �ic;b.

B. Gravitational-wave energy spectrum

The total energy emitted in GWs is in the range of
�10�10M�c2 & EGW & 2� 10�8M�c2 in the entire set
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of models considered in this article. In Fig. 17, we plot the
GW spectral energy density dEGW=df of the three models
AD1f3, AD4, and AD10 as representative examples of the
three signal subtypes IIIa–IIIc. The top panel shows model
AD1f3 as a representative pressure-dominated bounce
model with prompt convection. In such models, there is a
strong structured, but broad, contribution to the spectrum at
low frequencies. The integral of such a contribution (which
is present in all models with slow rotation) can exceed that
from core bounce in these models. This is not the case in

model AD1f3, whose GW burst from bounce is the one
leading to the peak at fmax ¼ 720 Hz.
The central panel of Fig. 17 depicts dEGW=df of model

AD4 as a representative pressure-dominated bounce model
in which no significant postbounce convection occurs. The
spectrum of this model exhibits a distinct and narrow high-
frequency peak at fmax � 805 Hz. Finally, the bottom
panel of Fig. 17 refers to model A10 that experiences
centrifugal bounce. In this model, the dynamics is domi-
nated by centrifugal effects, leading to low-frequency
emission and fmax ¼ 310 Hz, but higher-frequency com-
ponents are still discernible and are most likely related to
prolonged higher-frequency GW emission from the PNS
ringdown.
In Fig. 18, we plot the peak frequencies fmax of the GW

energy spectrum as a function of the inner-core parameter
�ic;b for high-T AIC models (the low-T and higher-Ye

models show the same overall systematics). In models
that undergo pressure-dominated bounce, fmax increases
nearly linearly with �ic;b in the region �ic;b & 10%, while

at �ic;b in the range of 10% & �ic;b & 20%, the growth of

fmax saturates at �800 Hz and fmax does not change sig-
nificantly with further increase of rotation. For very rapid
rotation (�ic;b * 20%), fmax decreases steeply with �ic;b,

reaching a value of�400 Hz at �ic;b ’ 23% (not shown in

the figure, see Table IV).
While it is straightforward to understand the systematics

of fmax at high �ic;b where centrifugal effects slow down

collapse and thus naturally push the GW emission to low
frequencies, the increase of fmax with rotation at low to
intermediate �ic;b is less intuitive. If one assumes that the

dominant GWemission at core bounce in all models is due
to the quadrupole component of the fundamental quasir-
adial mode of the inner core, one would expect a mono-
tonic decrease of fmax with increasing rotation and, hence,
decreasing mean core density (see, e.g., [41]). A possible
explanation for the increase of fmax at slow to moderately
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rapid rotation is that the primary GW emission in these
models is due to the fundamental quadrupole 2f mode,
whose frequency may increase with rotation. This has been
demonstrated by Dimmelmeier, Stergioulas, and Font
[124], who studied oscillation modes of sequences of 	 ¼
2 polytropes. To confirm this interpretation, and following
the technique of mode recycling outlined in [124], we
perturb a subset of our postbounce cores with the eigen-
function of the 2f mode of a Newtonian nonrotating neu-
tron star. As expected, we find that the resulting dynamics
of the postbounce core is dominated by a single oscillation
mode with a frequency that matches within & 10% the
peak frequency fmax of dEGW=df of the corresponding
slowly or moderately rapidly rotating AIC model. The
interesting details of the mode structure of the inner cores
of AIC and iron core collapse will receive further scrutiny
in a subsequent publication.
Finally, in Fig. 19, we provide time-frequency analyses

of the GW signals of the same representative models
shown in Fig. 17. The analysis is carried out with a short-
time Fourier transform employing a Gaussian window with
a width of 2 ms and a sampling interval of 0.2 ms. In all
three cases, the core bounce is clearly visible and marked
by a broadband increase of the emitted energy. The slowly
rotating model AD1f3 emits its strongest burst at 600–
800 Hz (fmax ¼ 720 Hz) and subsequently exhibits broad-
band emission with significant power at lower frequencies
due to prompt convection. Model AD4 is more rapidly
rotating and shows significant prebounce low-frequency
emission due to its increased rotational deformation. At
bounce, a strong burst, again with power at all frequencies,
but primarily at frequencies about its fmax ¼ 805 Hz, is
emitted. Much of the postbounce EGW is emitted through
ringdown oscillations at fmax that may be related to the 2f
mode of this model’s PNS. Finally, in the rapidly rotating
and centrifugally bouncing model AD10, we observe again
low-frequency emission before bounce, but only a small
increase of the primary emission band at bounce to
�200–400 Hz. Nevertheless, there is still an appreciable
energy emitted from higher-frequency components of the
dynamics at bounce and postbounce times.

C. Comparing GW signals from AIC and iron core
collapse

Recent studies [50,63,64,79] have shown that the col-
lapse of rotating iron cores (ICC) produces GW signals of
uniform morphology (so-called type I signals, see, e.g.,
[76]) that generically show one pronounced spike associ-
ated with core bounce with a subsequent ringdown and are
similar to the type III signals found here for AIC. As in the
AIC case, the GW signal of ICC has subtypes for slow,
moderately rapid, and very rapid rotation. For comparing
AIC and ICC GW signals, we chose three representative
AIC models and then picked three ICCmodels with similar
�ic;b from the study of Dimmelmeier et al. [50], whose

TABLE IV. GW signal characteristics for the high-T AIC
models: EGW is the total GW energy, fmax is the peak frequency
of the GW energy spectrum, �f50 is the frequency interval
around fmax that emits 50% of EGW. The nonrotating models
are omitted here.

AIC model EGW [10�9M�c2] fmax [Hz] �f50 [Hz]

AU1 1.1 742.7 31

AU2 5.7 782.7 28

AU3 7.8 786.7 27

AU4 15.7 816.0 49

AU5 17.0 831.9 120

DU1 0.1 768.0 343

DU2 0.3 770.0 556

DU3 0.4 747.0 473

DU4 0.9 745.0 304

DU5 2.0 765.7 26

DU6 4.6 778.3 21

DU7 5.8 788.3 20

AD1 2.2 752.6 33

AD2 3.7 765.4 30

AD3 8.7 790.5 37

AD4 11.8 812.5 115

AD5 14.2 813.6 173

AD6 15.0 815.0 201

AD7 15.5 815.1 220

AD8 13.8 811.0 245

AD9 1.8 806.0 413

AD10 1.0 304.0 126

DD1 0.3 740.0 324

DD2 1.4 746.7 62

DD3 4.6 780.1 21

DD4 9.3 793.6 22

DD5 15.2 813.7 21

DD6 18.5 820.2 48

DD7 22.3 826.9 152

AD1f1 1.3 745.7 54

AD1f2 0.6 731.4 69

AD1f3 0.2 726.5 315

AD1f4 0.1 737.0 476

AD3f1 7.7 787.0 36

AD3f2 7.0 781.2 31

AD3f3 5.5 777.2 27

AD3f4 3.7 769.8 27

AD6f1 15.7 818.0 175

AD6f2 16.0 819.5 165

AD6f3 16.0 822.6 145

AD6f4 15.8 827.6 123

AD9f1 5.4 805.5 323

AD9f2 11.8 813.0 273

AD9f3 15.9 833.0 263

AD9f4 19.5 844.0 254

AD10f1 1.9 808.0 137

AD10f2 5.8 809.0 333

AD10f3 12.1 826.6 269

AD10f4 16.5 840.0 263

AD11f2 3.4 794.0 105

AD12f3 0.8 165.5 44

AD12f4 1.4 231.0 73

AD13f4 0.07 62.5 60
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waveforms are freely available from [125]. This should
ensure that we compare collapse models that are similarly
affected by centrifugal effects for a one-to-one compari-
son. However, one should keep in mind that the inner-core
masses Mic;b at bounce of ICC models are generally larger

by �0:2–0:3M� than in our AIC models (see Sec. III A).
In Fig. 20 we present this comparison and plot the GW

signals of the high-T AIC models DU2 (slow rotation,
type IIIa), AU5 (moderately rapid rotation, type IIIb),
and AD10 (very rapid rotation, type IIIc). In the same
order, we superpose the GW signals of the Dimmelmeier
et al. [50] models s20A1O05, s20A3O07, and s20A3O15.
These models started with the precollapse iron core of a
20M� star and were run with the same code, EOS, and
deleptonization algorithm as our AIC models, though with
different, ICC specific Yeð�Þ trajectories.

The left panel of Fig. 20 compares the slowly rotating
models DU2 and s20A1O05 that undergo pressure-
dominated bounce and exhibit strong postbounce convec-
tion. As pointed out before, the latter is most likely over-
estimated in our current approach as well as in
Dimmelmeier et al.’s. Note that the width of the waveform
peaks associated with core bounce is very similar, indicat-
ing very similar emission frequencies. Model s20A1O05
exhibits a significantly larger signal amplitude at bounce.
This is due to s20A1O05’s larger Mic;b but also to the fact

that its �ic;b is �0:7% compared to the �0:4% of DU2 (a

closer match was not available from [125]). The prompt
convection in model s20A1O05 is more vigorous and
generates a larger-amplitude GW signal than in model
DU2. This is due to the much steeper density gradient in
the WD core that allows the AIC shock to remain stronger
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FIG. 19 (color online). Time-frequency color maps of the GW signals of models AD1f3 (type IIIa), AD4 (type IIIb), and AD10
(type IIIc, see also Fig. 17). Plotted is the ‘‘instantaneous’’ spectral GW energy density dEGW=df in a 2 ms Gaussian window as a
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out to larger radii. Hence, it leaves behind a shallower
negative entropy gradient, leading to weaker convection
and postbounce GW emission.

In the central panel of Fig. 20 we compare two moder-
ately rapidly rotating models with nearly identical �ic of
�10%. Both models show a prebounce rise due to the inner
core’s accelerated collapse in the plunge phase. The AIC
inner core, owing to its lower Ye and weaker pressure
support, experiences greater acceleration and emits a
higher-amplitude signal than its ICC counterpart in this
phase. At bounce, the stiff nuclear EOS decelerates the
inner core, leading to the large negative peak in the GW
signal. Because of the more massive inner core in ICC and
since the EOS governing the dynamics is identical in both
models, the magnitude of this peak is greater in the ICC
model. Following bounce, the ICC model’s GW signal
exhibits a large positive peak of comparable or larger
amplitude than the prebounce maximum. This peak is
due to the recontraction of the ICC inner core after the
first strong expansion after bounce. With increasing rota-
tion, this recontraction and the associated feature in the
waveform become less pronounced. On the other hand, due
to its smaller inertia, the AIC inner core does not signifi-
cantly overshoot its new postbounce equilibrium during the
postbounce expansion. Hence, there is no appreciable post-
bounce recontraction and no such large positive post-
bounce peak in the waveform.

Example waveforms of AIC and ICC models experienc-
ing core bounce governed by centrifugal forces are shown
in the right panel of Fig. 20. In this case, the prebounce
plunge dynamics are significantly slowed down by cen-
trifugal effects, and the GW signal evolution is nearly
identical in AIC and ICC. At bounce, the more massive
inner core of the ICC model leads to a larger and broader
negative peak in the waveform, and its ringdown signal
exhibits larger amplitudes than in its AIC counterpart.

Finally, we consider AIC models with variations in the
inner-core Ye due to either different precollapse WD tem-
peratures orad hoc changes of the �Yeð�Þ parametrization
(see Secs. II A 2 and II C 3). Lower-T WDs yield larger
inner-core values of Ye and, in turn, larger Mic;b and GW

signals that are closer to their iron-core counterparts. The
same is true for models in which we impose an increased
inner-core Ye: AIC models with inner-core Ye 10% larger
than predicted by [28] still show clear type III signal
morphology, while models with 20% larger Ye fall in
between type III and type I.

To summarize this comparison: Rotating AIC and rotat-
ing ICC lead to qualitatively and quantitatively fairly
similar GW signals that most likely could not be distin-
guished by only considering general signal characteristics,
such as maximum amplitudes, characteristic frequencies,
and durations. A detailed knowledge of the actual wave-
form would be necessary, but even in this case, a distinc-
tion between AIC and ICC on the basis of the comparison

presented here would be difficult. It could only be made for
moderately rapidly spinning cores based on the presence
(ICC, type Ib) or absence (AIC, type IIIb) of a first large
positive peak in the waveform, but, again, only if AIC inner
cores indeed have significantly smaller Ye than their iron-
core counterparts. ICC and AIC waveforms of types Ia/IIIa
and Ic/IIIc are very similar. Additional astrophysical infor-
mation concerning the distance to the source and its ori-
entation as well as knowledge of the neutrino and
electromagnetic signatures will most likely be necessary
to distinguish between AIC and ICC.

D. Detection prospects for the gravitational-wave signal
from AIC

In order to assess the detection prospects for the GW
signal from AIC, we evaluate the characteristic signal
frequency fc and the dimensionless characteristic GW
amplitude hc. Both quantities are detector dependent and
are computed using Eqs. (14) and (15), respectively.
In Fig. 21, we show hc for all models as a function of fc

for an initial 4 km Laser Interferometer Gravitational Wave
Observatory (LIGO) detector, assuming a source distance
of 10 kpc. For comparison with detector sensitivity, we
include initial LIGO’s design hrms curve [126]. The distri-
bution of our set of models in this figure obeys simple
systematics. A number of very slowly rotating models that
undergo pressure-dominated bounce with prompt convec-
tion (type IIIa) form a cluster in frequency in one region
(near arrow 1). These models have the overall lowest
values of hc and exhibit low values of fc in the range of
130–350 Hz. Both fc and hc grow with increasing rotation
(along arrow 1). For the pressure-dominated bounce mod-
els without significant prompt convection (type IIIb), hc
grows with increasing rotation (along arrow 2), now at
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practically constant fc of�350 Hz. Even for these models,
fc is always lower than the typical peak frequency fmax �
700–800 Hz of their spectral GW energy densities. This is
due to the specific characteristics of the LIGO detector,
whose highest sensitivity is around 100 Hz, thus leading to
a systematic decrease of fc with respect to fmax.

In more rapidly rotating models, centrifugal effects be-
come more important, leading to greater rotational defor-
mation of the inner core, but also slowing down the
dynamics around core bounce, ultimately limiting hc and
reducing fc (along arrow 3). Models that rotate so rapidly
that they undergo centrifugal bounce (type IIIc) cluster in a
separate region in the hc � fc plane (along arrow 4), some-
what below the maximum value of hc and at considerably
lower fc. The systematics for the lower-T models and for
other detectors is very similar. Not surprisingly, given the
analogies in the two signals, a similar behavior of hc and fc
was observed in the context of rotating iron core collapse
[50].

Figure 22 provides the same type of information shown
in Fig. 21 but also for the advanced LIGO detector when
the source is at 0.8 kpc (e.g., within the Andromeda gal-
axy), or for the proposed Einstein telescope (ET) [127] and
a source distance of 5Mpc. Initial LIGO is sensitive only to
GWs coming from a moderately rapidly or rapidly rotating
AIC event in the Milky Way, but its advanced version will
probably be able to reveal sources also outside the Galaxy,
although only within the local group. Finally, third-
generation detectors such as ET, may be sensitive enough
to detect some AIC events out to �5 Mpc.

As pointed out in Secs. IVA and IVB, the GW signal
amplitudes and the spectral GW energy distribution is

determined primarily by �ic;b. Hence, given the system-

atics shown in Fig. 21, one may be optimistic about being
able to infer �ic;b to good precision from the observation of

GWs from a rotating AIC event. For example, as demon-
strated in Fig. 18, even the knowledge of only fmax can put
some constraints on �ic;b. However, inferring accurately

the properties of the progenitor WD using exclusively
information provided by GWs may be extremely difficult
given the highly degenerate dependence of �ic;b on the

various precollapse WD model parameters discussed in
Sec. III B. To elaborate on this point, we show in Fig. 23
the relation between �ic;b and the precollapse WD parame-

ter�i. Even if GWs can provide good constraints on�ic;b, a

rather large variety of models with different initial rota-
tional properties would be able to lead to that same �ic;b,

and additional astrophysical information on the progenitor
will be needed to determine the precollapse rotational
configuration. The only exception to this is the possibility
of ruling out uniform WD progenitor rotation if �ic;b *
18% (cf. Sec. III B).

V. PROSPECTS FOR NONAXISYMMETRIC
ROTATIONAL INSTABILITIES

Nonaxisymmetric rotational instabilities in PNSs
formed in AIC or iron core collapse have long been pro-
posed as strong and possibly long-lasting sources of GWs
(see, e.g., [42] for a recent review). The postbounce GW
emission by nonaxisymmetric deformations of rapidly ro-
tating PNSs could be of similar amplitude as the signal

0001001
f
c
 [Hz]

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20

h c

initial LIGO, 10 kpc

advanced LIGO, 0.8 Mpc

ET, 5 Mpc

FIG. 22 (color online). Location of the GW signals from core
bounce in the hc � fc plane relative to the sensitivity curves of
various interferometer detectors (as color-coded) for an extended
set of models AD. The sources are at a distance of 10 kpc for
LIGO, 0.8 Mpc for advanced LIGO, and 5 Mpc for the Einstein
telescope.

0 2 4 6 8 10
β

i
 [%]

0

5

10

15

20

β ic
,b

 [
%

]

AU
ADf4
ADf3
ADf2
ADf1
AD
DU
DD

FIG. 23 (color online). The inner-core parameter �ic;b at
bounce is plotted as a function of the precollapse parameter �i

for high-T models. Because of different central densities and
rotation profiles of the precollapse WD models, there is no one-
to-one correspondence between �ic;b and �i. Hence, although

one can extract �ic;b accurately from the bounce AIC GW signal,

it is impossible to put strong constraints on �i using the GW
signal.

E. B. ABDIKAMALOV et al. PHYSICAL REVIEW D 81, 044012 (2010)

044012-26



from core bounce and, due to its potentially much longer
duration, could exceed it in emitted energy (e.g., [63–65]).
Moreover, since the characteristic GWamplitude hc scales
with the square root of the number of cycles, the persis-
tence of the nonaxisymmetric dynamics for many rotation
periods can drastically increase the chances for detection.

The simulations presented in this paper impose axisym-
metry; hence we are unable to track the formation and
evolution of rotationally induced nonaxisymmetric struc-
tures. Nonetheless, since the dynamical high-� instability
can develop only at � above �dyn ’ 0:25 [55,56], we can

still assess the prospects for such instabilities by studying
the values of � reached by our AIC models. Moreover, as
we shall see below, the analysis of the rotational configu-
ration of the newly formed PNS can give a rough idea
about the outlook also for low-� instabilities.

As shown in Sec. III B, for not very rapidly rotating
models, the parameter �ic;b of the inner core at bounce

increases with the progenitor rotation and saturates at
�24:5% (see Fig. 10). Immediately after bounce, the inner
core reexpands and, after undergoing several damped os-
cillations, settles into a new quasiequilibrium state with a
�ic;pb typically smaller by�3% (in relative value) than that

at bounce. The highest value of �ic;pb of our entire model

set is �24% (observed in model AD12f4) and most other
rapidly rotating models reach values of �ic;pb that are well

below this value (cf. Table II). Hence, we do not expect the
high-� instability to occur immediately after bounce in
most AIC events.

On the other hand, the matter around the PNS experi-
ences rapid neutrino cooling (not modeled by our ap-
proach) and the PNS contracts significantly already in the
early postbounce phase. This results in spin-up and in a
substantial increase of �ic;pb. Using the VULCAN/2D code,

Ott [61] studied the postbounce evolution of the PNS
rotation of the Dessart et al. AIC models [28]. He found
that, in the case of the rapidly rotating 1:92M� model, the
postbounce contraction leads to a growth of �ic;pb by

�50% from �14% to �22% in the initial �50 ms after
bounce. We expect that a similar increase of the parameter
�ic;pb should take place also for the rapidly rotating AIC

models considered here. More specifically, if we assume
that� increases by�50%within�50 ms after bounce, we
surmise that AIC models with �ic;b * 17% at bounce

should reach �ic;pb * �dyn within this postbounce interval

and thus become subject to the high-� dynamical
instability.

As mentioned in Sec. III B, uniformly rotating WDs
cannot reach �ic;pb in excess of �10:5%. Hence, they are

unlikely to become subject to the high-� dynamical non-
axisymmetric instability, but may contract and spin up to
� 
 �sec ’ 14% at which they, in principle, could experi-
ence a secular nonaxisymmetric instability in the late
postbounce phase. However, other processes, e.g., MHD
dynamos and instabilities (see, e.g., [128,129]), may limit

and/or decrease the PNS spin on the long time scale needed
by a secular instability to grow.
In addition to the prospects for the high-� instability, the

situation appears favorable for the low-� instability as
well. The latter can occur at much lower values of � as
long as the PNS has significant differential rotation (see,
e.g., [58,59,62,64–67] and references therein). While this
instability’s true nature is not yet understood, a necessary
condition for its development seems to be the existence of a
corotation point inside the star, i.e., a point where the mode
pattern speed coincides with the local angular velocity
[66,130]. Bearing in mind that the lowest-order unstable
modes have pattern speeds of the order of the characteristic
Keplerian angular velocity Oð�charÞ [57], we can easily
verify whether such a criterion is ever satisfied in our
models. Assuming a characteristic mass of the early post-
bounce PNS of �0:8M� and a radius of �20 km, we
obtain a characteristic Keplerian angular velocity of
�char � 4 radm s�1. Because most AIC models that reach
�ic;pb * 15% have a peak value of � * 5 radms�1, it is

straightforward to conclude that these models will have a
corotation point and, hence, that the low-� instability may
be a generic feature of rapidly rotating AIC. We note that
even uniformly rotating precollapse models have strong
differential rotation in the postshock region outside the
inner core. However, further investigation is needed to
infer whether such models may be also be subject to
low-� dynamical instability.
As a concluding remark we stress that the above dis-

cussion is based on simple order-of-magnitude estimates
and is therefore rather inaccurate. Reliable estimates can
be made only by performing numerical simulations in 3D
that adequately treat the postbounce deleptonization and
contraction of the PNS and that investigate the dependence
of the instability on �ic;pb, on the degree of differential

rotation, and on the thermodynamic and MHD properties
of the PNS. Finally, these calculations will also establish
what is the effective long-term dynamics of the bar-mode
deformation. In simulations of isolated polytropes [55,56]
and from perturbative calculations [131], it was found that
coupling among different modes tends to counteract the
bar-mode instability on a dynamical time scale after its
development. It is yet unclear whether this behavior will be
preserved also in the AIC scenario, where infalling mate-
rial with high specific angular momentum may lead to
significant changes. This will be the subject of future
investigations.

VI. SUMMARYAND CONCLUSIONS

In this paper we have presented the first general-
relativistic simulations of the axisymmetric AIC of mas-
sive white dwarfs to protoneutron stars. Using the general-
relativistic hydrodynamics code COCONUT, we performed
114 baseline model calculations, each starting from a 2D
equilibrium configuration, using a finite-temperature mi-
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crophysical EOS, and a simple, yet effective, parametriza-
tion scheme of the electron fraction Ye that provides an
approximate description of deleptonization valid in the
collapse, bounce, and very early postbounce phases. The
precollapse structure and rotational configuration of WDs
that experience AIC is essentially unconstrained. This
prompted us to carry out this work. With our large set of
model calculations, we have investigated the effects on the
AIC evolution of variations in precollapse central density,
temperature, central angular velocity, differential rotation,
and deleptonization in collapse. The inclusion of general
relativity enabled us to correctly describe the AIC dynam-
ics, and our extended model set allowed us for the first time
to study systematically GW emission in the AIC context.

We find that the overall dynamics in the collapse phase
of AIC events is similar to what has long been established
for rotating iron core collapse. A universal division in
homologously collapsing inner core and supersonically
infalling outer core obtains and the self-similarity of the
collapse nearly completely washes out any precollapse
differences in stellar structure in the limit of slow rotation.
Because of the high degeneracy of the electrons in the
cores of AIC progenitor WDs, electron capture is predicted
to be strong already in early phases of collapse [28],
leading to a low trapped lepton fraction and consequently
small inner-core masses Mic;b at bounce of around 0:3M�
which decrease somewhat with increasing precollapse WD
temperature due to the temperature-dependent abundance
of free protons. Test calculations motivated by potential
systematic biases of the AIC �Yeð�Þ trajectories obtained
from [28] (see Secs. II A 2 and II C 3) with inner-core
values of Ye increased by�10%, and�20% yielded values
Mic;b larger by �11% and �25%.

Our simulations show that rotation can have a profound
influence on the AIC dynamics, but will always stay sub-
dominant in the collapse of uniformly rotating WDs whose
initial angular velocity is constrained by the Keplerian
limit of surface rotation. In rapidly differentially rotating
WDs, on the other hand, centrifugal support can dominate
the plunge phase of AIC and lead to core bounce at sub-
nuclear densities. We find that the parameter �ic;b ¼
ðErot=jWjÞic;b of the inner core at bounce provides a unique
mapping between inner-core rotation and late-time col-
lapse and bounce dynamics, but the mapping between
precollapse configurations and �ic;b is highly degenerate,

i.e., multiple; in many cases very different precollapse
configurations of varying initial compactness and total
angular momentum can yield practically identical �ic;b

and corresponding collapse/bounce dynamics.
Recent phenomenological work presented in [30,49] on

the potential EM display of an AIC event has argued for
both uniform WD rotation [49,102] and massive quasi-
Keplerian accretion disks left behind at low latitudes after
AIC shock passage. The analysis of our extensive model
set, on the other hand, shows that uniformly rotating WDs

produce no disks at all or, in extreme cases that are near
mass shedding at the precollapse stage, only very small
disks (Mdisk & 0:03M�). Only rapidly differentially rotat-
ing WDs yield the large disk masses needed to produce the
enhanced EM signature proposed in [30,49].
An important focus of this work has been on the GW

signature of AIC. GWs, due to their inherently multidi-
mensional nature, are ideal messengers for the rotational
dynamics of AIC. We find that all AIC models following
our standard �Yeð�Þ parametrizations yield GW signals of a
generic morphology which has been classified previously
as type III [61,76,78]. This signal type is due primarily to
the small inner-core masses at bounce obtained in these
models. We distinguish between three subtypes of AIC
GW signals. Type IIIa occurs for �ic;b & 0:7% (slow rota-

tion), is due in part to early postbounce prompt convection,
and results in peak GWamplitudes jhmaxj & 5� 10�22 (at
10 kpc) and emitted energies EGW & few� 10�9M�c2.
Most of our AIC models produce type IIIb GW signals
that occur for 0:7% & �ic;b & 18% (moderate/moderately
rapid rotation) and yield 6�10�22& jhmaxjðat10 kpcÞ&
8�10�21 and emitted energies of 9�10�10M�c2&
EGW&2�10�8M�c2. Rotation remains subdominant in
type IIIa and type IIIb models and we find that there is a
monotonic and near-linear relationship between maximum
GW amplitude and the rotation of the inner core which is
best described by the power law jhmaxj / 10�21�0:74

ic;b .

Furthermore, we find that the frequencies fmax at which
the GW spectral energy densities of type IIIa and IIIb
models peak are in a rather narrow range from �720 Hz
to �840 Hz and exhibit a monotonic growth from the
lower to the upper end of this range with increasing rota-
tion. This finding suggests that the GW emission in these
models is driven by the fundamental quadrupole (2f) mode
of the inner core.
In the dynamics of AIC models that reach �ic;b * 18%,

centrifugal effects become dominant and lead to core
bounce at subnuclear densities. Such models must be dif-
ferentially rotating at the onset of collapse and produce
type IIIc GW signals with maximum amplitudes of 4:0�
10�22 & jhmaxjðat 10 kpcÞ & 5:5� 10�21, emitted ener-
gies of 10�10M�c2 & EGW & 10�8M�c2, and peak fre-
quencies of 62 Hz & fmax & 800 Hz. In contrast to
type IIIa and IIIb models, in type IIIc models, jhmaxj,
EGW, and fmax decrease monotonically with increasing
�ic;b.

Combining the information from signal morphology,
jhmaxj, EGW, and fmax, we conclude that already first-
generation interferometer GW detectors should be able to
infer the rotation of the inner core at bounce (as measured
by �ic;b) from a Galactic AIC event. Because of the degen-

erate dependence of �ic;b on initial model parameters, this

can put only loose constraints on the structure and rota-
tional configuration of the progenitor WD. However, the
observation of an AIC with �ic;b * 18% would rule out

uniform progenitor rotation.
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Studying the configurations of the protoneutron stars
formed in our AIC models, we find that none of them are
likely to experience the high-� nonaxisymmetric bar-mode
instability at very early postbounce times. We estimate,
however, that all models that reach �ic;b * 17% will con-

tract and reach the instability threshold within �50 ms
after bounce. Less rapidly spinning models will require
more time or will go unstable to the low-� instability. The
latter requires strong differential rotation which is ubiqui-
tous in the outer PNS and in the postshock region of our
AIC models. AIC progenitors, due to their evolution
through accretion or formation through merger, are pre-
destined to be rapidly rotating and form PNSs that are
likely to become subject to nonaxisymmetric instabilities.
This is in contrast to the precollapse iron cores of ordinary
massive stars that are expected to be mostly slowly spin-
ning objects [51,53]. We conclude that the appearance of
nonaxisymmetric dynamics driven by either the low-� or
high-� instability and the resulting great enhancement of
the GW signature may be a generic aspect of AIC and must
be investigated in 3D models.

The comparison of the GW signals of our axisymmetric
AIC models with the gravitational waveforms of the iron-
core-collapse models of Dimmelmeier et al. [50] reveals
that the overall characteristics of the signals are rather
similar. It appears unlikely that AIC and iron core collapse
could be distinguished on the basis of the axisymmetric
parts of their GW signals alone, unless detailed knowledge
of the signal time series as well as of source orientation and
distance is available to break observational degeneracies.

The results of our AIC simulations presented in this
paper and the conclusions that we have drawn on their
basis demonstrate the complex and in many cases degen-
erate dependence of AIC outcomes and observational sig-
natures on initial conditions. The observation of GWs from
an AIC event can provide important information on the
rotational dynamics of AIC. However, to lift degeneracies
in model parameters and gain full insight, GWobservations
must be complemented by observations of neutrinos and
electromagnetic waves. These multimessenger observa-
tions require underpinning by comprehensive and robust
computational models that have no symmetry constraints
and include all the necessary physics to predict neutrino,
electromagnetic, and GW signatures.

As a point of caution, we note that the generic type III
GW signal morphology observed in our AIC models is due
to the small inner-core values of Ye and consequently small

inner-core masses predicted by the �Yeð�Þ parametrization
obtained from the approximate Newtonian radiation-
hydrodynamic simulations of [28]. Tests with artificially
reduced deleptonization show that the signal shape be-
comes a mixture of type III found in our study and type I
observed in rotating iron core collapse [50] if the Ye in the
inner core is larger by�20%. In a follow-up study, we will
employ �Yeð�Þ data from improved general-relativistic
radiation-hydrodynamics simulations [103] to better con-
strain the present uncertainties of the AIC inner-core elec-
tron fraction.
Although performed using general-relativistic hydrody-

namics, the calculations discussed here are limited to con-
formally flat spacetimes and axisymmetry. We ignored
postbounce deleptonization, neutrino cooling, and neutrino
heating. We also neglected nuclear burning, employed only
a single finite-temperature nuclear EOS, and were forced to
impose ad hoc initial temperature and electron fraction
distributions onto our precollapse WD models in rotational
equilibrium. Future studies must overcome the remaining
limitations to build accurate models of AIC. Importantly,
extensive future 3D radiation-hydrodynamic simulations
are needed to address the range of possible, in many cases
probably nonaxisymmetric, postbounce evolutions of AIC
and to make detailed predictions of their signatures in
GWs, neutrinos, and the electromagnetic spectrum.
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