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The principles of a previously developed formalism for the covariant treatment of multiscalar fields for

which (as in a nonlinear sigma model) the relevant target space is not of affine type—but curved—are

recapitulated. Their application is extended from ordinary harmonic models to a more general category of

harmonious field models, with emphasis on cases in which the field is confined to a string or higher brane

world sheet, and for which the relevant internal symmetry group is non-Abelian, so that the conditions for

conservation of the corresponding charge currents become rather delicate, particularly when the symmetry

is gauged. Attention is also given to the conditions for conservation of currents of a different kind—

representing surface fluxes of generalized momentum or energy—associated with symmetries not of the

internal target space but of the underlying space-time background structure, including the metric and any

relevant gauge field. For the corresponding current to be conserved the latter need not be manifestly

invariant: preservation modulo a gauge adjustment will suffice. The simplest case is that of ‘‘strong’’

symmetry, meaning invariance under the action of an effective Lie derivative (an appropriately gauge

adjusted modification of an ordinary Lie derivative). When the effective symmetry is of the more general

‘‘weak’’ kind, the kinetic part of the current is not conserved by itself but only after being supplemented

by a suitable contribution from the background.
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I. INTRODUCTION

The nonlinearities most frequently encountered in clas-
sical field theories are broadly describable as being of three
types, of which the most common is that of coupling
nonlinearity, while the second and third types are those
of kinetic nonlinearity and target nonlinearity. Following
an approach initiated in two preceding articles [1,2], this
article will deal with f nonlinearity of the third type, in
which the fields under consideration take values in a target
space that is not of the usual affine kind but curved.

Classical field theories of the most commonly consid-
ered kinds (including the familiar Yang Mills case) are
kinematically linear: the only nonlinearity in their dynamic
equations is not in the kinetic (meaning differential) part,
but in the purely algebraic coupling contribution (which is
commonly quartic in the Lagrangian and therefor of cubic
order in the field equations).

However, even if the nonlinearity of the underlying
theory is only of this first type, various confinement mecha-
nisms lead to configurations that can be treated approxi-
mately, at a less fundamental level by models with fewer
independent degrees of freedom, but with more general
types of nonlinearity. An illustration of such a mechanism
is provided by the prototype model set up by Witten [3] to
demonstrate the possibility of conductivity in cosmic
strings. This case furnishes an example in which the effect
of confinement of the support zone of the field to the
neighborhood of a string or higher brane world sheet is
describable [4–6] by models of a kind [7–9] characterized

by nonlinearity in the gradient terms. Nonlinearity of this
second type has long been familiar in scalar field models of
the standard kind used for the treatment of irrotational
perfect fluids and superfluids [10,11] as characterized by
a generalized pressure function that plays the role of the
Lagrangian scalar in the present work. Such kinetic non-
linearity has also been invoked [12] in some more exotic
scalar field theories recently introduced in a cosmological
context.
The third kind of nonlinearity arises when, instead of the

support zone, it is the values of the field that are effectively
confined—as, for example, in a reduced model [13–16] due
to the effect of steeply rising potential in an underlying
model involving nonlinearity of only the first kind—so that
the result will be describable in the manner exemplified by
non linear sigma models [17–23] in which the (differential)
kinetic part enters linearly, but in which it is the target
space of allowed field values that is nonlinear in the sense
that the relevant structure is no longer flat but curved.
The purpose of the present work is to extend the appli-

cation of previously developed machinery [1,2] for dealing
with nonlinearity of this third type in multiscalar field
models for which—although lacking an integrable affine
structure—the relevant target space, X say, will least at
least be endowed with a local affine connection. More
particularly, attention will be focussed here on the
Riemannian case, for which the connection is derived
from a metric, with components ĝAB say, with respect to
local coordinates XA on the target space of field values, so
the corresponding components of the connection will be
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�̂ A
B
C ¼ ĝBD

�
ĝDðA;CÞ � 1

2
ĝAC;D

�
(1)

using a comma to indicate partial differentiation with
respect to the coordinates, and using round brackets to
denote index symmetrization.

In the preceding work [1,2], the field � say, under
consideration was a mapping

�: M � X (2)

from an n dimensional support space M endowed with its
own metric and connection, with components g�� and

��
�
� ¼ g��

�
g�ð�;�Þ � 1

2
g��;�

�
; (3)

with respect to local base coordinates for x�, � ¼
0; 1; . . . n� 1. The idea was that in typical applications
M would represent ordinary space-time, with n ¼ 4, or
perhaps the higher dimensional space-time of superstring
theory, with n ¼ 10.

As well as interest in models with even higher dimen-
sion, n ¼ 11, more recent developments have been par-
ticularly concerned with the ubiquitous role of p-branes of
various kinds, meaning subsystems confined to a support-
ing world sheet of dimension d ¼ pþ 1, starting with the
case of a cosmic string, for which p ¼ 1. In view of this
development, the present work will be concerned with
cases in which the support of the multiscalar field under
consideration does not extend over the whole of M but is
restricted to an embedded world sheet, S say.

After a recapitulation in Secs. II, III, IV, and V of the
necessary machinery [1,2,24], it will first be applied in
Sec. VI to a previously considered category [2] of ‘‘forced-
harmonic’’ models that are kinetically linear, involving
nonlinearity of the first type in a self coupling term, as
well as nonlinearity of the third kind in a kinetic term of the
harmonic kind. A category of ‘‘harmonious’’ brane sup-
ported models involving linearity of the second as well as
the third (but not the first) type will then be introduced in
Sec. VII, and the conservation of charge fluxes associated
with internal symmetries therein will be studied in
Sec. VIII. The final Secs. IX and X will be concerned
with conservation of energy-momentum fluxes associated
with underlying space-time background symmetries of
various weak and strong kinds, the latter referring to in-
variance under the action of a gauge covariant modification
of a Lie derivative.

II. THE BITENSORIAL FIELD GRADIENT

To distinguish quantities pertaining to the brane world
sheet S from their analogues with respect to the back-
ground M, we shall use an overline, as in the example
of the induced metric, which is given with respect to local
brane coordinates �i (for i ¼ 0; . . . ; p� 1) by

�g ij ¼ g��x
�
;ix

�
;j; (4)

and which has a contravariant inverse, �gij, whose projec-
tion into the background provides the (first) fundamental
tensor of the imbedding, [24,25], namely,

��� ¼ �gijx�;ix
�
;j: (5)

The preceding work [1,2] was concerned with a multi-
component scalar field � defined over M so that in terms
of local coordinates XA on the target space X its—generi-
cally nontensorial—components XAfxg will have tensori-
ally transforming derivatives, expressible as

�A
� ¼ r�X

A: (6)

However, such a bitensorial gradient tensor will not always
be well defined in the contexts to be considered the present

work, which will be concerned with the case of a field ��
having support confined to a lower dimensional world
sheet S, so that it will have components XAf�g only for
� 2 S. This means that instead of (6) its gradient bitensor
will have the more restricted form

�� A
� ¼ �r�X

A (7)

using the notation

�r � ¼ ��
�r� (8)

for the relevant surface-tangential differentiation operator.
In terms of the corresponding, surface gradient operator
�ri—as defined in terms of the surface coordinates � with
respect to the induced metric �gij—the formula (7) is equiv-

alently expressible in contravariant (meaning index raised)
form as the projection

�� A� ¼ x�;i
��Ai; (9)

where, as the world sheet confined analogue of (6), the
components

�� A
i ¼ �riX

A (10)

are bitensorial in the sense of being tensorial both with
respect to the target-space coordinates XA and with respect
to the world sheet coordinates �i.

III. GAUGE CONNECTION

If there is no symmetry group action on the target space,
X, then it is evident that there will be no ambiguity in the
specification of the gradient bitensors as introduced above.
However, in order to obtain a gradient operator that is well
defined when the target space X is invariant under a
differential action, it will be necessary to specify an ap-
propriate gauge connection on the corresponding fiber
bundle B, in which each fiber has the form of the target
space X, and in which the field � will have the status of a
section over the base space M. For this purpose—as
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discussed in more detail in the preceding work [1]—the
underlying background spaceM needs to be endowed, not
just with its own metric g��, but also with a gauge formA�

having values in the Lie algebraA of the symmetry group
of the fiber space X.

The role of the gauge form—as represented by vector
field components A�

A over B—is to express the deviation

of horizontality with respect to the local fiber coordinates
XA from horizontality with respect to the connection. This
means that the effect of an infinitesimal fiber coordinate
change XA � XA þ �XA induced by a fiber displacement

field k̂A ¼ ��XA will be to map the connection form to a
new value given with respect to the new coordinates by an

affine transformation, A�
A � A�

A þ �½k̂�A�
A, that will be

given by

�½k̂�A�
A ¼ k̂A;� � k̂A;BA�

B: (11)

As the effect of the displacement on the old connection
component values will be given simply by A�

A � A�
A þ

A�
A
;B�X

A, it can be seen that, with respect to a fixed

coordinate system, the net gauge change,

�̂½k̂�A�
A ¼ �½k̂�A�

A � A�
A
;B�X

B; (12)

induced at a fixed position in the bundleB by the displace-

ment k̂A will be given by

�̂½k̂�A�
A ¼ k̂A;� þ ½A�; k̂�A; (13)

where the square bracketed term denotes the Lie derivative

of A�
A with respect to k̂A, namely,

½A�; k̂� ¼ �½k̂; A�� ¼ A�
A
;Bk̂

B � k̂A;BA�
A: (14)

This infinitesimal variation formula would be valid for an
arbitrary fiber tangent vector field, but for preservation of
the condition that A�

A should belong to the symmetry

algebra it is to be understood that k̂A should also be a
symmetry generator, and therefore that it should be a
solution of the target-space Killing equation

r̂ ðAk̂BÞ ¼ 0; (15)

in which the round brackets indicate index symmetrization,

where r̂A is the operator of covariant differentiation with
respect to the metric ĝAB and the corresponding connection
(1) on X.

The requirement that the gauge form should be a target-
space symmetry generator means that its components will
be expressible as

A�
A ¼ A�

�a�
A (16)

in terms of a basis a�
A of the algebra, whose vector field

components a�
A on the target space are characterized

themselves by the Killing equation

r̂ ðAa�BÞ ¼ 0: (17)

In terms of the commutators defined, according to the
specification (14), as the Lie derivative of the first with
respect to the second, the corresponding structure constants
���

	 will be determined by the relations

½a�; a�� ¼ � ��
	a	: (18)

The simplest nontrivial example is the case of a target

space X that is a 2-sphere of radius R̂ say, for which, in

terms of standard coordinates X1 ¼ 
̂, X2 ¼ ’̂, the metric
components will be given by the familiar prescription

ĝ11 ¼ R̂2, ĝ12 ¼ 0, ĝ22 ¼ R̂2sin2
̂. The Killing vectors of
the associated standard basis for the (in this case three-
dimensional) symmetry algebra will have components a�

A

that are given by f� sin’̂;� cot
̂ cos’̂g for � ¼ 1, by

fcos’̂;� cot
̂ sin’̂g for � ¼ 2, and finally by f0; 1g for
� ¼ 3, from which it can be seen that the corresponding
structure constants will be given simply by �2 3

1 ¼
�3 1

2 ¼ �1 2
3 ¼ 1.

Subject to the understanding that the basis should be
uniformwith respect to the chosen coordinates, in the sense
that its realization as a fiber tangent vector field satisfies the
condition

a�
A
;� ¼ 0; (19)

the curvature two form F�� of the gauge field will have

basis components

F��
A ¼ F��

�a�
A (20)

that are given quite generally by the familiar formula

F��
� ¼ 2@½�A��

� þ��	
�A�

�A�
	; (21)

which means [1] that its representation as a fiber space
Killing vector field will be given directly by

F��
A ¼ 2A½�

A
;�� þ 2A½�

BA��
A
;B: (22)

When subject to a gauge change of the form (13) this
curvature form transforms according to the simple rule

�̂½k̂�F��
A ¼ ½F��; k̂�A; (23)

while (as a consequence of the Jacobi commutator identity)
its antisymmetrized (exterior type) derivative will satisfy
the Bianchi identity

F½��;��
A þ ½A½�; F����A ¼ 0: (24)

As well as its induced metric �gij, the brane world sheet S
will evidently inherit a corresponding induced gauge field
with components

�A i
A ¼ �Ai

�a�
A (25)

given by

�A i
� ¼ A�

�x�;i: (26)

The associated curvature two form on the world sheet will
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have components

�F ij
� ¼ 2@½i �Aj�

� þ��	
� �Ai

� �Aj
	; (27)

that are equivalently obtainable by the pullback formula

�F ij
� ¼ F��

�x�;ix
�
;j: (28)

IV. EFFECTIVE GRADIENTS IN BUNDLE

The introduction of a coordinate independent notion of
horizontality via the specification of the connection form
A�

A in the fiber bundleB enable us to reduce the degree of

dependence on the fiber coordinates XA that is involved in
partial derivation with respect to the base coordinates x�

by subtracting off the part of the gradient that is merely
attributable to the associated gauge adjustment. We
thereby obtain the corresponding effective gradient opera-
tor, which will be denoted by a curly D symbol, or more
compactly by a curly vertical bar o before the relevant
index, in the manner illustrated as follows in the case of
an ordinary fiber tangent vector field with components kA,
for which the effective gradient components

k̂ A o� ¼ D�k̂
A (29)

will be defined by the prescription

D �k̂
A ¼ k̂A;� � �̂½A��k̂A: (30)

The gauge adjustment term here will simply be minus the

Lie derivative of k̂A with respect to the fiber tangent vector
A�, which means that, using the notation scheme intro-

duced in (14), it will be given by

�̂½A��k̂A ¼ ½k̂; A��A; (31)

so that the result will be expressible according to (13) as

D �k̂
A ¼ �̂½k̂�A�

A: (32)

A noteworthy application of the forgoing formula is to
the gauge curvature, for which the definition

D �F��
A ¼ F��

A
;� � �̂½A��F��

A (33)

can be seen by (23) to give

F��o�A ¼ F��
A
;� þ ½A�; F���A; (34)

from which it can be seen that the Bianchi identity (23) will
be expressible in this terminology simply as

F½��o ��
A ¼ 0: (35)

A more remarkable application of this formalism is to
the case of the gauge form itself, for which the defining
prescription,

D �A�
A ¼ A�

A
;� � �̂½A��A�

A; (36)

is to be evaluated using the formula (13), which gives

�̂½A��A�
A ¼ A�

A
;� þ ½A�; A��A: (37)

As the outcome, we obtain the memorable but not so well-
known theorem to the effect that the gauge curvature is
simply the effective gradient of the gauge form, which is
automatically antisymmetric:

F��
A ¼ A�

A o� ¼ �A�
A o�: (38)

Bearing in mind the convention (19), it can be seen that
the foregoing concept of effective differentiation can be
taken over directly into terms of basis indices, so that we
obtain

D �A�
� ¼ F��

� (39)

and

D �F��
� ¼ @�F��

� þ A�
���	

�F��
	: (40)

The Bianchi identity is thereby expressible as

D ½�F���
� ¼ 0: (41)

V. GAUGE COVARIANT BITENSORIAL
DERIVATIVES

Whereas Secs. III and IV were mainly considered with
fields (such as the fiber space symmetry generator with

components k̂A) that were defined throughout at least an
open neighborhood of the bundleB, we shall now concen-

trate rather on fields (such as the basis components k̂�) that
are defined just over the relevant base space M (or over a
world sheet S therein). In particular, we shall be concerned
with base space supported fields that are obtained as the
restriction of bundle supported fields to some particular
bundle section as specified by the target value of a multi-
scalar field mapping of the form�: fx�g � fXAg (or in the
world sheet case ��: f�ig � fXAg) for which it is necessary
to distinguish the net gradient operator, for which we shall
use the symbol @, from the corresponding operator of
partial derivation with respect to the bundle coordinates,
for which we use a comma, in the manner illustrated for the

fiber tangent vector field k̂ by the relation

@�k̂
A ¼ k̂A;� þ k̂A;Br�X

B: (42)

Proceeding in the same spirit as in the preceding section,
it is useful—for reducing the degree of fiber coordinate
dependence—to replace such a base space gradient opera-
tor by an effective gradient operator, from which the cor-
responding gauge adjustment has been subtracted off, so
that it measures the deviation from horizontality with
respect to the connection. Using the notation

D��
A ¼ �A

j� (43)

for the ensuing gauge covariant derivative of the section�
itself, the definition
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D��
A ¼ r��

A � �½A���A (44)

in which the first term is the bitensorial quantity r��
A ¼

@��
A and the second term is given simply by

�½A���A ¼ �A�
A; (45)

the effective gradient of the section is obtained, using the
notation (6), simply as

�A
j� ¼ �A

� þ A�
A: (46)

For the analogous case of a field �� with support con-
fined to the brane world sheet S, the surface gauge form
(25) gives the correspondingly restricted covariant deriva-
tive

�D i
��A ¼ ��A

ji (47)

in the analogous form

�� A
ji ¼ ��A

i þ �Ai
A; (48)

which is equivalently obtainable as the pullback

�� A
ji ¼ x�;i

�D�
��A ¼ x�;i�

A
j�; (49)

where

�D�
��A ¼ ��

�D�
��A: (50)

When the concept of gauge covariant differentiation is

extended from the scalar field� to the vector field k̂ on the
section, it is necessary to include an extra term to take

account of the fiber connection �̂, so the ensuing covariant
derivative takes the form

D�k̂
A ¼ @�k̂

A þ �̂C
A
B�

C
j�k̂

B � �½A��k̂A; (51)

in which the relevant gauge adjustment has the simple
tensorial form

�½A��k̂A ¼ �A�
A
;Bk̂

B: (52)

(This formula for the adjustment of k̂ by A� is to be

contrasted with the formula (11) for the nontensorial but

affine adjustment of A� by k̂.)

In the strictly Riemannnian case (meaning absence of
torsion) to which this work and its immediate predecessor
[2] is restricted, the outcome of the forgoing prescription
can be conveniently expressed in the form

D�k̂
A ¼ r�k̂

A þ k̂Br̂BA�
A; (53)

in which the part involving the connection has been sepa-
rated out in the second term, while the first term is given by
the ordinarily covariant (not gauge covariant) differentia-
tion operation

r�k̂
A ¼ @�k̂

A þ ��
A
Bk̂

B; (54)

with

��
A
B ¼ �C

��̂C
A
B: (55)

If k̂A is defined not just on the section � but throughout
an open neighborhood on the bundle B—as was supposed
in Sec. IV—then it can be seen that the outcome of the
prescription (51) will also be expressible in terms of the
effective gradient (30) as

D�k̂
A ¼ D�k̂

A þ�B
j�r̂Bk̂

A: (56)

However, that may be—whether or not the vector k̂A ex-
tends to a bundle field off the section—the gauge covariant
derivative will always be expressible in the form

D�k̂
A ¼ @�k̂

A þ!�
A
Bk̂

B (57)

using the new connector field

!�
A
B ¼ �C

j��̂C
A
B þ A�

A
;B (58)

that was introduced in the preceding work [1,2].
This connector field is to be used for the construction

[1,2] of gauge covariant bitensorial derivatives in the man-
ner illustrated by the case of the second gauge covariant
derivative of the field �, namely,

D��
A
j� ¼ �A

j�j� (59)

by the formula

�A
j�j� ¼ �A

j�;�
þ!�

A
B�

B
j�; (60)

in which a semicolon is used to indicate covariant deriva-
tion of the ordinary kind, as given in terms of the back-
ground space connection by an expression of the familiar
form

�A
j�;�

¼ @��
A
j� � ��

�
��

A
j�: (61)

In this case, there is no analogue of (56), because �A
j� is

well defined only on the section �, but, as the analogue of
(53), it is of course possible to rewrite (60) in the alter-
native form

D��
A
j� ¼ r��

A
j� þ�B

j�r̂BA�
A; (62)

where the operation of bitensorially covariant (but not
gauge covariant) differentiation is specified as

r��
A
j� ¼ �A

j�;�
þ ��

A
B�

B
j�: (63)

When acting on the tangentially projected field

�� A
j� ¼ ��

�D��
A (64)

on a brane world sheet S, one must take care to distinguish
its tangential derivative, with components given, using the
notation introduced in (10), by

�r �
��A

j� ¼ ��
�r�

��A
j� (65)

from its tangentially projected derivative with components
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r��
A
j� ¼ ��

���
�r�

��A
j�; (66)

which will be the same only if the embedding is flat. In
general one must allow for the gradient of the first funda-
mental tensor, which will be given by the formula

�r ���
� ¼ K��

� þ K�
�
� (67)

in which the second fundamental tensor of the world sheet
is defined [24,25] as

K��
� ¼ ��

� �r���
�: (68)

In view of its symmetry and projection properties, namely,

K½���
� ¼ 0; K��

���
� ¼ 0; K��

�?�
� ¼ 0;

(69)

where the orthogonal projection tensor is given by

?�
� ¼ g�� � ��

�; (70)

it can be seen that the difference between (65) and (66) will
be given by

r��
A
j� ¼ �r�

��A
j� � K�

�
�
��A

j�: (71)

This distinction does not matter for the pullback onto the
world sheet, which will be given by

�r j
��A

ji ¼ x�;ix
�
;j
�r�

��A
j� ¼ x�;ix

�
;jr��

A
j�; (72)

in agreement with what is obtained directly from the
analogue of (63), namely,

�r j
��A

ji ¼ ��A
ji;j þ ��j

A
B
��B

ji; (73)

with

�� j
A
B ¼ ��C

j�̂C
A
B: (74)

The same considerations apply to the corresponding
fully gauge covariant derivative as given by

�D�
��A

j� ¼ ��
�D�

��A
j� ¼ �r�

��A
j� þ ��

� ��B
j�r̂BA�

A;

(75)

and its tangental projection

D��
A
j� ¼ ��

� �D�
��A

j� ¼ �D�
��A

j� � K�
�
�
��A

j�; (76)

whose pullback

�D j
��A

ji ¼ x�;ix
�
;j
�D�

��A
j� ¼ x�;ix

�
;jD��

A
j� (77)

agrees with what is obtained directly from the analogue of
(60), namely,

�D j
��A

ji ¼ @j ��
A
ji � ��j

k
i
��A

jk þ �!j
A
B
��B

ji; (78)

in which the induced connection on the world sheet is
given by the usual Christoffel formula,

�� i
k
j ¼ �gjh

�
�ghði;kÞ � 1

2
�gik;h

�
; (79)

and the world sheet connection form for the fiber space is
given by

�! i
A
B ¼ x�;i!�

A
B ¼ ��C

ji�̂C
A
B þ �Ai

A
B: (80)

VI. CONSERVED CURRENTS FOR FORCED-
HARMONIC FIELDS

Before going on to the investigation of more general
cases, let us consider the conservation of charge currents
associated with internal symmetries in the prototype appli-
cation of the foregoing formalism, as presented in the
preceding article [2]. That application was to a class of
models that includes the ordinary harmonic type, but that is
generalized by allowance for two kinds of force, of which
the first is an internal bias provided in the action by the
inclusion of a scalar self-coupling term, which can partially
or completely break the symmetry—if any—of the target
space. The other kind is an external force from gauge
coupling of whatever target-space symmetry may remain
unbroken.
To be explicit, it is to be recapitulated that (in the

absence of background weighting fields) such a biased-
harmonic system is characterized by an action integral of
the form

I ¼
Z

Lf�; D�gkgk1=2dnx (81)

over the base space M, in which the Lagrangian scalar
function L is taken to be a quadratic function of the
gradients of the field section �, with the gauge invariant
form

L ¼ � 1

2
�A

j��A
j� � V̂ f�g; (82)

where, like the metric ĝAB that is used for target-space

index lowering, , the potential V̂ is given as a fixed field on
the space X in which the values of � are located.
Nonlinear � models belong to the special category for
which the structure of the target-space is homogeneous,
not just geometrically (as in the spherical example men-
tioned above) but also for the algebraic potential function

V̂ which in that case must be just a constant that can be
ignored as far as the field equations are concerned. Quite

generally, the field V̂ must be invariant under the action of
the generators a� of the relevant symmetry algebra (if any)
which as well as satisfying the Killing Eqs. (17) must also
satisfy the conditions

a�
AV̂ ;A ¼ 0: (83)

Whether or not any such symmetry algebra exists, the
requirement that the integral I be unaffected by infinitesi-
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mal local variations of the field � can be seen [2] to give
field equations of the form

�A
j�

j� ¼ V̂ ;A : (84)

For any symmetry algebra element k̂ say, with fiber
space Killing vector components

k̂ A ¼ k̂�a�
A; (85)

one can construct a corresponding current vector with
components

J� ¼ k̂A�A
� ¼ k̂�J�

�; J�
� ¼ a�

A�A
�; (86)

whose divergence,

J�;� ¼ J�j� (87)

can easily be evaluated using the field Eqs. (84). Using
these in conjunction with (83) and the Killing condition
(17), the current divergence can be seen to be given by

J�;� ¼ �A
�ðk̂A;� � k̂A;BA�

B þ k̂BA�
A
;BÞ: (88)

It follows that in order for the current to be conserved,

J�;� ¼ 0; (89)

the variation of the symmetry generator k̂ over the base
space M must be restricted to satisfy the condition

k̂ A
;� ¼ ½k̂; A��A; (90)

of which the right-hand side is the Lie derivative of the

symmetry generator k̂ with respect to the gauge form A�.

This condition can be seen to be interpretable as the

obviously natural requirement that the Killing vector k̂
should be transported horizontally with respect to the
gauge connection, or equivalently as the requirement that
it should preserve the gauge field in the sense that associ-
ated gauge adjustment (13) should vanish,

�̂½k̂�A�
A ¼ 0: (91)

In cases for which the relevant bundle structure is that of
a trivial direct product, for which there is a preferred gauge
in which A� ¼ 0, this horizontality requirement will be

achievable in the obvious way, by simply taking k̂ to be

uniform overM, so that k̂A;� ¼ 0 in that gauge. However,

in general Eq. (90) will be soluble only if the gauge field is
such as to satisfy an integrability condition, which can be
seen to be expressible in terms of the gauge curvature two-
form F�� as

½k̂; F���A ¼ 0; (92)

or equivalently, by (23), as

�̂½k̂�F��
A ¼ 0: (93)

What this means is that—as could have been anticipated—

in order for the corresponding current (86) to be conserved,

k̂ must generate a symmetry not just of the fiber metric

ĝAB, and of the scalar potential function V̂ , but also of the
gauge field F��.

If the symmetry group is Abelian—as in the familiar
case of ordinary Maxwellian electromagnetism—the re-
quirement (92) will evidently entail no further restriction,

so that for any generator k̂ chosen uniformly over M—

meaning such that k̂A;� ¼ 0—the corresponding current

(86) will automatically satisfy the conservation law (89), as
it does even in the non-Abelian case if the bundle B has a
trivial direct product structureB ¼ M�X characterized
by a preferred gauge in which the connection form
vanishes.

VII. MODELS WITH HARMONIOUS FIELDS ON
BRANES

Let us now consider cases involving a field �� that has
support restricted to a brane world sheet S of dimension
d ¼ pþ 1 say, so that as the analogue of (81) the relevant
action integral is given by an expression of the form

�I ¼
Z
S

�Lf ��; D�gk �gk1=2dd�: (94)

As well as the allowance for gauge coupling, the kind of
Lagrangian considered in the preceding section general-
ized the usual harmonic kind [26] by including the non-
linearity of the first type embodied in the algebraic self

coupling term V̂ in (82). However, in the present section
we shall consider a generalization of a different kind that
will be referred to as harmonious, involving nonlinearity of
the second—meaning kinetic—type as well as the nonline-
arity of the third type that is embodied in the curvature of
the target space X. Specifically, we shall use this term for
cases for which the surface Lagrangian depends only on
the target-space metric ĝAB and the symmetric target-space
tensor defined as

ŵ AB ¼ ����̂A
j� ��B

j� ¼ ��A
ji ��

Bji: (95)

In a gauge such that the gauge form vanishes at a particular

point under consideration, this tensor ŵAB will be identi-

fiable simply as the induced metric on the target space �X.
In the absence of a gauge field, a harmonious model will
therefor be of the of the ordinarily elastic type in cases for
which the target space is of dimension p, and thus identi-
fiable as the quotient with respect to a congruence of
timelike idealized particle worldlines on the world sheet.
However, it will not be an elastic model of the most general
kind, for which [27,28] the specification of the elastic

structure on �X would involve, not just the metric ĝAB,
but other predetermined vectorial or tensorial fields as
well.
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For a model that is harmonious in the forgoing sense, the
generic variation of the Lagrangian will have the form

� �L ¼ @ �L

@ĝAB
�ĝAB þ @ �L

@ŵAB
�ŵAB; (96)

in which the coefficients will be related by a Noether
identity [24] that is obtainable by considering the effect

of an arbitrary displacement field, �̂A say, in the target

space. Since the ensuing variation � �L ¼ �̂Ar̂AL will be
equivalently determined by corresponding variations of the

form �ĝAB ¼ L̂½�̂�ĝAB and �ŵAB ¼ L̂½�̂�ŵAB in which

the relevant Lie derivatives are L̂½�̂�ĝAB ¼ 2r̂ðA�̂BÞ and
L̂½�̂�ŵAB ¼ �̂Cr̂Cŵ

AB � 2ŵCðAr̂C�̂
BÞ, the identity

�̂C
�
r̂CL� @ �L

@ŵAB
r̂Cŵ

AB

�
¼ 2

�
@ �L

@ĝCD
� @ �L

@ŵAB
ŵACĝBD

�

� r̂C�̂D

must hold. Since (at a given target-space position) the

vector �̂C and the gradient components r̂C�̂D can be
chosen arbitrarily and independently, the coefficients on
the left and right hand sides must vanish separately, so one
obtains two distinct Noether identities which are expres-
sible as

r̂ CL ¼ @ �L

@ŵAB
r̂Cŵ

AB;
@ �L

@ĝAC
ĝAB ¼ @ �L

@ŵAB
ŵBC:

Using the notation

�AB ¼ �BA ¼ �2
@ �L

@ŵAB
; (97)

the Noether identities enable us to derive the symmetry
property

�C
AŵBC ¼ �C

BŵAC ¼ �2
@ �L

@ĝAB
; (98)

and to express the generic variation (96) in the compact
form

� �L ¼ � 1

2
�A

B�ŵB
A: (99)

The category of harmonious models defined in this way
will evidently include ordinary harmonic models [26],
which belong to the special subcategory for which �L is
linearly dependent just on the scalar trace

ŵ ¼ ŵAŵ
A ¼ ĝABŵ

AB: (100)

A rather more extended but still relatively simple subcate-
gory that is of special interest in various physical contexts
consists of models for which the dependence of the

Lagrangian on ŵB
A is just quadratic, so that it will be

expressible in terms of fixed parameters m, �?, �? �? in
the form

�L ¼ �m� 1

2
�?ŵ� 1

4
�?ŵ

2 þ 1

4
�?ŵA

BŵB
A;

which gives

�AB ¼ ð�? þ �?ŵÞgAB � �?ŵAB:

The symmetry condition (98) is thereby made manifest in
the expression

�C
AŵBC ¼ ð�? þ �?ŵÞŵAB � �?ŵC

AŵBC:

Within this quadratic subcategory the harmonic case is
evidently obtained by setting �? ¼ 0 and �? ¼ 0. The
less restrictive condition �? ¼ �? characterizes other har-
monious but not harmonic cases having a particular physi-
cal interest, of which the simplest non trivial example is
that of what is known as a baby Skyrme model [29], for
which the target space is just a 2-sphere.
A motivation for considering cases of more general

kinds, starting with that of what will be referred to as
simply harmonious models, namely, those for which �L

has arbitrary nonlinear dependence just on ŵ (as exempli-
fied by the quadratic subcase with �? ¼ 0) is that they can
arise naturally—for an underlying model with a kinetic
part of the ordinary linear type—from the effect of confin-
ing mechanisms of the kind commonly considered in the
theory of topological defects.
A prototypical example [4–6] is provided by the bosonic

field model proposed by Witten [3], as a simple example of
the way currents can be confined to the world sheets of
cosmic strings. Such arise from spontaneous symmetry
breaking by string or higher (d� 1)-brane type solutions
that are longitudinally symmetric in the strong sense—
meaning that the relevant fields are preserved by the action
of the Killing vector generators k

�
i say of longitudinal

(world sheet parallel) translations. Spontaneous symmetry
breaking means that the solutions is not unique but belongs
to a family of configurations mapped onto each other by
the action of the relevant internal symmetry group G. It is
this family of configurations—as labeled by the central

value �� of the field �—that forms the (typically curved)

target space �X of the world-sheet confined effective
model. The Lagrangian action for the effective model is
obtained for such (current free) configurations simply by
integrating the local action density over a transverse sec-
tion of dimension (n� d).
The general idea is that, starting from such a family of

strongly symmetric nonconducting configurations, a more
extensive family of current carrying configurations will be
obtainable by relaxing the condition that the fields be
strictly invariant under the action of longitudinal trans-
lations but allowing them to have changes generated by
elements of the algebra A say of the symmetry. The
effective action for current carrying states is to be obtained
by integrating the result obtained by solving the field
equations on a particular transverse (n� d) dimensional
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section with values of the gradients in the longitudinal
directions orthogonal to the section given by the action
of the corresponding algebra elements as represented by
corresponding central values of the longitudinal gradients
Di� with values in the tangent space of X.

In simple cases such as that of the string configurations
(with d ¼ 2) obtained [4–6] from the Abelian model in-
troduced byWitten, the result will depend only on the trace

ŵ, albeit non linearly, (contrary to the oversimplified
ansatz originally proposed by Witten himself [3]). The

result will still depend only on the trace ŵ in the non-
Abelian case obtained from the minimal extension of the
Witten model that will be presented in a following article
[30] in which it will be shown that this extension will give
rise to current carrying strings supporting fields for which

the target space �X will have the 2-spherical form envise-
aged in Sec. III.

VIII. CONSERVED CURRENTS FOR
HARMONIOUS FIELDS ON BRANES

Whatever its physical origin may be, a Lagrangian of the
harmonious kind under consideration will have an Eulerian
(fixed point) variation that will be given, according to (96),
by

� �L ¼ � 1

2
�D

CwBDĝBC;A�X
A � �AB

��Bji�ðXA
;i þ �Ai

AÞ;
(101)

which is expressible in the convenient form

�L ¼ � �L

�XA
�XA � ð�AB

��Bji�XAÞ;i; (102)

with

� �L

�XA
¼ ð�AB

��BjiÞji: (103)

It evidently follows that, in terms of bitensorial surface
current components defined by

�J A
i ¼ �AB

��Bji; (104)

the ensuing field equations will be expressible in the neatly
succinct form

�J A
i
ji ¼ 0: (105)

However, it is to be observed that this will not in general be
directly interpretable as a current conservation law, be-
cause (unlike the last term in (102), which is removable
by integration over the base space) the left hand side of
(105) is not an ordinary divergence. Nevertheless, as be-
fore, when there is an internal symmetry group we can
obtain something that actually is an ordinary divergence
and that will vanish under appropriate conditions, by using
the fact that any fiber space symmetry generating vector

field with components k̂A will define a corresponding

surface charge current with components

�J � ¼ x�;i �J
i; �Ji ¼ k̂A �JA

i (106)

whose surface divergence will be given—when the field
equations are satisfied—by

�r �
�J� ¼ �Ji;i ¼ �JA

ik̂Aji; (107)

where by definition (51) we have

k̂ A
ji ¼ k̂A;i þ k̂A;BX

B
;i þ k̂Bð ��C

ji�̂C
A
B þ �Ai

A
;BÞ: (108)

By rewriting the latter in the form

k̂ A
ji ¼ k̂A;i þ k̂B �Ai

A
;B � k̂A;B �Ai

B þ ��B
jir̂Bk̂

A; (109)

and using the symmetry property (98), one can see, as
before, that provided the fiber tangent vector field is chosen
so as to satisfy the target-space Killing Eq. (15), as well as
the surface analogue of the horizontal transport condition
(90), namely,

k̂ A
;i ¼ ½k̂; �Ai�A; (110)

we shall finally obtain a genuine surface current conserva-
tion law of the required kind, namely,

�J i
;i ¼ 0: (111)

In the absence of any gauge field, this can always be done
for any element of the target-space symmetry algebra.
However, as before, if a gauge field is present, the condi-
tion (110) for (111) can only be fulfilled if the relevant
integrability condition is satisfied, namely, the requirement

½k̂; �Fij�A ¼ 0; (112)

which is interpretable as the condition that k̂ should gen-
erate a symmetry not just of the fiber metric ĝ but also of
the gauge field.

IX. ENERGY-MOMENTUM FLUX ON BRANES

The preceding section was concerned just with varia-
tions of the Lagrangian integral (94) for fixed values of the
world sheet location (and hence of the projection bitensor
with components x�;i and of the relevant background

fields, namely, the n-dimensional space-time metric with
components g�� and the gauge field as specified according

to (16) in terms of components A�
� with respect to some

uniform algebra basis. Within that scheme, it can be seen
that, when the ensuing variational field equations are sat-
isfied, the divergences of the corresponding basis current
vectors with components

�J �
� ¼ x�;ia�

A �JA
i (113)

will be given, in accordance with (107), by

�r �
�J�� ¼ A�

����
	 �J�	: (114)
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In the present section—generalizing an approach devel-
oped for the Abelian case in preceding work [8,24]—we
shall consider the effect of background field variations of
the form induced by world sheet displacements, as gener-
ated by Lie transport with respect to a vector field ��,
which gives

�g�� ¼ 2rð���Þ; (115)

and

�A�
� ¼ ��r�A�

� þ A�
�r��

�: (116)

It can be seen that effect of this on the integrand in (94) will
be given by an expression of the form

k �gk�1=2�ð �Lk �gk1=2Þ ¼ 1

2
�T���g�� � �J���A�

�; (117)

in which it can be seen that the relevant surface current
coefficients will be as given by the formula (113), which
can be written more explicitly as

�J �
� ¼ a�

A�AB
��Bj�; (118)

while the corresponding surface stress energy-momentum
tensor components can be read out as

�T �� ¼ �AB
��Aj� ��Bj� þ �L���; (119)

in which it is to be recalled that �AB will simply be
proportional to the fiber metric ĝAB in the ordinary har-
monic case, but that it will in general depend also on wAB,
as defined by (95).

Up to this point we have been treating the world sheet
location as something given in advance, but we shall now
postulate that its motion is governed by dynamical equa-
tions of the usual variational type, meaning that the action
(94) is required to be preserved, not just by infinitesimal

variations of the multiscalar surface field ��, but also by the
arbitrary infinitesimal displacements generated by ��. The
contribution of the latter to the action variation can be
seen—using preceding Lie transport equations—to be ob-
tainable from (117) in the form

k �gk�1=2�ð �Lk �gk1=2Þ ¼ �r�ð��ð �T�
� � A�

� �J��ÞÞ
� ��ð �r�

�T�
� � A�

� �r�
�J��

� 2 �J��r½�A�
��Þ (120)

of which the first part is a surface divergence that is
removable by integration. Thus, when the internal field

Eqs. (105) for �� are satisfied, the only remaining contri-
bution to the action variation will be the last, namely, the
contraction with �� whose coefficient must therefore van-
ish. We thus obtain a dynamical equation of the form

�r �
�T�

� � A�
� �r�

�J�� � 2 �J��r½�A�
�� ¼ 0: (121)

This can be conveniently rewritten in the standard form

�r �
�T�

� ¼ f� (122)

in which the force density f� is a well-behaved (algebra

basis independent) covector that can be seen from (114) to
be expressible, using the definition (21), in the form

f� ¼ �J��F��
� ¼ �JA

�F��
A: (123)

This expression generalizes the formula that is already
familiar in the ordinary electromagnetic case, for which the
gauge algebra is that of a U(1) action on the unit circle.
Subject to the usual understanding that the latter is parame-
trized by the angle coordinate X1 ¼ ’, our previous treat-
ment of this Maxwellian case [8,24] can be expressed in
terms of the formalism used here by setting A�

1 ¼ �eA�

so that F��
1 ¼ �eF�� and �j� ¼ �e �J�1 , where e is the

relevant charge coupling constant. (In typical applications
using unrationalized Planck units, the latter will be taken to

be given approximately by e ¼ 1=
ffiffiffiffiffiffiffiffi
137

p
, while the pres-

ence of the negative sign is attributable to the unfortunate
but historically entrenched convention that for ordinary
electrons the electromagnetic current direction is opposite
to that of the particles themselves).
As in the familiar Abelian case [8,24], it is to be noticed

that the tangentially projected part of the force Eq. (122)
provides no new information, being merely an automatic
consequence of the internal field Eqs. (105) on the world
sheet, whereas the orthogonally projected part provides the
extra information needed to determine the evolution of the
string world sheet, whose equation of motion is thereby
obtained in the standard form

�T ��K��
� ¼ ?��f�: (124)

As was done for the charge currents considered in the
preceding section, we can again specify a current that may
be conserved by contracting the relevant free index with
symmetry generating vector field, but this time not on the
target space but on the baseM, where the relevant Killing
equation for preservation of the metric g�� by the vector

field k� in question takes the form

rð�k�Þ ¼ 0: (125)

The corresponding current,

��� ¼ k� �T�
�; (126)

will be interpretable as a flux of momentum when k� is the
generator of a spacelike translation, while corresponding to
a flux of energy in the timelike case for which (with the
sign convention used here) k�k� is negative. It evidently

follows from (122) that its surface divergence will be given
by

�r �
��� ¼ k�f�; (128)

and thus that it will be conserved,
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�r �
��� ¼ 0; (127)

when the force does no work, which by (123) will be the
case if and only if the gauge field is such that

k�F��
� �J�

� ¼ 0: (129)

It is to be remarked that this requirement will always be
satisfied if the current (and hence also the world sheet in
which it is contained) happens to be entirely aligned with
the Killing vector,

k½� �J�
�� ¼ 0; (130)

a condition that is describable as staticity in the case for
which the Killing vector is timelike so that the ensuing
conservation law is that of an energy flux. It is evident that
the requirement (129) will also hold if, instead of the
current, it is the gauge field itself that has the property
describable, if the Killing vector is timelike, as staticity,
meaning vanishing of its ‘‘electric’’ (as opposed to ‘‘mag-
netic’’) part, namely,

k�F��
� ¼ 0: (131)

X. WEAK, EFFECTIVE, STRICT, AND STRONG
SYMMETRIES

A field over the base space M is describable as mani-
festly symmetric [31] with respect to the continuous trans-
formation group generated by a vector field with
components k� onM if is invariant under the correspond-
ing Lie transport operation, that is to say if it is mapped to
zero by the corresponding Lie differentiation operator
L½k�, which will be given for the section � simply by

L ½k��A ¼ k��A
�: (132)

For the relevant independent background fields, namely,
the metric and the basis components of the gauge field, it
will be given by

L ½k�g�� ¼ 2rð�k�Þ; (133)

and

L ½k�A�
� ¼ k�A�

�
;� þ k�;�A�

�; (134)

while for the basis components of the gauge curvature it
will be given by

L ½k�F��
� ¼ k�F��

�
;� þ 2k�;½�F���

�: (135)

The apparent variation measured in this way is however
highly gauge dependent. A more meaningful measure of
actual physical variation is obtainable—as for the bitenso-
rially gauge covariant differentation procedure described
above—by subtracting off the relevant gauge adjustment as
generated by the corresponding fiber tangent field, with

components k̂�
A ¼ k̂�

�a�
A given by

k̂ � ¼ k�A�
�: (136)

This provides what we shall refer to as the effective Lie
derivative, which we shall distinguish from its ordinary
analogue by use of the financial euro symbol in place of the
traditional Libra symbol according to the prescription

C ½k� ¼ L½k� � �̂½k̂�: (137)

The required gauge adjustment operator �̂½k̂� will be given
for the section and the metric simply by

�̂½k̂��A ¼ �k̂A; �̂½k̂�g�� ¼ 0; (138)

so for the latter there is no difference between ordinary and
effective Lie differentiation while for the section, as the
analogue of (132), in the notation of (43) we simply get

C ½k��A ¼ k��A
j�; (139)

For the gauge field, according to (13), we have the less
trivial adjustment

�̂½k̂�A�
� ¼ k̂�;� þ A�

���	
�k̂	; (140)

which leads however to the neat and memorable result

C ½k�A�
� ¼ k�D�A�

� ¼ k�F��
�; (141)

while for the gauge curvature we have

�½k̂�F��
� ¼ F��

�� �	
�k̂	; (142)

which leads, via the Bianchi identity (41), to

C ½k�F��
� ¼ 2D½�ðk�F���Þ: (143)

Just as a field configuration may be said to be manifestly
symmetric, with respect to a displacement generator k�, if
the corresponding Lie derivative vanishes, the configura-
tion will be similarly describable as strongly symmetric
with respect to k� if the corresponding effective Lie de-
rivative is zero. However, it will be describable as merely
weakly symmetric if this effective Lie derivative does not
vanishes absolutely, but only modulo the action of some
internal symmetry generator with base components V� say,
or equivalently if the ordinary Lie derivative vanishes

modulo the action of the difference V� � k̂�, with k̂� as
defined by (136). It is to be remarked that manifest sym-
metry need only be of the weak kind when a nonintegrable
gauge field is present, but that it will be of the strong kind
when such a field is absent.
When applied to something as simple as a scalar section

�, the weak symmetry condition,

C ½k��A þ �̂½V��A ¼ 0; (144)

can be seen, from the formula �̂½V��A ¼ �VA, to reduce
to an equation of the form

k��A
j� ¼ VA: (145)
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However, this will entail no restriction at all if the symme-
try group is transitive over the target space (as, for ex-
ample, when the latter is spherically symmetric) as it will
be trivially soluble for VA as a space-time position depen-
dent target-space Killing vector on the section.

A more meaningful condition that may appropriately be
described as strict symmetry is that of a weak symmetry for
which the relevant adjustment is restricted to be such as to
preserve the connection. In other words a configuration
will be describable as strictly symmetric with respect to k�

if the effect on it of the corresponding effective Lie deriva-
tive can be cancelled by the action of some internal sym-
metry generator with base components V� such that

�̂½V�A�
� vanishes, which, according to (13), means that

it must satisfy the horizontal transport equation

@�V
� þ A�

�� �	
�V	 ¼ 0; (146)

which, as discussed in Sec. VI, will be integrable only if the
curvature satisfies the corresponding condition

F��
�� �	

�V	 ¼ 0: (147)

A less restrictive but still meaningful condition that may
be described as effective symmetry is obtained by relaxing
the foregoing condition of horizontal transport in all direc-
tions to that of horizontal transport just in the direction of
the Killing vector. In other words a configuration will be
describable as effectively symmetric with respect to k� if
the effect on it of the corresponding effective Lie derivative
can be cancelled by the action of some internal symmetry
generator that is itself strongly symmetric, meaning that its
base components V� satisfy the requirement

C ½k�V� ¼ 0 (148)

in which it is to be recalled that, by definition, we shall
have

C ½k�V� ¼ k�ð@�V� þ A�
���	

�V	Þ ¼ k��̂½V�A�
�:

(149)

In the particular case of the section � it is to be remarked
that effective symmetry in the foregoing sense is equivalent
to the postulate of strong symmetry of its gauge covariant
derivative �A

j�.
Various kinds of symmetry in the categories defined

above were studied in work by Forgacs and Manton [32],
albeit with limited generality, in that these authors consid-
ered only target-space symmetries that were ‘‘gauged’’ in
the sense that the physical presence of a nonintegrable
connection field was admitted by the theoretical model
under consideration, whereas for strict symmetry of the
most general kind [31] a target-space symmetry that is not
in the gauged subalgebra but merely ‘‘global’’ will also be
perfectly acceptable.

The most important application of these successively
more restrictive notions of weak, effective, strict, and

strong symmetry is of course to the gauge field itself. In
this particular case the distinction between strict and strong
symmetry disappears, as the former condition will auto-
matically entail the latter, namely,

C ½k�A�
� ¼ 0: (150)

It can be seen from (141) that this strong symmetry con-
dition is equivalent to the sufficient condition (131) for the
generalized surface momentum flux conservation property
(128). This sufficient condition for conservation of the
current characterized by k� is thus interpretable as the
requirement that, as well as satisfying the Killing
Eq. (125), this vector field should generate a strong sym-
metry of the gauge field.
In the case of the gauge field (unlike that of the section

�) symmetry of even the weak type has non trivial con-
sequences. The meaning of weak symmetry for the gauge
field is the possibility of constructing what is describable as
a generalized voltage field, consisting of some fiber space
symmetry generator, with basis components V� such that

C ½k�A�
� þ �̂½V�A�

� ¼ 0: (151)

As a necessary integrability condition for this, it can be
seen that a weak symmetry condition of the same form
with the same voltage field V� must also be satisfied by the
gauge curvature, for which we thus obtain the requirement

C ½k�F��
� ¼ V�� �	

�F��
	: (152)

The weak symmetry condition (151) can evidently be
rewritten in the form

L ½k�A�
� ¼ �̂½k̂� V�A�

�; (153)

which makes it apparent how, as remarked above, manifest
symmetry is interpretable as the special case of weak

symmetry for which V� is equal to k̂� as given by (136),
whereas strong symmetry is the special case for which the
relevant voltage field V� simply vanishes.
By writing out the condition (151) of weak symmetry of

the gauge field in the explicit form

k�F��
� þ V�

;� þ A�
���	

�V	 ¼ 0; (154)

it can be seen to imply that the surface current divergence
condition (127) will be expressible as

�r �
��� ¼ �ðV�

;� þ A�
���	

�V	Þ �J��: (155)

Under these circumstances it can be seen from the gener-
ally valid current divergence formula (114) that we shall
obtain a strict surface current conservation law, of the form

�r �
�P � ¼ 0; (156)

by setting

�P � ¼ ��� þ V� �J��; (157)
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in which both ��� and V� depend on the choice of the
Killing field k�. In the case for which this Killing vector is

a time translation generator, so that the current ��� will be
interpretable as a flux of kinetic energy, the extra term
V� �J�� in (157) will be interpretable as a corresponding flux
of potential energy, while the voltage field V� can be seen
to be the natural non-Abelian generalization of an ordinary
electrostatic potential field in Maxwellian electromagne-
tism. In the special case for which the section itself satisfies
the weak symmetry condition (145), this conserved total

energy flux will simply be �P � ¼ � �Lk�, and if the sym-
metry thus generated by k� is not merely weak but strict the
right-hand side of (155) will vanish, which means that both

the kinetic contribution � ��� and the potential contribu-
tion V� �J�� will be separately conserved.
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