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Introducing a noncompact version of the Hopf map, we demonstrate remarkable close relations

between quantum Hall effect and twistor theory. We first construct quantum Hall effect on a hyperboloid

based on the noncompact 2nd Hopf map of split-quaternions. We analyze a hyperbolic one-particle

mechanics, and explore many-body problem, where a many-body ground state wave function and

membrane-like excitations are derived explicitly. In the lowest Landau level, the symmetry is enhanced

from SOð3; 2Þ to the SUð2; 2Þ conformal symmetry. We point out that the quantum Hall effect naturally

realizes the philosophy of twistor theory. In particular, emergence mechanism of fuzzy space-time is

discussed somehow in detail.
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In 1967, Penrose introduced the notion of twistor [1],
aiming quantization of the space-time. Since then, twistor
has spurred the developments of mathematical physics.
Meanwhile, since the discovery of the quantum Hall effect
(QHE) in the early 1980s, QHE has been developed in
condensed matter physics [2]. Interestingly, in the develop-
ments of the higher dimensional generalization of the
QHE, their close relations have been pointed out and begun
to be unveiled [3–7]. In this paper, we further proceed the
studies of higher dimensional QHE and clarify common
structures between QHE and twistor theory based on a
noncompact version of the Hopf map.

In the past decade, there arose rapid developments of
higher dimensional generalization of the QHE, which had
been believed to be formulated only in two-dimensional
spaces [8]. The breakthrough was brought by Zhang and
Hu’s four-dimensional generalization of QHE [9]. Their
idea was based on a mathematical concept known as the
Hopf maps. The Hopf maps are mysterious topological
mapping between spheres in different dimensions, and
there exist only three; 1st, 2nd, and 3rd, each of which
corresponds to the particular notion of the normed division
algebras, i.e. complex numbers, quaternions, and octon-

ions. As is widely known the 1st Hopf map, S3!S1S2, is the
underlying mathematical structure of the Dirac monopole,
and Haldane’s spherical two-dimensional QHE [10] owes
its physical background to it. The idea of 4D QHE is to

utilize the second Hopf map, S7!S3S4. Since the S3 fiber is
the group manifold of SUð2Þ, the 2nd Hopf map physically
corresponds to the SUð2Þ monopole or Yang monopole
gauge field on the base-manifold S4 [11]. The 4D QHE
represents incompressible quantum liquid in such a system.

For the last 3rd Hopf map S15!S7S8, the corresponding
monopole [12] and the 8D QHE have also been constructed
[13]. Since, in the setup of the 4D QHE, the base manifold
is S4, and the SUð2Þ monopole gauge fields are spherically

symmetric, the system has the global SOð5Þ rotational
symmetry. Interestingly, the symmetry is enhanced from
SOð5Þ to SUð4Þ in the lowest Landau level (LLL) limit,
which is simply realized by taking an infinite spacing limit
of Landau energy levels; ! ¼ B=M at the ‘‘massless
limit’’ (M ! 0). The LLL physics of 4D QHE enjoys the
SUð4Þ symmetry, and SUð4Þ is the Euclidean version of the
SUð2; 2Þ conformal symmetry of twistor. This ‘‘coinci-
dence’’ implies hidden relations between the twistor theory
and the QHE [3,4]. Indeed, Sparling and his collaborators
analyzed 4D QHE in the formalism of the twistor theory
[5,6]. In particular, in Ref. [6], they suggested, if the QHE
was formulated on a higher dimensional hyperboloid (ul-
trahyperboloid), close structures to twistor theory would be
even clearer. Independently, Karabali and Nair made use of
analogies between QHE and twistor to construct the effec-
tive action for edge states [7].
Inspired by the preceded observations, we develop a

noncompact formulation of QHE on a ultrahyperboloid,
and demonstrate remarkable close structures between
twistor theory and QHE. For this purpose, we first explore
a realization of higher dimensional noncompact Hopf maps

[14]. With ultrahyperboloids Hp;q;
Pp

i¼1x
2
i �

Ppþqþ1
j¼pþ1 x

2
j ¼

�1, the noncompact Hopf maps are represented as

H2;1!H1;0

H1;1 ð1stÞ
H4;3 ! H2;2 ð2ndÞ

H8;7 ! H4;4 ð3rdÞ:
The construction of the noncompact version of the Hopf
maps is unique; each of them corresponds to the split-
algebra, i.e split-complex numbers, split-quaternions and
split-octonions [20]. In this work, we utilize the noncom-
pact 2nd Hopf map or the split-quaternionic Hopf map, i.e
H4;3 ! H2;2 with noncompact fiber H2;1 ’ AdS3 ’
SUð1; 1Þ. The total manifold H4;3 is a hyperbola in ‘‘2D’’
space of split-quaternions, and the base manifold H2;2 is
the split-quaternionic projective space. The H2;1 fiber cor-
responds to a normalized ‘‘1D’’ split-quaternion space. To*hasebe@dg.kagawa-nct.ac.jp
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realize the 2nd noncompact Hopf map, we introduce the
ð3þ 2ÞD �-matrices, �a (a ¼ 1 2, 3, 4, 5), which satisfy
the anticommutation relations f�a; �bg ¼ �2�ab with
�ab¼�ab¼diagðþ;þ;�;�;�Þ. Their commutators yield
the SOð3; 2Þ generators �ab ¼ �i 14 ½�a; �b�, which satisfy

½�ab; �cd� ¼ �ið�ac�bd � �ad�bc þ �bd�ac � �bc�adÞ.
�a are explicitly given by �i ¼ �i � �2, �4 ¼ 1 � �1,
�5 ¼ ��1�2�3�4 ¼ 1 � �3 (�i are SUð1; 1Þ generators
�i ¼ ði�1; i�2; �3Þ), and they are skew Hermitian,
ð�aÞy ¼ ��a. The SOð3; 2Þ matrices are also represented
as

��� ¼ �ðþÞ
�� 0

0 �ð�Þ
��

 !
;

where �ð�Þ
�� ¼ 1

2�
ð�Þ
��i�

i, (�; � ¼ 1, 2, 3, 4) with ’t Hooft

‘‘split’’-tensor �ð�Þ
��i ¼ ���i � ��i��4 � ��i��4, and

��5 ¼ 1

2

0 ��
~�� 0

� �
;

where �� ¼ ð�i;�iÞ and ~�� ¼ ð�i; iÞ. Defining qi ¼ �i�i,

they satisfy the algebra of split-quaternions: ðq1Þ2 ¼
ðq2Þ2 ¼ �ðq3Þ2 ¼ q1q2q3 ¼ 1. Since we are dealing with
finite dimensional representation of a noncompact group
SOð3; 2Þ, the generators are represented by non-Hermitian
matrices, ð�abÞy ¼ �ab. The charge conjugation matrix is
constructed as

r ¼ ��2�3 ¼ �1�4�5 ¼ �1 0
0 �1

� �
;

which has the properties; ry ¼ rt ¼ r�1 ¼ r, r�ar ¼ �a�,
and r�abr ¼ ��ab�. The diagonalized form of r is

k ¼ �i�1�2 ¼ i�3�4�5 ¼ �3 0
0 �3

� �
; (1)

and it has the properties; ky ¼ kt ¼ k�1 ¼ k, k�ak ¼ �ay,
k�abk ¼ �aby. The Hermitian matrices ka can be defined
as ka ¼ k�a. Utilizing ka, the 2nd noncompact Hopf map
is realized as

c ! xa ¼ c ykac ; (2)

where c , which we call the noncompact 2nd Hopf spinor,
is a SOð3; 2Þ Dirac spinor subject to a normalization con-
dition; c ykc ¼ 1, and then, regarded as coordinates on
H4;3. Since ka are Hermitian matrices, xa given by (2) are
real, and satisfy the condition, �abx

axb ¼ �ðc ykc Þ2 ¼
�1, which defines H2;2. Inverting the 2nd noncompact
Hopf map, the noncompact 2nd Hopf spinor is represented
as

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ x5Þp ð1þ x5Þ�

ðx4 � ixi�iÞ�
� �

; (3)

where � denotes an arbitrary complex two-component
spinor subject to a normalization condition �y�3� ¼ 1,
representing theAdS3-fiber. The associated canonical con-
nection is induced as A ¼ �ic ykdc ¼ dxa�y�3Aa�,

where Aa is given by A�¼��ðþÞ
��

x�

1þx5
¼�1

2�
ðþÞ
��i

x�

1þx5
�i,

A5¼0 (hereafter, we omit (þ ) on ��� and ���i), which

are naturally regarded as SUð1; 1Þ non-Abelian monopole
gauge field. The corresponding SUð1; 1Þ field strength,
Fab ¼ @aAb � @bAa þ i½Aa; Ab�, is evaluated as F�� ¼

x�A� � x�A� þ ���, F�5 ¼ ð1þ x5ÞA�. Thus, the non-

compact 2nd Hopf map physically corresponds to a setup
of 4D hyperboloidH2;2 in SUð1; 1Þ monopole background.
We first analyze Landau problem in such a system.

(Similar but another hyperbolic Landau problem has
been discussed in Ref. [21]). The SOð3; 2Þ covariant angu-
lar momentum is defined as �ab ¼ �ixaDb þ ixbDa

where Da ¼ @a þ iAa. The covariant angular momentum
satisfies the relation, ½�ab;�cd� ¼ ið�ac�bd � �ad�bc þ
�bd�ac � �bc�adÞ � iðxaxcFbd � xaxdFbc þ xbxdFac �
xbxcFadÞ. The total angular momentum is constructed as
Lab ¼ �ab � Fab and generates the SOð3; 2Þ transforma-
tion; ½Lab; Tcd� ¼ ið�acTbd � �adTbc þ �bdTac �
�bcTadÞ, with Tab ¼ Lab, �ab and Fab. Especially, when
Tab ¼ Lab, the algebra represents the closed SOð3; 2Þ al-
gebra of Lab. The one-particle Landau Hamiltonian is

given by H ¼ � 1
2M�abD

aDb where �abD
aDb ¼ � @2

@R2 �
ðd� 1Þ 1R @

@R þ 1
R2

P
a<b�

2
ab (d ¼ 5). Here, R denotes the

radial coordinate given by �abx
axb ¼ �R2. On the surface

of H2;2, the Landau Hamiltonian is reduced to

H ¼ � 1

2MR2

X
a<b

�2
ab: (4)

The covariant angular momentum is orthogonal to the field
strength �abF

ab ¼ Fab�
ab ¼ 0, and the Hamiltonian is

rewritten as H ¼ � 1
2MR2

P
a<bðL2

ab � F2
abÞ. The eigen-

value of the SOð3; 2Þ Casimir operator is C ¼ P
a<bL

2
ab ¼

EðE � 3Þ þ sðsþ 1Þ with E ¼ �s� n (n ¼ 0; 1; 2; � � �
and s ¼ 0;� 1

2 ;�1;� 3
2 ; � � � ) [22,23]. Meanwhile,P

a<bF
2
ab ¼ 2sðsþ 1Þ where s ¼ � I

2with SUð1; 1Þmono-

pole charge I
2 ¼ 0; 12 ; 1; � � � . Then, for discrete series of the

SOð3; 2Þ group, the energy eigenvalue of (4) reads as En ¼
1

2MR2 ðIðnþ 1Þ � nðnþ 3ÞÞ, where n represents Landau

level index. The discrete spectrum takes a form of an upper
convex, and is not unbounded below. However, the LLL
(n ¼ 0) with energy ELLL ¼ I

2MR2 is not completely un-

stable but meta-stable, since there exists a ‘‘potential bar-
rier’’ between the LLL and the negative energy levels. In
the thermodynamic limit: R, I ! 1 with magnetic length

‘B ¼ R
ffiffi
2
I

q
fixed, the potential barrier becomes larger and

the LLL becomes stabler. There also exists continuous
spectrum, but it does not contribute to Landau levels in
the thermodynamic limit, since it specifies energy spec-
trum higher than the discrete energy levels and behaves as
� 1

2MR2 ððI2Þ2 þ �2Þ (� is the continuous parameter) in the

limit. Indeed, the planar Landau level I
2MR2 ðnþ 1Þ can be

fully reproduced only by the discrete spectrum in the limit.
The above behaviors of the SOð3; 2Þ Landau problem are
quite analogous to those of the SUð1; 1Þ Landau problem
[24], because of the similar group structures between
SUð1; 1Þ and SOð3; 2Þ, i.e. Spð2; RÞ ’ SUð1; 1Þ and
Spð4; RÞ ’ SOð3; 2Þ.
Next, we discuss many-body problem on H2;2. In the

original spherical 2D QHE, the Laughlin-Haldane ground
state wave function is constructed by a SUð2Þ singlet

KAZUKI HASEBE PHYSICAL REVIEW D 81, 041702(R) (2010)

RAPID COMMUNICATIONS

041702-2



combination of the 1st Hopf spinors [10]. Thus, the
Laughlin-Haldane wave function respects the isometry of
the base manifold, namely, SOð3Þ symmetry of S2.
Physically, the symmetry expresses uniform distribution
of the ground state quantum liquid on the surface of S2. In
the present, the base manifold is H2;2 whose isometry is
SOð3; 2Þ, so it might be reasonable to adopt a SOð3; 2Þ
singlet wave function made by the 2nd noncompact Hopf
spinors as the ground state wave function. The charge
conjugation of SOð3; 2Þ spinor c is constructed as c c ¼
rc �, and, without introducing complex variables, SOð3; 2Þ
singlet wave function can be constructed as

� ¼ Y
i<j

ðc t
irkc jÞm; (5)

which we adopt as the higher dimensional analogue of the
Laughlin-Haldane wave function. The wave functions for
topological excitation can also be derived by following the
procedure given by Haldane [10]. The topological excita-
tions are induced by flux penetrations, and their annihila-
tion and creation operators are, respectively, given by

Að	Þ ¼ YN
i

	yr
@

@c i

; Ayð	Þ ¼ YN
i

c t
irk	; (6)

where 	 denotes a flux penetration point on H2;2 by the
relation 	yka	 ¼ �að	Þ. Indeed, the operators (6) satisfy
the creation and annihilation relations, ½Að	Þ; Ayð	Þ� ¼ 1,
½Að	Þ; Að	0Þ� ¼ 0, and ½Ayð	Þ; Ayð	0Þ� ¼ 0. With fuzzy
hyperboloid coordinates Xa ¼ �c t�t

a
@
@c (its derivation

will be discussed later), the creation operator satisfies
½�að	ÞXa; Ayð	Þ� ¼ NAyð	Þ. This implies that
N-particles on H2;2 are pushed ‘‘outwards’’ from the point
of flux penetration, and a charge deficit is generated at the
point. It is noted that 	 carries ‘‘extra degrees’’ of
AdS3-fiber except for the degrees denoting the point on
H2;2, and, up to Uð1Þ phase, such extra degrees account for
membrane of the form H2;0 ’ AdS3=Uð1Þ. Thus, though
the topological excitations are point-like on H2;2, they
carry membrane-like internal structures.

To clarify analogies between QHE and twistor theory,
we exploit the Lagrange formalism. Lagrangian of one-
particle mechanics is given by

L ¼ M

2
�ab _x

a _xb þ _xaAa; (7)

where A ¼ dxaAa ¼ �ic ykdc . Since the particle is con-
fined on a surface of H2;2, a constraint should be imposed
on xa; �abx

axb ¼ 1. (For simplicity, we take R ¼ 1 here-
after.) Apparently, the Lagrangian and the constraint re-
spect the SOð3; 2Þ symmetry. Meanwhile in the LLL limit
M ! 0, the kinetic term drops, and the gauge interaction

term only survives to yield, LLLL ¼ _xaAa ¼ �iIc yk dc
dt ,

with the constraint c ykc ¼ 1. For later convenience, we
scale the Hopf spinor as c ! 1ffiffi

I
p c , and the LLL

Lagrangian is written as

LLLL ¼ �ic yk
dc

dt
; (8)

and the constraint as

c ykc ¼ I: (9)

One may notice that both the LLL Lagrangian (8) and the
constraint (9) respect the SUð2; 2Þ conformal symmetry.
Here, we invoke the twistor description of a massless
particle based on Ref. [25]. The momentum of free mass-
less particle satisfies the relation 
��p

�p� ¼ 0 (
�� is the

Lorentzian metric: 
�� ¼ diagðþ;þ;þ;�Þ), and can be

expressed as p� ¼ �y��� with arbitrary two-component
SLð2; CÞ spinor ��. Twistors are a SUð2; 2Þ four-
component representation Za ¼ ðZ1; Z2; Z3; Z4Þ, where
the lower two-components Z3 and Z4 are given by
ðZ3; Z4Þ ¼ ð�1; �2Þ and the upper components Z1 and Z2

are introduced as

Z1

Z2

� �
¼ ix�M��

Z3

Z4

� �
: (10)

(The repeated indices � here are contracted by Lorentzian
metric). Equation (10) plays a central role in twistor theory,
and is known as the incidence relation that represents
relations between original Minkowski space-time and
twistor space. Meanwhile, eliminating the AdS3 gauge
freedom � in (3), one may derive the following relation
between the upper and lower two-components of the Hopf
spinor:

c 1

c 2

� �
¼ ix

�
L��

c 3

c 4

� �
; (11)

where x
�
L denotes the stereographic coordinates on the

four-dimensional Lobachevsky plane x
�
L 	 1

1�x5
x�.

Equation (11) expresses relations between coordinates in
the hyperbolic manifolds, H2;2 and H4;3, and Eq. (11) may
be regarded as the incidence relation in the version of the
noncompact QHE. Analogies between the two incidence
relations (10) and (11) are apparent, and their correspon-
dence reads as

ðx1M; x2M; x3M; x0MÞ $ ðx1L; x2L; ix3L; x4LÞ: (12)

The imaginary factor in front of x3L stems from the signa-
ture difference of their metrics; ðþ;þ;þ;�Þ and
ðþ;þ;�;�Þ. With use of twistors, the massless particle
Lagrangian is simply written as L ¼ �iZ�

a
d
d� Z

a [25],

where Za is the dual twistor Za ¼ ð��;!
Þ and � the

invariant time. With ‘‘diagonalized’’ twistors
ðZ1;Z2;Z3;Z4Þ ¼ 1ffiffi

2
p ðZ1 þZ3; Z1 �Z3; Z2 þZ4;Z2 �Z4Þ,

the twistor Lagrangian becomes

L ¼ �iZyk
d

d�
Z: (13)

The norm of Z corresponds to the helicity of massless
particle;

Z ykZ ¼ 2�: (14)

(After quantization, the helicity � takes an integer or half
integer.) In a massless limit of free particle, the system
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enjoys the SUð2; 2Þ conformal symmetry rather than the
Poincare symmetry, and such SUð2; 2Þ symmetry is mani-
fest in both (13) and (14). Now, one may observe striking
analogies between the noncompact QHE and twistor; as for
their actions (8) and (13), as well as their constraints (9)
and (14) [See Table I also.]

We proceed to the quantization of the LLL, and see how
the QHE naturally realizes the original philosophy of the
twistor theory. From (8), the canonical conjugate variable
of c is derived as� ¼ �ic yk;� is not the time derivative
of c , but its complex conjugation. As is well known, this
brings the emergence of noncommutative geometry. The
quantization condition is imposed between c and c �, so
c � is regarded as

c � ¼ �k
@

@c
: (15)

In quantum mechanics, the constraint (9) is transformed to
a condition on LLL states, and the LLL states are con-
structed by the basis c m1;m2;m3;m4

¼ c m1c m2c m3c m4 ,

which is a symmetric tensor product of the noncompact
Hopf spinors, with m1 þm2 þm3 þm4 ¼ I. Substituting
(15) to the expression of xa (2), we now see that xa is
regarded as the operator

Xa ¼ �c t�t
a

@

@c
: (16)

Meanwhile, in LLL, the SOð3; 2Þ generator Lab is effec-
tively represented as

Xab ¼ �c t�t
ab

@

@c
; (17)

since Labc ¼ ��abc . Xa and Xab satisfy the following
algebra;

½Xa; Xb� ¼ 4iXab; ½Xa; Xbc� ¼ ið�abXc � �acXbÞ;
½Xab; Xcd� ¼ �ið�acXbd � �adXbc þ �bdXac � �bcXadÞ:

(18)

With definition XAB ðA; B ¼ 1; 2; � � � ; 6Þ; Xa6 ¼ � 1
2Xa

and Xab ¼ Xab, Eq. (18) represent the SOð4; 2Þ ’

SUð2; 2Þ algebra of XAB. It is worthwhile to notice that
Xa do not form a closed algebra by themselves, but form a
closed algebra if Xab are introduced. The basic notion of
noncommutative geometry is ‘‘algebraic construction of
geometry’’. The ‘‘unclosed algebra’’ of Xa suggests that
the fuzzy geometry ofH2;2 cannot be constructed solely by
Xa, but ‘‘demands’’ an extra space spanned by Xab [27].
The SUð2; 2Þ noncommutative algebra naturally defines
the fuzzy manifold of CP2;1, which is the projective twistor
space locally equivalent to H2;2 
H2;0. Thus, the corre-
sponding fuzzy manifold of H2;2 is not a 4D but a 6D
manifold, and the extra H2;0-space is the very space in-
duced by the requirement of the noncommutative geome-
try. Consequently, the fuzzy H2;2 may be given by

H2;2
F ’ SOð3; 2Þ=Uð1; 1Þ; (19)

which is topologically equivalent to CP2;1. Here, we add
some crucial comments. To derive the noncommutative
algebras (18), we did not quantize the original space-time
coordinates by themselves, but quantized the more funda-
mental (Hopf spinor) variables, and the fuzziness in the
original space-time was induced by that of the more fun-
damental space. Indeed, this realizes the original philoso-
phy of twistor; the space-time fuzziness should come from
the more fundamental (twistor) space[1]. The noncommu-
tative geometry is deeply related to particular physics in
QHE. In the LLL (M ! 0), the covariant angular momen-
tum drops to yield Lab ! �Fab, and the noncommutative
relation of Xa will be given by ½Xa; Xb� ¼ i 14Fab. Then, the

equation of motion is derived as

Ia ¼ _Xa ¼ �i½Xa; V� ¼ � 1

4
FabE

b; (20)

where Ea ¼ �@aV, and the Hall effect, IaEa ¼ 0, is con-
firmed. Around the north pole, noncommutative relation
becomes

½X�; X�� ¼ i‘2B���i�
i: (21)

This is the fundamental relation for the split-quaternionic
geometry unifying the space-time fuzziness and the inter-
nal ‘‘spin’’ structure, as first pointed in the original setup of
the 4D QHE [9].
To summarize, having exploited the noncompact version

of the 2nd Hopf map, we clarified close mathematical and
physical structures between QHE and twistor theory.
Moreover, based on the noncommutative geometry argu-
ments, it was shown that the QHE naturally realizes the
original philosophy of twistor theory. We also explored
Landau problem on H2;2 and many-body physics where
higher dimensional analogues of quantum liquid and topo-
logical excitations were derived explicitly.
The noncompact QHE owes its mathematical back-

ground to the noncompact Hopf map. A particular feature
of such Hopf-map-based construction would be unique-
ness: the space-time manifold, gauge symmetry, global
symmetry are uniquely determined by the geometrical

TABLE I. Analogies between the noncompact QHE and
twistor: The original setups are different; the base manifold of
the QHE isH2;2 whose isometry is SOð3; 2Þ, while that of twistor
is Minkowski space whose isometry is Poincare. However, once
‘‘massless limit’’ is taken, both systems enjoy the enlarged
SUð2; 2Þ conformal symmetry and everything goes parallel.
(See also Ref. [26], in which twistor formalism was applied to
describe a charged particle in monopole background.)

QHE Twistor

Fundamental quantity Hopf spinor Twistor

Quantized value Monopole charge Helicity

Base manifold Hyperboloid H2;2 Minkowski space

Original symmetry SOð3; 2Þ Poincare

Special limit LLL (M ! 0) zero mass (M ! 0)
Enhanced symmetry SUð2; 2Þ SUð2; 2Þ
Emergent Manifold CP3 CP3

Fuzzy manifold Fuzzy hyperboloid Fuzzy twistor space
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structure of the Hopf map. At the same time, due to the
usage of its noncompact version, there arises an exotic
feature: extra time dimensions. Indeed, the present base
manifold H2;2 has two-temporal dimensions as well as two
spacial dimensions. Extra time physics has been discussed
in various contexts [See for instance, Refs. [30–33]], and
the present model might demonstrate particular properties
speculated in extra time physics. Especially, analogies to
Bars’ 2T physics [30] are quite suggestive: In 2T physics,
the (enhanced) global symmetry is SUð2; 2Þ and the gauge
symmetry is Spð2; RÞ ’ SUð1; 1Þ which is crucial to elimi-
nate negative norm states. Interestingly, also in the present
model, the (enhanced) global symmetry is SUð2; 2Þ and the
gauge symmetry is SUð1; 1Þ, which is automatically incor-
porated by the geometry of the noncompact 2nd Hopf map.
This seems to suggest hidden relations between the 2T
physics and the present model. The edge excitations are
also worthwhile to be investigated. As edge excitations, the
original 4D QHE exhibits higher spin massless spectrum
including photon and graviton [9]. However, in flat space-
time, a field theoretical description of higher spin massless

particles has not successfully been constructed.
Meanwhile, in AdS space with negative curvature, a con-
sistent formulation of higher spin field theory is possible
[34]. Fortunately, the present base manifold is hyperbolic
and its edge manifold also possesses negative curvature.
Then, it is expected that the present edge model could yield
a consistent higher spin theory in negative curvature space.
In the setup of the noncompact 4D QHE, we have

encountered diverse novel mathematics and physical ideas,
such as split-quaternions, noncompact Hopf map, noncom-
mutative geometry, twistor theory, higher spin theory, and
even extra-time physics. Such ‘‘richness’’ may imply pro-
found structures behind the present construction.
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