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In this paper the tachyonic resonance preheating generated from the bosonic trilinear ��2 interactions

in an expanding universe is studied. In ��4=4 inflationary model the trilinear interaction, in contrast to the

four-legs �2�2, breaks the conformal symmetry explicitly and the resonant source term becomes

nonperiodic, making the Floquet theorem inapplicable. We find that the occupation number of the

produced � particles has a nonlinear exponential growth with exponent �x3=2, where x is the conformal

time. This should be contrasted with preheating from a periodic resonant source arising, for example, from

the four-legs �2�2 interaction, where the occupation number has a linear exponential growth. We present

an analytic method to compute the interference term coming from phases accumulated in nontachyonic

scattering regions and show that the effects of the interference term cause ripples on x3=2 curve, a result

which is confirmed by numerical analysis. Studying the effects of backreaction of the � particles, we show

that tachyonic resonance preheating in our model can last long enough to transfer most of the energy from

the background inflation field �, providing an efficient model for preheating in the chaotic inflation

models.
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I. INTRODUCTION

At the end of inflation the Universe is extremely cold
and all of its energy is concentrated in the inflaton field �.
Therefore, the reheating stage is a key ingredient to con-
nect a successful inflationary stage into hot big bang cos-
mology. In simplest models of inflation, such as chaotic
inflation models, the inflaton field oscillates coherently
around the minimum of the potential with amplitude close
to the Planck mass, MP.

1 To transfer the energy from the
background inflaton field and reheat the Universe one has
to consider its coupling to other fields, such as the standard
model fields. Because of coherent oscillations of the back-
ground inflaton field around the potential minimum, ex-
plosive particle creation can happen via parametric
resonance which can drag most of the energy from the
inflaton field and reheat the Universe [1–4]. Preheating, the
stage of explosive particle creation via parametric reso-
nance, is a nonperturbative effect and the produced parti-
cles are highly nonthermal. Subsequent turbulent
interactions of different modes and rescatterings would
bring an end to preheating and thermalization starts [5–
10] where the perturbative reheating mechanism may start
[11,12]. For a review of preheating, see [13] and references
therein.

There have been many studies of preheating via four-
legs interaction g2�2�2 between the inflaton field and the

resonance field � in expanding or flat backgrounds. One
disadvantage of g2�2�2 preheating channel is that the
decay of inflaton in an expanding background is not com-
plete and the inhomogeneous inflaton particles will domi-
nate with the matter equation of state, an unsatisfactory
state to end (p)reheating with.
In order to enhance the preheating mechanism other

interactions are necessary, specially once the inflaton field
amplitude is damped while oscillating around its mini-
mum. The simplest and the most natural of these interac-
tions is the trilinear interaction���2 where� is a constant
of dimension of mass. The implications of trilinear inter-
action for the chaotic inflationary potential m2�2=2 was
studied in [14]. One interesting aspect of preheating via
trilinear interaction is that during half period of its oscil-
lation, the inflaton field has the opposite sign and the time-
dependent frequency squared for the � particle creation
becomes negative for small enough mode wavelengths.
This tachyonic instability enhances the preheating mecha-
nism significantly and in [14] was dubbed as ‘‘tachyonic
resonance.’’ The analysis of [14] was mainly devoted to a
flat background and the effects of tachyonic resonance in
an expanding background was briefly considered, incorpo-
rating them ‘‘adiabatically.’’ The tachyonic effect of a tri-
linear interaction was used in [15], in the context of
cosmological moduli problem and the idea of tachyonic
parametric resonance with a negative coupling constant
was also exploited in [16].
Here we consider the tachyonic resonance preheating in

��4=4 andm2�2=2 inflationary potentials in an expanding
universe. Our main interest will be in the ��4=4 theory but
we extend the results of [14] for m2�2=2 inflationary
model to an expanding background.
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1We use the convention in which M2

P ¼ 1=GN , for GN being
the Newton constant.
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The preheating with four-leg interaction within the
��4=4 inflation theory was studied extensively in
[17,18]. Because of the conformal invariance of the infla-
tionary potential, the effects of an expanding background
can be absorbed by a conformal transformation and one is
basically dealing with preheating in a Minkowski back-
ground. However, with the addition of ���2 interaction,
the conformal invariance is broken explicitly and the meth-
ods employed in [17] should now be modified. Breaking of
conformal invariance results in an explicit breaking of
periodicity in the �-modes equation: the amplitude of the
source term in �-field particle creation grows linearly with
the dimensionless conformal time x. Consequently, the
standard Floquet theorem does not apply. This leads to
the interesting result that the number density of � particles

produced at momentum k, nk, grows as ecx
3=2

for some
constant c. This should be compared with the standard
result of the preheating due to a periodic source term,
where nk has a linear exponential growth as dictated by
the Floquet theorem.

Another interesting result of our analysis is that we
present an analytic method to compute the interference
term which accounts for the phase difference between the
� fields during each period of the � field oscillation. The
phase accumulated during certain number of oscillations,
which we compute, makes the � particle creation to be
destructive for certain modes, the k2 which we specify.

This causes some ripples on the x3=2 curve in the lnnk
diagram. This result is to be compared with the stochastic
nature of the phases in the four-leg preheating scenarios
[1,17].

While our main interest is in ��4=4 inflationary theory,
we also study the effect of expanding background on
m2�2=2 theory. As one may expect, the effect of expand-
ing background will generally suppress the preheating
efficiency. As we demonstrate, however, it actually enhan-
ces the preheating for some certain modes.

As the number of � particles grows their backreaction on
the dynamics of the particle production and the � field
dynamics becomes important, slowing down the preheat-
ing and eventually terminating it. For a successful preheat-
ing model it is necessary that this backreaction does not
become large too early, before the energy of the inflaton
field is completely transferred into the� or � particles. It is
also important that in the end of preheating we remain with
a relativistic ensemble of these particles. As in the case of
m2�2, which has been analyzed in [14], our analysis shows
that the trilinear interactions seem to lead to a more effi-
cient preheating than the four-leg case.

The paper is organized as follows. In Sec. II we study in
detail the tachyonic resonance for ��4=4 theory. We dem-
onstrate that our analytical results agree very well with the
exact numerical results. In Sec. III we repeat the analysis of
tachyonic resonance for m2�2=2 theory in an expanding
background. In Sec. IV we study the effects of �-particle

backreactions on the preheating and estimate the time
preheating ends. A summary of the results is given in
Sec. V. Some technical aspects of the analysis are relegated
to Appendixes A, B, C, and D.

II. THE TACHYONIC RESONANCE IN ��4=4
THEORY

As explained above, we are mainly interested in ta-
chyonic resonance in ��4=4 inflationary theory with the
trilinear interaction ���2, where � is a parameter with
dimension of mass. As in [14] we have to include the self-
interaction �0�4 to uplift the potential and keep it bounded
from below. The total potential is

V ¼ �

4
�4 þ �

2
��2 þ �0

4
�4 þ �4

16��02 (1)

¼ �

�
�2

2
� �2

4��0

�
2 þ �0

4

�
�2 þ ��

�0

�
2
: (2)

The potential has a global minimum at �0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=2��0p

and �2
0 ¼ ���0=�

0. The last term in (1) is added to lift the

global minimum to zero. In order to make sure that this
constant value does not contribute to the inflationary dy-
namics, we require that �4=��02 � ��4

end, where �end is

the value of the inflaton field at the end of inflation when
the onset of preheating starts with �end ’ MP=

ffiffiffiffi
�

p
. This

leads to

�ffiffiffiffiffiffiffiffi
��0p

MP
� 1: (3)

If we assume that the � field is heavy during inflation
and is settled down to its minimum at �0 this requires
that 12�M2

P=��
3 > 1, which can be satisfied if

12�M2
P=��

3
i > 1, where �i is the initial value of the

inflaton field at the start of inflation. For inflation to solve
the flatness and the horizon problem, we require that �i ’
10MP and � ’ 10�14. So the assumption that the field �
would be stabilized in its minimum requires that

�

�MP
* 102: (4)

However, it is also possible that the field � is light during
inflation and can then contribute to isocurvature
perturbations.
To study the preheating with trilinear interaction, we

review the background of [17] where the parametric reso-
nance with four-legs interaction for ��4=4 theory was
investigated. As in [17], performing the conformal trans-
formation ’ � að�Þ� the background equation for the ’
field to a very good approximation is simplified to

’00 þ �’3 ¼ 0; (5)

where the derivatives are with respect to the conformal
time d� ¼ dt=aðtÞ, where aðtÞ is the scale factor. Here we
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neglected a00 in Eq. (5) because the scale factor evolves to a
very good approximation as in a radiation dominated era.
The solution to this equation is given in terms of Jacobi
elliptic cosine function

’ ¼ ~’fðxÞ; (6)

where ~’ is the amplitude of the oscillations at the onset of
preheating which we take to be 0:1MP, and the dimension-
less conformal time x is defined by

x � ffiffiffiffi
�

p
~’� ¼

�
6�M2

P

�

�
1=4 ffiffi

t
p

: (7)

The Jacobi elliptic cosine function satisfies the relation
f02 ¼ 1

2 ð1� f4Þ with the solution denoted by2

fðxÞ ¼ cn

�
x;
1

2

�
: (8)

The function fðxÞ is a periodic function with the periodic-
ity

T � 4Kð1=2Þ ’ 7:416; (9)

where KðmÞ represents the complete elliptic integral of the
first kind. For a review of Jacobi elliptic cosine function,
see Appendix A.

One also notes that the following relations also hold:

að�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2��

3

s
~’2

Mp

� ¼
ffiffiffiffiffiffiffi
2�

3

s
~’

Mp

x; t ¼
ffiffiffiffiffiffiffi
��

6

s
~’2

Mp

�2:

(10)

Ignoring the backreaction of the produced � particles,
performing the conformal transformation �̂ ¼ að�Þ�, and
using the background Eqs. (10), the equation for the mode
function �k in momentum space is

�̂ 00
k þ ð�2 þ pxfðxÞÞ�̂k ¼ 0; (11)

where the derivatives are now with respect to the dimen-
sionless conformal time x given in (7), and

�2 ¼ k2

�~’2
; p �

ffiffiffiffiffiffiffi
2�

3

s �
�

�Mp

�
: (12)

In writing (11) we have ignored the �0 and �0 terms,
associated with the minima of the potential (1). The effects
of nonzero values for �0 and �0 will appear in (11) as the

shift in p by an amount of the order p�0

~’ (and similarly for

the �2 term). This causes an error of the order p
ffiffiffiffi
�
�0

q
, which

is much smaller than 1 as can be seen from Eq. (3).
Before we start the analytical theory of tachyonic reso-

nance, we need to estimate the magnitude of parameter p.
This in turn is determined by the conditions whether the

field � is heavy or light during inflation. If we assume that
the field � is heavy during inflation, then the condition (4)
indicates that p � 100. However, if we assume that the
field � is light during inflation, which is our preferred
choice, then (3) can be used to estimate the bound on p.

Writing (3) in the form p
ffiffiffiffiffiffiffiffiffiffi
�=�0p � 1, we see that for

natural choice of �� �0, p � 1. On the other hand, for
�0 � �, the bound on p may become relaxed. We present
our analytical results for arbitrary value of p. However, for
numerical examples we shall consider the cases p � 1 and
p� 1 for illustrations.
Equation (11) represents a harmonic oscillator with the

time-dependent frequency

!2ðxÞ � �2 þ pxfðxÞ ¼ �2 þ pxcn

�
x;
1

2

�
: (13)

A plot of pxfðxÞ is given in Fig. 1. We see that!2ðxÞ is not
periodic and its maximum value is increasing linearly with
the conformal time x. Consequently, the Floquet theorem
for particle creation via parametric resonance with a peri-
odic source does not apply. We need to employ the direct
scattering method to evaluate the number density of the �
particle, nk. For a given �

2 � 0, !2ðxÞ is initially positive.
However, for t > t? it becomes tachyonic and the method
of tachyonic resonance considered in [14] would apply.
Interestingly, the zero-momentum case, � ¼ 0, is ta-
chyonic for all the time. We therefore start our analytical
study of tachyonic resonance with this simple case and
defer the case of �2 � 0 to Sec. II B.

A. Tachyonic resonance with �2 ¼ 0

As can be seen from Fig. 1, !2ðxÞ becomes negative in
the region where fðxÞ< 0. The Jacobi elliptic cosine is
periodic with period T ¼ 4Kð1=2Þ and has roots at
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x 
cn

(x
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/2
)

FIG. 1 (color online). A plot of pxfðxÞ given by (13) is
presented here for p ¼ 0:05. The horizontal line represents the
solutions of !2ðxÞ ¼ �2 þ pxfðxÞ ¼ 0 for �2 ¼ 1. The filled
regions shows the tachyonic regions where !2ðxÞ< 0. In our
notation, the jth tachyonic region is confined to x�j < x < xþj .

2Our definition of Jacobi elliptic cosine conforms to that of
[19] which is slightly different than that of [17].
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x�j ¼
�
j� 3

4

�
T; xþj ¼

�
j� 1

4

�
T; (14)

where the integer number j ¼ 1; 2; . . . counts the number
of oscillations of fðxÞ starting from x ¼ 0. In this conven-
tion, the jth tachyonic region is confined to x�j < x < xþj .
Similarly, the minima and the maxima of fðxÞ are given by

xmax
j ¼ ðj� 1ÞT; xmin

j ¼
�
j� 1

2

�
T: (15)

In the region x�j < x < xþj , !2ðxÞ< 0 and the method of

tachyonic resonance developed in [14] applies.
As in [14], in the region !2ðxÞ> 0 and when the adia-

baticity condition j!j0=!2 � 1 holds, the solution of (11)
can be given in WKB approximation as

�̂k¼0ðxÞ ’ �jffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðxÞp exp

�
�i

Z x

x0

!ðx0Þdx0
�

þ 	jffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðxÞp exp

�
þi

Z x

x0

!ðx0Þdx0
�
; (16)

where �j and 	j are the Bogoliubov coefficients with
normalization j�j2 � j	j2 ¼ 1. At the beginning of pre-
heating when the inflaton field starts its oscillation toward
the potential minimum, there is no � particle and we start
with the vacuum initial condition �0 ¼ 1 and 	0 ¼ 0. The
occupation number of the � particle after j oscillation (or
after j tachyonic regions) is given by

njk¼0 ¼ j	jj2: (17)

For the tachyonic region x�j < x < xþj , the WKB approxi-

mation holds again for the frequency�2ðxÞ � �!2ðxÞ and
the solution is given as a superposition of exponentially
growing and decaying parts:

�̂k¼0ðxÞ ’ ajffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðxÞp exp

�
�
Z x

xj�
�ðx0Þdx0

�

þ bjffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðxÞp exp

�
þ
Z x

xj�
�ðx0Þdx0

�
; (18)

where aj and bj are constants of integration. Finally, after

x > xjþ, the solution is given by (16) with j ! jþ 1.

Around the points xj� and xjþ where the adiabatic ap-
proximation is broken, we have to solve the mode equa-
tion (11) as in scattering theory and match it with the
solutions (16) and (18). Following the methods of [14] in
performing this matching condition, we obtain the follow-
ing transfer matrix, relating the Bogoliubov coefficients
after jth þ 1 scattering to those of jth scattering via

�jþ1

	jþ1

� �
¼ eX

j 1 ie2i

j

�ie�2i
j 1

 !
�j

	j

� �
; (19)

where

Xj ¼
Z xjþ

xj�
�ðzÞdz; (20)

and 
j is the total phase accumulated from x0 to x
�
j during

the nontachyonic intervals, where !2 > 0. In our case, we
have 
j ¼ 
0 þP

j�
j, where 
0 is an initial phase and

�j ¼
Z xj�

xj�1
þ

!ðzÞdz: (21)

The key difference in our case compared to the case of
m2�2 theory in flat background studied in [14] is that,
because of the nonperiodicity of !2ðxÞ, the local maxima
and minima of !2ðxÞ increases linearly with j. This results
in a nontrivial j dependence in Xj and �j. Consequently,
the occupation number of the �̂ particles after j oscillations
of the inflaton is

njk¼0 ¼ j	jj2 ¼ exp

�Xj
‘¼1

2X‘

�Yj
s¼1

ð2 cos�sÞ: (22)

In order to provide some useful analytical expression for

njk¼0, we need to perform some reasonable approximations

in calculating the integral for Xj and �j in (20) and (21).
To calculate the integral in Xj we note that the bounds of
integration in (20) range from xmin

j � T=4 to xmin
j þ T=4.

This suggests that as a good approximation, we can ap-
proximate �ðxÞ ¼ pxfðxÞ ’ pxminfðxÞ and the integral in
(20) is approximately (for the details see Appendix A)

Xj ¼
Z xmin

j þT=4

xmin
j �T=4

�ðxÞdx ’
ffiffiffiffiffiffiffiffiffiffiffiffi
pxmin

j

q Z þðT=4Þ

�ðT=4Þ

ffiffiffiffiffiffiffiffiffi
fðxÞ

q
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�Kð1=2Þ

q �ð38Þ
�ð78Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j� 1

p
; (23)

where �ðxÞ is the gamma function and K is the complete
elliptic integral of the first kind [19]. Similarly, for �j

�j ¼
Z xmax

j þT=4

xmax
j �T=4

!ðxÞdx ’
ffiffiffiffiffiffiffiffiffiffiffiffi
pxmax

j

q Z þðT=4Þ

�ðT=4Þ

ffiffiffiffiffiffiffiffiffi
fðxÞ

q
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�Kð1=2Þ

q �ð38Þ
�ð78Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j� 2

p
: (24)

Using the approximations proposed for harmonic number

summation in Appendix B one finds
Pj

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� 1

p ’
2
ffiffiffi
2

p
j3=2=3 and

Xj
1

2Xj ’ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�Kð1=2Þ

q �ð38Þ
�ð78Þ

j3=2: (25)

After j oscillations, we have x ¼ jT, so for large j the
exponent for nk¼0 in (22) behaves as

njk¼0 / expð0:490 ffiffiffiffi
p

p
x3=2Þ: (26)

Quite interestingly, the occupation number grows exponen-

tially with the exponent proportional to x3=2. One can trace
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the nonlinear exponential enhancement of the occupation
number to the explicit breaking of the periodicity of !2ðxÞ
in (13). This is in contrast to conventional model of pre-
heating where the source term is periodic and the Floquet
theorem applies with the result that the occupation number
has a linear exponential growth. One can check that the
breaking of periodicity in our case is a direct consequence
of conformal invariance breaking via trilinear interaction
in an expanding background.

A plot of nk¼0 is shown in the left graph of Fig. 2
containing the full numerical solutions and our analytical
results. Although the nonlinear exponential growth cap-
tures very well the overall behavior of nk¼0, the figure
from the exact numerical solution shows some small
wiggles and ripples which cannot be captured by the ex-
ponential profile. To take these minor but interesting dis-
crepancies into account, we should also add the effects of
the phase term originated from the products of cosines in
(22). As one can see in Fig. 2 this term is oscillatory but not
periodic which can explain the small oscillations in the
profile of lnnk¼0 versus x. Taking the effect of the phase
term into account, one obtains

njk¼0 ’ exp

�
0:490

ffiffiffiffi
p

p
x3=2 þ Xj

‘¼1

lnð4cos2ð7:427 ffiffiffiffiffiffi
p‘

p ÞÞ
�
;

(27)

where j ¼ x=T.
In the right graph of Fig. 2 we have plotted nk¼0 for

different values of p. As this graph shows, with the addi-
tion of the effects of the phases, our analytical result (27)
shows a perfect agreement with the exact numerical re-
sults, confirming that our analytical solution captures the
correct p dependence. As one expects, the larger the value

of p is, the stronger is tachyonic resonance from trilinear
interaction.

B. Tachyonic resonance with �2 � 0

After presenting the analysis for the simple zero-
momentum case, in this section we present the analysis
for arbitrary momentum, �2 � 0. As can be seen from
Fig. 1, for �2 � 0 there is no tachyonic resonance from
the beginning where �2 > px. After some oscillations
!2ðxÞ becomes negative for x � p=�2 and our previous
methods for tachyonic resonance would apply. From (13),
we see that the frequency of oscillations becomes ta-
chyonic after j ¼ j� oscillations where

j� ¼
�
�2

pT
þ 1

2

�
: (28)

Here ½z� represents the integer part of z.
For small x there is no tachyonic region from the start of

preheating, but if the frequency becomes nonadiabatic one
should expect particle production via parametric resonance
as in conventional preheating analysis. However, as we
shall see from our full numerical results, the particle cre-
ation from the nontachyonic scattering for j < j� oscilla-
tions is quite negligible compared to tachyonic resonance
particle creation after j > j� oscillations. The nonadiaba-
ticity condition j!0ðxÞj=!ðxÞ2 � 1 is satisfied for

j � jnad ’ j� � 0:8472

�
ffiffiffiffiffiffiffi
pT

p ffiffiffiffiffi
j�

p ’ j� � 0:1ffiffiffiffi
p

p ffiffiffiffiffi
j�

p
: (29)

This indicates that jnad � j� � few and the onset of para-
metric resonance is actually around j� where tachyonic
resonance starts. Besides the very short period of para-
metric resonance, the ‘‘effective’’ Floquet index during this

κ κ

FIG. 2 (color online). Occupation number lnnk¼0 as a function of conformal time x. In the left figure with p ¼ 0:03, the wavy solid
curve (blue) shows the exact numerical solution, the smooth growing curve (green) shows the analytic solution (26) which does not
contain the interference term, the dash-dotted curve (red) shows the analytic solution (27) which includes the interference term added
and the bottom solid curve (black) shows the behavior of the interference term. In the right figure, lnnk¼0 is plotted for different values
of p. Again the solid curves (blue) show the exact numerical solutions of (11) while the dashed curves (red) show the analytic solution
(27). The graphs from bottom to top, respectively, correspond to p ¼ 0:03, p ¼ 0:5, and p ¼ 1. The agreement between the full
numerical results and our analytical formula, (27), is impressive.
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period is much smaller than that of the tachyonic regions.
Therefore, the particle production is mainly concentrated
in the tachyonic regions. This result is also verified in our
numerical investigations.

Repeating the same methods as in the previous section,
for j > j�, the Bogoliubov coefficients before and after jth
oscillations are related by

�jþ1
k

	jþ1
k

 !
¼ eX

j
k

1 ie2i

j

�ie�2i
j 1

 !
�j
k

	j
k;

 !
; (30)

where

Xj
k ’

ffiffiffiffiffiffiffiffiffiffiffiffi
pxmin

j

q Z xþj

x�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrmin

j þ fðzÞj
q

dz; (31)

with rmin
j � �2=pxmin

j and 
j is the total phase accumu-

lated from x0 to x
�
j during the intervals where !2 > 0. We

have 
j ¼ 
0 þP
j�

j with

�j ’
ffiffiffiffiffiffiffiffiffiffiffiffi
pxmax

j

q Z x�j

xþ
j�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmax
j þ fðzÞ

q
dz; (32)

where rmax
j � �2=pxmax

j .

Similar to the analysis resulting in (25) and using the
formulas presented in Appendix D, one obtains

Xj
j�þ1

2X‘
k ’ Xj

‘¼j�þ1

�
2a

ffiffiffiffiffiffiffi
pT

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘� 1

p � 2b0�2

ffiffiffiffiffiffiffi
2

pT

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2‘� 1
p

�

’ 4a

3

ffiffiffiffiffiffiffi
pT

p ðj3=2 � j3=2� Þ � 4b0�2

ffiffiffiffiffiffiffi
1

pT

s
ðj1=2 � j1=2� Þ

(33)

Yj
j�þ1

ð2 cos�j
kÞ2 ¼ exp

�Xj
j�þ1

ln

�
4cos2

�
a

ffiffiffiffiffiffiffi
pT

p ffiffiffiffiffiffiffiffiffiffiffiffi
j� 1

p

þ b�2ffiffiffiffiffiffiffi
pT

p 1ffiffiffiffiffiffiffiffiffiffiffiffi
j� 1

p
���

; (34)

where (B2) and (B3) have been used and

a ¼ 2:72; b0 ¼ 2:86; b ¼ 3:75: (35)

After jth oscillations, x ¼ jT, and the occupation num-
ber is given by

njk � exp

�
4a

ffiffiffiffi
p

p
3T

ðx3=2 � x3=2� Þ � 4b0�2ffiffiffiffi
p

p
T
ðx1=2 � x1=2� Þ

�
	 interference term; (36)

where x� � j�T and the interference term is the expres-
sion (34).
As in the zero-momentum example, the occupation

number has a nonlinear exponential dependence with the

leading exponents being x3=2 and x1=2 respectively. The
fact that before the tachyonic regions, i.e. for x < x�, there
is no particle creation is clearly seen in (36). Both of these
two nontrivial results are a consequence of the violation of
the periodicity in the resonance source term. The left plot
in Fig. 3 compares our analytical result (36) with the full
numerical results. The agreement is again impressive.
The interference term in (36) has a very interesting

effect. Suppose for the moment that we do not take into
account the interference term in (36). Since b0 > 0, from
the exponential term one may expect that the larger the
value of �2, the more suppressed will the particle creation
be. Our numerical investigations supports this general rule,

κ κ

FIG. 3 (color online). The left figure shows lnnk as a function of x for p ¼ 0:05 and �2 ¼ 1. The wavy solid (blue) curve shows the
exact numerical solution of (11). The (red) dashed curve shows the analytical solution (36). The smooth (green) solid curve shows the
analytical solution without taking into account the interference term. The bottom (black) solid curve shows the effect of the
interference term (34). The agreement between the full numerical result and the analytical formula (36) is impressive. The right figure
shows the destructive effects of the interference term in (36). The lower and upper wavy (blue) solid curves show the exact numerical
results for �2 ¼ 2 and �2 ¼ 1:5, respectively, with p ¼ 0:05. The lower and upper dashed (red) curves show the effects of the
interference term, for �2 ¼ 2 and �2 ¼ 1:5, respectively. We see that the interference term causes a suppression of particle production
for �2 ¼ 1:5.
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but there are some noticeable exceptions. In the right graph
of Fig. 3 we have presented an example where a larger �2

has a higher occupation number than a smaller �2. The
resolution to this apparent paradox relies on the destructive
effects of the interference term. Looking into the form of
the interference term (34) one observes that the interfer-
ence becomes destructive in a region in �2 � j space where

cosð�j
kÞ vanishes. For the latter, one requires the phase

term �j
k to be stationary on its roots, i.e. cosð�j

kÞ ¼
@j�

j
k ¼ 0 at some stationary time js. From (34) one easily

finds that the stationary points of �j
k occur at

js ¼ 1þ b�2

apT
; (37)

with

�
js
k ¼ 2

ffiffiffiffiffiffi
ab

p
�: (38)

As explained above, demanding that �js
k ! ð2n� 1Þ �2

for some integer n, one obtains the value of � where the
destructive feature of the interference term is pronounced

�stab ¼ ð2n� 1Þ�
4

ffiffiffiffiffiffi
ab

p ’ 0:25ð2n� 1Þ; n ¼ 1; 2 . . . :

(39)

Note that �js
k and �stab are independent of p. Note also

that the stable bands are equally spaced in the momentum
space. It is worth checking this equation for some n. For
example for n ¼ 2, 3, 4, and 5, one finds �2 ¼ 0:54, 1.51,
2.96, and 4. 89, respectively.

Figure 4 shows behavior of �j
k as a function of

number of oscillations for three given values of �2. As is

seen in the left and right figures the stationary point of �js
k

can be near ð2n� 1Þ�=2 which causes particle production
suppression.

One also observes that the destructive phase in the
interference term is not static in time. This is somewhat

similar to stochastic resonance phenomena observed in
resonance preheating in an expanding background [1].
However, in contrast to the stochastic resonance, in our
case the interference term is not completely stochastic and
one can keep track of the phase at each oscillation period.
The value of � around �stab, where the destructive effects of
the interference term is significant, form semistability
bands. These semistability bands, as indicated in (37),
occur at

xstab ¼ T þ �2

16a2p
ð2n� 1Þ2

’ 7:416þ 0:0834
ð2n� 1Þ2

p
: (40)

A plot of the effects of the interference terms is shown in
Fig. 5 with p ¼ 0:05. As an example of the evolution of the
semistability band consider the line �2 ¼ 1:5 which corre-
sponds to n ¼ 3 in (39). For small x, the interference term
has a destructive contribution. As the time goes by, effects
of the interference term would become milder and less
important. As explained above, for this reason we may
call �2 ¼ 1:5 a semistable band rather than a stable band.
As shown above, the other semistable band is at �2 ’ 2:96.
The tachyonic resonance for this case would start at x� ¼
j�T ’ 60. Nonetheless, as depicted in the right graph in
Fig. 5 particle creation is negligible until x ’ 100; compat-
ible with xstab ’ 90 obtained from (40) for n ¼ 4. This is a
consequence of the semistability band for �2 ¼ 2:96which
suppresses the particle creation at early time and eventu-
ally loses its importance as the Universe expands further.

C. Expanding vs nonexpanding background

In the last two subsections the effects of expanding
background were included in the preheating analysis via
the conformal transformations ’ ¼ að�Þ� and �̂ ¼
að�Þ�. One consequence of the expanding background
was the appearance of the nonperiodic factor x in !ðxÞ.

FIG. 4 (color online). Phase accumulated through j oscillations for different values of �2: left, �2 ¼ 1:51; middle, �2 ¼ 2; and right,
�2 ¼ 2:96. The angular position of each (red) dot indicates the value of�j

k. The outer points correspond to smaller value of j and as j
increases the dots move toward the center and become denser, as can be seen from the form of �j

k given in (34). As �j
k tends to

ð2n� 1Þ�=2, the contribution of jth oscillation in the interference term suppresses the particle production. For � ¼ 1:51 (left) the
stationary point of �j

k is near �=2. For � ¼ 2 (middle) the stationary point is far away from the poles, and for � ¼ 2:96 (right) the

stationary point is near 3�=2. This explains why �2 ¼ 1:51 and �2 ¼ 2:96 belong to the ‘‘semistability bands.’’ Note that lnj2 cos�j
kj

is positive for j�j
k � n�j<�=3 and is negative for j�j

k � ð2nþ 1Þ�=2j<�=6, which are separated in this figure by þ and � signs.
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This in turn leads to a nonlinear exponential particle cre-
ation. This should be compared with preheating with four-
legs interaction, g2�2�2, in ��4=4 theory which preserves
the conformal invariance and !2ðxÞ is periodic and one
obtains a linear exponential particle creation. One may ask
what would be the situation if one considers preheating
with trilinear interaction in a nonexpanding flat back-
ground. The trilinear term in a flat background is periodic
and, as a consequence of the Floquet theorem, one obtains
a linear exponential particle creation. This seems paradoxi-
cal, noting that the expansion of the Universe usually
suppresses the particle creation. As we show below, the
root of this apparent paradox relies on the difference
between conformal time x and the cosmic comoving time t.

In a flat background with aðtÞ ¼ 1, the solution to the

inflaton field is� ¼ ~�fðzÞwhere ~� is the initial amplitude
of the inflaton field at the start of preheating and fðzÞ is the
Jacobi elliptic cosine function. Here we defined the dimen-

sionless times z � ffiffiffiffi
�

p
~�t. The equation of motion for the

resonant field � is

d2�k

dz2
þ ð�2 þ px0fðzÞÞ�k ¼ 0; (41)

with x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3=2�

p ðMp=~’Þ and �2 ¼ k2=�~’2.

Following the same methods as in the last two subsec-
tions, the occupation number is

njk ¼ expð2jXkÞð2 cos�kÞ2ðj�1Þ; (42)

with the crucial difference that now Xk is j-independent as
in [14]. To a good approximation, one has

Xk ’ a
ffiffiffiffiffiffiffiffi
px0

p � b0ffiffiffiffiffiffiffiffi
px0

p �2;

and �k ¼ a
ffiffiffiffiffiffiffiffi
px0

p þ bffiffiffiffiffiffiffiffi
px0

p �2;

(43)

where the numeric coefficients a, b, b0 have the same
values as before, given in (35). By substituting j ! �=T,
where T is the period of oscillations of fðzÞ (9), the
occupation number of the k mode becomes

njk ¼ exp

�
2Xk

ffiffiffiffi
�

p
~�

T
t

�
	 interference term: (44)

As expected nk has a linear exponential growth in terms
of t. To compare it with the particle creation in an expand-
ing background, we recall that in our case t / x2 [cf. (7)]
and hence (44) gives lnnk � x2 for the flat background.
This confirms the intuition that in general the particle
creation via tachyonic resonance is more enhanced in a
flat background compared to that of an expanding back-
ground. This is understandable because the expansion of
the Universe dilutes the previously produced particles and
also reduces the amplitude of the source term �ðtÞ. One
should, however, note that due to the nontrivial dynamics
of the interference term, this intuition may not work and for
some specific regions in the � space expansion of the
Universe may enhance the particle production rate. As
explained in previous subsection, the interference term is
time-dependent which means the stable or unstable bands
vary in time. As an example, Fig. 6 shows cases in which
the particle production is more efficient in an expanding
background.

κ

κ

FIG. 5 (color online). In the left figure the contour plot of the phase term in �2 � j plane is shown. The darker regions show the
semistability bands in which the interference term suppresses particle creation. The right bar represents lnj2 cos�jj as a function of
number of oscillations j. An important point of our analysis is that the semistability regions are independent of p. In the right figure,
lnnk as a function of conformal time for the predicted semistability band �2 ’ 3 is shown. The (blue) solid line shows the full
numerical solutions and the (red) dashed curve shows our analytical result (36). As we predicted, particle production for this
momentum is suppressed for small times because of the interference term.

ABOLHASANI, FIROUZJAHI, AND SHEIKH-JABBARI PHYSICAL REVIEW D 81, 043524 (2010)

043524-8



III. TACHYONIC RESONANCE IN m2�2=2
THEORY

The ��4=4 inflationary model has the conformal sym-
metry and the effects of the expanding background can be
incorporated by the conformal transformations ð�;�Þ !
að�Þð�;�Þ. This trick does not apply to them2�2=2model
and the effect of expansion should be taken care of accord-
ingly. The analysis of the tachyonic resonance for the
m2�2=2 model in a flat background has been studied in
[14] with some brief discussions on the effects of expand-
ing background. Here we study the tachyonic resonance for
m2�2=2 inflationary potential in an expanding background
in more detail and demonstrate that it can have very non-
trivial consequences.

We start with the potential

Vð�Þ ¼ m2

2
�2 þ �

2
��2 þ �

4
�4; (45)

with � > �2=2m2 [14]. The equation for the production of
� particles obeys

�̂ 00
k þ ðAk þ 2q cos2zÞ�̂k ¼ 0; (46)

where �̂ ¼ aðtÞ3=2� and

mt � 2z� �

2
;

Ak ¼ 4k2

m2a2
� Ak

0

a2
and q ¼ 2��0

m2a3=2
� q0

a3=2
:

(47)

Here prime denotes derivatives with respect to coordinate z
and A0 and q0 indicate the values of the corresponding

quantities in a flat background. For the quadratic potential,
the background Universe during preheating evolves like

matter domination and aðtÞ ¼ a0ðt=t0Þ2=3 and in our con-
ventions we choose a0 ¼ 1 and t0 ¼ 1.
One can incorporate effects of expansion in the ta-

chyonic resonance analysis as follows. The tachyonic re-
gions of (46) are centered around the minimum of !2ðzÞ,
at tj ¼ ðj� 1=2Þ� with the scale factor a�ðtjÞ ¼
ððj� 1=2Þ�Þ2=3 whereas the nontachyonic regions are cen-
tered around the maximum of!2ðzÞ, at tj ¼ ðj� 1Þ� with

the scale factor aþðtjÞ ¼ ððj� 1Þ�Þ2=3. Following the

same steps as in Sec. II A the occupation number is given
by

njk ¼ j	j
kj2 ¼ exp

�Xj
j�þ1

2Xj
k

� Yj
j�þ1

ð2 cos�j
kÞ; (48)

where j� is defined as the last nontachyonic oscillation
after which tachyonic resonance starts

j� ¼
�
1

�

�
A0
k

2q0

�
3 þ 1

2

�
; (49)

where ½z� represents the integer part of z.
Using results of [14], one finds

Xj
k ¼ � �A0

kffiffiffiffiffi
q0

p
a�ðtjÞ5=4

þ 2�

ffiffiffiffiffi
q0

p
a�ðtjÞ3=4

¼ � �A0
kffiffiffiffiffi

q0
p

t5=6j

þ 2�

ffiffiffiffiffi
q0

p
t1=2j

; (50)

in which � ¼ 0:85 and tj ¼ �ðj� 1=2Þ. Furthermore, the

phase accumulation is given by

�j
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

aþðtjÞ3=2
s �

aþ b
A0
k

2q0aþðtjÞ1=2

þ c

�
1� A0

k

2q0aþðtjÞ1=2
�
ln

�
1� A0

k

2q0aþðtjÞ1=2
��

; (51)

where a ¼ 1:69, b ¼ 2:31, and c ¼ 0:46 [14].
Using the approximations in Appendix. B for the har-

monic sums, we obtain

Xj
j�þ1

2Xj
k ’

8�

�

ffiffiffiffiffi
q0

p ððj�Þ1=2 � ðj��Þ1=2Þ

� 12�A0
k

�
ffiffiffiffiffi
q0

p ððj�Þ1=6 � ðj��Þ1=6Þ: (52)

Finally, by substituting j� ! t after jth oscillation, the
occupation number as a function of time is

κ

FIG. 6 (color online). Comparison between particle creations
in flat and expanding backgrounds in ��4=4 theory. For p ¼ 0:1
and �2 ¼ 0:54, which is in a tachyonic region in a flat back-
ground, because of the effect of the interference term (43), there
is no particle production for these parameters. Nonetheless, due
to nonstatic interference term, there is particle production in an
expanding universe. The wavy (blue) solid curve indicates the
full numerical solution for an expanding universe, the (red)
dashed curve shows our analytical solution, and the straight
(green) line at the bottom represents the particle creation in a
flat background.
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nj ’ exp

�
8�

�

ffiffiffiffiffi
q0

p ðt1=2 � t1=2� Þ � 12�A0
k

�
ffiffiffiffiffi
q0

p ðt1=6 � t1=6� Þ
�

	Yj
j�

ð2 cos�j
kÞ; (53)

where �j
k is given by (51) and t� ¼ j��.

Because of the expansion of the Universe, both q and Ak

decrease as t increases, but Ak decreases faster. On the
other hand, the WKB approximation is valid for 2q� A >
2

ffiffiffi
q

p
which quickly reduces to 2q > 2

ffiffiffi
q

p
. This condition is

not satisfied for q < 1. As a result, the expansion of the
Universe spoils our approximation and that is why the
analytical solutions are not as precise as in the case of
��4=4 theory. As one can see from the numerical results in
Fig. 7, particle production is stopped after some oscilla-
tions because of the expansion of the Universe.

In order to interpret this effect note that by reducing Ak

and q, the solutions of Mathieu equation converge to the
stability bands. Therefore, in the expanding background
when the Ak � q curve crosses the stability bands, the
particle production switches off. From the stability/insta-
bility charts of Mathieu equation [19] one finds that pre-
heating ends when

q0
tend

’ 0:8126

�
1� A0

k

t4=3end

�
: (54)

As a result, for initial conditions with A0
k > 2q0, there can

be particle production only if t� > tend. This does not take
into account the effects of backreaction which will be
studied in the next section.

As already mentioned, the expansion of the Universe
dilutes the previously produced particles as well as reduc-
ing �ðtÞ as the source of resonance. As a result the reso-
nance in an expanding Universe is expected to be less

efficient than the nonexpanding background. More inves-
tigation shows, however, that for some specific modes k
the expansion of Universe can actually enhance the pre-
heating! There are two effects which can enhance particle
production in an expanding background. First and less
important is the k2=a2 term in preheating Eq. (46). The
expansion of the Universe with the effect of k2 ! k2=aðtÞ2
can reduce the energy cost of producing particle (but there
is a trade-off between this effect and the effects of diluting
� condensate and the reduction of the source term).
Second and the more important is the effect of varying
interference term in an expanding background.
We first focus on the former effect. The occupation

number in a flat background is given by [14]

njk ’ exp

�
2j

�
2�

ffiffiffiffiffi
q0

p � �ffiffiffiffiffi
q0

p A0
k

��
ð2 cos�kÞ2ðj�1Þ; (55)

where

�k ¼ ffiffiffi
q

p �
aþ b

Ak

2q
þ c

�
1� Ak

2q

�
ln

�
1� Ak

2q

��
: (56)

As one can expect from the Floquet theorem, the occu-
pation number has a linear exponential growth with time
(or number of oscillations) in a flat background. Compare
this with our result (53) where the occupation number

grows with an exponent which scales like t1=2 or j1=2. In
general this leads to the conclusion that at large t the
tachyonic resonance is less efficient in the expanding
background as compared to the flat background. For the
intermediate times the situation could be different. To see
this note that the second term in the big bracket in (53),

which suppresses the particle creation, scales like t1=6 in an
expanding background whereas it scales linearly with t in a
flat background. This difference in scaling results in an
enhancement of particle creation for some certain modes in
an expanding background. However, after some oscilla-
tions the second terms in brackets in (53) and (55) become
negligible compared to the first terms in the corresponding
brackets. Approximately this occurs for t� 30t� and par-
ticle production in an expanding background becomes
more and more inefficient compared to the static
Universe. One can see this feature for q0 ¼ 125 and A0

k ¼
230 in Fig. 8, showing that the particle production in an
expanding background is more efficient for about the first
60 oscillations.
As mentioned above the interference term can play an

important role in relative enhancement of particle produc-
tion in an expanding background. In the stability/instability
chart of the Mathieu equation there are vast regions where
there is no particle production due to destructive interfer-
ence term. However, as we described at the end of
subsection II B, in an expanding background the phase
term is not static and is varying with time. As such and
as time advances, the solutions in the stability bands can
escape from the stability bands. Inside the tachyonic re-

FIG. 7 (color online). The logarithm of the occupation number
as a function of time for A0

k ¼ 20 and q0 ¼ 13. The wavy (blue)

curve shows the full numerical solution. The (red) dashed curve
shows our analytical result (53). As expected from (54), there is
no particle production after t ¼ 23.
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gion, far from Ak ¼ 2q line, the effect of phase term is
suppressed, but by going toward the line Ak ¼ 2q the
stable regions are formed. So, in a flat background there
is no particle creation in this region but as described above,
in an expanding background, the solutions can escape these
stability bands, leading to an enhancement in particle
creation (see the right graph in Fig. 8).

IV. BACKREACTION OF � PARTICLES AND END
OF PREHEATING

So far we have neglected the backreactions of the pro-
duced particles on classical background � and on � parti-
cles occupation number. There are important effects which
can change this simple picture. We classify these effects by
the form of their interactions.

First, trilinear interaction at one-loop Hartree approxi-
mation contributes as a source term in � equation of
motion. This leads to a nonzero vacuum expectation value
for � which is expected, because as one can see from (1),
the minimum of the potential is located at a nonzero value
of �. Second, the self-interaction of � particles can in-
crease the effective mass of � particles. This effect can
make � particles so heavy that they cannot be produced
through interaction with �, terminating the preheating.

A. Backreaction in ��4 theory

Let us first ignore the effects of decay of inflaton field
through trilinear interaction and consider the inflaton field
as a background field. The preheating is complete if all the
energy from the background field � is transferred into
created � particles. One can estimate the energy in the �
particles as

�� ¼ 1

a2ðxÞ
Z d3k

ð2�Þ3 j!kjn�k : (57)

The 1=a2 factor in front of the integral has appeared
because we are working in the conformal frame and that

�conf ¼ �comoving=a
2. Note also that n

�
k ¼ njk=a

2ðxÞ, with
njk given in (36). The integral over k is cut off at k2max &
�~’2px. This upper bound comes from the fact that for a
given time x particle creation starts for x > x�, which in
turn, recalling (28), implies the bound mentioned above.
In the conformal frame, at one-loop Hartree approxima-

tion, the dispersion relation is

!2
k ¼ �~’2

�
�2 þ pxfðxÞ þ 3

�0

�

h�̂2i
~’2

�
; (58)

and for our estimate of �� at this stage, we drop the last

term and justify this approximation later on in this sub-
section. Moreover, for the period when the particle creation
is more pronounced one may also drop the �2 term and
approximate !2 by �~’2pxfðxÞ or

! ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aðxÞj’ðxÞj

q
: (59)

With this approximation

�� ¼ 1

a4ðxÞ j!j
Z d3k

ð2�Þ3 n
j
k �

1

a4ðxÞn�j!j; (60)

where3

FIG. 8 (color online). Left: the logarithm of the occupation number as a function of time for A0
k ¼ 230 and q0 ¼ 125. It shows that

the expansion of the Universe can enhance the particle creation by reducing the energy cost of particle production via k2 ! k2=a2ðtÞ.
The solid curve (blue) shows our full numerical result in an expanding universe. The lower straight solid line (green) shows numerical
results for a nonexpanding universe. The dashed curve (red) shows our analytical results in an expanding background (53). Right:
logarithm of the occupation number for A0

k ¼ 260 and q0 ¼ 125. This figure shows that because of the time-varying nature of the

interference term, the solutions can escape from the stability bands. The solid curve (blue) represents our full numerical result in an
expanding universe. The bottom solid line (green) shows the numerical results for a nonexpanding universe. The dashed curve (red)
shows our analytical solution in an expanding background (53).

3Here a ¼ 2:72, as given in (35), and should not be mistaken
with the scale factor aðxÞ.
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n� 

Z kmax

0

d3k

ð2�Þ3 exp

�
4a

ffiffiffiffi
p

p
3T

ðx3=2 � x3=2� Þ

� 4b0�2ffiffiffiffi
p

p
T
ðx1=2 � x1=2� Þ

�
(61)

is the total number of � particles produced. In order to
perform the above integral we note that it could be written
in the form

n� 
 e
ffiffiffi
p

p
x3=2

2�2
ð�~’2Þ3=2

Z ffiffiffiffi
px

p

0
d��2eA�

3�B�2
; (62)

where  ¼ 4a=ð3TÞ ’ 0:5, A ¼ ð12b0 � 4aÞ=3pT, and
B ¼ 4b0

ffiffiffi
x

p
=
ffiffiffiffi
p

p
T. This integral cannot be calculated ana-

lytically and one should approximate it. Comparing the
two terms in the exponent of the integrand

A�3

B�2
¼ ð3b0 � aÞ

3b0
�ffiffiffiffiffiffi
px

p ’ 0:7
�ffiffiffiffiffiffi
px

p ; (63)

we see that for the range of integration � <
ffiffiffiffiffiffi
px

p
one can

neglect term A�3 and just take the�Bk2 term, reducing the
integral to an incomplete Gaussian integral. For large

values of x, which we are interested in, i.e. for
ffiffiffiffi
p

p
x3=2 *

T=b0 
 2:6, the integral can be computed, leading to

n� 
 1

64

� ffiffiffiffi
p

p
T

�b0

�
3=2ð�~’2Þ3=2x�3=4e

ffiffiffi
p

p
x3=2 : (64)

Preheating completes at xcop, where

��ðxcopÞa3ðxcopÞ � �0
� ¼ �

4
~’4; (65)

which happens when

x�5=4
cop e

ffiffiffi
p

p
x3=2cop 
 16

�p5=4

�
�b0

T

�
3=2

ffiffiffiffiffiffiffi
2�

3

s
~’

MP


 3:1

�p5=4
: (66)

As one expects by increasing p preheating shuts off sooner.
This is reasonable, since the bigger the value of p, the
stronger is the trilinear interaction which results in a more
efficient � particle production and a stronger backreaction
effect. As an example, with p ¼ 0:05 and � ¼ 10�14, one
finds xcop ’ 52:5 which is about 7 oscillations.

As the density of � particle grows and is seen from (58),
the effective mass of � particles also grows and production
of them becomes more costly and eventually terminate the
preheating. This happens at x1, and at first loop Hartree
approximation it is when

3�0h�̂2ijx1 
 �px1 ~’
2: (67)

On the other hand, the produced �-particles also backreact
on the dynamics of the inflation field �ðtÞ and may cause
preheating to stop before completion, making our preheat-
ing model inefficient. To check when this can happen we
note that backreaction of � particles at one-loop Hartree
approximation level, modifies the ’ Eq. (5) to

’00 þ �’3 þ �aðxÞ
2

h�̂2i ¼ 0: (68)

The backreaction of � particles on ’ becomes important at
x2, when

�ðaðxÞh�̂2iÞjx2 
 2�~’3: (69)

Whichever of the two stopping mechanisms happens first
marks the end of preheating. We will denote this time by
xeop, where xeop ¼ minðx1; x2Þ. The condition of having a

successful preheating is then xeop * xcop.

To evaluate the x1 and x2 we note that within our
approximations

h�̂2i ¼
Z d3k

ð2�Þ3
njk
j!kj 


n�
j!j ; (70)

with j!j given in (59). This leads to

n�ðx1Þ 
 1

3�0 ðp�x1Þ3=2 ~’3; (71a)

n�ðx2Þ 
 2�ðp�x2Þ�1=2 ~’3: (71b)

Using n� given in (64) we end up with

x�9=4
1 e

ffiffiffi
p

p
x3=2
1 
 64

3�0

�
�b0

T

�
3=2

p3=4 ’ 28:51

�0 p3=4; (72a)

x�1=4
2 e

ffiffiffi
p

p
x3=2
2 
 128

�

�
�b0

T

�
3=2

p�5=4 ’ 171

�p5=4
: (72b)

As we see x1 depends on �0 whereas x2 depends on �.
For �� �0 � 10�14 and with p ¼ 0:05, we find that x1 ’
x2 ’ 52:5. This means that for this choice of parameters
xeop ’ 52:5 which is very close to the completion of pre-

heating time xcop and hence we expect an efficient

preheating.
Given the above expressions one may ask for which

range of parameters p, �, �0 the ‘‘efficient preheating’’
condition xeop * xcop is satisfied. The comparison between

x2 and xcop is somewhat straightforward, noting that in the

range of parameters that we are mainly interested in, n�=!

is a monotonic function of x and hence if aðx2Þ< 8 (or
equivalently x2 & 55) x2 < xcop and vice versa. Moreover,

one can argue that either x21 >U> x22 with x1x2 >U, or
x21 <U< x22 with x1x2 <U, where U � 6�0=ð�p2Þ. In the
former case, the xeop * xcop condition roughly boils down

to 500p2 �
�0 * 1. In the latter case, when xeop ¼ x1, one

may again show that a similar bound holds. This condition
together with (3) specifies the range of parameters for
which we have a simple slow-roll ��4 inflation as well
as efficient preheating:

2	 10�3 & p2 �

�0 & 1: (73)
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For typical �� �0 values, this leads to 2	 10�3 & p2 &
1.

It is also notable that �aðxÞh�̂2i 

ffiffiffiffiffiffiffiffiffi
�aðxÞ

p
n�ffiffiffiffiffi

j’j
p term shifts

the minimum of the potential of ’ from ’ ¼ 0 and we
expect the end point of preheating to be not far from the
’min. As a rough estimate of this minimum value (assum-
ing that x1 � x2), at this approximation level, is ’2

min 

a2ðx2Þ�2=ð6��0Þ. For our estimates, where aðx2Þ � 8, this
rough estimate is not far from the global minimum of the
potential (1) which is at �2

0 ¼ �2=ð2��0Þ.
Before ending this subsection let us briefly discuss the

production of ’ particles and rescattering of � particles in
the theory with potential (1). At tree level the ’k modes
will be sourced by a term like �h’2i. This term being
positive and periodic, following the discussions of [17],
leads to stochastic resonant production of ’k modes,
which at large x, has an average exponential growth in x.
This effect compared to the tachyonic resonant production
of � particles is very small and one may safely conclude
that during preheating mainly � particles are produced.

At one-loop level there is a contribution to the equation

of motion for the �̂k mode proportional to ��2’2=k2 /
�2p2ðMP

k Þ2f2ðxÞ. This, unlike the tachyonic source term,

pxfðxÞ, is always positive. Nonetheless being proportional
to �2p2, this one-loop contribution, is too small compared
to the tree level pxfðxÞ term. With the trilinear ��2

coupling, produced � particles will not backreact on the
production of ’k modes, at first loop level beyond the
Hartree approximation, which we have already discussed.
This is in contrast with the four-leg �2�2 interaction,
where nonzero h�2i contribute to the equation of motion
of ’k.

B. Backreaction in m2�2 theory with trilinear
interaction

The important point in this case is that following (54)
and discussions leading to it, we note that in the m2�2

theory there is a definite time, tend, after which there is no
particle production at all. Therefore, to have an efficient
preheating the energy transfer form the � background into
� particles should happen before this time.

As in ��4=4 case lets us estimate the time at which the
energy transferred into the � particles becomes compa-
rable to the background energy. The energy density of �
particles after time t is

�� ¼
Z d3k

ð2�Þ3 j!kjn�k ¼ 1

a3ðtÞ
Z d3k

ð2�Þ3 j!kjnj; (74)

where nj is given in (53) and from potential (45) one reads

that at one-loop Hartree approximation

!2
k ¼

k2

a2ðtÞ þ
�’ðtÞ
ðaðtÞÞ3=2 þ

3�

a3ðtÞ h�̂
2i

¼ k2t�4=3 þ �t�1’ðtÞ þ 3�t�2h�̂2i; (75)

with ’ðtÞ ¼ �0 sinmt. The main contribution to the inte-
gral (74) comes from the period when the tachyonic reso-
nance is at work. In this period one may drop k2=a2 term in
(75). For the current estimation we also drop the back-
reaction of � particles, to which we will return later.
Therefore,

!2 ’ �’ðtÞ
a3=2

¼ �t�1’ðtÞ: (76)

Inserting (76) into (74) we find

�� 
 1

a3
j!j

Z d3k

ð2�Þ3 nj �
1

a3
j!jn�; (77)

where

n� 

Z kmax

0

d3k

ð2�Þ3 exp

�
8�

�

ffiffiffiffiffi
q0

p ðt1=2 � t1=2� Þ

� 12�A0
k

�
ffiffiffiffiffi
q0

p ðt1=6 � t1=6� Þ
�
: (78)

In the above, as in the ��4 case, the upper bound on k,
kmax, comes from the fact that particle creation becomes
efficient for t > t� ¼ �j� with j� given in (49), that is

kmax & m
ffiffiffiffi
q0
2

q
t1=6. To perform the integral we note that it

has the same form as in (62), with a cubic and a quadratic

term in the exponent, where now A ¼ 32
ffiffi
2

p
�

�m3q0
, B ¼

48�
�m2 ffiffiffiffiq0p t1=6 and hence Ak=B & 2=3. One may again drop

the Ak3 term and approximate the integral by an incom-
plete Gaussian integral

n� 
 e
ffiffiffiffiffi
q0t

p

2�2

Z kmax

0
dkk2e�Bk2 ’ m3q3=40

512ð3�Þ3=2 t
�1=4e

ffiffiffiffiffi
q0t

p
;

(79)

where  ¼ 8�=� ’ 2 and in the last step we have approxi-
mated the integral for q0t * 1.
Preheating is complete at tcop when the energy of �

particles becomes comparable to the energy in the inflaton
condensate at the beginning of preheating in the same
comoving volume, i.e.

��a
3ðtÞjtcop ¼ ðn�j!jÞjtcop 


1

2
m2�2

0: (80)

Using the expressions given above we obtain
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t�3=4
cop e

ffiffiffiffiffiffiffiffiffi
q0tcop

p

 256

ffiffiffi
2

p ð3�Þ3=2q�5=4
0

�
�0

m

�
2

’ 1474q�5=4
0

�
�0

m

�
2
: (81)

For q0 ¼ 50 and �0=m� 105, the above is satisfied for
tcop ’ 3:5 which is slightly more than one period time

(which is t ¼ �). In order to have an efficient preheating,
we should demand that the preheating completes before the
particle creation stops. The latter happens at tend given in
(54). tend > tcop imposes a lower bound on q0. For�0=m�
105, we find

q0 > qc0 ’ 13: (82)

Noting that q0 ¼ 2��0=m
2, this can be used to impose a

lower bound on �, the scale involved in trilinear coupling,
�=m> 6:5m=�0 ’ 6:5	 10�5.

As h�2i increases �-particle effective mass increases,
cf. (75), which in turn can stop preheating. One needs to
also verify that this happens after the completion of pre-
heating, that is

3�t�2h�̂2i & �t�1’ðtÞ (83)

at tcop. Noting that

h�̂2i 
 n�
1

j!j ; (84)

with n� given in (79), �h�̂2i 
 �t’ðtÞ happens when

ðq0tÞ�3=4e
ffiffiffiffiffi
q0t

p ’ 512
3� ð3�2 Þ3=2. The condition (83) is satisfied

if � & 0:17ð m�0
Þ2q20 ¼ 0:67ð�mÞ2. Noting the condition for

positivity of the potential (45), an efficient preheating
scenario happens if � is in the very tight range:

0:5

�
�

m

�
2 � � & 0:67

�
�

m

�
2
: (85)

For �=m� 10�4 (when q0 ¼ 20) that is, 5	 10�9 � � &
6:7	 10�9.

In the m2�2 case, with the potential (45), at one-loop
Hartree approximation level the equation of motion for the
background � field is modified as

€’þm2’þ 1

2a3=2
�h�̂2i ¼ 0; (86)

where a3=2 ¼ t, ’ ¼ a3=2�, and �̂ ¼ a3=2�. Using (76)
and (84), we observe that the force term in (86) at the
completion of preheating time can vanish for a nonzero ’,
’min: m

2’min � �t�1n�=2!jt¼tcop which upon using (80)

we obtain

m2’min � �t�1
1
2m

2�2
0

2�t�1’min

¼ m2�2
0

4’min

(87)

or ’min � 1
2�0. It is interesting that our rough estimates

and considering the one-loop Hartree approximation re-
produce the order of magnitudes of the minimum obtained
in numerical analysis of [14] (see Fig. 3 in Ref. [14]).

V. SUMMARY

In this paper we have studied tachyonic resonance pre-
heating via trilinear interaction in an expanding back-
ground. Because of the three-leg interaction the
conformal symmetry in ��4=4 inflationary theory is bro-
ken. This induces a nonperiodic source term in the resonant
� field equation. Interestingly, one observes that the parti-
cle creation has a nonlinear exponential enhancement with

the leading exponent �x3=2. This is in contrast to particle
creation via parametric resonance from the four-legs inter-
action in this theory which preserves the conformal invari-
ance and a linear exponential growth of particle creation is
obtained. Besides the nonlinear exponential growth, the
interference term obtained from the accumulation of the
phase term in nontachyonic scattering regions has a very
nontrivial behavior in an expanding background. It is

shown that there are ‘‘semistability bands’’ where @j�
js
k ¼

cos�
js
k ¼ 0 for some oscillations js. As a result, the parti-

cle creation for the corresponding modes is highly sup-
pressed. However, due to time varying nature of the phase
term, the semistability bands are washed out as time goes
by.
The tachyonic resonance preheating in an expanding

background for m2�2=2 theory was also studied. In gen-
eral the expansion of the Universe suppresses the particle
creation. However, due to the time-varying nature of the
interference term, the expansion of the Universe can ac-
tually enhance the particle creation for certain modes.
We studied in some detail the backreaction of the �

particles on the dynamics of preheating and the back-
ground inflaton field �. As we argued demanding an
efficient preheating (i.e. demanding that particle produc-
tion ends not before most of the energy in the background
’ field is transferred into the � particles) imposes strong
bounds on the parameters of the potential in both ��4 and
m2�2 cases.
For typical values of the parameters of the potential for

��4 theory preheating is complete and lasts for & 10
oscillations while for m2�2 in few oscillations the energy
transfer to � particles seems to be complete.
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APPENDIX A: PROPERTIES OF JACOBI ELLIPTIC
COSINE FUNCTIONS cnðxjmÞ

Here we briefly review the properties of the Jacobi
elliptic cosine function cnðzjmÞ. Note that we follow the
convention of [19] which differs from the convention of
[17]. A useful representation of the Jacobi elliptic cosine
functions is [20]

cnðzjmÞ ¼ 2�ffiffiffiffi
m

p
KðmÞ

X1
n¼0

qðmÞnþ1=2

1þ qðmÞ2nþ1

	 cos

�
ð2nþ 1Þ �z

2KðmÞ
�
; (A1)

where

qðmÞ ¼ exp

�
��Kð1�mÞ

KðmÞ
�

and KðmÞ is the complete elliptic integral of the first kind.
The Jacobi elliptic cosine is periodic with period T ¼

4KðmÞ and has zeros at

x�j ¼
�
j� 3

4

�
T; xþj ¼

�
jþ 1

4

�
T: (A2)

The minima and maxima are at

xmax
j ¼ ðj� 1ÞT; xmin

j ¼
�
j� 1

2

�
T: (A3)

For the special case of m ¼ 1=2 this formula reduces to

fðxÞ ¼ cn

�
xj 1
2

�

¼ 2
ffiffiffi
2

p
�

Kð12Þ
X1
n¼0

e��ðnþ1=2Þ

1þ e��ð2nþ1Þ cos
�
ð2nþ 1Þ �z

2Kð12Þ
�
:

(A4)

As can be seen from above, fðxÞ is even and periodic with

the periodicity T ¼ 4Kð12Þ ¼ �2ð1=4Þffiffiffi
�

p 
 7:416.

APPENDIX B: APPROXIMATIONS FOR
GENERALIZED HARMONIC NUMBERS

Here we present some useful formulas for the sums of
the harmonic numbers which are used to calculate the sum
over j for the occupation number in (25), (33), and (52).

With straightforward algebra one can check that

Xj
i¼1

ffiffi
i

p ’ 2

3
j3=2 þ 1

2
j1=2 � 1

6
; (B1)

Xj
i¼1

1ffiffi
i

p ’ 2j1=2 þ 1

2
j�1=2 � 3

2
; (B2)

and

Xj
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� 1

p ’ 2
ffiffiffi
2

p
3

j3=2; (B3)

which are numerically confirmed to have a very good
accuracy.
One can generalize these approximations for arbitrary

power s � �1

Xj
i¼1

is ’ 1

sþ 1
jsþ1 þ 1

2
js þ s� 1

2sþ 2
: (B4)

APPENDIX C: APPROXIMATION FOR

CALCULATING
Rxmax

j
þT=4

xmax
j

�T=4

ffiffiffiffiffiffiffiffiffiffiffiffi
xfðxÞp

dx

In this appendix we would like to examine the approxi-
mation used in calculating the integral in (23):Z xmax

j þT=4

xmax
j �T=4

ffiffiffiffiffiffiffiffiffiffiffiffi
xfðxÞ

q
dx ’

ffiffiffiffiffiffiffiffiffi
xmax
j

q Z þðT=4Þ

�ðT=4Þ

ffiffiffiffiffiffiffiffiffi
fðxÞ

q
dx: (C1)

Defining x ¼ xmax
j þ u, one finds

Z xmax
j þT=4

xmax
j �T=4

ffiffiffiffiffiffiffiffiffiffiffiffi
xfðxÞ

q
dx ¼

ffiffiffiffiffiffiffiffiffi
xmax
j

q Z T=4

�T=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

xmax
j

s

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxmax

j þ uÞ
q

du

¼
ffiffiffiffiffiffiffiffiffi
xmax
j

q Z T=4

�T=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

xmax
j

s ffiffiffiffiffiffiffiffiffi
fðuÞ

q
du:

(C2)

In the last step we have used the relation fðxmax
j þ uÞ ¼

fðxÞ (see Appendix A). Expanding the first square root in
the integral and noting that fðxÞ is an even function, one
findsZ xmax

j þT=4

xmax
j �T=4

ffiffiffiffiffiffiffiffiffiffiffiffi
xfðxÞ

q
dx ¼

ffiffiffiffiffiffiffiffiffi
xmax
j

q Z T=4

�T=4

ffiffiffiffiffiffiffiffiffi
fðuÞ

q
du

	
�
1þO

�
1

16ðj� 1Þ2
��
: (C3)

For our case, we need j > 1, so the first correction can lead
to maximum 6% error. Since the higher corrections are
inversely related to square of j� 1, the errors decay very
quickly. For example for j ¼ 4 the error is less than 1%.

APPENDIX D: APPROXIMATION FOR

CALCULATING
Rx�

j
ðrÞ

xþ
j�1

ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ fðxÞp

dx FOR 0 < r < 1

Here we demonstrate the approximations used to calcu-
late the integral in (31) and (32).
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From (A1) one finds that

cnðxþ xmax
j jmÞ ¼ cnðxjmÞ and

cnðxþ xmin
j jmÞ ¼ �cnðxjmÞ:

(D1)

The function rþ fðxÞ with 0< r < 1 has zeros at

x�j ðrÞ ¼ xmax
j ðrÞ þ K

�
arccosð�rÞj 1

2

�

¼ xmin
j ðrÞ � 2K

�
1

2

�
þ K

�
arccosð�rÞj 1

2

�

xþj ðrÞ ¼ xmax
jþ1ðrÞ � K

�
arccosð�rÞj 1

2

�

¼ xmin
j ðrÞ þ 2K

�
1

2

�
� K

�
arccosð�rÞj 1

2

�
;

(D2)

where KðxjmÞ is the incomplete elliptic integral of the first
kind with parameter m and amplitude x [19]. We propose

following approximations:

Z x�j ðrÞ

xþ
j�1

ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ fðxÞ

q
dx ’ aþ br; (D3)

with a ¼ ffiffiffi
�
2

p �ð38Þ
�ð78Þ

¼ 2:72, b ¼ 3:748 and

Z xþj ðrÞ

x�j ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrþ fðxÞj

q
dx ’ a� b0r; (D4)

with b0 ¼ 2:864. The fact that b0 > 0 has the important
consequence that the occupation number nk � 0 is more
suppressed for higher values of k; see subsection II B for
the details.
Both of these approximations are verified numerically to

a good accuracy. Of course, to have higher accuracies one
can keep higher powers of r in above expansions.
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