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We study Hořava-Lifshitz gravity in the presence of a scalar field. When the detailed balance condition

is implemented, a new term in the gravitational sector is added in order to maintain ultraviolet stability.

The four-dimensional theory is of a scalar-tensor type with a positive cosmological constant and gravity is

nonminimally coupled with the scalar and its gradient terms. The scalar field has a double-well potential

and, if required to play the role of the inflation, can produce a scale-invariant spectrum. The total action is

rather complicated, and there is no analog of the Einstein frame where Lorentz invariance is recovered in

the infrared. For these reasons it may be necessary to abandon detailed balance. We comment on open

problems and future directions in anisotropic critical models of gravity.
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I. INTRODUCTION

Following the construction of a Lorentz-violating theory
of membranes [1], Hořava proposed a model of pure
gravity which is power-counting renormalizable [2,3].
This has received considerable attention, in particular,
regarding its ultraviolet (UV) and infrared (IR) properties
[4–11], cosmology [10,12–26], spherically symmetric so-
lutions and black holes [22,27–38], pp-wave and toroidal
vacuum solutions [39,40], vector field configurations [41],
canonical structure, quantization and unitarity [42–45],
and other issues [46], while inspiring other critical
Dp-brane or gravitational theories [47–49].

In order to reduce the number of operators in the action
and simplify some properties of the quantum system, the
detailed balance condition [50] was invoked in [2] (see
also [8,44]). The total ‘‘potential’’ term LV in the Dþ 1
action descends from aD-dimensional Riemannian theory,
which is the topological massive gravity for D ¼ 3. This
assumption was shown to lead to trouble in the presence of
a scalar sector [13], inasmuch as the signs of the highest-
order (@6) terms in spatial derivatives are opposite. As a
consequence, matter is not UV stable. If the scalar field is
regarded as the inflaton, its spectrum is not scale invariant.
Fixing the sign of the total potential as in the original paper,
the tensor spectrum is scale invariant [12,13].1

There are several ways out of the problem. One is to rely
on a scale-invariant mechanism different from standard
inflation, which exploits the natural freedom from big-
bang singularity of the model [13,14], and evolve pertur-
bations through a bounce [16]. Another is to notice that,
when the parameter � (see below) is different from 1, the
pure gravitational theory already contains a dynamical

scalar degree of freedom [2,10,11,20,24], which has at
most 4th-order spatial derivatives if detailed balance holds.
Beside the issue of Lorentz invariance for � � 1, this trace
field does not propagate in Minkowski and its physical
interpretation has not yet been fully assessed.
A third option, which indeed yields a scale-invariant

scalar spectrum [13,15] and was the implicit assumption
in many of the above works, is to abandon the detailed
balance principle. In either case the role of detailed balance
is unclear, especially because only a simplified version of it
was implemented in [13], where the scalar and tensor
potentials were decoupled.
It is our purpose to remove this simplification and study

the consequences of detailed balance in a model with
matter, which is a natural and more realistic extension of
the purely gravitational scenario. A scalar theory is the
simplest matter field theory one can consider, so that will
be our choice. In this sense, this is a most natural follow up
of the same study begun in [13]. Moreover, an instability in
the inflationary spectrum is an UV instability of the field on
a cosmological background, regardless its identification
with the inflaton. At least on that particular background,
detailed balance may be incompatible with scalar matter
and it is desirable to explore the issue of its viability in
more detail. For at least all these reasons, it is a legitimate
question to ask what are the properties of a scalar in this
theory independently from the above-mentioned
cosmology-related considerations, which will play little
or no role in the present paper.
Although the detailed balance condition is optional, we

want to clarify whether, how, and why it constitutes a
liability rather than an asset. We shall enforce it to the
best of our knowledge and check (i) ultraviolet finiteness;
(ii) absence of classical instabilities, e.g., ghosts or scalar
potentials unbounded from below; (iii) good infrared limit.
To fulfil these conditions in the presence of detailed bal-
ance, the total 3þ 1 action will need to be defined with a
particular choice of sign in front of LV . This is the first

1A negative cosmological constant features in the original
proposal but this is not an issue per se from the point of view
of cosmological observations. Obviously, a massive interacting
scalar field can lift the anti-de Sitter vacuum, although later we
shall see that this is not the case.
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point of departure with respect to [2]. In doing so, we
introduce the operator

gij�1=2Rij; (1)

which is expected anyway because pseudodifferential op-
erators already appear in the scalar sector. To show also the
effect of a further generalization on dispersion relations,
we will actually consider the case

�gij�1=2Rij: (2)

Other possibilities shall be taken into account in Sec. V.
The net result is a 3þ 1 action with nonminimal couplings,
which may realize scale-invariant inflation of trans-
Planckian type driven by a scalar field with double-well
potential. Interestingly, this is a novel type of scalar-tensor
theory which can never be mapped onto an ‘‘Einstein
frame’’ where matter is decoupled from gravity. Its prop-
erties under local conformal transformations of the four-
metric are discussed and it is shown that only a particular
class of Weyl transformations leads to a minimally coupled
IR limit. Outside this class, one would obtain a scenario
with varying effective speed of light. In the original Jordan
frame, the coupling in the UV limit is minimal only for
homogeneous configurations. Notice that nonminimal cou-
pling stems from the prescription for detailed balance, even
when the three-dimensional action is minimally coupled
[Eq. (1)].

We find it difficult to obtain a stable Lorentz-invariant
limit with a dynamical scalar field. Apart from the amusing
possibility to forbid fundamental scalars in the theory, this
suggests to abandon detailed balance, in accordance with
previous results pointing towards the same conclusion
[9,13,28,39]. We shall comment on these in the last section.

We wish to stress that the z ¼ 3 model under considera-
tion is rather general. The nonminimal coupling arises
because one is imposing detailed balance together with
UV stability. The latter requirement also determines the
sign of the total potential. The signs of the coefficients in
the three-dimensional action will be arbitrary but this is not
the case for the most important coefficients of the 4D
action, since they are the square of 3D couplings (see
below). These coefficients appear in a set of constraints
which should be satisfied simultaneously. Such rigid con-
ditions are not met generally because of detailed balance.
This negative result is insensitive of other details: The
instabilities of the theory cannot be adjusted by a different
choice of (i) operators, (ii) ordering of derivatives, (iii) the
sign of the couplings, or even (iv) the form of the scalar
potential. The main problems encountered in this large
class of scalar-tensor theories with detailed balance on
foliated manifolds are always: (a) absence of a de Sitter
(dS) vacuum, (b) presence of semiclassical instabilities due
to an incompatibility between the sign of the particle
(graviton and scalar) kinetic terms and the reality condition

on the effective speed of light, and (c) absence of an
Einstein frame.
Some properties of pseudodifferential operators are re-

viewed in Sec. II. We motivate detailed balance in Sec. III,
and construct the gravitational-matter action in Sec. IV,
where its properties under Weyl transformations are also
described. Some generalizations of the simplest model are
considered in Sec. V. Main results, pending problems and
future directions are discussed in the last section.

II. PSEUDODIFFERENTIAL OPERATOR �� AND
FRACTIONAL CALCULUS

Fractional calculus is as old a branch of mathematics as
ordinary differential analysis [51–56]. Its applications
range from statistics and long-memory processes such as
weather and stochastic financial models [54] to system
modeling and control in engineering [55]. We shall be
interested in fractional powers of the Beltrami-Laplace
operator on a manifold M, which is a particular pseudo-
differential elliptic operator [57–61].
Let � be the space of entire analytic test functions ’̂k,

where k 2 C. The space of ultradistributions is the dual of
� and its elements are the linear functionals [62]

ĉ ½’̂� ¼
Z
�
dkĉ k’̂k; (3)

where ĉ k is analytic in fk: jImkj> %g and ĉ k=k
% is

bounded and continuous on the same domain with jImkj ¼
% included. � is a contour on the complex plane running
clockwise along jImkj> %. In coordinate space,

c ½’� ¼
Z þ1

�1
dxc ðxÞ’ðxÞ; (4)

where

c ðxÞ ¼
Z
�
dkĉ ke

ikx: (5)

These equations allow one to define the action of pseudo-
differential operators with certain analytic properties, and
can be generalized toD spatial dimensions [62] and curved
spacetime. For our purposes, it will be sufficient to con-
sider the Fourier transform (5) and the pseudodifferential
operator

�� ¼ ½gijðt;xÞrirj��; (6)

where � 2 R (but in general it can be complex) and i; j ¼
1; . . . ; D. Here, D is an arbitrary positive integer. The time
dependence does not play any role in what follows, as we
are interested in single leaves of the spacetime foliation.
The Euclidean and Lorentzian cases were considered in

[62,63]. The Green function of�� can be calculated with a
number of techniques. For a D-dimensional Euclidean
space, one obtains
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GðjxjÞ � jxj2��D: (7)

For � ¼ 1 this is the usual Newtonian potential: in three
dimensions, GðjxjÞ � 1=jxj. When � ¼ D=2, GðjxjÞ �
lnjxj, while for � ¼ 3 one has GðjxjÞ � jxj3. This is the
UV correction one expects in Hořava-Lifshitz gravity.

In general, for any c

��þ�c � ��½��c �; (8)

unless either � or � is natural. Also, given two scalars A
and B living in a suitable functional space, the usual
integration by parts holds

Z
d3x

ffiffiffi
g

p
A��B ¼

Z
d3x

ffiffiffi
g

p ð��AÞBþ boundary terms;

0 � � � 1; (9)

as one can check in momentum space, for both
Euclidean space and general Riemannian manifolds
[52,54,61,64,65].2

In order to compute the total action, one needs the
functional variation of Eq. (9) with respect to the metric
gij:

A
���

�gij
B: (10)

When � ¼ n is a natural number, one obtains a finite sum
of contributions

Að��nÞB ¼ Xn�1

l¼0

A�lð��Þ�n�1�lB

! Xn�1

l¼0

ð�lAÞð��Þ�n�1�lB; (11)

where in the last step we have integrated by parts inside the
D-dimensional integral. For arbitrary �, this expression
cannot be readily generalized and the problem of a suitable
definition of �� arises. To this aim, we can employ the
following trick. We first define

�� � e� ln�; (12)

then consider the operator identity [66]

�e�X ¼
Z �

0
dsesXð�XÞeð��sÞX; (13)

which yields

Að���ÞB ¼
Z �

0
dsð�sAÞð� ln�Þ���sB; (14)

where equality is valid under integration by parts in x. One
can show that Eq. (14) is equivalent to Eq. (11) for � ¼
n 2 N.
The logarithm of an operator [67] (well defined as long

as the kernel of � is trivial) and its variation can be
computed with Borel functional calculus. Other represen-
tations of ��� are possible but, fortunately, in this paper
we do not have to enter into detail on the subject. In fact,
we will argue that terms of the form (10) do not contribute
in a way which affects the main UVand IR properties of the
total action.

III. DETAILED BALANCE

Let M ¼ R�� be a time-space manifold with signa-
ture ð�;þ;þ;þÞ embedding a torsion-free three-
dimensional space � with metric gij, where Latin indices

run from 1 to 3. We specialize to three spatial dimensions
although most of what will be said can be fairly general-
ized. On �, we define the space-covariant derivative on a
covector vi as rivj � @ivj � �l

ijvl, where �l
ij �

glm½@ðigjÞm � 1
2@mgij� is the spatial Christoffel symbol.

Round brackets denote symmetrized indices, XðijÞ ¼
ðXij þ XjiÞ=2. The curvature invariants (under spatial

diffeomorphisms) quadratic in spatial derivatives of the
metric are the Riemann tensor Rl

imj � @m�
l
ij � @j�

l
im þ

�n
ij�

l
mn � �n

im�
l
jn, the Ricci tensor Rij � Rl

ilj, and the

Ricci scalar R � Rijg
ij.

Let g be the determinant of the 3-metric and G the
‘‘metric of fields’’ incorporating both the scalar-field com-
ponent and the generalized DeWitt metric of metrics [1,2]

G ijlm � giðlgmÞj � �

3�� 1
gijglm; (15)

whose inverse is

G ijlm � giðlgmÞj � �gijglm: (16)

We choose a diagonal metric field

G ¼ 1

2

�2Gijlm 0
0 1

� �
; (17)

which is the usual Wheeler-DeWitt metric in the presence
of a scalar field when � ¼ 1 (e.g., [68]). One also defines
the fields

q ¼
�
gij 0
0 �

�
; � ¼

�
�ij 0
0 ��

�
(18)

where the Arnowitt-Deser-Misner momenta are

2The question is whether arbitrary powers of the Beltrami-
Laplace operator are self adjoint with respect to the natural L2
scalar product. If the Beltrami-Laplace operator is defined as a
self-adjoint operator with spectrum in ½0;1Þ, then one can define
its �th fractional power by spectral theory (for �> 0), and this
is self adjoint.
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�ij ¼ �S

� _gij
� 2

�2

ffiffiffi
g

p
GijklK

kl; (19)

�� ¼ �S

� _�
� ffiffiffi

g
p _�

N
; (20)

and S is the total action. Here, Kij ¼ Kijðt;xÞ is the ex-

trinsic curvature

Kij ¼ 1

N

�
1

2
_gij �rðiNjÞ

�
; (21)

N ¼ NðtÞ andNi ¼ Niðt;xÞ are gauge fields and _� � _��
Ni@i�.

We introduce a modification of the Hořava-Lifshitz 3þ
1 action with z ¼ 3 [2] and a matter sector with the
following properties: It is (i) invariant under foliated dif-
feomorphisms, (ii) constructed under the principle of de-
tailed balance, and (iii) nontrivial at the z ¼ 3 critical
point. A fourth property, namely, stability and Lorentz
invariance in the infrared, will be checked a posteriori.

Consider the total action

S ¼
Z
M

dtd3x
ffiffiffi
g

p
NðLK þLVÞ: (22)

The kinetic term is

L K � 1

g
trð�G�Þ (23)

¼ 2

�2
ðKijK

ij � �K2Þ þ 1

2

_�2

N2
; (24)

where tr is the trace and K � Ki
i. �2 and � are coupling

constants with dimension ½�2� ¼ z� 3 and ½�� ¼ 0 (hence
both dimensionless at the z ¼ 3 Lifshitz point). The scal-
ing dimensions of the gauge fields are ½N� ¼ 0 ¼ ½gij�,
½Ni� ¼ z� 1, while the scalar field has dimension ½�� ¼
ð3� zÞ=2.

The potential LV is determined by detailed balance and
follows, in a precise way, from the gradient flow generated
by a three-dimensional Euclidean action W:

L V � 1

g
tr

�
�W

�q
G
�W

�q

�
(25)

¼ �2

8
TijGijlmTlm þ 1

2g

�
�W

��

�
2
; (26)

where

Tij � � 2ffiffiffi
g

p �W

�gij
(27)

is the stress-energy tensor of the three-dimensional theory.
Contrary to [2], the overall sign in front of the total
potential in Eq. (22) is positive (this is equivalent to take

the � sign and the Euclideanized action W ! iW). The
reason to do so will soon become apparent. There is also
another slight difference with respect to [2], since
TijGijlmTlm � TijGijlmT

lm (unless � ¼ 2=3).

The detailed balance condition allows for a simple
quantization of the system as the Hamiltonian constraint
is quadratic and the renormalization group flow can be
recast in terms of first-order equations. The total Hamil-
tonian is

H ¼
Z

d3x½ _q�� ffiffiffi
g

p
NðLK þLVÞ�

¼
Z

d3xðNH þ NiH iÞ; (28)

where the super-Hamiltonian and supermomentum are

H ¼ 1ffiffiffi
g

p tr

�
�G�� �W

�q
G
�W

�q

�
(29)

¼ 1

2
ffiffiffi
g

p
�
�2�ijGijlm�lm � �2

4
gTijGijlmTlm þ �2

�

�
�
�W

��

�
2
�
; (30)

H i ¼ ��@i�� 2rj�ij: (31)

By virtue of the detailed balance condition, the Hamilton-
Jacobi formalism is naturally implemented and the classi-
cal constraints admit a large class of simple solutions. For
instance,

� ¼ �W

�q
(32)

yields solutions of the Hamiltonian constraint which, im-
posing H i � 0 weakly, respect the scalar equation of
motion and conservation of the stress-energy tensor of
the three-dimensional theory. In particular, static solutions
are obtained when Tij ¼ 0 [2,44]. These solutions can be

found by inverting Eq. (32) with respect to _gij and _�, i.e.,

solving first-order differential equations. In general, there
will be also solutions which do not obey Eq. (32).
To Eq. (32) there corresponds a class of solutions in the

quantum theory. The latter inherits the quantum properties
of the three-dimensional Riemannian theory. In particular,
the detailed balance structure of S is preserved along the
renormalization group flow and, if W is renormalizable,
then also the 3þ 1 theory will be renormalizable [8].
A stronger condition on the total potential may be

imposed, namely, that the scalar and gravitational sectors
factorize (minimal coupling prescription) [13]. Then one
can decompose the three-dimensional action W ¼ Wg þ
W�, and determine Wg and W� separately. The gravita-

tional and scalar components of Eq. (32) would split into
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�ij ¼
�Wg

�gij
; �� ¼ �W�

��
: (33)

This leads to a different theory.3 In the remainder of this
paper we shall consider the model given by Eq. (25).

IV. ACTION: UVAND IR LIMITS

We choose the boundary action W in Eq. (26) to be

W ¼ 1

	2

Z
!3ð�Þ þ


Z
d3x

ffiffiffi
g

p ½Rþ �0g
ij��1=2Rij

� 2Lð�Þ�: (34)

Here, !3 is the Chern-Simons form in terms of the metric-
dependent spin connection and

Lð�Þ � �W þ 1

4
ð�3��3=2�þ �2����m�2Þ: (35)

The real constants 	, 
, si � 
�i, m, and �W have
dimension ½	� ¼ 0, ½
� ¼ 1, ½s0� ¼ ðz� 3Þ=2, ½si� ¼ z�
i for i ¼ 3, 2, ½m� ¼ z� 1, and ½�W� ¼ 2, respectively.
The gravitational and matter parts of W were constructed

in [2] (without the �1=2R term) and [13], respectively. The
presence of fractional derivatives in the action (34) leads to
a modification of the particle spectrum of the theory (for
instance, the solution of a fractional wave equation is no
longer a superposition of plane waves; see [62] and refer-
ences therein) and particle propagation [63]. It would be
interesting to study the classical properties of the model
and its solutions. However, not only does this go beyond
the scope of the present investigation, but we shall also
argue that there are more urgent issues which will even-
tually characterize the model as physically unviable.
Anyway, we will comment on the relevance of pseudodif-
ferential operators in the last two sections.

Using the variations

�
ffiffiffi
g

p ¼ � 1

2
gij

ffiffiffi
g

p
�gij;

gij�Rij ¼ ½gij��rðirjÞ��gij;

one obtains

1ffiffiffi
g

p �W

�gij
¼ � 2

	2
Cij þ


�
Rij � 1

2
gijRþ Lð�Þgij

�

þ s0

�
�

�
�1=2Rij � 1

2
gijg

lm�1=2Rlm

�

þ gij�
3=2��rirj�

1=2�

�

þ 1

2
ðs2@i�@j�þ s3@i�@j�

1=2�Þ þ . . . ; (36)

1ffiffiffi
g

p �W

��
¼ s0gij�

1=2Rij � ðs3�3=2 þ s2��
mÞ�;

(37)

where

Cij � �i
lmrl

�
Rmj � 1

4
gmjR

�
(38)

is the Cotton tensor [2] and �ilm is the Levi-Civita symbol.
The terms not shown in Eq. (36) stem from Eq. (14) and
will not contribute in the following discussion. Later we
will see that in the IR there is a frame problem mainly due
to the detailed balance prescription and which does not
depend on the details of the total action; so the IR limit is
unaffected. On the other hand, Eq. (14) states that Eq. (10)
is a superposition of operators of derivative order equal or
greater than �. These contribute in the UVonly when their
order is 3 and they are contracted [in the sense of Eq. (25)]
with other operators of the same order. Then they would
give rise to operators which vanish in the traceless gauge
and/or on homogeneous backgrounds.4

The total action is given by Eqs. (22), (24), (26), (36),
and (37), and is considerably more complicated than one
without detailed balance and with the same symmetry
requirements (z ¼ 3 UV fixed point and foliated diffeo-
morphism invariance).
In the UV limit of the action we keep only 6th-order

spatial derivatives and neglect relevant operators. Up to a
total derivative (which we discard for simplicity together

3In fact, coupling constants are mutually dependent in the
presence of detailed balance. If the coupling constants were all
independent, as in ordinary quantum field theories with no
detailed balance condition, then Eq. (33) would be a subset of
the theory defined by Eq. (25). This is not the case with detailed
balance because, given the same W, in the total action with
Eq. (25) there appear terms [e.g., of the form �ð�W�=�g

ijÞ2]
whose couplings cannot be switched off without switching off
also those of the simplified theory (33).

4The first part of the statement refers to operators in �W=�gij

and �W=�� involving (a) the Ricci scalar or (b) the Ricci tensor
with all indices contracted, or (c) the Ricci tensor with free
indices i and j, but contracted with another variation propor-
tional to gij. The second part can be understood, for instance, in
a toy model with z ¼ 2 and no fractional operators (� ¼ 1).
Consider the operator ��� ! gij@i�@j� in W. Variation with
respect to the metric yields @i�@j�. The only possible term in
the total action which might contribute to the UV dispersion
relation of the scalar field is given by the contraction of this
operator with itself. The result is of the form ð@�@�Þ2 or, after
integration by parts, �ð@�@�Þ@2�. Perturbing the action and
keeping only Oð��2Þ terms, one would get ��ð@�@�Þ�@2��,
where ð	Þ� is evaluated on the background. If this is homoge-
neous, ð	Þ� ¼ 0.
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with any other boundary term) and making use of the
twice-contracted Bianchi identity 2riRij ¼ rjR, the

Cotton-Cotton term can be written as

CijC
ij ¼ 1

8
R�R� Rjl�R

jl þ RjlrirjRil: (39)

Now we can easily check that the dispersion relations of
both tensor and scalar sectors are real. To show this, it is
sufficient to perturb the action at second order and look at
@6 terms. For simplicity, we choose a flat homogeneous

background gð0Þij ðtÞ, �ð0ÞðtÞ, so that spatial gradient and R

terms can be ignored in the background coefficients of the
perturbed equations. The perturbation of the 3-metric

gij ¼ gð0Þij þ hij is interpreted as the graviton in

transverse-traceless gauge plus eventually the trace scalar
mode. Ignoring the latter, the marginal kinetic term is

�2

2

�
s20�

2 � 4

	4

�
hij�

3hij; (40)

while for scalar perturbations the 6th-order term is

�
s23
2
� s20�

2ð2�� 1Þ
�
���3��: (41)

In order for UV modes to have real frequency, both coef-
ficients in the above equations must be positive, leading to
the conditions

j�j> 2

	2js0j
; (42)

s23 > 2s20�
2ð2�� 1Þ: (43)

If these conditions were violated, UV modes would be
unstable. One cannot introduce a UV cutoff to avoid this
kind of instability, because the theory is claimed to be UV
complete. In the case of Eq. (1), these constraints reduce to

	2js0j> 2: (44)

Since we defined the total potential with an extra � sign
with respect to [2], the scalar UV modes are stable. In [13],
the scalar sector was unstable due to the opposite sign in
Eq. (41) with s0 ¼ 0; here, this problem has been removed.
At the same time, the role of the operator (1) or (2) is to
make the traceless graviton UV modes stable.

The scalar field in the total action acquires an effective
potential

Vð�Þ ¼ 3ð3�� 1Þ�2

2


2m2

16

�
�
�4 � 8

�
�W

m
þ 2

3�2ð3�� 1Þ
�
�2 þ

�
4�W

m

�
2
�
:

(45)

Contrary to [2], the cosmological constant is positive.5 In
[13], due to the simplified detailed balance condition the
scalar potential was Vð�Þ / m2�2, but scalar perturbations
were unstable. It was not possible to add the term Eq. (1) or
(2) and change the sign of the total potential to cure the
latter problem because the scalar potential would have
become unbounded from below, thus leading to another
instability.
Provided � > 1=3, if the effective mass in square brack-

ets is negative V has one global minimum at � ¼ 0, where
Vð0Þ> 0. However, this is in contrast with Eq. (42), which
is a dynamical constraint on the theory. Therefore we are
forced to conclude that the effective mass term is positive
and it will not be restrictive to choose

�2� � 4�W

m

 0: (46)

In this case, V is a double-well potential with minima at

�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

3�2ð3�� 1Þ þ�2�

s
: (47)

However, Vð��Þ< 0, and the anti-de Sitter vacuum is not
lifted. Although one can obtain inflation also in anti-
de Sitter, this may be a problem of the model. A solution
is to flip the sign of the total potential LV and use two
different metric of fields:G in the kinetic term and a metric
G0 in the potential term with opposite signature in the
scalar-scalar component. Then one can set s0 ¼ 0 but
would break detailed balance, as the class of solutions
(32) would no longer exist. This option is legitimate, but
as the aim of this paper is to enforce detailed balance in all
sectors of the theory, we shall not consider it here.
Even when Eq. (42) is satisfied, one cannot yet conclude

that the theory is free from classical instabilities. In the IR
limit, the Lagrangian density becomes

LIR � 2

�2
½KijK

ij � �K2 þ c2ð�ÞR� þ 1

2

_�2

N2
� Vð�Þ

þ s2


�
2c2ð�Þ
3�2
2

�m

�
���þ . . . ; (48)

where 	 	 	 stand for other relevant operators and

5A positive cosmological constant was also obtained in [28] by
making an analytic continuation of the original, purely gravita-
tional action. However, that formulation is pathological inas-
much as it changes the sign of the @6 term, and thus making the
graviton UV unstable.

GIANLUCA CALCAGNI PHYSICAL REVIEW D 81, 044006 (2010)

044006-6



c2ð�Þ � 3ð3�� 1Þ�4
2m

16
ð�2� ��2Þ: (49)

It is a general result in scalar-tensor and modified gravity
models that the presence of (semi)-classical instabilities
and superluminal modes depend on the background dy-
namics [69–74]. The coefficients of the Oð�Þ terms (in the
action perturbed up to second order in hij and ��) repre-

sent the square of the propagation speed of the physical
degrees of freedom. One is Eq. (49) evaluated on the
background, the other is

s2


�
2c2ð�Þ
3�2
2

�m

�
¼ s2
m

�ð3�� 1Þ�2

8
ð�2� ��2Þ � 1

�
:

(50)

They are positive definite if

�2� ��2 > 0 (51)

and

�2� ��2 >
8

ð3�� 1Þ�2
; if s2
m> 0: (52)

These conditions are strong constraints on the dynamics.
However,

�þ >��; (53)

and c2 > 0 when the scalar field is near the local maxi-
mum. In the high-mass regime�� � 1, the effective speed
of light is imaginary or, in other words, the field sits at the
local maximum. The conclusion is that the theory with a
dynamical scalar field does not possess a stable Lorentz-
invariant configuration. If �� ��þ 
 1, the minima are
shifted at infinity, and the only stable configuration is a
constant field. This would naturally lead to a constant
effective speed of light, which is presumably a necessary
requirement in order to respect observational bounds on
Lorentz invariance.

The total action (22) defines a peculiar scalar-tensor
theory where the scalar field is nonminimally coupled
with spatial curvature invariants. Consequently, a confor-
mal transformation from the Jordan frame

gij � �2ðxÞ �gij; Ni ¼ �2ðxÞ �Ni; N ¼ �zðxÞ �N;

(54)

would never lead to a conventional Einstein frame �gij
where matter is decoupled from gravity at linear level in
the Ricci curvature. It may be instructive to make this
statement explicit. Let us define

O i � @i ln�; Oij � �ri
�rj ln�; O � �� ln�;

(55)

where �� ¼ �2��Oi
�@i and indices are raised and low-

ered with the Einstein metric. The measure scales as
N

ffiffiffi
g

p ¼ �3þz �N
ffiffiffi
�g

p
, while the intrinsic curvature invari-

ants are

�2R ¼ �R� 2ð2OþOiOiÞ; (56)

�4R2 ¼ �R2 � 4 �Rð2OþOiOiÞ
þ 4½4O2 þ 4OOiOi þ ðOiOiÞ2�; (57)

�4RijR
ij ¼ �Rij

�Rij þ 2 �RijðOiOj �OijÞ � 2 �RðOþOiOiÞ
þOijðOij � 2OiOjÞ þ 5O2

� 9

2
OOiOi þ 2ðOiOiÞ2: (58)

Overall, the action transforms as

S ¼
Z

dtd3x
ffiffiffi
�g

p
�Nf�3�z �LK

þ ½c2ð�Þ�1þz þ�z�1FðOi;OÞ� �Rþ . . .g; (59)

where . . . are all the other operators and FðOi;OÞ can be
found from the above transformation of the higher curva-
ture invariants R2 and RijR

ij:

FðOi;OÞ ¼ �2�2ðOþOiOiÞ � 4�1ð2OþOiOiÞ;
(60)

where �1 and �2 are the (constant) coefficients of the R2

and RijR
ij terms, respectively. In this sense, the conformal

transformation does not ‘‘preserve’’ the renormalization
group flow, as the renormalization group properties of the
operators change from one frame to another. At the IR
point one may define the conformal transformation such
that

�2½FðOi;OÞ þ c2ð�Þ�2� ¼ const: (61)

Then, the linear Ricci scalar part in the IR Lagrangian
density is minimally coupled. However, this is true only
on inhomogeneous backgrounds: Eq. (61) states that � ¼
�ð�; @i�Þ, while Eq. (60) is nonzero only if the field � is
not homogeneous, @i� � 0.

V. SOME GENERALIZATIONS

So far we have assumed a modification of the three-
dimensional action W of [2] (topologically massive grav-
ity) and [13] of the form Eq. (1) or (2). In this section, we
comment on three possible generalizations:
(i) Operators which are nonlinear in the scalar field

Of � gijfð�Þ�1=2Rij.

(ii) General (self-interacting) scalar potentials Uð�Þ.
(iii) Fractional derivatives in the gravity sector.

Besides the fact that an operator of the form

O f � gijfð�Þ�1=2Rij (62)

would further complicate an already intolerably cumber-
some model, it would not improve or change the above
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stability analysis in the UV (in the IR, Of is irrelevant and

this conclusion is trivial). Actually, the only change would
be in the conditions (42) and (43), which would become

jfð�Þj> 2

	2js0j
; (63)

s23 > 2s20�
2ð2�� 1Þ½f0ð�Þ�2: (64)

These equations constrain the allowed values of � accord-
ing to the form of the function fð�Þ. However, we have
seen that the main problems arise in the infrared, so any
specific choice for f would be of interest only after ad-
dressing the latter. Therefore Eq. (1) does not lead to any
loss of generality.

A choice one could modify in the infrared is the one for
the scalar potential inW. In Eq. (35), we picked a quadratic
potential because, as we argued in [13], a more general
form would neither modify the physics nor, as we can show
with an example, relax the infrared problem. Replace
m�2=4 ! Uð�Þ in Eq. (35). The four-dimensional scalar
potential reads as

Vð�Þ / U2 � 2�WU� 4

3�2ð3�� 1ÞU
02 þ�2

W; (65)

where the overall normalization constant is positive if � >
1=3. Taking U ¼ a�3, where a is a constant, the potential
is

Vð�Þ / �6 � 12

�2ð3�� 1Þ�
4 � 2�W

a
�3 þ�2

W

a2
: (66)

Without any loss of generality, let�W=a > 0. V is bounded
from below with a saddle point at � ¼ 0 and a global
minimum at some �þ > 0 (if �W=a < 0, the minimum is
at��þ). If f / �n, Eqs. (63) and (64) place a parameters-
dependent constraint �1ð	2; s0; s3; n; . . .Þ< j�j<
�2ð	2; s0; s3; n; . . .Þ which can be tuned to include �þ.
For instance, when fð�Þ ¼ � we can always fix the co-
efficients in Eq. (66) such that �þ > 2=ð	2js0jÞ. None-
theless, the reader can check that the anti-de Sitter problem
still holds, as Vð�þÞ< 0.

In the infrared, the constraint (51) on the graviton kinetic
term (reality of the effective speed of light c) becomes

Uð�Þ<�W; (67)

which is never satisfied near the minimum�þ. WhenU ¼
a�3, Eq. (67) reads �<�� � ð�W=aÞ1=3, but one can
show that�þ >��. Hence, cð�Þ 2 R only away from the
minimum.

Finally, the gravitational sector could be decorated with
other fractional operators apart from Eq. (1). The number
of these operators is infinite, so it is not possible to write

the most general action in a tractable form. Fortunately, we
can still say something about most of the operators we have
ignored so far. We consider the UVand IR limits separately
and in this order.
Near the UV fixed point we are interested only in

operators in W of derivative order 3. Operators made of n
Ricci tensors or scalars and the �-th power of the
Laplacian are constrained to have � ¼ ð3=2Þ � n.
Operators with n > 1 would contribute terms which vanish
on flat homogeneous backgrounds, so they would not affect
the above stability analysis (of course a choice of other
backgrounds is possible but we will not consider it here).
On the other hand, operators with n < 1 would generate
terms in the total action which diverge on the same back-
grounds; we prefer to avoid this situation, which resembles
modified gravity models of type 1=R. Setting n ¼ 1, only
three possibilities remain: Eq. (62) and

Rijfð�Þ�1=2gij; fð�Þ�1=2R:

Marginal terms yielded by a functional variation of these
objects would either vanish in the traceless gauge (compare
footnote IV) or be equivalent to those given by Eq. (62).
The other crucial scale at which new operators might

affect the conclusions of the previous sections is near the
IR fixed point. Pseudodifferential operators change, some-
times dramatically, the particle spectrum of a theory when-
ever they make their appearance. Therefore any fractional
operator dominating in the infrared is very likely to spoil
both general relativity and quantum field theory on suffi-
ciently large scales. Therefore operators of total derivative
order smaller than 2 must be excluded not only in the 4D
action, but also in W, because there is always a constant
term in the 3D action which would be multiplied by
variations of such operators. This category includes matter
operators of the form����, �< 1, which we had already
omitted in Eq. (35), plus many others like

fð�Þ��R; fð�Þgij��Rij; � < 0:

Notice that exclusion of these operators on phenomeno-
logical ground is legal as long as one is concerned only
with the definition of the total action without worrying
about its self consistency along the renormalization group
flow. In other words, if a full renormalization analysis
showed the necessity of any of the above terms, then
they could no longer be excluded. However, they can be
generated only if other fractional operators are already
present, which is the case only with detailed balance.
This would lead to a modification of the IR limit. If this
is phenomenologically harmless, then these operators do
not affect the detailed balance issue. If, on the other hand,
the new IR limit is problematic, then there must be no
fractional operators at all and, hence, no detailed balance.
Therefore these lowest-order operators cannot possibly
improve the predicament of detailed balance. If there was
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need to further convince the reader, wewould also note that
the IR frame problem is independent of all these consid-
erations, so it is robust regardless of changes in the action
at this or any other scale.

The absence of an Einstein frame in the infrared is not
cured by any of the above generalizations. To summarize,
the problems stemming from the detailed balance condi-
tion seem to be rather model independent and hard to
eradicate via reasonable modifications of the three-
dimensional action.

VI. DISCUSSION

The detailed balance condition is not physically neces-
sary but it leads to a class of simple classical and quantum
solutions. We asked whether there exists a viable semiclas-
sical model of Hořava-Lifshitz gravity with scalar matter
which obeys it. All the above arguments rely on particular
backgrounds and ignore gauge issues but the answer ap-
pears to be negative and, to some extent, independent of the
details of the model.

There is evidence that it is difficult to achieve a good
infrared limit in near-homogeneous backgrounds. This
may favor simpler theories without detailed balance (e.g.,
[6,10,39]), at least as far as their classical dynamics is
concerned. This is not in contrast with the findings of [9],
where it was argued that detailed balance leads to strong
coupling on all scales thus implying that such a theory
(without matter) does not have a perturbative IR limit
(however, see [26]); a similar conclusion about an anoma-
lous IR limit in the presence of detailed balance was
reached in [28].

Perhaps one cannot yet draw a positive conclusion re-
garding the viability of detailed balance, since the defini-
tion of the metric G has a certain degree of arbitrariness
and might be extended to nondiagonal Ansätze which
simplify the flow equations.6 However, although neither
Hořava-Lifshitz gravity with matter nor its renormalization
group flow have been studied thoroughly, the above insta-
bilities are intrinsic to the theory. In fact, the existence of a
bad IR limit with not even approximate Lorentz invariance
(varying speed of light, no Einstein frame, and so on) is a
consequence of how the model is structured, i.e., it is due to
the detailed balance condition. This condition propagates
into the quantum theory [8], so the tree-level results are
enough to illustrate the possibility of severe fine-tunings in
the model.

Whether or not detailed balance is assumed, Hořava-
Lifshitz gravity without matter possibly suffers from prob-
lems which the presence of matter not only might not cure,
but could also aggravate. The respect of observational
constraints on Lorentz invariance is not yet guaranteed.
So far, the problem of Lorentz invariance has been consid-
ered only at tree level in the literature; the dispersion
relation for z ¼ 3 Lifshitz fields is such that the tree-level
theory is safely within experimental bounds. However, it
was argued in [75,76] that loop corrections to the propa-
gator of fields in a Lorentz-violating theory of quantum
gravity generally lead to violations several orders of mag-
nitude larger than the tree-level estimate, unless the bare
parameters of the model are fine-tuned.7 This and the
above issues will deserve further consideration.
On a positive note, the model presented here is charac-

terized by stimulating technical issues and phenomenol-
ogy. In particular, fractional operators can lead to particle
spectra considerably different from the usual ones. Also,
theories with anisotropic scaling are natural settings
wherein to implement the popular notion that ‘‘spacetime
is fractal’’ at high energies and microscopic scales. The
critical exponent z determines the spectral dimension of
spacetime, which flows from 1þD in the infrared to 1þ
D=z in the ultraviolet [3]. In particular, at small scales
(D ¼ z) these models are two-dimensional, inasmuch as
physical degrees of freedom propagate on an effective
(possibly fractal) two-dimensional geometry. As we have
seen above, the Newton potential does change according to
the scale, so that the large-scale behavior GðjxjÞ � jxj�1 is
replaced by GðjxjÞ � jxj2z�D. Since integrals on net frac-
tals (e.g., self-similar or cookie-cutter sets) can be approxi-
mated by fractional integrals [77], it is natural to consider
fractional integrals over a space with fractional dimension;
on the associated phase space, one can construct fractional
Hamiltonian systems [78–84].8 Fractional integral actions
(Stieltjes actions) [87] have applications, for instance, in
economics, and admit a neat geometrical and physical
interpretation [88,89]. It would be interesting to develop
these ideas in more detail.
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6This can modify the IR limit but near the UV fixed point the
theory is unlikely to change much. Nondiagonal terms are
proportional to the product of Eq. (37) times the trace of
Eq. (36). A direct inspection shows that the UV dispersion
relation of the graviton is left untouched, while Eq. (41) acquires
a contribution proportional to s0s3, which would just place a
constraint similar to Eq. (43) on the relative magnitude of the
couplings s0 and s3.

7Specifically for Hořava-Lifshitz gravity, a possible fine-
tuning problem was also pointed out in [5].

8Lagrangian and Hamiltonian mechanics with fractional de-
rivatives [85,86] describe classical systems with nonconservative
forces such as friction.
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