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McVittie’s spacetime is a spherically symmetric solution to Einstein’s equation with an energy-

momentum tensor of a perfect fluid. It describes the external field of a single quasi-isolated object

with a vanishing electric charge and angular momentum in an environment that asymptotically tends to a

Friedmann-Lemaı̂tre-Robertson-Walker universe. We critically discuss some recently proposed general-

izations of this solution, in which radial matter accretion as well as heat currents are allowed. We clarify

the hitherto unexplained constraints between these two generalizing aspects as being due to a geometric

property, here called ‘‘spatial Ricci-isotropy,’’ which forces solutions covered by the McVittie ansatz to be

rather special. We also clarify other aspects of these solutions, like whether they include geometries which

are in the same conformal equivalence class as the exterior Schwarzschild solution, which leads us to

contradict some of the statements in the recent literature.
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I. INTRODUCTION

Two sets of exact solutions to Einstein’s field equation of
general relativity are of paradigmatic importance: The first
set describes the gravitational field of quasi-isolated ob-
jects in an asymptotically-flat spacetime. Among them is
the exterior Schwarzschild solution that describes the sta-
tionary gravitational field outside a spherically symmetric
star or black hole of mass m with vanishing intrinsic
angular momentum (spin) and a vanishing electric charge.
(The latter two features being included in the three-
parameter Kerr-Newman family of solutions.) Such
asymptotically-flat solutions are meant to apply to a region
outside the central object which, on the one hand, must be
sufficiently far from the considered object, so as to legiti-
mately neglect small irregularities of its surface and/or
small deviations from perfect spherical symmetry. On the
other hand, and more importantly, the region of applica-
bility must also be sufficiently close to the considered
object in order not to include, or come close to, other
compact sources, or not contain too much dust-filled space
between it and the object which would also act as a
disturbing source for the gravitational field. In particular,
the large-distance asymptotic behavior of such solutions is
an idealization and not meant to be strictly that of any
object in the real world.

On the other hand, the second set of paradigmatic solu-
tions are the cosmological ones, which aim to model the
behavior of spacetime at the largest cosmological scales,
without trying to be realistic at smaller scales. Among

them is the family of homogeneous and isotropic
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cosmol-
ogies on which the cosmological standard model is based.
Given that situation, the task is to combine the virtues of

both classes of solutions without the corresponding defi-
ciencies. This means to find exact solutions for the gravi-
tational field of a compact object ‘‘immersed’’ (see below)
into an otherwise cosmological background. This would
appear to be an easy task if the field equations were linear,
for, in that case, one would just add the solution that
describes the gravitational field of a compact object in an
otherwise empty universe to the cosmological solution that
corresponds to a homogeneous distribution of background
matter. Here the mathematical operation of addition ap-
pears to be the obvious realization of what one might be
tempted to call ‘‘simultaneous physical presence’’ and
hence, in view of the individual interpretations of both
solutions, the ‘‘immersion’’ of the compact object into
the cosmological background. But this immediate interpre-
tation in physical terms of a simple mathematical operation
is deceptive. This becomes obvious in nonlinear theories,
like general relativity, where no simple mathematical op-
eration exists that produces a new solution out of two old
ones and where the very same physical question may still
be asked.
The proper requirement for a mathematical representa-

tion of the envisaged physical situation must, first of all,
consist in asymptotic conditions which ensure that the
sought for solution approximates the given (e.g.
Schwarzschild) one for small distances and a particular
cosmological one (e.g. FLRW) for large distances. Second,
it must specify somehow the physics in the intermediate
region. Usually this will include a specification of the
matter components and their dynamical laws together
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with certain initial and boundary conditions. Needless to
say that this will generally result in a complex system of
partial differential equations. Most analytic approaches
therefore impose further simplifying assumptions that au-
tomatically guarantee the right asymptotic behavior and at
the same time reduce the free functions to a manageable
number.

In this paper we will discuss a particular approach,
which is originally due to McVittie [1] and which has
been further analyzed and clarified in a series of carefully
written papers by Nolan [2–4]. Our main motivation is that
recently McVittie’s solution has been severely criticized as
not being able at all to model the envisaged situation [5,6],
whereas a family of slightly generalized ones [7], in which
some restrictions concerning the motion of matter and the
existence of heat flows is lifted, is argued to be free of the
alleged problems. The existence of an exact solution to
Einstein’s equation that models local inhomogeneities is
clearly of great importance, for example, in estimating
reliable upper bounds to the possible influence of global
cosmological expansion onto the dynamics and kinematics
of local systems [8].

The paper is organized as follows: In Sec. II we review
what we call the McVittie model. We discuss its metric
ansatz and what it entails regarding the geometry of space-
time. Then we discuss the assumptions regarding the mo-
tion of the matter and how this, together with Einstein’s
equation, determines one of the two free functions in the
metric ansatz as a simple function of the other. We interpret
this condition in terms of an appropriate concept of local
mass as saying that the object does not accrete mass from
the ambient matter. In Sec. III we take a second and closer
look at the McVittie ansatz and note some of its character-
istic features which, we feel, have not sufficiently or care-
fully been taken into account in [5–7]. In the light of these
observations we then discuss in Sec. IV the attempted
generalizations of McVittie’s solution in the references
just mentioned. We find that some of the conclusions
drawn are indeed unwarranted.

II. THE MCVITTIE MODEL

The characterization of the McVittie model is made
through two sets of a priori specifications. The first set
concerns the metric (left side of Einstein’s equations) and
the second set the matter (right side of Einstein’s equa-
tions). The former consists in an ansatz for the metric,
which can formally be described as follows: Write down
the Schwarzschild metric for the mass parameter m in
isotropic coordinates, add a conformal factor a2ðtÞ to the
spatial part, and allow the mass parameter m to depend on
time. Hence the metric reads

g ¼
�
1�mðtÞ=2r
1þmðtÞ=2r

�
2
dt2 �

�
1þmðtÞ

2r

�
4
a2ðtÞðdr2 þ r2gS2Þ;

(1)

where gS2 ¼ d�2 þ sin2�d’2 is the standard metric on the
unit 2-sphere. Here we restricted attention to the asymp-
totically spatially flat (i.e. k ¼ 0) FLRW metric, which is
compatible with current cosmological data [9]. For sim-
plicity we shall refer to (1) simply as McVittie’s ansatz,
though this is not quite correct since McVittie started from
a general spherically symmetric form and arrived at (1)
with mðtÞaðtÞ ¼ const after imposing a condition that he
interpreted as the absence of matter accretion into the
central object (‘‘no-infall’’ condition). The ansatz (1) is
obviously spherically symmetric with the spheres of con-
stant radius r being the orbits of the rotation group.1 In the
next section we will discuss in more detail the geometric
implications of this ansatz, independent of whether
Einstein’s equation holds.
As already discussed in the introduction, the model here

is meant to interpolate between the spherically symmetric
gravitational field of a compact object and the environ-
ment. It is not to be taken too seriously in the region very
close to the central object, where the basic assumptions on
the behavior of matter definitely turn unphysical. However,
as discussed in [8], at radii much larger than (in geometric
units) the central mass (to be defined below) the k ¼ 0
McVittie solution seems to provide a viable approximation
for the envisaged situation.
The second set of specifications, concerning the matter,

is as follows: The matter is a perfect fluid with density %
and isotropic pressure p. Hence its energy-momentum
tensor is given by2

T ¼ %u � uþ pðu � u� gÞ: (2)

Furthermore, and this is where the two sets of specifica-
tions make contact, the motion of the matter (i.e. its four-
velocity field) is given by

u ¼ e0; (3)

where e0 is the normalization of @=@t [compare (10)].
Finally, the explicit cosmological constant on the left-
hand side of Einstein’s equation is assumed to be zero,
which implies no loss of generality, since a nonzero cos-
mological constant can always be regarded as a special part
of the matter’s energy-momentum tensor (compare
Sec. IV). No further assumptions are made. In particular,
an equation of state, like p ¼ pð%Þ, is not assumed. The

1‘‘Spherical symmetry’’ of a spacetime means the following:
There exists an action of the group SOð3Þ on the spacetime by
isometries, which is such that the orbits are either two-
dimensional and spacelike or fixed points. The ‘‘spheres’’ im-
plicitly referred to in this term correspond to the two-
dimensional orbits, even though they might in principle also
be two-dimensional real projective spaces. In the cases we
discuss here they will be 2-spheres.

2Here and in what follows we denote the metric dual (1-form)
of a vector u by underlining it, that is, u :¼ gðu; �Þ is the 1-form
metric dual to the vector u. In local coordinates we have u ¼
u�@� and u ¼ u�dx

�, where u� :¼ g��u
�.
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reason for this will become clear soon. Later generaliza-
tions will mainly concern (2) and (3).

The Einstein equation3 now links the specifications of
geometry with that of matter. It is equivalent to the follow-
ing three relations between the four functions mðtÞ, aðtÞ,
%ðt; rÞ, and pðt; rÞ:

ðamÞ� ¼ 0; (4a)

8�% ¼ 3

�
_a

a

�
2
; (4b)

8�p ¼ �3

�
_a

a

�
2 � 2

�
_a

a

���1þm=2r

1�m=2r

�
: (4c)

Note that here Einstein’s equation has only three indepen-
dent components (as opposed to four for a general spheri-
cally symmetric metric), which is a consequence of the fact
that the Einstein tensor for the McVittie ansatz (1) is
spatially isotropic. This will be discussed in more detail
in the next section.

Equation (4a) can be immediately integrated:

mðtÞ ¼ m0

aðtÞ ; (5)

where m0 is an integration constant. Below we will show
that this integration constant is to be interpreted as the mass
of the central body.

Clearly the system (4) is under determining. This is
expected since no equation of state has yet been imposed.
The reason why we did not impose such a condition can
now be easily inferred from (4): whereas (4b) implies that
% only depends on t, (4c) implies that p depends on t and r
iff ð _a=aÞ� � 0. Hence a nontrivial relation p ¼ pð%Þ is
simply incompatible with the assumptions made so far.
The only possible ways to specify p are p ¼ 0 or %þ p ¼
0. In the first case, (4c) implies that _a=a ¼ 0 if m0 � 0
(since then the second term on the right-hand side is r
dependent, whereas the first is not, so that both must vanish
separately), which corresponds to the exterior

Schwarzschild solution, or aðtÞ / t2=3 if m0 ¼ 0, which
leads to the flat FLRW solution with dust. In the second
case the fluid just acts like a cosmological constant � ¼
8�% (using the equation of state %þ p ¼ 0 in the diver-
gence equation divT ¼ 0 it implies dp ¼ 0 and this, in
turn, using again the equation of state, implies d% ¼ 0) so
that this case reduces to the Schwarzschild-de Sitter solu-
tion. To see this explicitly, notice first that (4b) and (4c)

imply the constancy of H ¼ _a=a ¼ ffiffiffiffiffiffiffiffiffi
�=3

p
and hence one

has aðtÞ ¼ a0 expðt
ffiffiffiffiffiffiffiffiffi
�=3

p Þ. With such a scale factor the
McVittie metric (1) with (5) turns into the
Schwarzschild-de Sitter metric in spatially isotropic coor-
dinates. The explicit formulas for the coordinate trans-
formation which brings the latter in the familiar form can

be found in Sec. 5 of [10] and also in Sec. 7 of [11]. Finally,
note from (4a) that the constancy of one of the functions m
and a implies constancy of the other. In this case (4b) and
(4c) imply p ¼ % ¼ 0, so that we are dealing with the
exterior Schwarzschild spacetime.
A specific McVittie solution can be obtained by choos-

ing a function aðtÞ, corresponding to the scale function of
the FLRW spacetime which the McVittie model is required
to approach at spatial infinity, and the constant m0, corre-
sponding to the ‘‘central mass.’’ Relations (4b) and (4c),
and (5) are then used to determine %, p, and m, respec-
tively. Clearly this ‘‘poor man’s way’’ to solve Einstein’s
equation holds the danger of arriving at unrealistic space-
time dependent relations between % and p. This must be
kept in mind when proceeding in this fashion. For further
discussion of this point we refer to [2,3].
As will be discussed in more detail in Sec. III C below, in

the spherically symmetric case, the concept of local mass
(or energy) is well captured by the Misner-Sharp (MS)
energy [12], whose purely geometric definition in terms
of Riemannian curvature allows us to decompose it into a
sum of two terms, one of which originates from the Ricci,
the other from the Weyl curvature [see (21)]. It is the latter
which, at least for the McVittie model and its general-
izations considered in the present paper, may be identified
with the gravitational mass of the central object. Applied to
(1), the Ricci and the Weyl contributions to the MS en-
ergy—denoted here by ER and EW, respectively—can be
written in the following form, also taking into account (5),

ER ¼ 4�

3
R3%; (6a)

EW ¼ m0: (6b)

Here and henceforth, R denotes the areal radius, a function
defined for any spherically symmetric spacetime by

RðpÞ: ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðpÞ=4�p

, where AðpÞ is the proper area of
the 2-dimensional SOð3Þ orbit through the point p. For the
McVittie spacetime the areal radius is given explicitly in
(13). The constancy of EW is then interpreted as saying that
no energy is accreted from the ambient matter onto the
central object.
We now briefly discuss the basic properties of the mo-

tion of cosmological matter. Being spherically symmetric,
the velocity field u specified in (3) is automatically vor-
ticity free. The last property is manifest from its hypersur-
face orthogonality, which is immediate from (1). More-
over, u is also shear free. This, too, can be immediately
read off (1) once one takes into account the following
result, whose proof we sketch in Appendix C: A spheri-
cally symmetric normalized timelike vector field u in a
spherically symmetric spacetime ðM; gÞ is shear free iff its
corresponding spatial metric, that is, the metric g restricted
to the subbundle u? :¼ fv 2 TM j gðv; uÞ ¼ 0g, is con-
formally flat. The metric (1) obviously is spatially confor-
mally flat with respect to the choice (3) made here.

3We speak of ‘‘the Einstein equation’’ in the singular since we
think of it as a single tensor equation, which only upon introduc-
ing a coordinate system decomposes in many scalar equations.
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Moreover, the expansion (i.e. divergence) of u is

� ¼ 3H; (7)

where H :¼ _a=a, just as in the FLRW case. In particular,
the expansion of the cosmological fluid is homogeneous in
space. Exactly as in the FLRW case is also the expression
for the variation of the areal radius along the integral lines
of u (that is the velocity of cosmological matter measured
in terms of its proper time and the areal radius):

u ðRÞ ¼ HR; (8)

which is nothing but Hubble’s law. The acceleration of u,
which in contrast to the FLRW case does not vanish here, is
given by

r uu ¼ m0

R2

�
1þm=2r

1�m=2r

�
e1: (9)

Here e1 is the normalized vector field in the radial direction
as defined in (10). In leading order in m0=R this corre-
sponds to the acceleration of the observers moving along
the timelike Killing field in Schwarzschild spacetime.

It is also important to note that the central gravitational
mass in McVittie’s spacetime may be modeled by a shear-
free perfect-fluid star of positive homogeneous energy
density [13]. The matching is performed along a world
tube comoving with the cosmological fluid, across which
the energy density jumps discontinuously. This means that
the star’s surface is comoving with the cosmological fluid
and hence, in view of (7), that it geometrically expands (or
contracts). This feature, however, should be merely seen as
an artifact of the McVittie model [in which the relation (7)
holds], rather than a general property of compact objects in
any cosmological spacetimes. Positive pressure within the
star seems to be only possible if 2a €aþ _a2 < 0 [see
Eq. (3.27) in [13] with a ¼ expð�=2Þ], that is, for decel-
eration parameters q > 1=2.

III. GEOMETRY OF THE MCVITTIE ANSATZ

In this section we will discuss the geometry of the metric
(1) independent of the later restriction that it will have to
satisfy Einstein’s equation for some reasonable energy-
momentum tensor. This means that at this point we shall
not assume any relation between the two functions mðtÞ
and aðtÞ, apart from the first being non negative and the
second being strictly positive. We will discuss the metric’s
‘‘spatial Ricci-isotropy’’ (a term explained below), its sin-
gularities and trapped regions, and also compute its
Misner-Sharp energy decomposed into the Ricci and
Weyl parts. We shall start, however, by answering the
question of what the overlap is between the geometries
represented by (1) and the conformal equivalence class of
the exterior Schwarzschild geometry.

A. Relation to conformal Schwarzschild class

This question is an obvious one in view of the way in
which (1) is obtained from the exterior Schwarzschild
metric. It is clear that for m ¼ m0 ¼ const the metric (1)
is conformally equivalent to the exterior Schwarzschild
metric, since upon using a new time coordinate T with
dT ¼ dt=aðtÞ we can pull out a2ðtÞ as a common confor-
mal factor. The following proposition, whose proof we
shall give in Appendix A, states that a constant m is in
fact also a necessary condition.
Proposition 1—Let SMcV denote the set of metrics in the

form of the McVittie ansatz (1) (parametrized by the two
positive functions a and m) and ScS the set of metrics
conformally equivalent to an exterior Schwarzschild met-
ric (parametrized by a positive conformal factor and a
constant positive Schwarzschild mass M0). Then the inter-
section between SMcV and ScS is given by the subset of
metrics in SMcV with constant m or, equivalently, by the
subset of metrics in ScS whose conformal factor has a
gradient proportional to the Killing field @=@T of the
Schwarzschild metric [see (A1b) for notation].
Note that we excluded the ‘‘trivial’’ cases in which m or

M0 (or both) vanish for the following reason: Comparing
the expressions for the Weyl part of the MS energy of the
two types of metrics [see (A10) in Appendix A] it follows
that m vanishes iff M0 does and this, in turn, leads to a
metric conformally related to the Minkowski metric where
the conformal factor depends only on time, that is, a FLRW
metric. But such a spacetime, being homogeneous, is not of
interest to us here.
In particular, Proposition 1 implies that the metric of

Sultana and Dyer [14] are not of type (1), as suggested in
Sec. IVA of [7] and allegedly shown in Sec. II of [15] (cf.
footnote 5 below). This immediately follows from the
observation that the conformal factor, expressed as
a function of the standard Schwarzschild coordinates
that appear in (A1b), is given by �ðT; RÞ ¼ ðT þ
2M0 lnðR=2M0 � 1ÞÞ2 [compare Eqs. (8) and (9) of
[14] ], which also depends on R and hence does not satisfy
the condition of Proposition 1. We will have to say more
about this at the beginning of Sec. IV and in Sec. IVD.

B. Spatial Ricci-isotropy

An important feature of any metric that is covered by the
ansatz (1) is, that its Einstein tensor is spatially isotropic in
the following sense: ‘‘Spatially’’ refers to the directions
orthogonal to @=@t and ‘‘isotropy’’ to the condition that the
spatial restriction of the spacetime’s Einstein tensor is
proportional to the spatial restriction of the metric. Note
that, since the spacetime’s metric is time dependent, the
spatial restriction of the spacetime’s Einstein or Ricci
tensor is not the same as the Einstein or Ricci tensor of
the spatial sections with their induced metrics. Hence the
notion of spatial isotropy of the Einstein tensor used here is

MATTEO CARRERA AND DOMENICO GIULINI PHYSICAL REVIEW D 81, 043521 (2010)

043521-4



not the same as saying that the induced metric of the slices
is an Einstein metric.

Given that the Einstein tensor of (1) is spatially isotropic
in the sense used here, it is then obvious that Einstein’s
equation will impose a severe restriction upon the matter’s
energy-momentum tensor, saying that it, too, must be
spatially isotropic. The degree of specialization implied
by this will be discussed in more detail below. Here we
only remark that this observation already answers in the
negative a question addressed, and left open, in the last
paragraph of [5], of whether (1) is the most general spheri-
cally symmetric solution describing a black hole embedded
in a spatially flat FLRW background: It clearly is not.

In passing we make the obvious remark that, since
Ein ¼ Ric� ð1=2ÞScalg, the Einstein tensor (Ein) is
spatially isotropic iff the same holds for the Ricci tensor
(Ric). For this reason we will from now on refer to spatial
Ricci-isotropy to denote the feature in question.

Now, a way to actually show spatial Ricci-isotropy is to
compute the components of the Einstein tensor with re-
spect to the orthonormal tetrad fe�g�2f0;...;3g of (1) defined
by

e � :¼ k@=@x�k�1@=@x�; (10)

where fx�g ¼ ft; r; �; ’g. Here, and henceforth, we write

kvk :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgðv;vÞjp
. Note that e0, e1 are orthogonal to and

e2, e3 tangent to the 2-spheres of constant radius r. The
nonvanishing independent components of the Einstein ten-
sor with respect to the orthonormal basis (10) are

Einðe0; e0Þ ¼ 3F2; (11a)

Einðe0; e1Þ ¼ 2

R2

�
A

B

�
2ðamÞ�; (11b)

Einðei; ejÞ ¼ �
�
3F2 þ 2

A

B
_F

�
�ij; (11c)

where an overdot denotes differentiation along @=@t.
Before explaining the functions A, B, R, and F, note that
the spatial isotropy of the Einstein tensor follows immedi-
ately from (11c), since Einðei; ejÞ / �ij. In (11) and in the

following we set:

Aðt; rÞ :¼ 1þmðtÞ=2r; Bðt; rÞ :¼ 1�mðtÞ=2r;
(12)

and

Rðt; rÞ ¼
�
1þmðtÞ

2r

�
2
aðtÞr; (13)

where R is the areal radius for the McVittie ansatz (1), and
also

F :¼ _a

a
þ 1

rB

ðamÞ�
a

: (14)

In passing we note that both quantities, F and am, that
appear in the components of the Einstein tensor, have a

geometrical interpretation: the former is one third the
expansion (i.e. divergence) of the vector field e0, that is,
F ¼ divðe0Þ=3, and the latter is the Weyl part of the
Misner-Sharp energy of the metric (1) [see (23), below].
Moreover, as we already noted in Sec. II, the observer field
e0 is free of vorticity and shear. Hence, taking into account
the relation (C5) between the expansion � and the shear
scalar � of an arbitrary spherically symmetric observer
field, the expansion of e0 can be simply written as
3dRðe0Þ=R so that F may be expressed as

F ¼ dRðe0Þ=R: (15)

In order to estimate the degree of specialization implied
by spatial Ricci-isotropy, we ask for the most general
spherically symmetric metric for which this is the case.
To answer this, we first note that any spherically symmetric
metric can always be written in the form

g ¼
�
Bðt; rÞ
Aðt; rÞ

�
2
dt2 � a2ðtÞA4ðt; rÞðdr2 þ r2gS2Þ: (16)

This reduces to McVittie’s ansatz (1) if A, B are given by
(12). For the general spherically symmetric metric (16),
spatial Ricci-isotropy can be shown to be equivalent to

�2ðABÞ � 8ð�AÞð�BÞ ¼ 0; (17)

where � :¼ r�1@=@r ¼ 2@=@r2. It is obvious that there are
many more solutions to this differential equation than just
(12).

C. Misner-Sharp energy

In order to be able to interpret (1) as an ansatz for an
inhomogeneity in a FLRWuniverse, it is useful to compute
the MS energy and, in particular, its Ricci and Weyl parts.
This concept of quasilocal mass, which is defined only for
spherically symmetric spacetimes, and which in this case
coincides with Hawking’s more general definition [16] of
quasilocal mass (see e.g. [8]), allows us to detect localized
sources of gravity.
We recall the geometric definition of the MS energy

[12,17]:

E :¼ �1
2R

3K; (18)

where R denotes the areal radius and K the sectional
curvature corresponding to the planes tangential to the
SOð3Þ orbits. More precisely, the equation should be read
and understood as follows: First, the quantities R and K,
and hence also E, are real-valued functions on spacetime.
In order to determine their values at a point p we recall
that, due to the requirement of spherical symmetry, there is
a unique two- (or zero-) dimensional SOð3Þ orbit SðpÞ
through p. The value of R at p is then as explained below
Eq. (8) and the value of K at p is

KðpÞ :¼ RiemðXp;Yp;Xp;YpÞ
gðXp;XpÞgðYp;YpÞ � ðgðXp;YpÞÞ2

: (19)
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HereRiem is the (totally covariant) Riemannian curvature
tensor of spacetime and Xp and Yp are any two linearly

independent vectors in the tangent space at p which are
also tangent to the orbit SðpÞ. Note that the right-hand side
only depends on the plane spanned by Xp, Yp and not on

the vectors spanning it. Moreover, because of spherical
symmetry, the functions R and K, and thus the function
E, are constant on each SOð3Þ orbit. Finally, we note that
the minus sign in (18) is just a relict of our signature choice
(mostly minus).

From the curvature decomposition for a spherically
symmetric metric (see [8]) one can rewrite (18) in the form

E ¼ R

2
ð1þ gðrR;rRÞÞ; (20)

where rR denotes the gradient vector field of R. This
provides a convenient expression for the computation of
the MS energy. For a self-contained review of the basic
properties of the MS energy as well as its interpretation as
the amount of active gravitational energy contained in the
interior of the spheres of symmetry [SOð3Þ orbits] and its
relation with the other mass concepts, see [8].

The decomposition of the Riemann tensor into a Ricci
and a Weyl part leads, together with (18), to a natural
decomposition

E ¼ ER þ EW (21)

of the MS energy into a Ricci (ER) and a Weyl (EW) part
(see also [8]). For the Ricci part of the MS energy of (1) we
get

ER ¼ 1

6
R3Einðe0; e0Þ ¼ R

2
ðdRðe0ÞÞ2: (22)

The first equality in (22) can be derived by merely using
the spatial Ricci-isotropy in the expression for the Ricci
part of the Riemann tensor. The second equality follows
then with (11a) and (15). The Weyl part can now be
obtained as the difference between the full MS energy and
(22). We use the expression (20) for the former and write
gðrR;rRÞ ¼ ðe0ðRÞÞ2 � ðe1ðRÞÞ2. The part involving
e0ðRÞ equals the Ricci part (22) and hence the Weyl part
is given by ðR=2Þð1� ðe1ðRÞÞ2Þ. From (13) we calculate
e1ðRÞ and hence obtain for the Weyl part of the MS energy:

EW ¼ am: (23)

Let us add a few explanatory comments concerning the
physical meaning of the split (21). Since Einstein’s equa-
tion is a local relation between the Ricci tensor and the
energy-momentum tensor for the matter, which determines
one in terms of the other, it is obvious that the Ricci part of
the MS energy is also locally determined by the matter’s
energy-momentum tensor. Likewise, it is clear that this
cannot hold for the Weyl part, since, by definition, the
Weyl curvature forms that part of the Riemann tensor
which is complementary in information to the Ricci part.

In general, in four spacetime dimensions, each part ac-
counts for ten independent components, which together
make up for the 20 independent components of the
Riemann tensor. In case of spherical symmetry, the Weyl
part has only a single independent component, which can
then be identified with the Weyl part of the MS energy (see
below and [8]). Hence, the latter depends on other features
(parameters) of the solution than those fixed by the local
distribution of the matter’s energy and momentum. A
simple example is given by the vacuum exterior
Schwarzschild solution, where the Ricci part of the MS
energy clearly vanishes and the mass of the black hole is
given by the Weyl part alone.
Now, the last statement remains true if we match the

vacuum exterior to a perfect-fluid interior Schwarzschild
solution whenever the MS energy is measured on a sphere
outside the star’s surface. In this case the Weyl part is a
nonlocal measure for the integrated mass contrast. In fact,
one can derive general formulas for the radial and temporal
variation of the MS energy and its Weyl and Ricci parts.
This has been done in Appendix D.4 of [8]. The formulas
show that the radial variation of the Weyl part vanishes at
those points where the mass density is (locally) spatially
constant, which justifies its interpretation as an integrated
measure for spatial mass-density contrasts. For example, if
we match the exterior Schwarzschild solution to an interior
solution with incompressible fluid (i.e. constant mass den-
sity) EW will be zero if evaluated inside the star. Hence, in
the sense of an integrated mass-density contrast, it receives
all its contributions from the radial discontinuity of the
mass density at the star’s surface.
In our case, i.e. for metrics within the McVittie class (1),

the mass density is spatially constant [the functions a and
m in (23) only depend on time] so that the Weyl part EW is
independent of the radius and hence a reasonable measure
for the mass of the central black hole. The time variation of
EW is then interpreted as an exchange of energy between
the central object and the ambient mass [compare Eq. (32d)
and (33a)].

D. Singularities and trapped surfaces

Next we comment on the singularity properties of the
McVittie ansatz (1). From (11c) one suspects, because of
the term proportional to 1=B, a singularity in the Ricci part
of the curvature at r ¼ m=2 (that is at R ¼ 2am ¼ 2EW).
In fact, this corresponds to a genuine curvature singularity,
as one can see from looking, for example, at the following
expression for the scalar curvature (i.e. the Ricci scalar),

Scal ¼ �12F2 � 6
A

B
_F; (24)

which can be quickly computed from (11). In Appendix B
we insert into this expression the definition (14) of F and
expand this in powers of 1=ðrBÞ. This allows us to prove
Proposition 2.
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Proposition 2—The Ricci scalar for a metric of the form
(1) becomes singular in the limit r ! m=2 for any func-
tions a and m, except for the following three special cases:

(i) m ¼ 0 and a arbitrary (FLRW),
(ii) a and m are constant (Schwarzschild), and
(iii) ðamÞ� ¼ 0 and ð _a=aÞ� ¼ 0 (Schwarzschild-

de Sitter).
This means that, as long as we stick to the ansatz (1), at

r ¼ m=2 there will always (with the only exceptions listed
above) be a singularity in the Ricci part of the curvature
and thus, assuming Einstein’s equation is satisfied, also in
the energy-momentum tensor, irrespective of the details of
the underlying matter model. Hence any attempt to elimi-
nate this singularity by maintaining the ansatz (1) and
merely modifying the matter model is doomed to fail.

In particular, this is true for the generalizations pre-
sented in [7], contrary to what is claimed in that work
and its follow ups [5,6]. We also remark that it makes no
sense to absorb the singular factors 1=B in front of the time
derivatives by writing ðA=BÞ@=@t as e0 and then argue, as
was done in [7], that this eliminates the singularity. The
point is simply that then e0 applied to any continuously
differentiable function diverges as r ! m=2. Below we
will argue that this singularity lies within a trapped region.

Specializing to the McVittie model, recall that in this
case it is assumed that the fluid moves along the integral
curves of @=@t, which become lightlike in the limit as r
tends tom=2. Their acceleration is given by the gradient of
the pressure, which necessarily diverges in the limit r !
m=2, as one explicitly sees from (9). For a more detailed
study of the geometric singularity at r ¼ m=2, see [3,4].

For spherically symmetric spacetimes the Weyl part of
the curvature has only a single independent component,
which is �2=R3 times the Weyl part of the MS energy, by
the very definition of the latter (see [8]). The square of the
Weyl tensor for the ansatz (1) may then be conveniently
expressed as

hWeyl;Weyli ¼ 48
ðamÞ2
R6

: (25)

This shows that R ¼ 0 also corresponds to a genuine
curvature singularity, though this is not part of the region
covered by our original coordinate system, for which r >
m=2 (that is R> 2EW).

It is instructive to also determine the trapped regions of
McVittie spacetime. Recall that a spacelike 2-sphere S is
said to be trapped, marginally trapped, or untrapped if the
product �þ�� of the expansions (for the definitions see e.g.
[8]) for the ingoing and outgoing future-pointing null
vector fields normal to S is positive, zero, or negative,
respectively. Taking S to be SR, that is, an SOð3Þ orbit
with areal radius R, it immediately follows from the rela-
tion 2�þ�� ¼ gðrR;rRÞ=R2 (see [8]) that SR is trapped,
marginally trapped, or untrapped iff gðrR;rRÞ is positive,
zero, or negative, respectively. This corresponds to time-

like, lightlike, or spacelike dR, or equivalently, in view of
(20), to 2E� R being positive, zero, or negative, respec-
tively. Using (22) together with (11a), the MS energy for
the McVittie ansatz can be written as E ¼ EW þ R3F2=2,
so that

2E� R ¼ F2R3 � Rþ RS: (26)

Here we defined the ‘‘Schwarzschild radius’’ as RS :¼
2EW, which generally will depend on time. We wish to
determine the values of the radial coordinate (r or R) at
which the expression (26) assumes the value zero. We shall
continue to work with R rather than r since R has the
proper geometric meaning of areal radius. In the region
we are considering (that is r > m=2 or, equivalently, R>

RS) the inversion of (13) reads rðRÞ ¼ Rð1� RS=2Rþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS=R

p Þ=2a, so that (26) divided by RS can be written
in the form

2E� R

RS

¼
�
�þ "

x� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� 1Þp

�
2
x3 � xþ 1: (27)

Here we introduced the dimensionless radial coordinate
x :¼ R=RS and the (small) parameters " :¼ _RS and � :¼
RS=RH, where RH :¼ 1=H denotes the ‘‘Hubble radius.’’
Recall that since R> RS we have x > 1.
Consider first the McVittie case, in which " ¼ _RS ¼ 0.

Then (27) turns into a cubic polynomial in x which is
positive for x ¼ 0 and tends to �1 for x ! �1. Hence
it always has a negative zero (which does not interest us)
and two positive zeros iff

RS=RH < 2=3
ffiffiffi
3

p � 0:38: (28)

This clearly corresponds to the physical relevant case
where the Schwarzschild radius is much smaller than the
Hubble radius. One zero lies in the vicinity of the
Schwarzschild radius and one in the vicinity of the
Hubble radius, corresponding to two marginally trapped
spheres. The exact expressions for the zeros can be easily
written down, but are not very illuminating. In leading
order in the small parameter� ¼ RS=RH, they are approxi-
mated by

R1 ¼ RSð1þ �2 þOð�4ÞÞ; (29a)

R2 ¼ RHð1� �=2þOð�2ÞÞ: (29b)

From this one sees that for the McVittie ansatz the radius of
the marginally trapped sphere of Schwarzschild spacetime
(RS) increases and that of the FLRW spacetime (RH)
decreases. The first feature can, for the McVittie model,
be understood as an effect of the cosmological environ-
ment, whereas the latter is an effect of the inhomogeneity
in the form of a central mass abundance. All the spheres
with R< R1 or R> R2 are trapped and those with
R1 < R< R2 are untrapped. In particular, the singularity
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r ¼ m=2, that is R ¼ 2EW ¼ RS, lies within the inner
trapped region.

In the case in which " ¼ _RS is nonzero and ‘‘small’’ (see
below in which sense), we expect that the zeros (29) vary
smoothly in " so that, in particular, the singularity at R ¼
RS still remains within the inner trapped region. An ex-
pansion in " gives, for the zero in the vicinity of the
Schwarzschild radius:

R1ð"Þ ¼ RSð1þ �2 þ ð2� 2�þ 13�2Þ"þOð�3; "2ÞÞ;
(30)

which clearly reduces to (29a) for " ¼ 0. From this ex-
pression one sees that, according to the physical expecta-
tion, in case of accretion (" > 0) the inner marginally
trapped sphere becomes larger in area, whereas in the
opposite case (" < 0) it shrinks. In our approximation
(30), the singularity R ¼ RS continues to lie inside the
trapped region for ‘‘accretion rates’’ " ¼ _RS >��2=2
or, in terms of physical quantities and reintroducing the
factors of c, for _RS=c >�ðRS=RHÞ2=2. However, this also
characterizes the region of validity of the expansion (30):
Given a positive �, an expansion in " around zero exists
only for " >��2=2 since there exists no expansion on
both ð";�Þ around (0, 0) [this is because the partial deriva-
tive of (27) with respect to x does not exist at x ¼ 1].

E. Other global aspects

Another aspect concerns the global behavior of the
McVittie ansatz (1). We note that each hypersurface of
constant time t is a complete Riemannian manifold, which,
besides the rotational symmetry, admits a discrete isometry
given in ðr; �; ’Þ coordinates by

	ðr; �; ’Þ ¼ ððm=2Þ2r�1; �; ’Þ: (31)

This corresponds to an inversion at the 2-sphere r ¼ m=2,
which shows that the hypersurfaces of constant t can be
thought of as two isometric asymptotically-flat pieces
joined together at the 2-sphere r ¼ m=2. This 2-sphere is
totally geodesic since it is a fixed-point set of an isometry;
in particular, it is a minimal surface. Except for the time-
dependent factor mðtÞ, this is just like for the slices of
constant Killing time in the Schwarzschild metric [the
difference being that (31) does not extend to an isometry
of the spacetime metric unless _m ¼ 0]. Now, the fact that
r ! 0 corresponds to an asymptotically-flat end of each of
the 3-manifolds t ¼ const implies that the McVittie metric
cannot literally be interpreted as corresponding to a point
particle sitting at r ¼ 0 (r ¼ 0 is in infinite metric dis-
tance) in an otherwise spatially flat FLRW universe, just
like the Schwarzschild metric does not correspond to a

point particle sitting at r ¼ 0 in Minkowski space.
Unfortunately, McVittie seems to have interpreted his so-
lution in this fashion [1], which even until recently gave
rise to some confusion in the literature (e.g. [18–20]). A
clarification was given in [3].

IV. ATTEMPTS TO GENERALIZE MCVITTIE’S
MODEL

The first obvious generalization consists in allowing for
a nonvanishing cosmological constant. However, as was
already indicated before, this is rather trivial since it
merely corresponds to the substitutions % ! %þ %� and
p ! pþ p� in (4), where %� :¼ �=8� and p� :¼
��=8� are the energy density and pressure associated to
the cosmological constant �.
The attempts to nontrivially generalize the McVittie

solution have focused so far on keeping the ansatz (1)
and relaxing the conditions on the matter in various
ways. In [7] generalizations were presented allowing radial
fluid motions relative to the observer vector field @=@t [that
is relaxing condition (3)] as well as including heat conduc-
tion. Below we will critically review these attempts, taking
due care of the geometric constraints imposed by the ansatz
(1), and also outline how to explicitly construct the respec-
tive solutions.
Another exact solution that models an inhomogeneity in

a cosmological spacetime was presented in [14] by Sultana
and Dyer and was recently analyzed in [15]. Here the
metric is conformally equivalent to the exterior
Schwarzschild metric and the cosmological matter is com-
posed of two noninteracting perfect fluids, one being pres-
sureless dust, the other being a null fluid. One might ask if
this solution fits into the class of McVittie models, as was
suggested in [7]4 and allegedly confirmed explicitly in
[15].5 However, as we already noted at the end of
Sec. III A above in view of Proposition 1, this is not the

4In Section IV A of [7] it is incorrectly suggested that the
Sultana-Dyer metric is equal to the McVittie metric (1) in which
aðtÞ ¼ a0t

2=3 and mðtÞ ¼ m0, for some constants a0 and m0 [see
Eq. (62) in [7] ]. What might have led to this suggestion is the
fact that both metrics are conformally related to the
Schwarzschild metric (the first by its very definition and the
second because of Proposition 1) and both have vanishing
spherical parts of the Einstein tensor [for the latter metric this
can be easily checked with our Eq. (11c)].

5The problem with the reasoning in Section II of [15] is the
following (numbers refer to equations in [15]): It is true by
construction that the Sultana-Dyer metric (2.1) is conformally
related to the Schwarzschild metric, as expressed in the second
line of (2.3) [the first line in (2.3) does not follow], but the
conformal function a depends nontrivially on the Schwarzschild
coordinates for time and radius (denoted by �� and ~r in [15]: Cf.
our discussion in the last paragraph of Sec. III A). Hence it is not
possible to introduce a new time coordinate �t that satisfies d�t ¼
ad �� (the right-hand side is not a closed 1-form), as pretended in
the transition to (2.5).
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case. Two further ways to see this are as follows: First, the
Sultana-Dyer metric is not spatially Ricci-isotropic6 and,
second, the McVittie metric is not compatible with the
matter model used by Sultana and Dyer, with the sole
exception of trivial or exotic cases, as will be shown in
Sec. IVD below.

A. Einstein’s equation for the McVittie ansatz

In the following we will restrict to those generalizations
of the McVittie model which keep the metric ansatz (1) and
thus generalize only the matter model. For this purpose it is
convenient to write down Einstein’s equation for an arbi-
trary spherically symmetric energy-momentum tensor T.
Recall that spherical symmetry implies for the component
of T with respect to the orthonormal basis (10) that
Tðea; eAÞ ¼ 0 and TðeA; eBÞ / �AB, where a 2 f0; 1g and
A, B 2 f2; 3g. Hence, the only independent, nonvanishing
components of T are

S :¼ Tðe0; e0Þ; (32a)

Q :¼ Tðe1; e1Þ; (32b)

P :¼ Tðe2; e2Þ; (32c)

J :¼ �Tðe0; e1Þ; (32d)

and these are functions which do not depend on the angular
coordinates. Note that S is the energy density, Q and P the
radial and spherical pressure, and J the energy flow—all
referred to the observer field e0. The sign in (32d) is chosen
such that a positive J means a flow of energy in an
outward-pointing radial direction. Taking (32) into ac-
count, the Einstein equation for the McVittie ansatz (1)
and an arbitrary spherically symmetric energy-momentum
tensor T reduces to the following four equations:

ðamÞ� ¼ �4�R2

�
B

A

�
2
J; (33a)

8�S ¼ 3F2; (33b)

8�Q ¼ �3F2 � 2 _F2 A

B
; (33c)

P ¼ Q: (33d)

In view of (23), the first equation relates the time variation
of the Weyl part of the MS energy contained in the sphere
of radius R with the energy flow out of it. The last equation
is nothing but spatial Ricci-isotropy.
In the following subsections we will consider three

models for the cosmological matter which generalize the
original McVittie model: perfect fluid, perfect fluid plus
heat flow, and perfect fluid plus null fluid.

B. Perfect fluid

Perhaps the simplest step one can take in trying to
generalize the McVittie model is to stick to a single perfect
fluid for the matter, but dropping the condition (3) of ‘‘no-
infall’’ by allowing for radial motions relative to the @=@t
observer field. In this way one could hope to avoid a
particular singular behavior in the pressure that may be
due to the no-infall condition, though it is clear that the
persisting geometric singularity must show up somehow in
the matter variables as already discussed in Sec. III D.
Unfortunately, as already shown in [7], the relaxation of
(3) does not lead to any new solutions. What we want to
stress here is that the reason for this, as shown in more
detail below, lies precisely in the restriction imposed by
spatial Ricci-isotropy.
We take thus the perfect-fluid energy-momentum tensor

(2) for the matter and an arbitrary spherically symmetric
four-velocity u. The latter is given in terms of the ortho-
normal basis for the metric (1) by

u ¼ cosh
e0 þ sinh
e1; (34)

where 
 is the rapidity of u with respect to the observer
field e0 (a positive 
 corresponds here to a boost in an
outward-pointing radial direction). The nonvanishing com-
ponents of the matter energy-momentum tensor (2) with
four-velocity (34) are

Tðe0; e0Þ ¼ %þ ð%þ pÞsinh2
; (35a)

Tðe0; e1Þ ¼ �ð%þ pÞ sinh
 cosh
; (35b)

Tðe1; e1Þ ¼ pþ ð%þ pÞsinh2
; (35c)

Tðe2; e2Þ ¼ Tðe3; e3Þ ¼ p: (35d)

Clearly, the case of vanishing rapidity must lead to the
original McVittie model. In this case, in fact, the matter
energy-momentum tensor (35) is already spatially iso-
tropic so that (33d) is identically satisfied. Moreover,

6To show this, one has to show that there exists no timelike
direction with respect to which the Ricci tensor (or, equivalently,
the Einstein tensor) is spatially isotropic. This can be shown as
follows: First note that the Einstein tensor of the Sultana-Dyer
metric has the formEin ¼ �u � uþ �k � k (see [14]), where u
is a normalized future-pointing spherically symmetric timelike
vector field and k the ingoing future-pointing lightlike vector
field orthogonal to the SOð3Þ orbits normalized such that
gðu; kÞ ¼ 1. In particular, the spherical part of the Einstein
tensor vanishes: Hence, the Einstein tensor is spatially isotropic
iff there exists a nonvanishing spacelike spherically symmetric
[i.e. orthogonal to the SOð3Þ orbits] vector field s with
Einðs; sÞ ¼ 0. Without loss of generality one can chose s to be
normalized: s ¼ sinh
uþ cosh
e, where e is the normalized
vector field orthogonal to u and to the SOð3Þ orbits pointing in
positive radial direction. Hence one has k ¼ u� e and thus:
Einðs; sÞ ¼ �sinh2ð
Þ þ � expð2
Þ. Clearly, the latter expres-
sion vanishes nowhere in the physically interesting region
[cf. Eq. (26) in [14] ], where both � and � are positive.
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(33a) implies ðamÞ� ¼ 0 and hence, in view of (14), F ¼
_a=a. Herewith Einstein’s equation reduces to (4) and thus
one gets back the original McVittie model.

In case of nonvanishing rapidity, spatial Ricci-isotropy
(33d) implies the following constraint:

%þ p ¼ 0: (36)

This means that the energy-momentum tensor (2) has the
form of a cosmological constant [using (36) in divT ¼ 0 it
implies dp ¼ 0 and this, in turn, using again (36), implies
d% ¼ 0] so that this case reduces to the Schwarzschild-
de Sitter solution and hence does not provide the physical
generalization originally hoped for.

C. Perfect fluid plus heat flow

In the next step one may keep (34) and drop the condi-
tion that the fluid be perfect, in the sense of allowing for
radial heat conduction. This is described by a spatial vector
field q that represents the current density of heat, which
here corresponds to the current density of energy in the rest
frame of the fluid. Hence q is everywhere orthogonal to u.7

The fluid’s energy-momentum tensor then reads

T ¼ %u � uþ pðu � u� gÞ þ u � qþ q � u: (37)

Taking (34) as fluid velocity and imposing the heat flow-
vector q to be spherically symmetric, we have

q ¼ qe :¼ qðsinh
e0 þ cosh
e1Þ; (38)

where q is a function of ðt; rÞ. Note that a positive q
corresponds to heat flowing in an outward-pointing radial
direction. The independent nonvanishing components of
the energy-momentum tensor are now as follows:

Tðe0; e0Þ ¼ %þ tanh
ðð%þ pÞ tanh
þ 2qÞ; (39a)

Tðe0; e1Þ ¼ q� cosh2
ðð%þ pÞ tanh
þ 2qÞ; (39b)

Tðe1; e1Þ ¼ pþ 1
2 sinhð2
Þðð%þ pÞ tanh
þ 2qÞ; (39c)

Tðe2; e2Þ ¼ Tðe3; e3Þ ¼ p: (39d)

Consider first the case of vanishing rapidity. Then the
energy-momentum tensor is already spatially isotropic and
Einstein’s equation (33) reduces to

ðamÞ� ¼ �4�R2q

�
B

A

�
2
; (40a)

8�% ¼ 3F2; (40b)

8�p ¼ �3F2 � 2 _F
A

B
: (40c)

These are three partial differential equations (though only
time derivatives occur) for the five functions a, m, %, p,
and q so that the system (40) is clearly under determining.
However, it is not possible to freely specify any two of
these five functions and then determine the other three via
(40). For example, since the left-hand side of (40a) de-
pends only on t, the same must hold for the right-hand side,
which implies that q ¼ fðtÞ=r2ð1� ðm=2rÞ2Þ2, where
fðtÞ ¼ �ðamÞ�=4�a2. In particular, the heat flow must
fall off as 1=r2.
The easiest way to generate a solution in the case of zero

rapidity is to specify the two functions aðtÞ and mðtÞ, then
let A, B, R, F be determined by the definitions (12)–(14),
and finally let the Einstein equations (40a)–(40c) deter-
mine q, %, and p, respectively. Notice that if we happen to
specify a and m such that am is a constant, this immedi-
ately implies q ¼ 0 and F ¼ _a=a, which leads to the
standard McVittie solutions. From (40a) the following is
evident: if q > 0 (q < 0), that is for outwardly (inwardly)
pointing heat flow, the Weyl part of the MS energy de-
creases (increases), as one would expect.
Now we turn to the general case with nonvanishing

rapidity: As it was the case for the perfect fluid in the
previous subsection, the condition (33d) of spatial Ricci-
isotropy implies a constraint on the matter:

ð%þ pÞ tanh
þ 2q ¼ 0: (41a)

Using this, the other components of Einstein’s equation
reduce to

ðamÞ� ¼ þ4�R2q

�
B

A

�
2
; (41b)

8�% ¼ 3F2; (41c)

8�p ¼ �3F2 � 2 _F
A

B
: (41d)

These are almost the same as in the case of vanishing
rapidity [see (40)], except for the opposite sign on the
right-hand side of (41b). This simply results from the
fact that, according to (39b), J ¼ �Tðe0; e1Þ ¼ q for van-
ishing rapidity, whereas, due to the constraint (41a), J ¼
�Tðe0; e1Þ ¼ �q for nonvanishing rapidity. This will be
further interpreted below. Notice that for the equation of
state %þ p ¼ 0 (cosmological term) (41a) implies q ¼ 0,
thus leading once more to the Schwarzschild-de Sitter
solution [see comment below Eq. (36)]. Henceforth we
assume %þ p � 0, which implies that one can solve the
constraint (41a) for the rapidity:

7We note that the parametrization of the energy-momentum
tensor given in [7] is manifestly different. Whereas we parame-
trized it in the usual fashion in terms of quantities (energy-
density, pressure, current density of heat) that refer to the fluid’s
rest system, the authors of [7] also write down (37) [their
Eq. (79)], but with q orthogonal to e0 [compare their Eq. (93)]
rather than u, which affects also the definition of %. In fact,
marking their quantities with a prime, their expression (79) is
equivalent to our (37) iff p ¼ p0, q ¼ q0 cosh
, and % ¼ %0 �
2q0 sinh
.
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tanh
 ¼ � 2q

%þ p
; (42)

provided that j2q=ð%þ pÞj< 1.
The Einstein equation gives now four equations for the

six functions a, m, %, p, q, and 
. As in the case of
vanishing rapidity, this system is under determining and
it is not possible to freely specify any two of these six
functions and then determine the other four. In a similar
fashion as before, the easiest way to generate a solution is
to specify the two functions aðtÞ and mðtÞ, to let then the
definitions (12)–(14) determine A, B, R, F, and finally use
the Einstein equations (41b)–(41d) and (42) to determine
q, %, p, and 
, respectively. Again, choosing a and m such
that their product is constant implies q ¼ 0 and F ¼ _a=a,
which leads to the standard McVittie solutions.

In passing we remark that the condition %þ p > 0 can
be expressed geometrically in terms of the second time-
derivative of the areal radius. Indeed, adding either (40b) to
(40c) or (41c) to (41d) we obtain, taking into account e0 ¼
ðA=BÞ@=@t and (15):

4�ð%þ pÞ ¼ �e0

�
e0ðRÞ
R

�
; (43)

which is positive iff the rate of change e0ðRÞ=R is a
decreasing function along the integral lines of the observer
e0. In other words, %þ p is positive iff lnðRÞ is a concave
function on the worldline of the observer e0, which is
implied by, but not equivalent to, the function R being
concave.

From (41b) and (42), and assuming %þ p > 0, one sees
the following: If 
> 0 (
< 0), that is for an outwardly
(inwardly) moving fluid with respect to e0, we have q < 0
(q > 0), that is an inwardly (outwardly) pointing heat flow,
and the Weyl part of the MS energy decreases (increases).
This means that the heat flow’s contribution to the change
of EW never compensates that of the fluid motion, quite in
accord with naive expectation. Below we show that for
small rapidities the contribution due to the heat flow is
minus one-half that of the cosmological matter.

Let us now return to the sign difference of the right-hand
sides of (40a) and (41b). From (39) one infers that J is the
sum of the two contributions coming from the heat flow

Jh :¼ qð1þ 2sinh2
Þ; (44)

and from cosmological matter

Jm :¼ ð%þ pÞ sinh
 cosh
; (45)

respectively. The constraint (41a) can be written in the
form

2cosh2
Jh þ ð1þ 2sinh2
ÞJm ¼ 0; (46)

which, for small rapidities 
 (that is neglecting quadratic
terms in 
), implies 2Jh þ Jm � 0. In this approximation
the spatial energy-momentum flow due to heat is minus

one-half that due to the cosmological matter. For the total
flow this implies J ¼ Jm þ Jh � Jm=2 � �Jh. Now the
sign difference between (40a) and (41b) is understood as
follows: In case of vanishing rapidity one has Jm ¼ 0, Jh ¼
q and hence J ¼ q [leading to (40a)], whereas a short
calculation reveals that in case of nonvanishing rapidity
the constraint (46) implies J ¼ Jm þ Jh ¼ �q, leading
thus to (41b).

D. Perfect fluid plus null fluid

The last tentative generalization we consider is taking
for matter the incoherent sum (meaning that the respective
energy-momentum tensors adds) of a perfect fluid (possi-
bly with nonvanishing pressure) and a null fluid (eventually
representing electromagnetic radiation). This clearly con-
tains as a special case the matter model considered by
Sultana and Dyer [14] in which the pressure vanishes.
We already stressed in Sec. III A that the metric ansatz of
[14] is different from (1). Here we show that the matter
model of [14] is essentially incompatible with (1) except
for trivial or exotic cases.
The matter model consists of an ordinary perfect fluid

and a null fluid (e.g. electromagnetic radiation) without
mutual interaction. Hence the matter’s energy-momentum
tensor is just the sum of (2) and

T �
nf ¼ �2l� � l�; (47)

where � is some non-negative function of t and r and lþ
and l� are, respectively, the outgoing and ingoing future-
pointing null vector fields orthogonal to the spheres of
constant radius r partially normalized such that
gðlþ; l�Þ ¼ 1. (It remains a freedom l� � 
�1l�, where

 is a positive function.) Without loss of generality we
make use of this freedom and choose

l� ¼ ðe0 � e1Þ=
ffiffiffi
2

p
; (48)

where e0 and e1 are the vectors of the orthonormal frame
(10). The components of the whole energy-momentum
tensor with respect to this frame are then:

Tðe0; e0Þ ¼ %þ ð%þ pÞsinh2
þ 1
2�

2; (49a)

Tðe0; e1Þ ¼ �ð%þ pÞ sinh
 cosh
� 1
2�

2; (49b)

Tðe1; e1Þ ¼ pþ ð%þ pÞsinh2
þ 1
2�

2; (49c)

Tðe2; e2Þ ¼ Tðe3; e3Þ ¼ p: (49d)

Here and below the upper (lower) sign corresponds to the
outgoing (ingoing) null field.
In the present case, the condition (33d) of spatial Ricci-

isotropy is equivalent to the constraint:

ð%þ pÞsinh2
þ 1
2�

2 ¼ 0: (50)

In the physically relevant case in which %þ p > 0 this
equation has only the trivial solution 
 ¼ 0 and � ¼ 0,
which leads to the original McVittie model. In the case
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%þ p ¼ 0 (50) implies � ¼ 0, leading thus to the
Schwarzschild-de Sitter spacetime [see comment below
(36)]. Hence, a new solution is only possible if the matter
is of an exotic type that satisfies %þ p < 0, which either
violates the weak energy condition (% > 0), or, less cata-
strophically, the dominant-energy condition (% > jpj). In
particular, for the matter model considered by Sultana and
Dyer, one would need to violate the weak energy condition.

V. CONCLUSION

We conclude by commenting on the main differences
between these generalizations and the original McVittie
model. First we stress once more that neither allowing for a
nonzero rapidity nor a nonzero heat flow can eliminate the
singularity at r ¼ m=2 (R ¼ 2am) (as erroneously stated
in [7]). The only substantial new feature of these general-
izations is that the Weyl part of the MS energy

m=r ¼ A2EW=R � EW=R (51)

contained in the McVittie ansatz gives the ‘‘Newtonian’’
part of the potential in the slow-motion and weak-field
approximation (see [8]), we deduce that in order to get
the geodesic equation for the generalized McVittie model,
it suffices to substitute m0 with EW in the equation of
motion derived in [8]. This means that the strength of the
central attraction varies in time according to (33a), leading
to an in- or out-spiraling of the orbits if dEWðe0Þ> 0 or
dEWðe0Þ< 0, respectively.

We identified the origin of why we could not vary the
rapidity and the heat flow independently in the condition
(41a) of spatial Ricci-isotropy, which is built into the
ansatz (1). We saw that this geometric feature renders
this ansatz special, so that it would be improper to call it
a general ansatz for spherical inhomogeneities in a flat
FLRW universe. It remains to be seen whether useful
generalizations exist which are captured by equally simple
ansätze.
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APPENDIX A: PROOF OF PROPOSITION 1

In this appendix we compute the intersection of the set
SMcV of metrics of type (1), which we denote in the
following by gMcV

a;m , with the set ScS of metrics conformally

related to an exterior Schwarzschild metric. Explicitly, the
latter are of the form

g cS
�;M0

:¼ �2gSchwM0
; (A1a)

where

g Schw
M0

¼
�
1� 2M0

R

�
dT2 �

�
1� 2M0

R

��1
dR2 � R2gS2 ;

(A1b)

denotes the Schwarzschild metric with mass M0 in ‘‘stan-
dard’’ coordinates. The question is: For which functions a
andm and, respectively, for which function� and parame-
ter M0 does the equation gMcV

a;m ¼ �2gSchwM0
; hold? Such an

equality (between two tensor fields on the same manifold)
can be eventually established by finding a coordinate trans-
formation, 	 say, between the coordinates8 ðt; rÞ in (1) and
ðT; RÞ in (A1) which brings (1) in form (A1). This involves
solving coupled, nonlinear partial differential equations for
	, which depend on the four unknown parameters a,m,�,
and M0. Needless to say that this is not really a thankful
task. Alternatively, a better approach would be to compare
all the independent, algebraic curvature-invariants of the
two metrics: This would lead to a system of equations
between scalars which involves the coordinate transforma-
tion 	 in an algebraic way (i.e. non differentiated).
We adopt here an approach which is somewhere in the

middle: First, we use just three invariants (the areal radius
and the Ricci and the Weyl part of the MS energy) to
drastically restrict the form of the coordinate transforma-
tion [see (A14)] and derive thereby constraints on the free
parameters a, m, �, and M0 [see (A10) and (A13)].
Second, we perform this restricted coordinate transforma-
tion and determine it completely. To simplify the calcula-
tion, instead of gMcV

a;m ¼ �2gSchwM0
, we consider the

equivalent equation ��2gMcV
a;m ¼ gSchwM0

. In fact, for the

Schwarzschild metric (A1b) it is immediate that the above
mentioned quantities are, respectively, given by

RðgSchwM0
Þ ¼ R; (A2)

EWðgSchwM0
Þ ¼ M0; (A3)

ERðgSchwM0
Þ ¼ 0: (A4)

In order to compute the respective quantities for the metric
��2gMcV

a;m we first give their scaling behavior under con-

formal transformations.
Clearly, because of their very definitions, for the areal

radius and the Weyl part of the MS energy it holds

Rð�2gÞ ¼ �RðgÞ; (A5)

and

EWð�2gÞ ¼ �EWðgÞ; (A6)

8Without loss of generality we can restrict the coordinate
transformation to the time- and radial coordinates, because the
metrics gS2 in (A1) and in (1) already coincide as tensor fields on
S2 (the unit 2-sphere), which is defined independently of any
coordinate choices by the condition of spherical symmetry, to
which both metrics are subject.
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respectively. For the whole MS energy it easily follows
from (20) and (A5):

Eð�2gÞ ¼ �

�
EðgÞ þ R2gðrR;r ln�Þ

þ 1
2R

3gðr ln�;r ln�Þ
�
; (A7)

where all the quantities on the right-hand side are referred
to the metric g. Hence, taking the difference between (A6)
and (A7) one gets that the Ricci part of the MS energy
scales exactly like the whole MS energy, that is according
to (A7).

Using these scaling properties together with (13) and
(23) we get immediately:

Rð��2gMcV
a;m Þ ¼ ��1ð1þm=2rÞ2ar; (A8)

EWð��2gMcV
a;m Þ ¼ ��1am: (A9)

The equality between the Weyl part of the MS energy (A3)
and (A9) implies

�ðt; rÞM0 ¼ aðtÞmðtÞ; (A10)

which gives a condition between the parameter a, m, �,
and M0. Since we assumed that M0 is positive, (A10) can
be read as the expression for the conformal factor in the
ðt; rÞ coordinates. This, together with the equality between
the areal radius (A2) and (A8), implies in turn

Rðt; rÞ ¼ M0

mðtÞ ð1þmðtÞ=2rÞ2r; (A11)

which gives the first component of the coordinate trans-
formation 	. Now, using the scaling property (A7) for the
Ricci part of the MS energy, the expressions (22) and (13)
for the Ricci part of the MS energy and, respectively, the
areal radius of the McVittie metric ansatz, and (A10) for
the conformal factor, one gets, after some computations,

ERð��2gMcV
a;m Þ ¼ M0

2am
ðð1þm=2rÞ2arÞ3

�
_m

m

�
2
: (A12)

The equality between (A4) and (A12) then implies

_m ¼ 0; (A13)

that is m ¼ m0 for some positive constant m0. This, in
turns, implies that the transformation (A11) for R depends
only on r and not on t. Since the metrics are both in
diagonal form, this implies that the transformation for T
must depend on t only.

Summarizing, so far we have seen that a set of necessary
conditions for the equality of the two metrics implies the
constraints (A10) and (A13) and that the coordinate trans-
formation between ðt; rÞ and ðT; RÞ is of the form

TðtÞ ¼ fðtÞ; (A14a)

RðrÞ ¼ M0

m0

ð1þm0=2rÞ2r; (A14b)

for some differentiable function f of t. Now, explicitly
expressing the metric �2gSchwM0

in the ðt; rÞ coordinates

according to the coordinate transformation (A14) and the
constraints (A10) and (A13), and putting the result equal to
gMcV
a;m , the only new condition that one gets is

_f ¼ �M0

m0

1

a
: (A15)

Here, the plus can be chosen in order to exclude a time
inversion. It is important to note that (A15) (together with
an initial value) determines f uniquely and does not give
any constraint on the parameters a, m, �, and M0: The
only constraints remain thus (A10) and (A13).
The proof is concluded noticing that (A10) means that

the only constraint on � is that, expressed in the ðt; rÞ
coordinates, it depends on t only and hence, in view of
(A14a) and expressed in the ðT; RÞ coordinates, that it
depends on T only. More geometrically, this can be restated
saying that the gradient of � must be proportional to
@=@T, the Killing field of the Schwarzschild metric [see
(A1b)].

APPENDIX B: PROOF OF PROPOSITION 2

Inserting the definition (A14) of F in expression (24) for
the Ricci scalar and organizing the result in powers of
rB � r�m=2 we get

Scal ¼ �12

�
_a

a

�
2 � 6

rB

�
4
_aðamÞ�
a2

þ rA

�
_a

a

���

� 6

ðrBÞ2
�
2

�ðamÞ�
a

�
2 þ rA

�ðamÞ��
a

� _aðamÞ�
a2

��

� 3

ðrBÞ3 rA
_mðamÞ�
a

: (B1)

Hence, the Ricci scalar remains finite in the limit r ! m=2
iff all the three coefficients of ðrBÞ�k, for k 2 f1; 2; 3g,
vanish in this limit, that is iff it holds

4
_aðamÞ�
a2

þm

�
_a

a

�� ¼ 0; (B2a)

2

�ðamÞ�
a

�
2 þm

�ðamÞ��
a

� _aðamÞ�
a2

�
¼ 0; (B2b)

_mðamÞ� ¼ 0: (B2c)

These conditions are clearly understood to hold for all
times t in which the functions a and m and their derivative
exist. In view of (B2c) we have to distinguish between two
cases: _m ¼ 0 and ðamÞ� ¼ 0, respectively. In the first case
the system (B2) reduces to the set of conditions mð €a=aþ
3ð _a=aÞ2Þ ¼ 0 and mð €a=aþ ð _a=aÞ2Þ ¼ 0, which, in turn,
reduces to m ¼ 0 (and a arbitrary), corresponding to the
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FLRW metric, or to _a ¼ 0 (and _m ¼ 0), corresponding to
the Schwarzschild metric. In the second case, in which
ðamÞ� ¼ 0, (B2) reduces to mð _a=aÞ� ¼ 0, which implies
either m ¼ 0 (and a arbitrary), corresponding again to the
FLRWmetric, or ð _a=aÞ� ¼ 0. Together with ðamÞ� ¼ 0, the
latter corresponds to a McVittie metric with an
exponentially-growing (or -falling) scale factor aðtÞ, that
is to a Schwarzschild-de Sitter metric.

APPENDIX C: SHEAR-FREE OBSERVER FIELDS
IN SPHERICALLY SYMMETRIC SPACETIMES

Toward the end of Sec. II we made use of the following
result: A spherically symmetric normalized timelike vector
field u in a spherically symmetric spacetime ðM; gÞ is
shear free iff the metric hu that g induces on the subbundle
u? :¼ fv 2 TM j gðv; uÞ ¼ 0g by restriction is confor-
mally flat.

To prove this, we first note that the subbundle u? is
integrable, in other words, u is hypersurface orthogonal.
This follows from the spherical symmetry of u, which
implies that u? contains the vectors tangent to the 2-
dimensional SOð3Þ orbits. Hence u essentially lives in
the 2-dimensional orbit space,9 where it is trivially hyper-
surface orthogonal. The hypersurfaces orthogonal to u in
4-dimensional spacetime are then the preimages under the
natural projection of the hypersurfaces (curves) in the 2-
dimensional orbit space.

As a result, we may now locally introduce so-called
isochronous comoving coordinates, with respect to which
u ¼ Aðt; rÞ�1@=@t and

g ¼ A2ðt; rÞdt2 � B2ðt; rÞdr2 � R2ðt; rÞgS2 : (C1)

[Note the different meanings of the functions A and B as
compared to (16).] We now consider the tangent-space
endomorphisms ru: X � rXu and their projection into
the orthogonal complement of u, i.e.,

r?u :¼ ðP?
u � ru � P?

u Þju? ; (C2)

where P?
u :¼ id� u � u is the projection orthogonal to u

(id is the identity endomorphism in the tangent spaces of
M). Note that r?u is symmetric due to the hypersurface
orthogonality of u. A direct computation using (C1) yields

r?u ¼ uðlnðBÞÞPr þ uðlnðRÞÞPS2 ; (C3)

where Pr and PS2 are the projections parallel to @=@r and
parallel to the tangent 2-planes to the S2 orbits, respec-
tively. The trace � of r?u, which gives the expansion of u,
is � ¼ uðlnðBÞÞ þ 2uðlnðRÞÞ, so that the trace-free part of
r?u, known as the shear endomorphism �, is given by

� :¼ r?u� 1
3�id

? ¼ �ðPS2 � 2PrÞ; (C4)

where � :¼ 1
3uðlnðR=BÞÞ denotes the shear scalar (only

defined in a spherically symmetric setting) and id? ¼
Pr þ PS2 the identity endomorphism in u?. In passing,
we note that the defining equations for � and � just given
immediately lead to the following simple relation between
the shear scalar, expansion, and the variation of the areal
radius along u, that we made use of in Sec. III B:

�þ �=3 ¼ uðlnðRÞÞ: (C5)

Now, according to (C4), the shear of u vanishes iff the
shear scalar � does, that is, iff uðlnðR=BÞÞ vanishes. This is
equivalent to R=B being independent of t or to Rðt; rÞ ¼
�ðrÞBðt; rÞ for some function �, so that the line element
(C1) can be rewritten in the spatially conformally flat form

g ¼ ~A2ðt; �Þdt2 � ~C2ðt; �Þðd�2 þ �2gS2Þ; (C6a)

where ~Aðt; �Þ :¼ Aðt; rð�ÞÞ, ~Cðt; �Þ :¼ Cðt; rð�ÞÞ, and

Cðt; rÞ ¼ Bðt; rÞ�ðrÞ
�ðrÞ ; (C6b)

with

�ðrÞ ¼ �0 exp

�Z r

r0

dr0

�ðr0Þ
�
: (C6c)

Hence we see that the vanishing of the shear of u implies
conformal flatness of the corresponding spatial metric. For
the converse we first note that, since u and g are spherically
symmetric, the spatial metric hu is itself spherically sym-
metric, so that g can be written in the form (C6a). This
implies that the corresponding R=B depends only on the
radial coordinate and hence that the shear of u vanishes.
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