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Magnetic fields interact with gravitational waves in various ways. We consider the coupling between

the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The

approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome

of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the

conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading

to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature

distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven

by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the

wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomag-

netic interaction and discuss its potential implications.
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I. INTRODUCTION

The origin of the large-scale magnetic fields seen in the
Universe today remains an enigma, despite the efforts of
the scientific community to resolve it [1,2]. The structure
of the galactic B fields, primarily of those found in spiral
galaxies, seems to support the dynamo idea [3]. However,
the galactic dynamo requires an initial seed field to operate
and the origin of these magnetic seeds is still elusive.
Provided the amplification is efficient, the strength of the
seed can be as low as�10�23 G by the time the host galaxy
is formed [4]. This requirement could be relaxed down to
�10�34 G in dark-energy dominated universes [5]. In the
absence of dynamo, seeds close to 10�12 G (or even up to
10�8 G) are necessary to meet the observations. An addi-
tional issue is the scale of the initial magnetic field, since
the galactic dynamo requires seeds with a minimum (co-
moving) coherence length of �10 kpc to operate success-
fully [3].1

The literature contains various scenarios of cosmic mag-
netogenesis, which are traditionally classified into those
operating after recombination and those advocating a cos-
mological origin for the large-scale magnetic fields of the
Universe. Primordial magnetism is an attractive idea be-
cause it makes these large-scale fields (especially those
found in distant protogalactic structures) easier to explain.
The case was strengthened further when recent observa-
tions detected substantially strong magnetic fields at very
high redshifts [6]. Nevertheless, early-universe magneto-
genesis is still not problem free. Producing magnetic seeds
that satisfy the above mentioned dynamo requirements has,
as yet, proved difficult. There are problems both with the
scale and the strength of the initial field. Causality means
that all magnetic seeds generated between inflation and

(roughly) recombination have coherence lengths well be-
low the minimum dynamo requirements. For instance,
B fields produced during the electroweak phase transition
span scales of the order of the astronomical unit. A mecha-
nism known as ‘‘inverse cascade’’ can increase the corre-
lation length by transferring magnetic energy to larger
scales, but typically requires large amounts of helicity
[7]. Inflation has long been considered as an answer to
the scale problem, since it naturally produces long-
wavelength correlations. However, B fields that have sur-
vived a phase of de Sitter expansion are typically too weak
to sustain the galactic dynamo, unless classical electro-
magnetism is modified [8,9], or Friedmann-Robertson-
Walker (FRW) hosts with non-Euclidean spatial geometry
are employed [10].2

Gravitational waves could also provide a geometrical
mechanism of magnetic amplification on cosmological
scales. Gravitons are readily produced in almost all infla-
tionary scenarios and interact with magnetic fields through
the shear anisotropy that they induce. The theory behind
the coupling between the Weyl and the Maxwell fields in
cosmology has been analyzed in [11,12], with the latter

1All scales and strengths have been redshifted to today, unless
stated otherwise.

2Large-scale magnetic fields in Friedmann universes have long
been believed to decay ‘‘adiabatically.’’ The conformal flatness
of the FRW models and the conformal invariance of Maxwell’s
equations are thought to guarantee a Minkowski-like (B / a�2,
with a being the cosmological scale factor) decay rate for the
B field. However, although all Friedmann universes are confor-
mally flat, only the spatially flat is globally conformal to
Minkowski space. For the rest, the conformal mappings are
local. As a result, the adiabatic magnetic decay is only guaran-
teed in FRW models with Euclidean spatial sections. Magnetic
fields embedded in Friedmannian universes with open spatial
sections are ‘‘superadiabatically’’ amplified on scales close to
the curvature radius [10]. The hyperbolic geometry slows the
decay rate to a�1, leading to astrophysically interesting residual
B fields without breaking away from conventional electromag-
netism or abandoning the symmetries of the FRW spacetimes.
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article arguing for a potentially very strong (resonant-type)
amplification of large-scale magnetic fields. It should be
noted, however, that [12] did not explicitly show the am-
plitude of the B field to diverge, when the latter was
oscillating in tune with the gravitational waves. Here, we
take a step further in that direction. We consider two
scenarios and provide fully analytical (and gauge-
invariant) treatments in both cases. The first operates in
highly conductive environments and the second assumes
poor electrical conductivity. In the former case, the grav-
itomagnetic interaction causes the superadiabatic amplifi-
cation of the B field on super-Hubble lengths. The standard
adiabatic magnetic decay rate (B / a�2, where a is the
scale factor) slows down. In the second scenario, where the
conductivity is very low, the Weyl-Maxwell coupling pro-
ceeds differently. There, the solutions show resonant mag-
netic amplification on all scales of interest. Driven by the
gravitational waves, the B field oscillates with an ampli-
tude that is found to diverge when the wavelengths of the
two sources coincide.

The objectives of the present article are (i) to demon-
strate that the nature and the outcome of the gravitomag-
netic interaction depends on the electric properties of the
environment, since there is considerable confusion on this
issue in (some of) the literature, and (ii) to show that Weyl-
curvature distortions can resonantly amplify the B field.
Mathematically speaking the latter means that the equa-
tions contain resonant solutions. The basic physics behind
these gravitomagnetic resonances is relatively simple.
Gravitational waves are known to trigger shear inhomoge-
neities that affect the magnetic evolution. In poorly con-
ductive environments, where the B field naturally
oscillates, the aforementioned shear perturbations act as
an external driving force. Forced vibrations, however, are
well known to provide the physical stage for resonances to
occur. It is not surprising then that there exist analytical
solutions showing the magnetic amplitude to diverge when
the Weyl and the Maxwell fields oscillate in tune.
Realistically speaking, of course, what such diverging
solutions indicate is an increased chance of a dispropor-
tionately strong amplification. This is also what our analy-
sis suggests: that it is theoretically possible to substantially
amplify cosmological B fields by means of very weak
Weyl-curvature distortions alone.

II. THE WEYL-MAXWELL COUPLING IN
COSMOLOGY

In a general spacetime, with metric gab of signature
ð�;þ;þ;þÞ, we define a timelike vector field ua ¼
dxa=d� that is tangent to the worldlines of the fundamental
observers (with � representing their associated proper
time). Together with the projector, hab ¼ gab þ uaub, the
ua field introduces a unique 1þ 3 threading of the space-
time into time and space, while it decomposes every vari-
able, every differential operator, and every vector/tensor

equation into their timelike and spacelike components (see
[13] for details).

A. Background dynamics

Consider a spatially flat FRW spacetime filled with a
single barotropic fluid and permeated by a weak magnetic
field ( ~Ba). The latter has energy density well below that of
the matter (i.e. ~B2 ¼ ~Ba

~Ba � �) to ensure that the sym-
metries and the evolution of the host universe remain
unaffected. We may therefore ignore terms of order ~B2

and the magnetic contribution to the background dynam-
ics. The zero-order model is then determined by the stan-
dard set

H2 ¼ 1
3�;

_H ¼ �H2 � 1
6�ð1þ 3wÞ; and

_� ¼ �3ð1þ wÞH�; (1)

where w ¼ p=� is the barotropic index of the fluid (p is its
isotropic pressure), H ¼ _a=a is the Hubble parameter, and
the overdots indicate (proper) time derivatives.3 At the
same time,

_~B a ¼ �2H ~Ba (2)

monitors the zero-order evolution of the (test) ~B field [14].
Next, wewill perturb the above background by allowing,

among others, for gravitational-wave distortions. To first
order, these are monitored by shear perturbations (see
Sec. II B), which couple to the magnetic field through the
induction equation [14]. Our aim is to study the effects of
gravitational waves on the evolution of large-scale mag-
netic fields during the early (pre-recombination) stages of
the expansion. The covariant expressions governing the
gravitomagnetic interaction have been derived in [12],
where the reader is referred to for the details. Here, we
will simply present the relations and use them to study the
Weyl-Maxwell coupling in cosmology. Further discussion
on the formalism and its applications can be found in [14].
Before closing this section, it is worth noting that we

follow the approach of [11,12], which also allows for a
weak background (test) magnetic field. Alternatively, one
could treat both the ~B field and the gravitational waves as
first-order perturbations and study their interaction at sec-
ond order [15]. The latter scheme maintains the purity of
the FRW background, but only allows shear-magnetic
terms into the equations. All other second-order couplings
are excluded. As a result, when it comes to the evolution of
the B field, the two approaches are equivalent. The second-
order magnetic wave equation of [15] is the same as that of
[12] in all but name [compare Eq. (45) in [15]—see also the
comment immediately after expression (47) there—with
Eq. (5) in [12], or with relations (5) and (10) here].

3Throughout this paper we use geometrized units with 8�G ¼
1 ¼ c.
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B. The gravitomagnetic interaction

Information on propagating gravitational waves is en-
coded in the nonlocal component of the Riemann curvature
tensor, which is commonly referred to as the Weyl field.
The latter splits into an electric and a magnetic part,
represented by the symmetric and trace-free tensors Eab

and Hab, respectively. The transverse components of these
quantities describe gravitational waves, with their trans-
versality guaranteeing that only the pure-tensor modes are
accounted for and all scalar and vector perturbations have
been switched off. In that case the magnetic Weyl compo-
nent is directly related to the shear by means of the linear
constraint [13]

Hab ¼ curl�ab; (3)

with curlSab ¼ "cdhaDcSbi
d for any orthogonally pro-

jected, symmetric, and trace-free tensor Sab. All these
mean that, to first order, we can monitor gravitational
waves using the wave equation of the shear. On a spatially
flat FRW background, the latter linearizes to [12,13]

€� ab � D2�ab þ 5H _�ab þ 3
2ð1� 3wÞH2�ab ¼ 0; (4)

where D2 ¼ DaD
a is the orthogonally projected Laplacian

operator.4

The electromagnetic field obeys Maxwell’s equations
which combine to provide a set of wave equations, one
for each component [see expressions (39) and (40) in [16]].
After all scalar and vector perturbations have been
switched off, and given our weakly magnetized back-
ground, the wave formula of the B field reduces to

€B a � D2Ba þ 5H _Ba þ 3ð1� wÞH2Ba

¼ 2ð _�ab þ 2H�abÞ ~Bb þ curlJ a: (5)

The above monitors the gravitomagnetic interaction on a
spatially flat FRW background at the lowest perturbative
order [12]. Note that ~Ba is the background B field (see
Sec. II A) and J a the electric 3-current. This depends on
the electric properties of the medium, which are encoded in
Ohm’s law. In the frame of the fluid (i.e. that of the
fundamental observers), the latter takes the covariant form

J a ¼ &Ea; (6)

where & is the electric conductivity of the matter [17]. In
poorly conductive environments, & ! 0 and there are no
currents. Then, we may ignore the last term on the right-
hand side of (5). At the opposite end, where the conduc-
tivity is very high and & ! 1, the electric field vanishes. In
that case, J a ¼ curlBa (e.g. see [14]) and expression (5)
reduces to

_B a þ 2HBa ¼ �ab
~Bb: (7)

Not surprisingly, in the absence of its electric counterpart,
the B field no longer obeys a wavelike formula. Instead, the
magnetic evolution is determined by the familiar induction
equation [14].

III. GRAVITATIONALLY DRIVEN MAGNETIC
FIELD

The significant differences between expressions (5) and
(7) suggest that the electric properties of the cosmic me-
dium, at the time and in the region the gravitomagnetic
interaction occurs, are crucial. Here, we will mainly focus
on the two limiting cases of very low and very high
electrical conductivity. The intermediate case of finite
resistivity will also be discussed in Sec. IVC.

A. Harmonic splitting

Gravitational waves introduce shear inhomogeneities,
which couple to the background magnetic field through
Maxwell’s formulas. The resulting gravitomagnetic
stresses drive the evolution of the perturbed (the induced)
B field according to Eqs. (5) or (7), depending on the
conductivity of the environment. Our next step is to har-
monically decompose these expressions. This will also
provide a relation between the wavelengths of the agents

involved. Splitting the zero-order field as ~Ba ¼ �n
~BðnÞ ~Q

ðnÞ
a

helps to assign a scale and a finite wave number (n) to it.

Similarly, we may set �ab ¼ �k�ðkÞQ
ðkÞ
ab and Ba ¼

�‘Bð‘ÞQ
ð‘Þ
a , where k, ‘ are the associated wave numbers

and Qð‘Þ
a ¼ QðkÞ

ab
~Qb

ðnÞ by construction [11,12]. The three

corresponding wave vectors satisfy the relation ‘2 ¼
‘a‘

a ¼ ðna þ kaÞðna þ kaÞ. This immediately translates
into

‘ ¼ k

�
1þ

�
n

k

�
2 þ 2

�
n

k

�
cos’

�
1=2

; (8)

with 0 � ’ � � representing the angle between the wave
vector of the background magnetic field and that of the
oncoming gravitational wave.

B. Evolution equations

The harmonic decomposition of the previous section
reduces the wave formulas (4) and (5) from partial to
ordinary differential equations. Together with the decom-
posed counterpart of expression (7), the new set consists of

€� ðkÞ þ 5H _�ðkÞ þ
�
3

2
ð1� 3wÞH2 þ

�
k

a

�
2
�
�ðkÞ ¼ 0; (9)

€B ð‘Þ þ 5H _Bð‘Þ þ
�
3ð1� wÞH2 þ

�
‘

a

�
2
�
Bð‘Þ

¼ 2ð _�ðkÞ þ 2H�ðkÞÞ ~BðnÞ; (10)

4In [15] the shear was also used to describe gravitational
waves at second order. Beyond the linear level, however, ex-
pression (3) no longer holds and the shear alone cannot (gen-
erally) monitor gravitational-wave distortions.
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and

_B ð‘Þ þ 2HBð‘Þ ¼ ~BðnÞ�ðkÞ: (11)

The first two monitor the gravitomagnetic interaction in
poorly conductive cosmological environments, while the
set (9) and (11) does the same when the electric conduc-
tivity is high and the ideal magnetohydrodynamic (MHD)
limit applies.

We proceed further by introducing the dimensionless,
expansion normalized variables �ðkÞ ¼ �ðkÞ=3H and

Bð‘Þ ¼ Bð‘Þ=3H. Then, using conformal (�, with _� ¼
1=a) instead of proper time, the system (9)–(11) recasts
into

�00
ðkÞ þ ð1� 3wÞ

�
a0

a

�
�0

ðkÞ

�
�
3½1þ ð2� 3wÞw�

2

�
a0

a

�
2 � k2

�
�ðkÞ ¼ 0; (12)

B00
ð‘Þ þ ð1� 3wÞ

�
a0

a

�
B0

ð‘Þ �
�
3ð1� 3wÞw

2

�
a0

a

�
2 � ‘2

�
Bð‘Þ

¼ 2a20 ~B
ðnÞ
0

a

�
�0

ðkÞ þ
1� 3w

2

�
a0

a

�
�ðkÞ

�
; (13)

and

B 0
ð‘Þ þ

1

2
ð1� 3wÞ

�
a0

a

�
Bð‘Þ ¼ a20

~BðnÞ
0

a
�ðkÞ; (14)

where primes indicate conformal-time derivatives and the
zero suffix marks the beginning of the gravitomagnetic
interaction. Also, in deriving Eqs. (13) and (14) we have
used the evolution law, ~BðnÞ / a�2, of the background

magnetic field [see Eq. (2) in Sec. II A]. As before, the set
(12) and (13) applies to poorly conductive environments,
while Eqs. (12) and (14) operate at the ideal-MHD limit.
The advantage of the new notation is that, when evaluated
in the radiation era, expressions (12)–(14) take a very
simple and compact form that is also straightforward to
solve analytically. In addition, during the radiation era, the
expansion normalized B field satisfies the criteria for
gauge invariance (see Sec. IV).

Mathematically speaking, expression (13) is a wave
formula and (14) is a first-order differential equation.
Physically, this difference reflects the absence of electric
fields in highly conductive environments. What is most
important, however, is that in (13)—as well as in (10)—the
gravitational waves drive the magnetic oscillation. Forced
oscillations, however, are known to provide the natural
physical stage for resonances to occur. In other words,
expressions (10) and (13) open the theoretical possibility
of gravitomagnetic resonances on cosmological scales.

IV. GRAVITATIONALLYAMPLIFIED MAGNETIC
FIELD

The galactic dynamo requires seed fields coherent on a
minimum comoving scale of roughly 10 kpc. In typical
cosmological models such scales have been outside the
Hubble horizon for quite a long time. Therefore, in order to
achieve astrophysically interesting results, we should con-
sider lengths close and beyond the Hubble radius.

A. Resonant amplification

Inflation has long been known to provide a mechanism
that produces electromagnetic fields and gravitational
waves with superhorizon correlations. Also, throughout
the inflationary phase, the Universe is a very poor electrical
conductor. Although the conductivity is expected to grow
quickly with the onset of the radiation era, causality must
confine its effects (i.e. the currents that will eliminate the
electric fields) well inside the horizon. Near and beyond
the Hubble radius, the gravitomagnetic interaction will still
proceed in line with Eqs. (12) and (13).
In the radiation era the expansion normalized variables

introduced in Sec. III B have the double advantage of
simplifying the equations and also of freeing the results
from gauge-related ambiguities. The gauge issue concerns
the magnetic field, since the shear vanishes at the zero-
order level and all the shear-related variables are therefore
gauge independent. The presence of a nonzero background
magnetic field, on the other hand, means that the magnetic-
related variables are generally gauge dependent. During
the radiation era, however, the scalar Bð‘Þ=3H remains

constant to zero order and therefore satisfies the Stewart
and Walker criteria for gauge invariance [18]. As a result,
when radiation dominates the energy density of the
Universe, the expansion normalized variable Bð‘Þ is a

gauge-invariant linear perturbation.
With these in mind, we apply the system (12) and (13) to

a radiation dominated almost-FRW universe. Setting w ¼
1=3, a ¼ a20H0�, and a0=a ¼ 1=�, Eq. (12) reduces to

�00
ðkÞ �

�
2

�2
� k2

�
�ðkÞ ¼ 0; (15)

and accepts the oscillatory solution

�ðkÞ ¼ C1

�
sinðk�Þ þ cosðk�Þ

k�

�

þ C2

�
cosðk�Þ � sinðk�Þ

k�

�
: (16)

Keeping only the dominant � mode, we may rewrite the
above as5

5Including the subdominant � mode in (17) simply adds
decaying oscillatory terms to the right-hand side of solutions
(19) and (20), without changing neither the nature of these
expressions nor the overall results.
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�ðkÞ ¼
�
�ðkÞ

0 sinðk�0Þ þ 1

k
�0ðkÞ

0 cosðk�0Þ
�
sinðk�Þ

þ
�
�ðkÞ

0 cosðk�0Þ � 1

k
�0ðkÞ

0 sinðk�0Þ
�
cosðk�Þ; (17)

with the zero suffix indicating the onset of the gravitomag-
netic interaction—which for our purposes coincides with
the beginning of the radiation era.

At the same time and on the same scales, the gravita-
tionally driven magnetic field obeys the wave formula

B 00
ð‘Þ þ ‘2Bð‘Þ ¼ 6

�
~BðnÞ
0 �0

ðkÞ; (18)

with ~BðnÞ ¼ ~BðnÞ=3H and �ðkÞ given by solution (17).

Differentiating the latter with respect to conformal time
and substituting the result into the right-hand side of (18),
we arrive at

B 00
ð‘Þ þ ‘2Bð‘Þ ¼ � 6k

�
~BðnÞ
0

�
�ðkÞ

0 cosðk�0Þ

� 1

k
�0ðkÞ

0 sinðk�0Þ
�
sinðk�Þ

þ 6k

�
~BðnÞ
0

�
�ðkÞ

0 sinðk�0Þ

þ 1

k
�0ðkÞ

0 cosðk�0Þ
�
cosðk�Þ: (19)

The above traces the evolution of the expansion normal-
ized, gravitationally driven magnetic field during the ra-
diation epoch of an almost-FRW universe near and outside
the Hubble horizon. The solution of Eq. (19) reads6

Bð‘Þ ¼ � 3 ~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

0 þ �02
0

q
‘

Si½ð‘� kÞ��
� sin½ð‘�� k�0Þ ���

� 3 ~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

0 þ�02
0

q
‘

Ci½ð‘� kÞ��
� cos½ð‘�� k�0Þ ���; (20)

where tan� ¼ �0ðkÞ
0 =k�ðkÞ

0 (see the Appendix for details).

Also, SiðxÞ and CiðxÞ represent the sine and the cosine
integral functions, respectively [19]. Therefore, driven by
the gravitational waves, the expansion normalized, gravita-
tionally driven magnetic field oscillates with an amplitude
that depends on the initial conditions. As typical for forced
oscillations, the amplitude also depends on the wave num-
bers of the agents involved. Given that

lim
x!0

SiðxÞ ¼ 0 and lim
x!0

CiðxÞ ¼ �1; (21)

we deduce that when the two waves are in resonance
(namely, as k ! ‘) the amplitude of the magnetic field
increases arbitrarily. Recall that, at least theoretically
speaking, resonant effects do not depend on the strength
of the driving source. In this respect, the magnetic ampli-
fication seen in solution (20) only requires the mere pres-
ence of gravitational waves and is rather insensitive to the
amount of energy stored in them.
We may also express solution (20) in terms of the actual

(instead of the expansion normalized) variables and with
respect to proper (instead of conformal) time. To do that

recall that Bð‘Þ ¼ Bð‘Þ=3H, �ðkÞ ¼ �ðkÞ=3H, ~BðnÞ ¼
~BðnÞ=3H by definition, while �0

ðkÞ ¼ a _�ðkÞ=3H after keep-

ing only the dominant shear mode. Also, H ¼ 1=2t and
� ¼ ffiffi

t
p

=a0H0

ffiffiffiffi
t0

p
during the radiation era. Then, after

some lengthy but straightforward algebra, we arrive at

Bð‘Þ ¼ �
~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

0 þ a20 _�2
0

q
‘H0

�
t0
t

�
Si

�
‘� k

a0H0

ffiffiffiffi
t

t0

s �

� sin

�
‘

a0H0

� ffiffiffiffi
t

t0

s
� k

‘

�
��

�

�
~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

0 þ a20 _�2
0

q
‘H0

�
t0
t

�
Ci

�
‘� k

a0H0

ffiffiffiffi
t

t0

s �

� cos

�
‘

a0H0

� ffiffiffiffi
t

t0

s
� k

‘

�
��

�
; (22)

where now tan� ¼ a _�ðkÞ
0 =k�ðkÞ

0 . The above shows that the

gravitationally driven (actual) magnetic field decays adia-
batically (i.e. Bð‘Þ / t�1 / a�2) like its background coun-

terpart. However, as in solution (20), the presence of the
cosine integral function Ci½ð‘� kÞ ffiffi

t
p

=a0H0

ffiffiffiffi
t0

p � on the
right-hand side of (22) guarantees that the amplitude of
the B field diverges when the two sources are in resonance
(i.e. for k ! ‘). It goes without saying that solution (22)
can be obtained directly from the system (9) and (10). In
particular, solving Eq. (9), keeping the dominant shear
mode and then substituting into (10) leads to expression
(22). To the best of our knowledge, this is the first time the
amplitude of cosmological (or astrophysical) magnetic
fields has been found to diverge, as a result of their inter-
action with gravitational-wave distortions.
Solutions (20) and (22) describe one type of resonance

between the Weyl and the Maxwell fields, but there are
other possibilities as well. In each individual case the
characteristics of the resonance are decided by the shape
of Eq. (18) and by the form of the driving term on the right-
hand side of that expression. Suppose that the source term
has a time-independent amplitude. This can happen, for
example, when the background magnetic field decays as
��1 (like many of the B fields proposed in [8–10]), while

6Mathematically speaking, Eqs. (19) and (20) hold on all
scales, although in this section the ‘‘operational’’ domain of
these expressions lies near and outside the Hubble radius. This
does not always need to be the case however. As we will see in
Sec. IVC, Eq. (19) and solution (20) can also extend to sub-
horizon lengths.
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the expansion normalized shear is still given by (17). In
that case Eq. (18) accepts the solution

B ð‘Þ ¼
2a0 ~B

ðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

0 þ �02
0

q
k2 � ‘2

sin½kð�� �0Þ ���; (23)

which also ensures arbitrary growth for the amplitude of
the gravitationally driven B field as k ! ‘. It is therefore
plausible to argue that a greater variety of physical environ-
ments could support analogous effects. It is also very
likely, however, that only a small fraction of these cases
will be analytically tractable. Overall, our analysis opens
the theoretical possibility for gravity to act, through its
long-range component, as a very efficient magnetic dy-
namo on cosmological scales and long before the onset of
structure formation.

In retrospect, the results reported in this section should
not come as a surprise. After all, we were dealing with
forced oscillations, where theWeyl part of the gravitational
field was the driving agent. Forced oscillations have long
been known to provide the physical stage where resonances
naturally occur. In this sense, our study simply shows that
resonances can also take place between cosmological
gravitational waves and large-scale magnetic fields.

Finally, before closing this section, we should stress that
solution (22) and the resulting gravitomagnetic resonance
could have been obtained in [15] as well. For example,
solve the linearized version of Eq. (46)—the numbering is
that of [15]—during the radiation era and on all scales.
Then, substitute the wave solution of (46) into Eq. (45)—
the numbering is still that of [15]—and solve again. The
result would have led to expression (22) above.

B. Superadiabatic amplification

Let us now turn to the ideal-MHD limit. The main
objective is to illustrate the qualitative change in the nature
of the gravitomagnetic interaction caused by the different
electric properties of the cosmic medium. To some extent
this is to be expected, given the significant differences
between Eqs. (5) and (7)—or between expressions (13) and
(14). To keep things simple, we assume that the magnetic
field is frozen in with the matter on all scales. This is
possible within, say, the Eddington-Lemaitre or the emer-
gent universe scenarios [20], where the cosmos evolves
from a past-eternal static state. Then, in the frame of the
fluid, the gravitomagnetic interaction is monitored by
Eqs. (12) and (14). This means that during the radiation
era the gravitationally driven magnetic field evolves ac-
cording to

B 0
ð‘Þ ¼

3

�
~BðnÞ
0 �ðkÞ; (24)

with ~BðnÞ ¼ ~BðnÞ=3H and�ðkÞ given by (16). As before, the
zero suffix indicates the beginning of the interaction. The

form of expression (24) leads to the first qualitative con-
clusion. In particular, the fact that the B field no longer
obeys a wave equation means that gravitomagnetic reso-
nances are not possible in highly conductive environments
(see also Sec. VIB in [12]).
To demonstrate the effect of the Weyl field at the ideal-

MHD limit, it suffices to consider super-Hubble lengths
and replace solution (16) with its long-wavelength ap-
proximation, namely,

�ðkÞ ¼ 1

3
ð�ðkÞ

0 þ �0�
0ðkÞ
0 Þ

�
�

�0

�
2

þ 1

3
ð2�ðkÞ

0 � �0�
0ðkÞ
0 Þ

�
�0

�

�
: (25)

Substituting this into Eq. (24), integrating and setting the
integration constant to zero for simplicity, leads to

Bð‘Þ ¼ 1

2
~BðnÞ
0 ð�ðkÞ

0 þ �0�
0ðkÞ
0 Þ

�
�

�0

�
2

� ~BðnÞ
0 ð2�ðkÞ

0 � �0�
0ðkÞ
0 Þ

�
�0

�

�
; (26)

on all super-Hubble lengths. Finally, recalling that Bð‘Þ ¼
Bð‘Þ=3H, that ~BðnÞ ¼ ~BðnÞ=3H, and that H ¼ 1=a20H0�

2

throughout the radiation era—which also implies that
a0H0�0 ¼ 1 at the time, we arrive at

Bð‘Þ ¼ 1

2
~BðnÞ
0 ð�ðkÞ

0 þ �0�
0ðkÞ
0 Þ

� ~BðnÞ
0 ð2�ðkÞ

0 � �0�
0ðkÞ
0 Þ

�
�0

�

�
3
: (27)

Following (27), prior to equipartition, the gravitationally
driven magnetic field no longer decays adiabatically.
Instead, the dominant magnetic mode remains constant,
which implies a superadiabatic type of amplification for
the B field on all super-Hubble scales due to Weyl-
curvature effects. This means that magnetic fields that
cross inside the Hubble radius around the time of matter-
radiation equilibrium have magnitudes equal to

Bð‘Þ
H ¼ 1

2ð�ðkÞ
0 þ �0�

0ðkÞ
0 Þ ~BðnÞ

0 : (28)

Thus, the strength of the residual B field depends on that of
its background counterpart at the onset of the interaction
and on the relative shear anisotropy at the same time. In
particular, the final outcome is decided by the values of

�ðkÞ
0 and �0ðkÞ

0 , of which the first (at least) is expected to be

very small. Therefore, unless �0�
0
0 	 �0—or the shear

anisotropy is larger than anticipated—this effect is unlikely
to produce magnetic fields of astrophysical importance.
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C. Finite conductivity

So far, we have focused on the two limiting cases of very
low and very high electrical conductivity. For complete-
ness, let us take a brief qualitative look at the intermediate
scenario of finite resistivity. Assuming that the conductiv-
ity coefficient has a nearly homogeneous spatial distribu-
tion (i.e. setting Da& ’ 0), Eqs. (5) and (6) combine to

€Ba � D2Ba þ 5ð1þ 1
5~&ÞH _Ba þ 3ð1� wþ 2

3~&ÞH2Ba

¼ 2½ _�ab þ 2ð1þ 1
4~&ÞH�ab� ~Bb; (29)

where ~& ¼ &=H is the expansion normalized conductivity
scalar (see Sec. VIA in [12] for more details on the deri-
vation). As long as ~& � 1, the above reduces to Eq. (10)
and the Weyl-Maxwell coupling proceeds as in poorly
conductive mediums irrespective of the scale. Therefore,
gravitomagnetic resonances, like those discussed in
Sec. IVA, can also occur on subhorizon lengths, as long
as ~& � 1 there

When the ratio &=H is large, we can no longer ignore the
role and the effects of the electric conductivity (on sub-
Hubble scales). Then, expression (29) assumes the form

€Ba � D2Ba þ ~&H _Ba þ 2~&H2Ba

¼ 2ð _�ab þ 1
2~&H�abÞ ~Bb; (30)

and the gravitomagnetic interaction depends largely on the
electric properties of the medium. Situations like this
require a model for the conductivity of the cosmic plasma.
Note that the above relation applies to cosmological envi-
ronments of significant but still finite conductivity and one
should not simply extrapolate it to the ideal-MHD limit
(where & ! 1). There, the electric fields vanish [see
Eq. (6)] and one should instead use Eqs. (11) or (14).

V. DISCUSSION

The widespread presence of magnetic fields in the
Universe is a hard observational fact. From the nearby
planets and stars, all the way to distant galaxies, galaxy
clusters and remote high-redshift protogalactic clouds, the
magnetic presence has been repeatedly verified. The origin
of the large-scale B fields, however, is still illusive.
Typically, magnetic fields with coherence scales large
enough to sustain the galactic dynamo are too weak, while
those of adequate strength span very small lengths.
Inflation can naturally produce large-scale correlations
and it has long been seen as the strongest candidate for
early-time magnetogenesis. Nevertheless, B fields that
survive the exponential phase are typically too weak to
seed the dynamo, unless classical electromagnetism is
modified or FRW hosts with non-Euclidean spatial geome-
try are involved.

Geometry could provide a solution to the magnetic-
strength problem through Weyl-curvature distortions as
well. Gravitational waves, which are readily produced
during the inflationary era, interact with magnetic fields
via the shear anisotropy that they introduce. The outcome
of the coupling between the Weyl and the Maxwell fields
depends, among others, on the electric properties of the
medium that fills the Universe. In highly conductive envi-
ronments, where the currents keep the B field frozen in
with the fluid, the gravitomagnetic interaction slows down
the standard adiabatic magnetic decay. Looking at the
radiation era, we found a superadiabatic type of amplifi-
cation. The strength of the field remained constant, instead
of dropping in accord with the usual a�2 law. Nevertheless,
the overall magnetic growth is likely to be small, unless the
amount of the initial shear anisotropy is higher than
expected.
The Weyl-Maxwell coupling looks much more promis-

ing in poorly conductive environments, where the gravita-
tional waves drive the magnetic oscillations. Forced
oscillations are well known to provide the natural environ-
ment for resonances to occur. It is not surprising then that
our analysis has found resonances between gravitational
waves and magnetic fields. During the radiation era, in
particular, the amplitude of the gravitationally driven
B field was found to diverge when the wave numbers of
the two sources coincided. Physically speaking, what reso-
nant solutions mean is that very weak vibrations can have
disproportionately strong effects. This is also what our
analysis indicates: that very weak gravitational waves
can strongly amplify cosmological magnetic fields.
Typically, the mechanism operates near and beyond the

Hubble horizon. Smaller scales can also provide a favor-
able environment, as long as ~& ¼ &=H � 1 there [see
Eq. (29) in Sec. IVC]. Given that inflation produces gravi-
tational waves and magnetic fields essentially on all
lengths, the chances of resonances to occur (i.e. the proba-
bility of their wavelengths coinciding) should be relatively
high. On causality grounds, the most likely time for the
amplification to occur is at horizon crossing. Well inside
the Hubble radius, the currents should eliminate the elec-
tric fields and freeze the magnetic component in, thus
changing the nature of the interaction. Naively, one should
also expect a similar amount of strengthening for every
magnetic mode passing through the horizon. This favors a
scale-invariant spectrum for essentially all the large-scale
B fields in the Universe. The latter appears to be in quali-
tative agreement with the observations, which show mag-
netic fields of similar (�G order) strength in nearby
galaxies as well as in remote protogalactic structures.
Finally, we should point out that cosmology is probably

not the only venue where gravitomagnetic resonances can
occur. In principle, analogous effects could also take place
in astrophysical environments. After all, the nature and the
basic physics of the interaction remain the same. With this
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in mind, it might be worth investigating whether (and
under what conditions) the coupling between astrophysical
gravitational waves and magnetic/electromagnetic fields
could lead to the resonant amplification of the latter.
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APPENDIX

Given the key role of solution (20), we provide some
additional technical information and intermediate steps for
the interested reader who wishes to recover the above
named expression. To begin with, it is relatively straight-
forward to verify that Eq. (19) can be solved analytically
on all scales. The solution describes forced oscillation and
takes the form

Bð‘Þ ¼ C1 sinð‘�Þ þ C2 cosð‘�Þ þ 3k ~BðnÞ
0 �ðkÞ

0

‘
½cosðk�0Þ sinð‘�Þ � sinðk�0Þ cosð‘�Þ�Si½ð‘� kÞ��

� 3 ~BðnÞ
0 �0ðkÞ

0

‘
½sinðk�0Þ sinð‘�Þ þ cosðk�0Þ cosð‘�Þ� Si½ð‘� kÞ��

þ 3k ~BðnÞ
0 �ðkÞ

0

‘
½sinðk�0Þ sinð‘�Þ þ cosðk�0Þ cosð‘�Þ�Ci½ð‘� kÞ��

þ 3 ~BðnÞ
0 �0ðkÞ

0

‘
½cosðk�0Þ sinð‘�Þ � sinðk�0Þ cosð‘�Þ�Ci½ð‘� kÞ��

� 3k ~BðnÞ
0 �ðkÞ

0

‘
½cosðk�0Þ sinð‘�Þ þ sinðk�0Þ cosð‘�Þ�Si½ð‘þ kÞ��

þ 3 ~BðnÞ
0 �0ðkÞ

0

‘
½sinðk�0Þ sinð‘�Þ � cosðk�0Þ cosð‘�Þ� Si½ð‘þ kÞ��

þ 3k ~BðnÞ
0 �ðkÞ

0

‘
½sinðk�0Þ sinð‘�Þ � cosðk�0Þ cosð‘�Þ�Ci½ð‘þ kÞ��

þ 3 ~BðnÞ
0 �0ðkÞ

0

‘
½cosðk�0Þ sinð‘�Þ þ sinðk�0Þ cosð‘�Þ�Ci½ð‘þ kÞ��; (A1)

where C1;2 are the integration constants, while SiðxÞ and
CiðxÞ are the sine and the cosine integral functions, respec-
tively. Also, the primes indicate conformal-time deriva-
tives and the zero suffix corresponds to the onset of the
gravitomagnetic interaction, which for our purposes coin-
cides with the beginning of the radiation era. Since the
gravitationally induced magnetic field vanishes in the ab-
sence of shear perturbations, we may set the aforemen-
tioned integration constants to zero. Then, using standard
trigonometry, solution (A1) reduces to the compact ex-
pression

Bð‘Þ ¼�3 ~BðnÞ
0

‘
½k�ðkÞ

0 sinð‘��k�0Þ��0ðkÞ
0 cosð‘��k�0Þ�

�Si½ð‘�kÞ��

�3 ~BðnÞ
0

‘
½k�ðkÞ

0 cosð‘��k�0Þ��0ðkÞ
0 sinð‘��k�0Þ�

� Ci½ð‘�kÞ��: (A2)

Finally, setting tan� ¼ �0ðkÞ
0 =k�ðkÞ

0 and employing some
relatively lengthy but straightforward algebra, we arrive at
solution (20)

Bð‘Þ ¼ � 3 ~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

0 þ �02
0

q
‘

Si½ð‘� kÞ��
� sin½ð‘�� k�0Þ ���

� 3 ~BðnÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2

0 þ �02
0

q
‘

Ci½ð‘� kÞ��
� cos½ð‘�� k�0Þ ���: (A3)

Note that, for simplicity, we have suppressed the wave
numbers (k) of the �0 modes inside the square roots.
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