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Tunneling cosmological state revisited: Origin of inflation
with a nonminimally coupled standard model Higgs inflaton
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We suggest a path-integral formulation for the tunneling cosmological state, which admits a consistent
renormalization and renormalization group improvement in particle physics applications of quantum
cosmology. We apply this formulation to the inflationary cosmology driven by the standard model Higgs
boson playing the role of an inflaton with a strong nonminimal coupling to gravity. In this way a complete
cosmological scenario is obtained, which embraces the formation of initial conditions for the inflationary
background in the form of a sharp probability peak in the distribution of the inflaton field and the ongoing
generation of the cosmic microwave background (CMB) spectrum on this background. Formation of this
probability peak is based on the same renormalization group mechanism which underlies the generation of
the CMB spectrum which was recently shown to be compatible with the WMAP data in the Higgs mass
range 135.6 GeV = My =< 184.5 GeV. This brings to life a convincing unification of quantum cosmology

with the particle phenomenology of the standard model, inflation theory, and CMB observations.
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I. INTRODUCTION

At the dawn of inflation theory two prescriptions for the
quantum state of the Universe were seriously considered as
a source of initial conditions for inflation. These are the so-
called no-boundary [1] and tunneling [2,3] cosmological
wave functions (see also [4] for a general review), whose
semiclassical amplitudes are roughly inversely propor-
tional to one another. In the model of chaotic inflation
driven in the slow-roll approximation by the inflaton field
¢ with the potential V(¢), these amplitudes read as
|V (@) = exp(FSg(@)/2), where * label, respectively,
the no-boundary/tunneling wave functions. Here, Sg(¢) is
the Einstein action of the Euclidean de Sitter instanton S*
with the effective cosmological constant given by the value
of the inflaton field A = V(¢)/M3,

2477'2M§

Sele) = — T@)’

)

in units of the reduced Planck mass M3 = 1/87G (h =
1 = ¢). The no-boundary state was originally formulated
as a path integral over Euclidean four-geometries; the
tunneling state in the form of a path integral over
Lorentzian metrics was presented in [3,5], and both wave
functions were also obtained as solutions of the minisuper-
space Wheeler-DeWitt equation.
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The no-boundary and tunneling states lead to opposite
physical conclusions. In particular, in view of the negative
value of the Euclidean de Sitter action the no-boundary
state strongly enhances the contribution of empty universes
with V(¢) = 0 in the full quantum state and, thus, leads to
the very counterintuitive conclusion that infinitely large
universes are infinitely more probable than those of a finite
size—a property which underlies the once very popular but
now nearly forgotten big-fix mechanism of Coleman [6].
On the other hand, the tunneling state favors big values of
V() capable of generating inflationary scenarios. Thus, it
would seem that the tunneling prescription is physically
more preferable than the no-boundary one. However, the
status of the tunneling prescription turns out to be not so
simple and even controversial.

Naive attempts to go beyond the minisuperspace ap-
proximation lead to unnormalizable states in the sector of
spatially inhomogeneous degrees of freedom for matter
and metric and invalidate, in particular, the usual Wick
rotation from the Lorentzian to the Euclidean spacetime.
This problem was partly overcome by imposing the nor-
malizability condition on the matter part of the solution of
the Wheeler-DeWitt equation [7], but the situation re-
mained controversial for the following reason.

Modulo the issue of quantum interference between the
“contracting” and ‘“‘expanding” branches of the cosmo-
logical wave function discussed, for example, in [4,7-9];
the amplitudes of the no-boundary and tunneling branches
of such a semiclassical solution take the form

[P~ (¢, D(x))| = exp(F3S (@D W atier (0, D)), (2)

where ®(x) is a set of matter fields separate from the
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spatially homogeneous inflaton, and W, e (@, P(x)) is
their normalizable (quasi-Gaussian) part in the full wave
function—in essence representing the Euclidean de Sitter
invariant vacuum of linearized fields ®(x) on the quasi—
de Sitter background with A = V(¢)/M3. Quantum
averaging over ®(x) then leads to the following quantum
distribution of the inflaton field:

Pl () = [ d[Ox)]V- (¢, D(x)P

= exp(¥Sp(¢) — S; (o)), 3)

where S;°P(p) = (1/2) TrIn(82Sz[ o, D1/ 5P(x)5D(y))
is the contribution of the UV divergent one-loop effective
action [10-12]. With the aid of this algorithm a sharp
probability peak was obtained in the funneling distribution
p71°oP () for the model with a strong nonminimal cou-
pling of the inflaton to gravity [10,13,14]. This peak was
interpreted as generating the quantum scale of inflation—
the initial condition for its inflationary scenario. Quite
remarkably, for accidental reasons this result was free
from the usual UV renormalization ambiguity. It did not
require application of the renormalization scheme of ab-
sorbing the UV divergences into the redefinition of the
coupling constants in the tree-level action Sg(e).
However, beyond the one-loop approximation and for
other physical correlators the situation changes, and one
has to implement a UV renormalization in full. This means
the necessity to isolate the UV divergences as local coun-
terterms and absorb them in the redefinition of the coupling
constants in the bare action Sg[ ¢, @] whose on-shell value
S(¢) gives the dominant part of (3)." But with the S ()
ambiguity in (3) this renormalization would be different for
the tunneling and no-boundary states. For instance, an
asymptotically free theory in the no-boundary case (asso-
ciated with the usual Wick rotation to the Euclidean space-
time) will not be asymptotically free in the tunneling case.
The tunneling versus no-boundary gravitational modifica-
tion of the theory will contradict basic field-theoretical
results in flat spacetime. This strongly invalidates a naive
construction of the tunneling state of the above type. In
particular, it does not allow one to go beyond the one-loop
approximation in the model of nonminimally coupled in-

'"Einstein gravity theory is perturbatively nonrenormalizable
by a finite set of counterterms, so under a consistent renormal-
ization we understand the possibility to unambiguously absorb
all UV divergences into an infinite set of quasilocal operators
initially contained in Sg[¢, ®], or the truncated set of those
when the higher-dimensional operators are suppressed by the
effective theory cutoff. The latter case holds for heavy massive
fields admitting a local expansion of their quantum effective
action. In particular, this includes the model considered in
Sec. III for which the renormalization reduces, modulo certain
modifications, to the RG analysis of the SM in the external
gravitational field.
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flaton and perform its renormalization group (RG)
improvement.

Here we suggest a solution of this problem by formulat-
ing a new path-integral prescription for the tunneling state
of the Universe. This formulation is based on a recently
suggested construction of the cosmological density matrix
[15] which describes a microcanonical ensemble of cos-
mological models [16]. The statistical sum of this en-
semble was calculated in a spatially closed model with a
generic set of scalar, spinor, and vector fields conformally
coupled to gravity. It was obtained in the saddle-point
approximation dominated by the contribution of the ther-
mal cosmological instantons of topology S° X S!. These
instantons also include the vacuum S* topology treated as a
limiting case of the compactified time dimension S' in
§3 x S! being ripped in the transition from § X S! to
S*. This limiting case exactly recovers the Hartle-
Hawking state of [1], so that the whole construction of
[15,16] can be considered as a generalization of the vac-
uum no-boundary state to the quasithermal no-boundary
ensemble. The basic physical conclusion for this ensemble
was that it exists in a bounded range of values of the
effective cosmological constant, that it is capable of gen-
erating a big-boost scenario of the cosmological accelera-
tion [17], and that its vacuum Hartle-Hawking member
does not really contribute because it is suppressed by the
infinite positive value of its action. This is a genuine effect
of the conformal anomaly of quantum fields [18-20],
which qualitatively changes the tree-level action (1).

Below we shall show that the above path integral ac-
tually has another saddle point corresponding to the nega-
tive value of the lapse function N <0, which is gauge
inequivalent to N > 0. In the main, this leads to the inver-
sion of the sign of the action in the exponential of the
statistical sum and, therefore, deserves the label “‘tunnel-
ing.” In this tunneling state the thermal part vanishes and
its instanton turns out to be a purely vacuum one. Finally,
this construction no longer suffers from the above-
mentioned controversy with the renormalization. A full
quantum effective action is supposed to be calculated and
renormalized by the usual set of counterterms on the
background of a generic metric and then the result should
be analytically continued to N < 0 and taken at the tunnel-
ing saddle point of the path integral over the lapse function
N.

Below we shall apply this construction to a cosmological
model for which the Lagrangian of the graviton-inflaton
sector reads

L (g, ®) = 5(Mp + EIPPIR — 3|V — V(|@), 4

Vo) = 0P =22 0P = dle, ()

where ® is the standard model (SM) Higgs boson, whose
expectation value plays the role of an inflaton and which is
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assumed here to possess a strong nonminimal curvature
coupling with ¢ > 1. Here, as above, Mp is a reduced
Planck mass, A is a quartic self-coupling of ®, and v is an
electroweak (EW) symmetry breaking scale.

The early motivation for this model with a grand unified
theory (GUT) type boson & [21,22] was to avoid an
exceedingly small quartic coupling A by invoking a non-
minimal coupling with a large £. This was later substanti-
ated by the hope to generate the no-boundary/tunneling
initial conditions for inflation [13,14]. This theory but with
the SM Higgs boson @ instead of the abstract GUT setup of
[13,14] was suggested in [23], extended in [24] to the one-
loop level, and considered regarding its reheating mecha-
nism in [25]. The RG improvement in this model has
predicted CMB parameters—the amplitude of the power
spectrum and its spectral index—compatible with WMAP
observations in a finite range of values of the Higgs mass,
which is close to the widely accepted range dictated by the
EW vacuum stability and perturbation theory bounds [26—
31].

The purpose of our paper is to extend the results of
[29,30] by suggesting that this model does not only have
WMAP-compatible CMB perturbations, but can also gen-
erate the initial conditions for the inflationary background
upon which these perturbations propagate. These initial
conditions are realized in the form of a sharp probability
peak in the tunneling distribution function of the inflaton.

Our paper is organized as follows. In Sec. II we present
the path-integral formulation for the tunneling state and
derive the relevant distribution in the space of values of the
cosmological constant. In Sec. III we apply this distribu-
tion to the gravitating SM model with the graviton-inflaton
sector (4) and obtain the probability peak in the distribution
of the initial value of the Higgs inflaton. Section IV con-
tains a short discussion.

II. TUNNELING COSMOLOGICAL WAVE
FUNCTION WITHIN THE PATH-INTEGRAL
FORMULATION

The path integral for the microcanonical statistical sum
in cosmology [16] can be cast into the form of an integral
over a minisuperspace lapse function N(7) and scale factor
a(7) of a spatially closed Euclidean Friedmann-Robertson-
Walker (FRW) metric ds? = N*()d7* + a*(1)d*Q"),

el = [D[a, N]eSenlaN], (6)

e SeilaN] = ’[Dq)(x)e—S[a,N;q)()C)]_ (7)

Here, S.i[a, N] is the Euclidean effective action of all
inhomogeneous “matter” fields D(x) = (P(x), ¥ (x),
A, (x), hy,(x),...) (which include also metric perturba-
tions) on the minisuperspace background of the FRW
metric, S[a, N;®(x)] is the classical Euclidean action,
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and the integration runs over periodic fields on the
Euclidean spacetime with a compactified time 7 (of S' X
S3 topology).

It is important that the integration over the lapse function
N runs along the imaginary axis from —ioo to +ioco be-
cause this Euclidean path integral represents, in fact, the
transformed version of the integral over metrics with
Lorentzian signature. This transformation is the usual
Wick rotation which can be incorporated by the transition
from the Lorentzian lapse function Ny to the Euclidean one
N by the relation Ny = iN [16]. The Lorentzian path
integral, in turn, fundamentally follows from the definition
of the microcanonical ensemble in quantum cosmology
which includes all true physical configurations satisfying
the quantum first-class constraints—the Wheeler-DeWitt
equations. The projector onto these configurations is real-
ized in the integrand of the path integral by the delta
functions of the Hamiltonian (and momentum) constraints.
The Fourier representation of these delta functions in terms
of the integral over the conjugated Lagrange multipliers—
the lapse N;, (and shift) functions—implies an integration
with limits at infinity, —oo << N} << oo, which explains the
range of integration over the Euclidean N.

It should be mentioned that a full nonperturbative evalu-
ation of the path integral would require a careful inspection
of the infinite contours in the complex N plane that render
the integral convergent; see, for example, [32]. However,
such an inspection is not needed here because we are
dealing with a semiclassical approximation in which only
the vicinity of the saddle point enters.

The convenience of writing the path integral (6) in the
Euclidean form follows from the needs of the semiclassical
approximation. In this approximation, it is dominated by
the contribution of a saddle point, I'y = S.i[ag, Ny], where
ay = ao(7) and Ny = Ny(7) solve the equation of motion
for S.i[a, N]and satisfy periodicity conditions dictated by
the definition of the statistical sum. Such periodic solutions
exist in the Euclidean domain with real N rather than in the
Lorentzian one with the imaginary lapse. This means that
the contour of integration over N along the imaginary axis
should be deformed into the complex plane to traverse the
real axis at some Ny # 0 corresponding to the Euclidean
solution of the equations of motion for the minisuperspace
action.

The residual one-dimensional diffeomorphism invari-
ance of this action (which is gauged out by the gauge-
fixing procedure implicit in the integration measure
D[a, N)) allows one to fix the ambiguity in the choice of
Ny. There remains only a double-fold freedom in this
choice actually inherited from the sign indefiniteness of
the integration range for N . This freedom is exhausted by
either positive, Ny > 0, or negative, N, < 0, values of the
lapse, because, on the one hand, all values in each of these
equivalence classes are gauge equivalent and, on the other
hand, no continuous family of nondegenerate diffeomor-
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phisms exists relating these classes to one another. Without
loss of generality one can choose as representatives of
these classes N+ = *1 and label the relevant solutions
and on-shell actions, respectively, as a (7) and

I's = Segla«(r), =1]. (8)

Gauge inequivalence of these two cases, I'_ # I',, is
obvious because, for example, all local contributions to
the effective action are odd functionals of N,
Siocall@ N1 = —Siocala, —N].> Thus we can heuristically
identify the statistical sums I+ correspondingly with the
“no-boundary” and tunneling prescriptions for the quan-
tum state of the Universe,

CXp(—FnO boundary/tunncl) =e 1= 9

In other words, we use this equation to define no boundary
and tunneling in the first place. This result shows that for
both prescriptions a full quantum effective action as a
whole sits in the exponential of the partition function
without any splitting into the minisuperspace and matter
contributions weighted by different sign factors as in (3).
This means that the usual renormalization scheme is ap-
plicable to the calculation of (8)—generally covariant UV
counterterms should be calculated on the background of a
generic metric and afterward evaluated at the FRW metric
with N = £1, depending on the choice of either the no-
boundary or tunneling prescription. Below we demonstrate
how this procedure works for the system dominated by
quantum fields with heavy masses, whose effective action
admits a local expansion in powers of the spacetime cur-
vature and matter field gradients.

For such a system the Euclidean effective action takes
the form

M3
Salu] = [ dxg(M3A =T RGg,) + ). (10)

where we disregard the terms of higher orders in the
curvature and derivatives of the mean values of matter
fields. Here the cosmological term and the (reduced)
Planck mass squared M = 1/87G can be considered as
functions of these mean values and treated as constants in
the approximation of slowly varying fields. This effective
action does not contain the thermal part characteristic of
the statistical ensemble [15] because for heavy quanta the

This property can be manifestly seen in the Arnowitt-Deser-
Misner (ADM) form of the Einstein action under the (3 + 1)
splitting of spacetime, cf. Eq. (11). It is important that it is
exactly this form which follows from the microcanonical defi-
nition of the path integral [16] rather than the manifestly co-
variant metric expression with the square root \/‘E (which hides
an implicit necessity of the sign choice under an analytic
continuation). The microcanonical definition of the path integral
is based on the Hamiltonian form of the gravitational action and
yields after the Gaussian integration over momenta the path
integral (6) and (7) with the action explicitly featuring an overall
odd factor N in the ADM Lagrangian.
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radiation bath is not excited. This is justified by the fact
that the effective temperature of this bath turns out to be
vanishing.

In fact, the minisuperspace action functional for (10)
reads in units of m3 = 37/4G = 67> M3 as

Serela, N1 = m3 [dTN(—aa’2 —a+ H*d®), (1D

where a’ = da/Ndr, and we use the notation for the
cosmological constant A = 3H? in terms of the effective
Hubble factor H. Then the saddle point for the path integral
(6)—the stationary configuration with respect to variations
of the lapse function 8S.4[a, N]/6N = O—satisfies the
Euclidean Friedmann equation

a? =1-— H*d% (12)

It has one turning point at @, = 1/H below which the real
solution interpolates between a_ = a(0) =0 and a,. In
the gauge N = %1 for both no-boundary/tunneling cases
this solution describes the Euclidean de Sitter metric, that
is, one hemisphere of S%,

a. (1) = % sin(HT). (13)

After the bounce from the equatorial section of the maxi-
mal scale factor ., this solution spans at the contraction
phase the rest of the full four-sphere.? Thus, this solution is
not periodic and in the terminology of [15] describes a
purely vacuum contribution to the statistical sum (6). As
shown in [15], the effective temperature of this state is
determined by the inverse of the full period of the instanton
solution measured in units of the conformal time 7.
Therefore, for (13) it vanishes because this period between
the poles of this spherical instanton is divergent,

7/2H
n= 2[ o dr (14)
o alr)

This justifies the absence of the thermal part in (10).
Thus, with N = =1 the no-boundary and tunneling on-
shell actions (8) read

, (15)

and the object of major interest here—the tunneling parti-
tion function in the space of positive values of
H? = A/3—is given by

3The formal analytic extension from Ny =1 to Ny = —1
should not, of course, be applied to a(7) = sin(NyH7)/H to
give a negative a(r) instead of (13), because in contrast to the
sign-indefinite Lagrange multiplier N the path integration over
a(t) in (6) semiclassically always runs in the vicinity of its
positive geometrically meaningful value. For this reason, a(7)
never brings sign factors into the on-shell action even though it
enters the action with odd powers.
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%LM%), A>0. (16)

ptunnel(A) = exp(— A

It coincides with the semiclassical tunneling wave function
of the Universe [2], |¥meal® = exp(—87*M3/H?), de-
rived from the Wheeler-DeWitt equation in the tree-level
approximation.

At the turning point a , the solution (13) can be analyti-
cally continued to the Lorentzian regime, ay(t) =
a(m/2H + it). The scale factor then expands eternally as

ap(n) = % cosh(H7r), 17

which can be interpreted as representing the distributions
of scale factors in the quantum ensemble (after decoher-
ence) of de Sitter models distributed according to (16).
Note that the attempt to extend this ensemble to negative A
fails, because Eq. (12) with H?> < 0 does not have turning
points with nucleating real Lorentzian geometries.
Moreover, virtual cosmological models with Euclidean
signature are also forbidden in the tunneling state because
their positive Euclidean action diverges to infinity, so that
ptunnel(A) =0 for A <0.

III. QUANTUM ORIGIN OF THE UNIVERSE WITH
THE SM HIGGS INFLATON NONMINIMALLY
COUPLED TO CURVATURE

The partition function of the above type can serve as a
source of initial conditions for inflation only when the
cosmological constant A = 3H? becomes a composite
field capable of a decay at the exit from inflation.
Usually this is a scalar inflaton field whose quantum
mean value ¢ is nearly constant in the slow-roll regime,
and its effective potential V(¢) plays the role of the cos-
mological constant driving the inflation. When the contri-
bution of the inflaton gradients is small, the above
formalism remains applicable also with the inclusion of
this field whose ultimate effect reduces to the generation of
the effective cosmological constant A = V(¢)/M3 and the
effective Planck mass.

These constants are the coefficients of the zeroth and
first order terms of the effective action expanded in powers
of the curvature, and they incorporate radiative corrections
due to all quantum fields in the path integral (7). Now there
is no mismatch between the signs of the tree-level and loop
parts of the partition function. Therefore, one can apply the
usual renormalization and, if necessary, the RG improve-
ment to obtain the full effective action Scg[g,,, ¢] and
then repeat the procedure of the previous section. In the
slow-roll approximation the effective action has the gen-
eral form

PHYSICAL REVIEW D 81, 043530 (2010)
Seil g ©] = fd“Xg”Z(V(sD) — U(@)R(g,,)

1
+5wavw2+~), (18)

where V(¢), U(p), and G(¢) are the coefficients of the
derivative expansion, and we disregard the contribution of
higher-derivative operators. With the slowly varying infla-
ton the coefficients V(¢) and U(¢) play the role of the
effective cosmological and Planck mass constants, so that
one can identify in (10) and (11) the effective Mlz, =
m3/6mw* and H?, respectively, with 2U(¢) and
V(¢)/6U(¢p). Therefore, the tunneling partition function
(16) becomes the following distribution of the field ¢:

B _24772M§
ptunnel(QD) - eXp( V(QD) ): (19)
5 (M Vie)
7o =(5) e 20)

where V() in fact coincides with the potential in the
Einstein frame of the action (18) [29,30].

Now we apply this formalism to the model (4) of in-
flation driven by the SM Higgs inflaton ¢ = (®Td)1/2. As
shown in [29,30], the one-loop RG improved action in this
model has for large ¢ the form (18) with the coefficient
functions

V(ip) = %Z“(I)qo“, 1)
Ule) = XM3 + £ Z*(1)¢?), (22)
G(p) = Z*(p), (23)

determined in terms of the running couplings A(r) and £(z),
and the field renormalization Z(f). They incorporate a
summation of powers of logarithms and belong to the
solution of the RG equations which at the inflationary stage
with a large ¢ ~ Mp/+/€ and large & > 1 read as (see
[29,30] for details)

A A
e TR R e 2t (24)
d¢é  6A

162 &= 2v¢, (25)

and dZ/dt = yZ. Here, vy is the anomalous dimension of
the Higgs field, the running scale ¢ = In(¢/M,) is normal-
ized at the top quark mass u = M,, and A = A(¢) is the
running parameter of the anomalous scaling. This quantity
was introduced in [10] as the prelogarithm coefficient of
the overall effective potential of all SM physical particles
and Goldstone modes. Because of their quartic, gauge, and
Yukawa couplings with ¢, they acquire masses m(¢) ~ ¢
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and for large ¢ give rise to the asymptotic behavior of the
Coleman-Weinberg potential,

Yp), m*(e)
viton(g) = 3 (£1) 21y
pagcles 64772 'LLZ
AL, @2
~ ¥, 26
128772¢ n,u,2 (26)

which can serve as a definition of A.
The importance of this quantity and its modification due
to the RG running of the nonminimal coupling &(%),

A;=A- 121 27)

[A; gives the running of the ratio A/&2, 1672(d/dt) X
(A/€%) = A (A/EP)] is that for & > 1 mainly these pa-
rameters determine the quantum inflationary dynamics
[14,33] and yield the parameters of the CMB generated
during inflation [24]. In particular, the value of ¢ at the
beginning of the inflationary stage of duration N in units of
the e-folding number turns out to be [24]

64w M3
2 P X
- =1 —e, (28)
fAI(tend
NAI([end)
= lad), 29
* 4872 29)

where a parameter x has been introduced which directly
involves Aj(f.,q) taken at the end of inflation, 7,4 =
In(@ena/M,), Pena = 2Mp/~/3E. This parameter also enters
simple algorithms for the CMB power spectrum A?(k) and
its spectral index ny(k). As shown in [29,30], the applica-
tion of these algorithms under the observational constraints
A% (ko) = 2.5 X 107" and 0.94 < n,(ky) < 0.99 (the com-
bined WMAP+BAO+SN data at the pivot point ky =
0.002 Mpc ™! corresponding to N =60 [34]) gives the
CMB-compatible range of the Higgs mass 135.6 GeV =
My = 184.5 GeV, both bounds being determined by the
lower bound on the CMB spectral index.

Now we want to show that, in addition to the good
agreement of the spectrum of cosmological perturbations
with the CMB data, this model can also describe the
mechanism of generating the cosmological background
itself upon which these perturbations exist. This mecha-
nism consists in the formation of the initial conditions for
inflation in the form of a sharp probability peak in the
distribution function (19) at some appropriate value of the
inflaton field ¢, with which the Universe as a whole starts
its evolution. The shape and the magnitude of the potential
(20) depicted in Fig. 1 for several values of the Higgs mass
clearly indicates the existence of such a peak.

Indeed, the negative of the inverse potential damps to
zero after exponentiation of the probability of those values
of ¢ at which V(¢) =0 and, vice versa, enhances the
probability at the positive maxima of the potential. The
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—10 [ My=154.3 GeV 1
1.x10710 o Memaate
8.x10-11 [ My=144.3 GeV ]
. ; My=1743 GeV
S 6x107'f 1
§ L
= axi0Mf My =1843 GeV ]
2.x10°1 ]
30 35 40 45 50 55 60
t=In (¢ /M,)

FIG. 1 (color online). The succession of effective potential
graphs above the EW vacuum instability threshold Mt =
134.27 GeV up to My = 184.3 GeV showing the occurrence
of a metastable vacuum followed for high My by the formation
of a negative slope branch. Local peaks of V situated at r =
34-35 grow with My for My =< 160 GeV and start decreasing
for larger My [29].

pattern of this behavior with growing Higgs mass My is as
follows.

As is known, for low My the SM has a domain of
unstable EW vacuum, characterized by negative values of
running A(?) at certain energy scales. Thus we begin with
the EW vacuum instability threshold [35,36] which exists
in this gravitating SM at M1 = 134.27 GeV [29,30] and
which is slightly lower than the CMB-compatible range of
the Higgs mass (Mi™ is chosen in Fig. 2 and for the lowest
curve in Fig. 1). The potential V(¢) drops to zero at f;,q =
41.6, @i ~ 80Mp, and forms a false vacuum [29,30]
separated from the EW vacuum by a large peak at ¢ =~ 34.
Correspondingly, the probability of creation of the
Universe with the initial value of the inflaton field at the
EW scale ¢ = v and at the instability scale ¢;, is damped
to zero, while the most probable value belongs to this peak.

8.><10712>yvvvyvvvyvvvyvvvyvvvyvvvyvvvyva

6.x10712 1

4.x10712 F

V@)Mp*

2.x10712 My=13427 GeV

t=In (¢ /M;)

FIG. 2 (color online). The effective potential for the instability
threshold Mi" = 134.27 GeV. A false vacuum occurs at the
instability scale #;,i =~ 41.6, ¢ ~ 80Mp. An inflationary domain
for a N =60 CMB perturbation (ruled out by the WMAP
bounds) is marked by dashed lines [29].
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FIG. 3 (color online). Inflaton potential at the lowest CMB-
compatible value of My with a metastable vacuum at ¢ = 42 [29].

The inflationary stage of the formation of the pivotal N =
60 CMB perturbation (from the moment ¢, of the first
horizon crossing until the end of inflation ¢.,4), which is
marked by dashed lines in Fig. 2, lies to the left of this
peak. This conforms to the requirement of the chronologi-
cal succession of the initial conditions for inflation and the
formation of the CMB spectra.

The above case is, however, below the CMB-compatible
range of My and was presented here only for illustrative
pulrposes.4 An important situation occurs at higher Higgs
masses from the lower CMB bound on My = 135.6 GeV
until about 160 GeV. Here we get a family of a metastable
vacua with V > 0. An example is the plot for the lower
CMB bound My = 135.62 GeV depicted in Fig. 3. Despite
the shallowness of this vacuum its small maximum gen-
erates via (19) a sharp probability peak for the initial
inflaton field. This follows from an extremely small value
of V/M}~ 107", the reciprocal of which generates a
rapidly changing exponential of (19). The location of the
peak again precedes the inflationary stage for a pivotal
N = 60 CMB perturbation (also marked by dashed lines
in Fig. 3).

For even larger My these metastable vacua get replaced
by a negative slope of the potential which interminably
decreases to zero at large ¢ (at least within the perturbation
theory range of the model); see Fig. 1. Therefore, for large
My close to the upper CMB bound 185 GeV, the probabil-
ity peak of (19) gets separated from the nonperturbative
domain of large over-Planckian scales due to a fast drop of
V ~ A/ &% to zero. This, in turn, follows from the fact that

* Another interesting range of My is below the instability
threshold M} where V becomes negative in the “true” high
energy vacuum. As mentioned in the previous section, the
tunneling state rules out aperiodic solutions of effective equa-
tions with H? < 0, which cannot contribute to the quantum
ensemble of expanding Lorentzian signature models.
Therefore, this range is semiclassically ruled out not only by
the instability arguments, but also contradicts the tunneling
prescription.
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&(r) grows much faster than A(r) when they both start
approaching their Landau pole [29].

The location ¢ of the probability peak and its quantum
width can be found in analytical form, and their derivation
shows the crucial role of the running A,(7) for the forma-
tion of initial conditions for inflation. Indeed, the exponen-
tial of the tunneling distribution (19) for M3/£¢? < 1
reads as

M3

I' _(p) =247 W

4 2
My 967725—(1 +
Vie) A

and in view of the RG equations (24) and (25) has an
extremum satisfying the equation
ar _dr_ 6£2 (
de dt A\

), (30)

2172
§2°¢

where we again neglect higher order terms in M3/£72 ¢?

and A;/647 (extending beyond the one-loop order).

Here, A; is the anomalous scaling introduced in (26) and

(27)—the quantity that should be negative for the existence

of the solution for the probability peak,

_ 64> M3
é:AIZz f:to'

05 =

(32)
As shown in [29,30], this quantity is indeed negative. In the
CMB-compatible range of My its running starts from the
range —36 < A;(0) =< —23 at the EW scale and reaches
small but still negative values in the range —11 =<
Aj(tena) = —2 at the inflation scale. Also, the running of
A (1) and Z(1) is very slow—the quantities belonging to
the two-loop order—and the duration of inflation is very
short 7y~ tiy = tena + 2 [29,30]. Therefore, A;(z)) =
Aj(ta), and these estimates apply also to A;(ry). As a
result, the second derivative of the tunneling on-shell ac-
tion is positive and very large,

ST 128
a2
which gives an extremely small value of the quantum width
of the probability peak,

Ap? oA ]
90(2) 1252 Ay =t

This width is about (2472/|A;|)'/? times—1 order of
magnitude—higher than the CMB perturbation at the piv-
otal wavelength k! = 500 Mpc (which we choose to
correspond to N = 60). The point ¢;, of the horizon cross-
ing of this perturbation (and other CMB waves with differ-
ent N’s) easily follows from Eq. (28) which in view of
Ag(ty) = Af(t.nq) takes the form

z A4l
40_1; —1_ exp(—Nl I( en2d)|>. (35)
;5 48

A;> 1, (33)

~10710, (34)

It indicates that for wavelengths longer than the pivotal one
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the instant of horizon crossing approaches the moment of
“creation” of the Universe, but always stays chronologi-
cally succeeding it, as it must.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have constructed the tunneling quantum
state of the Universe based on the path integral for the
microcanonical ensemble in cosmology. The correspond-
ing apparent ensemble from the quantum state exists in the
unbounded positive range of the effective cosmological
constant, unlike the no-boundary state discussed in
[15,16] whose apparent ensemble is bounded by the recip-
rocated coefficient of the topological term in the overall
conformal anomaly. Also, in contrast to the no-boundary
case, the tunneling state turns out to be a radiation-free
vacuum one.

The status of the tunneling versus no-boundary states is
rather involved. In fact, the formal Euclidean path integral
(6) is a transformed version of the microcanonical path
integral over Lorentzian metrics, so that its lapse function
integration runs along the imaginary axis from —ioo to
+ico [16].° The absence of periodic solutions for station-
ary points of (6) with the Lorentzian signature makes one
to distort the contour of integration over N into a complex
plane, so that it traverses the real axis at the points N = +1
or N = —1 which give rise to no-boundary or tunneling
states. One can show that the no-boundary thermal part of
the statistical sum of [15] is not analytic in the full complex
plane of N. The N =0 domains are separated by the
infinite sequence of its poles densely filling the imaginary
axes of N. Therefore, the contour of integration passing
through both points N = *1 is impossible, and the no-
boundary and tunneling states cannot be obtained by ana-
lytic continuation from one another.® They represent alter-
native solutions (quantum states) of the Wheeler-DeWitt
equation.

The path-integral formulation of the tunneling state
admits a consistent renormalization scheme and a RG
resummation which is very efficient in cosmology accord-

>This might seem to be equivalent to the tunneling path
integral of [3,5], but the class of metrics integrated over is
very different. We do not impose by hands a_ =0 as the
boundary condition, but derive it from the saddle-point approxi-
mation for the integral over formally periodic configurations.
The fact that periodicity gets violated by the boundary condition
a_ = 0 implies that the a priori postulated tunneling statistical
ensemble is exhausted at the dynamical level by the contribution
of a pure vacuum state [15,16].

In the case of the vacuum no-boundary state when the
vanishing thermal part of the effective action cannot present
an obstacle to analytic continuation in the complex plane of N
the situation stays the same. Indeed, any integration contour
from —ico to +ioco crosses the real axes an odd number of times,
so that the contribution of only one such crossing survives,
because any two (gauge-equivalent) saddle points traversed in
opposite directions give contributions canceling one another.
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ing to a series of recent papers [26—31]. For this reason we
have applied the obtained tunneling distribution to a re-
cently considered model of inflation driven by the SM
Higgs boson nonminimally coupled to curvature. In this
way a complete cosmological scenario was obtained, em-
bracing the formation of initial conditions for the infla-
tionary background (in the form of a sharp probability peak
in the inflaton field distribution) and the ongoing genera-
tion of the CMB perturbations on this background. As was
shown in [29,30], the comparison of the CMB amplitude
and the spectral index with the WMAP observations im-
pose bounds on the allowed range of the Higgs mass. These
bounds turn out to be remarkably consistent with the
widely accepted EW vacuum stability and perturbation
theory restrictions. Interestingly, the behavior of the run-
ning anomalous scaling A;(7) < 0, being crucially impor-
tant for these bounds, also guarantees the existence of the
obtained probability peak. The quantum width of this peak
is 1 order of magnitude higher than the amplitude of the
CMB spectrum at the pivotal wavelength, which could
entail interesting observational consequences. Unfor-
tunately, this quantum width is hardly measurable directly
because it corresponds to an infinite wavelength perturba-
tion [a formal limit of N — oo in (35)], but indirect effects
of this quantum trembling of the cosmological background
deserve further study.

We have entertained here the idea that we can obtain
sensible predictions from peaks in the cosmological wave
function. This is, of course, different from approaches
based on the anthropic principle. We find it intriguing,
however, that a consistent scenario based on our more
traditional approach may be possible and even falsifiable.

To summarize, the obtained results bring to life a con-
vincing unification of quantum cosmology with the particle
phenomenology of the SM, inflation theory, and CMB
observations. They support the hypothesis that an appro-
priately extended standard model [37,38] can be a consis-
tent quantum field theory all the way up to quantum gravity
and perhaps explain the fundamentals of all major phe-
nomena in early and late cosmology.
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