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It has been suggested recently to study the dynamics of a gravitating gluon condensate q in the context

of a spatially flat Friedmann-Robertson-Walker universe. The expansion of the Universe (or, more

generally, the presence of a nonvanishing Ricci curvature scalar R) perturbs the gluon condensate and

may induce a nonanalytic term ~hðR; qÞ in the effective gravitational action. The aim of this article is to

explore the cosmological implications of a particular nonanalytic term ~h / �jRj1=2jqj3=4. With a quadratic

approximation of the gravitating gluon-condensate vacuum energy density �VðqÞ near the equilibrium

value q0 and a small coupling constant � of the modified-gravity term ~h, an ‘‘accelerating universe’’ is

obtained which resembles the present Universe, both qualitatively and quantitatively. The unknown

component X of this model universe (here, primarily due to modified-gravity effects) has an effective

equation-of-state parameter �wX which is found to evolve toward the value �1 from above.
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I. INTRODUCTION

The fundamental theory of the strong interactions is
nowadays taken to be quantum chromodynamics (QCD);
see, e.g., Refs. [1,2] and other references therein. In the
framework of this theory, there is evidence for the exis-
tence of a gluon condensate [3–6]. The question, then, is
how the gluon condensate gravitates and evolves as the
Universe expands. Here, a tentative answer is obtained by
use of the so-called q-theory approach for the gravitational
effects of vacuum energy density [7–10].

The outline of this article is as follows. In Sec. II, an
example of a gluon-condensate-induced modification of
gravity is presented and the corresponding field equations
are derived, which are then reduced for the case of a
spatially flat Friedmann-Robertson-Walker universe. In
Sec. III, the resulting evolution of a simple three-
component model universe is studied both analytically
and numerically, in order to establish whether or not a
model universe can be obtained which resembles the ob-
served ‘‘accelerating Universe’’ [11,12]. In Sec. IV, con-
cluding remarks are presented.

II. QCD-SCALE MODIFIED GRAVITYAND
COSMOLOGY

A. Theory: Action and field equations

It has been argued [10] that, in a de Sitter universe with
Hubble constant H, a QCD-scale vacuum energy density
�V � jHj�3

QCD could arise from infrared effects of the

gluon propagator. Since the de Sitter universe has Ricci
curvature scalar jRj �H2 and the particular gluon conden-
sate q has energy scale q��4

QCD, one is led to consider the

following modified-gravity action (@ ¼ c ¼ 1):

Seff ¼
Z
R4

d4x
ffiffiffiffiffiffiffi�g

p ½K ~fðR; qÞ þ �ðqÞ þLMðc Þ�; (2.1a)

~f � Rþ ~h � Rþ �K�1jRj1=2jqj3=4; (2.1b)

with gravitational coupling constant K � ð16�GÞ�1 > 0,
dimensionless coupling constant �> 0 (standard general
relativity has � ¼ 0), energy density �ðqÞ of the gluon
condensate qðxÞ, and matter field c ðxÞ (later on, this single
matter component will be generalized to N matter compo-
nents). The precise definition of the gluon-condensate
variable qðxÞ in the context of QCD has been given in
Ref. [10], to which the reader is referred for details. In the
following, q is simply assumed to be nonzero and is, in
fact, taken to be positive. The relation between the gravi-
tational constant G and Newton’s constant GN [13,14] will
be discussed in Sec. III B. Throughout, the conventions of
Ref. [15] are used, in particular, those for the Riemann
tensor and the metric signature ð� þþþÞ.
The field equations from (2.1) are fourth order and it is

worthwhile to switch to the scalar-tensor formulation
which has field equations of second order. The equivalent
Jordan-frame Brans-Dicke theory [15–18] has action

SðBDÞeff ¼
Z
R4
d4x

ffiffiffiffiffiffiffi�g
p ½Kð�R�Uð�;qÞÞþ �ðqÞþLMðc Þ�;

(2.2a)

U��ð1=4Þð�2=K2Þjqj3=2=ð1��Þ; (2.2b)

in terms of a dimensionless scalar field � restricted to
values less than 1 (� would be greater than 1 for the �<
0 case not considered here). The� dependence of potential
(2.2b) allows for the so-called chameleon effect [19],
which will be briefly discussed at the end of this section.1
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1See also Ref. [20] for chameleon-type effects in a different
context and Ref. [21] for recent analytic and numerical work on
the scalar profiles from compact objects, extending the original
analysis of Ref. [19].
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The proof of the classical equivalence of the actions (2.1)
and (2.2), for � � 0 and q � 0, is not affected by the

presence of the q field in the function ~f of (2.1b). See,
e.g., Refs. [22–24] for details of the proof, which is
straightforward and need not be repeated here. Anyway,
the classical equivalence of (2.1) and (2.2) can be verified
directly by eliminating � from (2.2a), using its field equa-
tion R ¼ @U=@� with Uð�Þ given by (2.2b).

At this moment, two remarks may be helpful to place the
theory considered in context. First, the rigorous micro-
scopic derivation of the effective action (2.1) remains a
major outstanding problem, because only a rough argu-
ment has been given in the appendix of Ref. [10], where �
was called f (see also Ref. [25] for a general discussion of
the physics involved and [26] for a heuristic argument).
Awaiting this derivation, the main motivation of (2.1) is
that it naturally gives the correct order of magnitude for the
present vacuum energy density (see Ref. [10] and Sec. IV).

Just to be crystal clear: the term ~h in (2.1b) is, at present,
purely hypothetical and the aim of this article is to explore
its cosmological consequences, leaving aside its theoretical
derivation.

Second, the effective action (2.1) is only considered to
be valid on cosmological length scales and additional non-

standard terms in ~fðR; qÞ can be expected to be operative at
smaller length scales, relevant to solar-system tests and
laboratory experiments [22,23]. Purely phenomenologi-

cally, the ~h term in (2.1b) could, for example, be replaced
by an extended term

~h ext ¼ �K�1jqj9=4jRj1=2=ðjqj3=2 þ �K2jRjÞ; (2.3)

with constants 0<� � j�j & 1. This term ~hext vanishes

as jRj�1=2 at large enough curvatures and, for �� 10�3

and j�j � 1, is consistent with the relevant bound in
Ref. [23] based on the Eöt-Wash laboratory experiment
[27].

Returning to the action (2.2), the field equations are
obtained from the variational principle for variations
�g�	 of the metric g�	, variations �� of the Brans-

Dicke field �, and variations �A of the microscopic field
A responsible for q condensate (see, in particular,
Refs. [8,10]). Specifically, the field equations are

R�	 � 1

2
Rg�	 ¼ � 1

2�K
ðT�	

M � ~�g�	Þ � 1

2�
~Ug�	

� 1

�
ðr�r	 � g�	hÞ�; (2.4a)

R ¼ @U

@�
; (2.4b)

@�

@q
� K

@U

@q
¼ �; (2.4c)

with the covariant derivative r�, the invariant

d’Alembertian h � r	r	, the energy-momentum tensor
T�	
M of the matter field c , the integration constant �, and

the effective energy densities

~� � �� q
@�

@q
; (2.5a)

~U � U� q
@U

@q
: (2.5b)

Two comments are in order. First, the reason of having the
extra term �q@�=@q in (2.5a) and �q@U=@q in (2.5b) is
the fact that the field q is not fundamental but contains, in
addition to the microscopic field A mentioned above, the
inverse metric g�	 (see Sec. II of Ref. [10]). Second, the
constant � on the right-hand side of (2.4c) can be inter-
preted, for spacetime-independent q and dU=dq ¼ 0, as
the chemical potential corresponding to the conserved
charge q (see, in particular, the detailed discussion in
Secs. II A and B of Ref. [7]).
For completeness, also the generalized Klein-Gordon

equation is given, which is obtained by taking the trace of
(2.4a) and using (2.4b):

h� ¼ 1

6K
ðTM � 4~�Þ þ 2

3
~U� 1

3
�
@U

@�
; (2.6)

with the matter energy-momentum trace TM � T�	
M g�	.

Eliminating q@U=@q from (2.4a) and (2.4c), the final
field equations are

R�	 � 1

2
Rg�	 ¼ � 1

2�K
ðT�	

M � �Vg
�	Þ � 1

2�
Ug�	

� 1

�
ðr�r	 � g�	hÞ�; (2.7a)

R ¼ @U

@�
; (2.7b)

@�V

@q
¼ K

@U

@q
; (2.7c)

in terms of the gravitating vacuum energy density

�VðqÞ � �ðqÞ ��q; (2.8)

with the integration constant �. Equally, the generalized
Klein-Gordon equation (2.6) becomes

h� ¼ 1

6K
ðTM � 4�VÞ þ 2

3
U� 1

3
�
@U

@�
; (2.9)

where the very last term on the right-hand side, in particu-
lar, is relevant to the previously mentioned chameleon
effect. With (2.7b), this last term of (2.9) becomes
ð�R=3Þ� and corresponds to an effective mass square
term for the scalar field, with a mass square of the order
of �M=K for the case of a pressureless perfect fluid. This is
indeed one aspect of the chameleon effect, namely, an
effective mass value dependent on the environment [19].
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B. Differential equations for a flat FRW universe

For a spatially flat (k ¼ 0) Friedmann-Robertson-
Walker (FRW) universe [15] with scale factor að
Þ and
matter described by a perfect fluid, the 00 and 11 compo-
nents of the generalized Einstein field equation (2.7a) can
be combined to give a generalized Friedmann equation.
Together with equations obtained directly from (2.7b) and
(2.9), the relevant equations are then

H2� ¼ 1

6K
�tot � 1

6
U�H _�; (2.10a)

_H ¼ �2H2 � 1

6

@U

@�
; (2.10b)

€� ¼ �3H _�þ 1

6K
ð�tot � 3PtotÞ � 2

3
Uþ 1

3
�
@U

@�
;

(2.10c)

with the overdot standing for the derivative with respect to

 (the somewhat unusual notation 
 is used for the dimen-
sionful cosmic time, in order to reserve the letter t for the
dimensionless time later on). The total energy density and
pressure are given by

�tot � �V þ �M; Ptot � PV þ PM; (2.11a)

for the gravitating vacuum energy density

�VðqÞ ¼ �PVðqÞ ¼ �ðqÞ ��q; (2.11b)

as discussed in the previous section. Observe that (2.10a)
reproduces the standard Friedmann equation for U ¼ 0,
� ¼ 1, and K � ð16�GÞ�1 ¼ ð16�GNÞ�1 � KN .

The last two equations in (2.10) are, respectively, first-
and second-order ordinary differential equations (ODEs)
forH and�. Two further ODEs can be obtained as follows.
First, multiplying (2.7c) by _q gives an equation for the time
dependence of the vacuum energy density,

_� V ¼ K

�
_U� _�

@U

@�

�
; (2.12a)

which describes the energy exchange between the vacuum
and the nonstandard gravitational field (U � 0). Second,
the standard energy conservation of matter gives

_�M ¼ �3Hð�M þ PMÞ ¼ �3Hð1þ wMÞ�M; (2.12b)

where the matter equation-of-state (EOS) parameter wM �
PM=�M has been introduced (henceforth, wM will be as-
sumed to be time independent). Equation (2.12b) implies
that, for the theory considered, there is no energy exchange
between vacuum and matter (such an energy exchange for
a different version of q-theory has been studied in
Ref. [28]).

C. Dimensionless variables and ODEs

Now rewrite the cosmological equations in appropriate
microscopic units. The gluon condensate q from

Refs. [3,10] has the dimension of energy density, ½q� ¼
½��, which implies that the corresponding integration con-
stant� is dimensionless, ½�� ¼ ½1�. The equilibrium value
q0 of the gluon-condensate variable q is taken to be deter-
mined by a laboratory experiment in an environment with
negligible spacetime curvature and has the order of mag-
nitude q0 � E4

QCD ¼ Oð109 eV4Þ; see Sec. III C for further

remarks. From this moment on, consider N matter compo-
nents, labeled by an index n ¼ 1; . . . ; N.
Specifically, the following dimensionless variables t, h,

f, r, u, and s can be introduced:


 � tK=q3=40 ; Hð
Þ � hðtÞq3=40 =K; (2.13a)

qð
Þ � fðtÞq0; �ð
Þ � rðtÞq3=20 =K; (2.13b)

Uð
Þ � uðtÞq3=20 =K2; �ð
Þ � sðtÞ: (2.13c)

Observe that all dimensionless quantities are denoted by
lowercase Latin letters. A further rescaling t ¼ t0=� and
h ¼ h0� will not be used in the present article, as the
effects from the unknown coupling constant � are pre-
ferred to be kept as explicit as possible.
It is, then, straightforward to obtain the dimensionless

versions of the algebraic equation (2.7c), the last two ODEs
in (2.10), and the matter conservation equation (2.12b)
generalized to N matter components. This gives a closed
system of 4þ N equations for the 4þ N dimensionless
variables fðtÞ, hðtÞ, sðtÞ, vðtÞ, and rM;nðtÞ. Specifically, this
system of equations consists of a single algebraic equation,

@rVðfÞ
@f

¼ @uðs; fÞ
@f

; (2.14)

and 3þ N ODEs,

_h ¼ �2h2 � 1

6

@u

@s
; (2.15a)

_s ¼ v; (2.15b)

_v ¼ 1

6
ðrtot � 3ptotÞ � 3hv� 2

3
uþ 1

3
s
@u

@s
; (2.15c)

_rM;n ¼ �3hð1þ wM;nÞrM;n; (2.15d)

where, now, the overdot stands for differentiation with
respect to the dimensionless cosmic time t and the dimen-
sionless total energy density and pressure are given by

rtot ¼ þrV þ XN
n¼1

rM;n; (2.16a)

ptot ¼ �rV þ XN
n¼1

wM;nrM;n; (2.16b)

with matter EOS parameters wM;n still to be specified. The

dimensionless vacuum energy density rV appearing in the
above equations will be discussed in Sec. II D. The dimen-
sionless potential u has already been defined by (2.2b) and
(2.13c), but will be given again in Sec. II D.
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With the solution of Eqs. (2.14) and (2.15) for appro-
priate boundary conditions, it is possible to verify
a posteriori the Friedmann-type equation (2.10a) in dimen-
sionless form:

h2sþ hv ¼ ðrtot � uÞ=6; (2.17)

which, in general, is guaranteed to hold by the con-
tracted Bianchi identities and energy conservation (cf.
Refs. [15,28]). Specifically, if the solution of Eqs. (2.14)
and (2.15) satisfies (2.17) at one particular time, then (2.17)
is satisfied at all the times considered. The additional
constraint (2.17) will provide a valuable check on the
numerical solution of the equations.

D. Ansatz for rVðfÞ and solution for fðsÞ
The only further input needed for the cosmological

Eqs. (2.14) and (2.15) is an Ansatz for the gravitating
vacuum energy density �VðqÞ from (2.8) or the correspond-
ing dimensionless quantity rV from (2.13b). In Refs. [7–
10], it was argued that the vacuum variable q of the late
Universe is close to its flat-spacetime equilibrium value q0
and the quadratic approximation can be used

rV ¼ �ð1� fÞ2; (2.18)

with positive constant �.
From the rV definition in (2.13b), the constant � in (2.18)

can be expected to be of order Z�1, with definition

Z � q1=20 K�1 � 16�ðEQCD=EPlanckÞ2 � 10�38; (2.19)

for the quantum-chromodynamics energy scale EQCD �
0:2 GeV and the standard gravitational energy scale

EPlanck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c5=GN

q
� 1:22� 1019 GeV (having set G�

GN; see Sec. III B). According to the discussion in
Refs. [7–10], f can also be expected to be sufficiently
close to 1, in order to reproduce an rV value of order unity
or less for the present Universe. For technical reasons, the
value Z ¼ 10�2 is taken in a first numerical study
(Sec. III C). Later, the proper boundary conditions and
scaling behavior are considered (Sec. III D).

The dimensionless scalar potential uðs; fÞ from (2.2b)
and (2.13c) can be written as

uðtÞ � UK2q�3=2
0 ¼ �ð�2=4Þ fðtÞ3=2

1� sðtÞ ; (2.20)

where a relatively small value for � appears to be indicated
[10] by the measured value of the vacuum energy density;
see Secs. III B and III D for further discussion on the
numerical value of �.

With the specific functions (2.18) and (2.20), Eq. (2.14)
is a quadratic in

ffiffiffi
f

p
and the positive root gives

�f�ðsÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDðsÞ2

q
�DðsÞÞ2; (2.21a)

DðsÞ � �=j1� sj 	 0; (2.21b)

� � ð3=32Þ�2=� 	 0; (2.21c)

where the minus sign inside the outer parentheses on the
right-hand side of (2.21a) holds for s < 1 (the plus sign
appears for the s > 1 case not considered here).
Expression (2.21a) can then be used to eliminate all occur-
rences of f in the 3þ N ODEs (2.15) for the remaining
3þ N variables hðtÞ, sðtÞ, vðtÞ, and rM;nðtÞ. Referring to the
ODEs (2.15) in the following, it will be understood that f
has been replaced by �f�ðsÞ from (2.21).

III. THREE-COMPONENT MODEL UNIVERSE

A. Preliminaries

The modified-gravity theory considered in this article
has been presented in Sec. II A and the corresponding
dynamical equations for a spatially flat FRW universe in
Secs. II B, II C, and II D. The specific model studied in this
section is a simplified version with only three components
labeled n ¼ 0, 1, 2:
(0) A gluon condensate (described by the dimensionless

variable f) with dimensionless energy density rVðfÞ from
(2.18) and constant equation-of-state parameter wV ¼ �1,
which is taken to give rise to a nonanalytic term in the
modified-gravity action (2.1).
(1) A perfect fluid of ultrarelativistic matter (e.g., pho-

tons) with energy density rM;1 and constant EOS parameter

wM;1 ¼ 1=3.
(2) A perfect fluid of nonrelativistic matter [e.g., cold

dark matter (CDM) and baryons (B)] with energy density
rM;2 and constant EOS parameter wM;2 ¼ 0.

From the scalar-tensor formalism of the gluon-condensate-
induced modification of gravity, there is also the auxiliary
Brans-Dicke scalar sðtÞ to consider, with the dimensionless
potential uðs; fÞ from (2.20).
The relevant ODEs follow from (2.15) by letting the

matter label run over n ¼ 1, 2. The ideal starting point of
the calculations would be some time after the QCD cross-
over at T ��QCD with rM;1 
 rM;2. The physical idea is

that the expansion of the Universe was standard up till that
time and that, then, a type of phase transition occurred with
the creation of the gluon condensate. Clearly, the gluon
condensate can be expected to start out in a nonequilibrium
state, f � 1 and s � 1. These issues will be discussed
further in Sec. III D.
At this moment, it is useful to recall the basic equations

of a standard flat FRW universe [15,29] with gravitational
coupling constant G ¼ GN or K ¼ KN . For two compo-
nents, a pressureless material fluid labeled M and an un-
known fluid labeled X, these equations are
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6h2 � 6ð _a=aÞ2 ¼ rM þ rX; (3.1a)

�12 €a=a ¼ rM þ rX þ 3pM þ 3pX ¼ rM þ rXð1þ 3wXÞ;
(3.1b)

where pM in (3.1b) has been set to zero and the EOS
parameter wX � pX=rX has been introduced. The standard
energy-density parameters are defined as follows:

�M � rM=ð6h2Þ; �X � rX=ð6h2Þ ¼ 1��M:

(3.2a)

In addition, the following combination of observables can
be introduced to determine the unknown EOS parameter:

�wX � � 2

3

�
€aa

ð _aÞ2 þ
1

2

�
1

1��M

¼ wX; (3.2b)

where the last equality holds, again, for pM ¼ 0. See, e.g.,
Refs. [30,31] for details on how to reconstruct the dark-
energy equation of state from observations.

In order to be specific, take the following fiducial values:

f�M;�X; �wXgstandard FRWpresent ¼ f0:25; 0:75;�1g; (3.3)

which agree more or less with the recent data compiled in
Refs. [32–37]. The standard flat FRW universe with pa-
rameters (3.3) corresponds, in fact, to the basic �CDM
model [29] with CDM energy density rM / 1=a3 (with
constant EOS parameter wM ¼ 0) and time-independent
vacuum energy density l � rX / a0 (with constant EOS
parameter wX ¼ �1 and l the dimensionless version of the
cosmological constant �).

Returning to the modified-gravity theory (2.1) and (2.2),
the same observables � and �wX can be identified.
Specifically, the generalized Friedmann equation (2.17)
gives

�X þ�M ¼ 1; (3.4a)

�X � �grav þ�V; (3.4b)

�grav � 1� s� _s=h� u=ð6h2Þ; (3.4c)

�V � rV=ð6h2Þ; (3.4d)

�M � rM=ð6h2Þ; (3.4e)

where �grav is the new ingredient, as it vanishes for the

standard theory with u ¼ 0 and s ¼ 1. Similarly, the ef-
fective EOS parameter of the unknown component X can
be extracted from (2.15) and (2.17) for pM ¼ 0:

�wX � � 2

3

�
€aa

ð _aÞ2 þ
1

2

�
1

1��M

¼ � rV � u� 4h _s� 2€s

rV � u� 6h _sþ rMð1� sÞÞ : (3.5)

The right-hand side of (3.5) shows that �wX of the modified-
gravity model (2.2) approaches the value�1 in the limit of
vanishing matter content and constant Brans-Dicke scalar s
as t ! 1. A priori, there is no reason why this approach

cannot be from below, so that 1þ �wX would be negative
for a while (cf. Ref. [38]).
The main goal of this section is to get a quasirealistic

model for the ‘‘present universe,’’ which is taken to be
defined by a value of approximately 0.25 for the matter
energy-density parameter �M. This can only be done with
a numerical solution of the ODEs, but, first, analytic results
relevant to the asymptotic behavior at early and late times
are discussed.

B. Analytic results

It is not difficult to get two types of analytic solutions of
the combined ODEs (2.15) and (2.17) for the specific
functions (2.18) and (2.20), having used solution (2.21) to
eliminate f in favor of s. The first corresponds to a
Friedmann universe with relativistic matter and without
vacuum energy. The second corresponds to a de Sitter–
type universe without matter and with an effective form of
vacuum energy.
For � ¼ 0, the first analytic solution of (2.15), (2.16),

(2.17), (2.18), (2.19), (2.20), and (2.21) has only relativistic
matter (wM;1 ¼ 1=3) contributing to the expansion.

Specifically, this Friedmann solution (labeled ‘‘F’’) is
given by

hðFÞ ¼ ð1=2Þt�1; sðFÞ ¼ fðFÞ ¼ 1; (3.6a)

rðFÞM;1 ¼ ð3=2Þt�2; rðFÞM;2 ¼ 0: (3.6b)

Remark that standard general relativity [which has, from
the start, the action equal to (2.1) for � ¼ 0 and G ¼ GN]
allows for arbitrary values rM;1ð1Þ and rM;2ð1Þ at reference
time t ¼ 1.
For �> 0, the second set of analytic solutions of (2.15),

(2.16), (2.17), (2.18), (2.19), (2.20), and (2.21) has only
vacuum energy contributing to the expansion, together
with the effects of the gluon-condensate-induced modifi-
cation of gravity ( �wX ¼ �1). This type of solution has
constant (time-independent) variables h > 0 and s 2
ð0; 1Þ, with f given by (2.21a). From (2.15a) and (2.15c),
using (2.20), a cubic in s is obtained, which needs to be
discussed first.
Specifically, the cubic in x � 1� s reads

9x3 � 6x2 þ ð1þ 9�2Þx� 6�2 ¼ 0; (3.7)

with parameter � defined by (2.21c). This cubic has three

distinct real solutions for 0< �2 < ð5 ffiffiffi
5

p � 11Þ=18 �
ð0:100 094Þ2. Two of these solutions (with 2=3< s < 1)
give stationary de Sitter–type solutions of the ODEs (2.15),
(2.16), (2.17), (2.18), (2.19), (2.20), and (2.21). These two
roots can be written in manifestly real form by use of the
Chebyshev cube root

C1=3ðtÞjjtj<2 � 2 cos½ð1=3Þ arccosðt=2Þ�; (3.8a)

C1=3ð0Þ �
ffiffiffi
3

p
: (3.8b)
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Defining the auxiliary parameters

p � ð1=3Þð1=27þ �2Þ; (3.9a)

q � ð2=9Þð1=82� 2�2Þ; (3.9b)

the relevant roots of (3.7) are

shigh ¼ 7=9þ ffiffiffiffi
p

p
C1=3ð�qp�3=2Þ; (3.10a)

smid ¼ 7=9þ ffiffiffiffi
p

p ½C1=3ðqp�3=2Þ � C1=3ð�qp�3=2Þ�;
(3.10b)

where the third solution slow ¼ 7=3� shigh � smid can be

omitted, as it lies below 2=3 for � in the domain considered
[the stationary limit of, e.g., Eq. (2.15c) requires s 	 2=3
because rV from (2.18) is non-negative by definition].

The first de Sitter–type solution (labeled ‘‘deS,0’’ be-
cause f� 0 for j�j � 1) is then given by

sðdeS;0Þ ¼ shigh ¼ 1� 6�2 � 162�4 þ Oð�6Þ; (3.11a)

fðdeS;0Þ ¼ �f�ðshighÞ ¼ 9ð�2 þ 36�4Þ þ Oð�6Þ; (3.11b)

hðdeS;0Þ ¼ �=ð4 ffiffiffi
3

p ÞjfðdeS;0Þj3=4j1� sðdeS;0Þj�1

¼
ffiffiffiffiffiffiffiffiffi
�=6

q
½1� ð81=2Þ�4 þ Oð�6Þ�; (3.11c)

rðdeS;0ÞM;n ¼ 0; (3.11d)

in terms of the function �f�ðsÞ defined by (2.21a) and with
an integer n ¼ 1, 2 to label the different matter compo-
nents. Note that the expression in the middle of (3.11c)

simply follows from (2.15a) for _h ¼ 0 and u from (2.20).
The second solution (labeled ‘‘deS,1’’ because f� 1 for

j�j � 1) is given by

sðdeS;1Þ ¼ smid ¼ 2=3þ �þ 3�2 þ ð27=2Þ�3

þ 81�4 þ Oð�5Þ; (3.12a)

fðdeS;1Þ ¼ �f�ðsmidÞ ¼ 1� 6�� 27�3 � 162�4 þ Oð�5Þ;
(3.12b)

hðdeS;1Þ ¼ �=ð4 ffiffiffi
3

p ÞjfðdeS;1Þj3=4j1� sðdeS;1Þj�1

¼ ffiffiffiffiffiffiffiffiffi
2��

p
=1024½1024� 1536�þ 1152�2 þ 1728�3

þ 17496�4 þ Oð�5Þ�; (3.12c)

rðdeS;1ÞM;n ¼ 0; (3.12d)

where � is non-negative according to the original definition
(2.21c). Note that the last expressions of both (3.11c) and
(3.12c) are proportional to

ffiffiffiffi
�

p
with all further dependence

on � entering through the parameter � / �2=�, as can be
expected on general grounds from the ODEs (2.15) without
matter.

It is not quite trivial that there indeed exist de Sitter–type
solutions in the modified-gravity theory (2.1). The first
solution (3.11) is far from the equilibrium state fequil ¼ 1

and the second solution (3.12) is close to it, at least for
j�j � 1. The scaling behavior of both solutions under the

limit � ! 1 for constant � is also different, with h di-
verging for the first solution and staying constant for the
second. For fixed parameters � and �, numerical results
suggest that the first solution (3.11) is unstable and the
second solution (3.12) stable (and possibly an attractor). In
the following, the focus is on the second solution close to
the equilibrium value fequil ¼ 1 (corresponding to q ¼ q0).

In fact, two remarks on the de Sitter–type solution (3.12)
are in order. First, observe that local experiments in this

model universe with �ðdeS;1Þ � 2=3< 1 would have an
increased effective gravitational coupling

�GN � Glocal exps
eff jðdeS;1Þ � ð1=�ðdeS;1ÞÞG� ð3=2ÞG;

(3.13)

where the term G=�ðdeS;1Þ in the middle comes directly
from the combination K� ¼ �=ð16�GÞ present in the
action (2.2). Here, ‘‘local experiments’’ denote experi-
ments on length scales very much less than the typical
length scale of de Sitter–type spacetime, the horizon dis-

tance Lhor ¼ cHðdeS;1Þ, whose numerical value will be dis-
cussed shortly. It would then appear that the quantity (3.13)
must be identified with Newton’s gravitational constantGN

as measured by Cavendish [13] and modern-day experi-
mentalists [14]; see [39] for additional comments.
Second, the de Sitter–type solution (3.12) of model (2.2)

or equivalently model (2.1) has the inverse Hubble constant

ðhðdeS;1ÞÞ�1 ¼ 4=
ffiffiffi
3

p
��1 � 2:3� 103

�
10�3

�

�
; (3.14)

as follows from (3.12c) by neglecting terms suppressed by
powers of � ¼ Oð1=�Þ ¼ Oð10�38Þ and anticipating a par-
ticular order of magnitude for the model parameter�. With
the conversion factor from (2.13a), the dimensionless
quantity (3.14) corresponds to

ðHðdeS;1ÞÞ�1 � 4=
ffiffiffi
3

p
��1ð3=2ÞKNq

�3=4
0

� 8� 1017 s

�
10�3

�

��
200 MeV

q1=40

�
3
; (3.15)

where, according to (3.13), an approximate factor 3=2
appears in going from K to the Newtonian value KN �
ð16�GNÞ�1. The time scale found in (3.15) is of the same
order as the inverse Hubble constant ðH0Þ�1 �
4:5� 1017 s (0:70=h0) for the measured value h0 � 0:70
as reported in Refs. [32,36,37].

By equating the theoretical quantity 1=HðdeS;1Þ from
(3.15) multiplied by an ad hoc factor g ¼ 1

2 with the

measured value 1=H0, a first estimate of the model pa-
rameter � in the original action (2.1) is obtained,

�� ffiffiffi
3

p
KNq

�3=4
0 H0 � 10�3; (3.16)

for the q0 and H0 values mentioned in the previous para-
graph. Admittedly, the choice of one-half for the factor g is
somewhat arbitrary, but consistent with the physical pic-
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ture of our present Universe entering a de Sitter phase. A
more reliable estimate of � will come from the numerical
study of a model universe with both vacuum and matter
energies. The numerical solution found will be seen to
interpolate between the analytic solutions (3.6) and (3.12).

C. Exploratory numerical results

Equation (2.15a) for the potential uðs; fÞ from (2.20)
makes clear that a model universe with an asymptotically
nonvanishing Hubble constant, hðtÞ ! const � 0, requires
a nonvanishing modified-gravity parameter, � � 0. The

analytic de Sitter solution with _h ¼ _s ¼ _f ¼ 0 has already
been given in Sec. III B.

The numerical solution of ODEs (2.15) for �� 10�3 is
presented in Fig. 1 and several observations can be made:

(i) The boundary conditions on the functions will be
discussed in Sec. III D.

(ii) There is a transition from deceleration in the early
universe to acceleration in the late universe.

(iii) The values for s, 1� f, and h at the largest time
shown in Fig. 1 agree already at the 10% level with
those of the analytic de Sitter–type solution (3.12).

(iv) The ratio rM;tot=ð6h2Þ is equal to 0.25 at the dimen-

sionless cosmic time t � 1:4� 103.

Points (ii)–(iv) suggest that, for the model parameter
values chosen, the model universe at tp ¼ 1:432� 103

resembles our own present Universe, characterized by the
values (3.3).
More quantitatively, the following three estimates can be

obtained. First, the product of the dimensionless age tp of

the present universe with its dimensionless expansion rate
hðtpÞ � 0:6351� 10�3 gives

tphðtpÞ � 0:91; (3.17a)

which also holds for the product of the dimensionful
quantities, 
pHð
pÞ � 0:91.

Second, evaluating the particular combination (3.5) of
first and second derivatives of aðtÞ and the matter energy
density �M, the present effective EOS parameter of the
unknown component is found to be

�wXðtpÞ � � 2

3

�
€aa

ð _aÞ2 þ
1

2

�
1

1��M

��������t¼tp

� �0:66:

(3.17b)

FIG. 1 (color online). Numerical solution of ODEs (2.15), with vacuum energy density (2.18), Brans-Dicke scalar potential (2.20),
and both relativistic matter (energy density rM;1) and nonrelativistic matter (energy density rM;2). The figure panels are organized as

follows: the panels of the first column from the left concern the expansion factor aðtÞ, those of the second column the modified-gravity
scalar sðtÞ, those of the third column the gluon-condensate vacuum variable fðtÞ, and those of the fourth column the matter energy
densities rM;n. The model parameters are ð�;�2; wM;1; wM;2Þ ¼ ð102; 9� 10�7; 1=3; 0Þ, with the resulting parameter � �
ð3=32Þ�2=� ¼ 8:4375� 10�10. The boundary conditions at tstart ¼ 0:1 are ða; h; s; v; 1� f; rM;1; rM;2Þ ¼ ð1; 4:082 483;
0:8; 0:816 496 6; 8:437 500� 10�9; 75:974 69; 24:025 31Þ; see Sec. III D for details. The several energy-density parameters � and
the effective ‘‘dark-energy’’ equation-of-state parameter �wX are defined in (3.4) and (3.5), respectively. With �=�2 
 1, the values of
�V are negligible compared to those of �grav for the time interval shown.

GLUON CONDENSATE, MODIFIED GRAVITY, AND . . . PHYSICAL REVIEW D 81, 043006 (2010)

043006-7



For larger times t 
 tp, this parameter �wXðtÞ drops to the

value �1, as can be expected from the right-hand side of
(3.5). Additional numerical values are �wX ¼ �0:750 82,
�0:989 21,�0:997 80, and�0:999 89 for t ¼ 2000, 4000,
8000, and 16 000, respectively. Observe that the particular
combination of observables (3.5) is designed to be inter-
preted as the effective EOS parameter of the unknown
component X only if matter-pressure effects are negligible
(t * 500 in Fig. 1).

Third, consider the transition of deceleration to accel-
eration mentioned in point (ii) above. In mathematical
terms, this time corresponds to the nonstationary inflection
point of the function aðtÞ, that is, the value tinflect at which
the second derivative of aðtÞ vanishes but not the first
derivative. Referring to the model universe at tp ¼
1:432� 103, the inflection point tinflect � 0:863� 103 cor-
responds to a redshift

zinflect � aðtpÞ=aðtinflectÞ � 1 � 0:5; (3.17c)

which implies that the acceleration is a relatively recent
phenomenon in this model universe. Inspection of the
lower panels of Fig. 1 shows that the acceleration sets in
when the ratio of�X ¼ �grav þ�V and�M;tot is approxi-

mately unity, whereas the standard �CDM model would
have �X=�M;tot � 1=2 according to (3.1b).

Returning to the first estimate (3.17a), note that this
quantity can be interpreted as the age of the present uni-
verse in time units obtained from the present expansion
rate. But it is also possible to obtain the absolute age of the
model universe, using the time scale contained in (2.13a),
which requires as input the experimental value of the QCD
gluon condensate q0 and the one of Newton’s constant GN ,
taken to be equal to the effective gravitational coupling �GN

from (3.13). With the conversion factors from (2.13a) and
the relation G� sðtpÞGN for K � 1=ð16�GÞ, the numeri-

cal results tp � 1432, hðtpÞ � 1=1575, and sðtpÞ � 0:7267

give the following two dimensionful quantities of the
present universe:


p ¼ tpKq
�3=4
0 � 13:1 Gyr; (3.18a)

Hp ¼ hðtpÞK�1q3=40 � 68 km s�1 Mpc�1; (3.18b)

where the numerical values have been calculated with
q0 ¼ ð210 MeVÞ4. Remark that, if the relation G�GN

holds for Cavendish-type experiments as mentioned in
[39], the same numerical values are obtained in (3.18) by
taking q0 � ð190 MeVÞ4 and, if G�GN=2 holds, by tak-
ing q0 � ð230 MeVÞ4. All of these three q0 values lie
below the value q0 � ð330 MeVÞ4 indicated by particle
physics [3], but the uncertainty in the latter value appears
to be large [4–6]. In addition, it may be that certain
particle-physics experiments are more appropriate than
others to determine the truly homogeneous condensate q0
relevant to cosmology.

Next to the observations [11,12,32–37], the values ob-
tained in (3.17) and (3.18) have the correct order of mag-
nitude, which is all that can be hoped for at the present
stage. Still, it is remarkable that more or less reasonable
values appear at all [40].
For comparison, the standard flat-�CDM model (3.1),

(3.2), and (3.3) with boundary condition rMðtpÞ=rV ¼ 1=3

gives the product 
pHð
pÞ � 1:01, the effective EOS pa-

rameter �wX ¼ �1, and the inflection-point redshift

zinflect ¼ ð6Þ1=3 � 1 � 0:82. These three numbers fit the
observational data perfectly well, but the �CDM model
is purely phenomenological and cannot explain, without
further input,2 the absolute age of the Universe as in (3.18a)
or the absolute vacuum energy density as will be discussed
in Sec. IV.

D. Elementary scaling analysis

In the previous section, the ODEs (2.15) have been
solved numerically for certain parameter values and
boundary conditions at t ¼ tstart, which need to be dis-
cussed further. As explained in Sec. III A, tstart is consid-
ered to correspond to a time just after the QCD crossover
has happened. This implies, in particular, that the starting
value hðtstartÞ for the expansion rate is approximately given

by the value ½ðrV þ rM;totÞ=6��1=2 of the corresponding

standard FRW universe (3.1a). The f value at tstart follows
from (2.21) for the chosen s value (see below) and the
starting value for v is obtained by solving (2.17), consid-
ered as a linear equation in v with all other quantities
given.
Next, the value of tstart itself and the corresponding

values for rM;1 and rM;2 need to be specified. These values

depend on the physical ratio Z defined by (2.19). Following
the results for the standard FRW universe, take

� ¼ �̂Z�1; (3.19a)

tstart ¼ t̂
ffiffiffiffi
Z

p
; (3.19b)

rM;1ðtstartÞ ¼ r̂Z�1=ð1þ Z1=4Þ; (3.19c)

rM;2ðtstartÞ ¼ r̂Z�3=4=ð1þ Z1=4Þ; (3.19d)

where the constants �̂, t̂, and r̂ are numbers of order unity
(in the present elementary analysis, they are just set equal
to 1). With t̂ ¼ 1 and the particular Ansätze (3.19c) and
(3.19d), there is equality of the relativistic (label n ¼ 1)
and nonrelativistic (label n ¼ 2) energy densities around
t� 1, which is not entirely unrealistic if the present uni-
verse has t� 103.
Finally, the boundary condition value sðtstartÞ is taken

between 0 and 1. The results are, however, rather insensi-

2Taking as additional input the measured value [32] h0 � 0:70
of the Hubble constant H0 � h0100 km s�1 Mpc�1 ¼
h0ð9:778� 109 yrÞ�1, the �CDM-model result 
0H0 � 1:01
gives the dynamic age 
0 � 14:2 Gyr.
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tive to the precise value of sðtstartÞ; see [43] for selected
numerical results. The explanation is that, independent of
the precise starting value, sðtÞ increases rapidly until, at t�
1, it bounces back from the s ¼ 1 ‘‘wall’’ and, then, slowly
descends towards the de Sitter value, with some initial
oscillations.

Having specified the boundary conditions of the physi-
cal variables, the optimal model parameter � needs to be
determined. The strategy is as follows: for a given Z value,
assume an � value, determine tp from the condition

�M;totðtpÞ ¼ 0:25, evaluate the product tphðtpÞ, and, if

necessary, return to a new value of � in order to get
tphðtpÞ closer to the asymptotic value of approximately

0.909.
Numerical results are given in Table I. Three physical

quantities, the relative age of the present universe tphðtpÞ,
the effective EOS parameter �wX, and the inflection-point
redshift zinflect, appear to approach constant values as Z
drops to zero. This nontrivial result suggests that the be-
havior shown in Fig. 1 and the corresponding estimates
(3.17) and (3.18) also apply to the physical case with Z�
10�38 as given by (2.19).

IV. CONCLUSION

The bottom-row panels of Fig. 1, if at all relevant to our
Universe, suggest that the present accelerated expansion
may be due primarily to the nonanalytic modified-gravity
term in the action (2.1) rather than the direct vacuum
energy density �VðqÞ, because q is already very close to
its equilibrium value q0, making �VðqÞ � �Vðq0Þ ¼ 0.
Referring to the definitions in (3.4), the second panel of
the bottom row shows the effective energy-density parame-
ter �grav due to the gluon-condensate-induced modifica-

tion of gravity and the third panel the energy-density
parameter �V from the vacuum energy density proper
(with EOS parameter wV ¼ �1), their total giving �X

which equals 1��M for a flat FRW universe. As dis-
cussed in Secs. III A and III C, the total unknown X com-
ponent has an effective EOS parameter �wX which drops to
the value �1 as the de Sitter–type universe is approached.

Remark that, in contrast to the results of, e.g.,
Refs. [22,23], nontrivial dark-energy dynamics has been
obtained, because the effective action (2.1) is assumed to
be valid only on cosmological length scales, not solar-
system or laboratory length scales [see also the discussion
in the paragraph of Sec. II A containing Eq. (2.3)]. As it
stands, the effective action (2.1) can be viewed as an
efficient way to describe the main aspects of the late
evolution of the Universe, with only two fundamental
energy scales, EQCD � 108 eV and EPlanck � 1028 eV,
and a single dimensionless coupling constant, �� 10�3.
Moreover, this effective coupling constant � can, in prin-
ciple, be calculated from quantum chromodynamics and
general relativity, which may or may not confirm our
numerical value of approximately 10�3; cf. Refs. [10,25]
and the third remark in the Note Added.
Elaborating on the source of the present acceleration,

consider the second term on the right-hand side of (2.7a),
which can be rewritten as þð2�KÞ�1ð�V;BDÞg�	 for the

Brans-Dicke vacuum energy density �V;BD � �KU. The

exact de Sitter–type solution (3.12) for � � 1, together
with the conversion factor from (2.13c) and Newton’s
constant from (3.13), then allows for the following esti-
mate:

�V;BDjðdeS;1Þ ¼ �uq3=20 =KjðdeS;1Þ
¼ 12��2q3=20 G� ð�=8Þ�2K3

QCD=E
2
Planck

� ð2� 10�3 eVÞ4
�

�

10�3

�
2
�

KQCD

ð420 MeVÞ2
�
3
;

(4.1)

where q0 has been expressed in terms of the QCD string
tension KQCD [1], specifically, q0 ¼ E4

QCD � ðKQCD=4Þ2.
The parametric dependence of the above expression, �V /
K3

QCD=E
2
Planck, is the same as that of the previous estimate

(6.7) in Ref. [10], but expression (4.1) now comes from the
solution of field equations. Two other dimensionful quan-
tities, the age and expansion rate of the Universe, have
already been given in (3.18).

TABLE I. Numerical results for the ‘‘present epoch’’ [defined by�MðtpÞ ¼ 0:25] in model universes with different numerical values
for the parameters Z and �, where the latter parameter controls the modified-gravity term in the action (2.1) and the former is defined
by (2.19) in terms of the physical energy scales. Other parameters and boundary conditions are given by (3.19), with constants �̂, t̂, and
r̂ set equal to 1. A further boundary condition is sðtstartÞ ¼ 0:8; see Sec. III D for details. The effective equation-of-state parameter �wX

and the inflection-point redshift zinflect are defined in (3.17b) and (3.17c), respectively. Figure 1 for Z ¼ 10�2 illustrates the general
behavior of hðtÞ, �wXðtÞ, and other physical quantities.

Z 106�2 10�3tp 104hðtpÞ sðtpÞ tphðtpÞ �wXðtpÞ zinflect

10�1 0.8 1.522 5.980 0.7272 0.910 �0:669 0.541

10�2 0.9 1.432 6.351 0.7267 0.910 �0:662 0.538

10�4 0.7 1.629 5.584 0.7259 0.910 �0:663 0.515

10�8 0.8 1.523 5.967 0.7255 0.909 �0:660 0.505

10�16 0.9 1.436 6.330 0.7256 0.909 �0:660 0.506
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Before the asymptotic de Sitter–type universe with ef-
fective energy density (4.1) is reached, the Brans-Dicke
scalar� evolves and allows for an effective EOS parameter
�wX different from �1 [the scalar � has no direct kinetic
term in the action (2.2a), but the �R term does give, by
partial integration, an effective kinetic term for �, which,
in fact, leads to the generalized Klein-Gordon equation
(2.9)]. For the present Universe, the general lesson may
be that the deformation of the QCD gluon condensate q by
the spacetime curvature of the expanding Universe can
result in an effective EOS parameter �wX which evolves
with time and, for the present epoch, can still be somewhat
above its asymptotic value of �1. In turn, a possible
discovery of a �wX time dependence may provide an addi-
tional incentive to theoretical investigations of the physics
of the gravitating gluon condensate.

Note Added.—After completion of the work reported
here, we became aware of two earlier articles and a third
article recently posted on the archive. The first article [44]
is a systematic study of the cosmology of fðRÞ modified-
gravity models and identifies the modified-gravity term
(2.1b), for constant q, as cosmologically viable (observe
the different sign definition of R compared to ours). The
second article [45] investigates the growth of density per-
turbations in fðRÞ modified-gravity models and estab-
lishes, in Eq. (42), the effective gravitational coupling
parameter for subhorizon CDM density perturbations,
which turns out to be close to GN for the model universe
of Fig. 1 at times t & 500 (redshifts z * 1). The third
article [46] presents a QCD calculation for the origin of
the modified-gravity term (2.1b) and may also explain the
smallness of the coupling constant �, even though many
conceptual and technical issues remain to be resolved.
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