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A new class of four-dimensional, hairy, stationary solutions of the Einstein-Maxwell-� system with a

conformally coupled scalar field is obtained. The metric belongs to the Plebański-Demiański family and

hence its static limit has the form of the charged (A)dS C metric. It is shown that, in the static case, a new

family of hairy black holes arises. They turn out to be cohomogeneity-two, with horizons that are neither

Einstein nor homogenous manifolds. The conical singularities in the C metric can be removed due to the

backreaction of the scalar field providing a new kind of regular, radiative spacetime. The scalar field

carries a continuous parameter proportional to the usual acceleration present in the C metric. In the zero-

acceleration limit, the static solution reduces to the dyonic Bocharova-Bronnikov-Melnikov-Bekenstein

solution or the dyonic extension of the Martı́nez-Troncoso-Zanelli black holes, depending on the value of

the cosmological constant.
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I. INTRODUCTION AND SUMMARY

One of the most fascinating properties of black holes is
that they are characterized only by a small set of parame-
ters. The black hole no-hair conjecture asserts that an
asymptotically flat, stationary black hole formed from the
gravitational collapse of matter fields is settled to be and
characterized only by its mass, electromagnetic charge,
and angular momentum [1]. The black hole uniqueness
theorem in the asymptotically flat Einstein-Maxwell sys-
tem surely supports this conjecture, in addition to the
existence of a no go result in the nonminimally coupled
scalar case with quartic self interaction for a static black
hole [2].

Among all the possible hairs, the conformal scalar hair is
particularly interesting because (i) it contains a well-
known family of Uð1Þ charged static black holes [3–8]
and (ii) the asymptotically locally anti–de Sitter (AdS)
solutions in the Einstein frame [9] can be embedded in
string theory [10] and are stable against linear perturba-
tions [11], which provide a relevant arena for the gravita-
tional description of superconductors [12].

These interesting features are in contrast with the ex-
iguous knowledge of exact solutions of this system. The
question on the existence of stationary axisymmetric solu-
tions was already pointed out to be of relevance in one of
the seminal papers of the subject [5]; however, its explicit
construction has not been done until now. The purpose of
this article is to report a new exact solution in the Einstein-
Maxwell-� system with a conformally coupled scalar
field, which contains all the known solutions of this system
as particular limits. A fully detailed analysis of the solution
will be presented in a forthcoming paper [13].

The exact solutions are constructed taking advantage of
the following well-known fact: the traceless property of the
energy-momentum tensor for a conformally coupled scalar
field implies that any spacetime with constant Ricci scalar
could support, in principle, its backreaction. Hence, the

Plebański-Demiański family of spacetimes [14] (see also
[15]), the most general Petrov type D spacetime in the
Einstein-Maxwell-� system, provides a natural starting
point.
Thus, in the next section, the most general solution in the

Einstein-Maxwell-� system with a conformally coupled
scalar field within the Plebański-Demiański family is con-
structed. The addition of a quartic self-interaction of the
scalar field is necessary to include the cosmological con-
stant. The subsequent section is devoted to the analysis of
the static case in order to show that all the known solutions
of this system are included within this new family as
particular limits.
Our static solution, being of the form of the charged (A)

dS C metric, is reanalyzed in the last section to show a
number of remarkable features. First, accelerating black
hole configurations [16] without conical singularities can
be achieved, in contrast with the Einstein-Maxwell-� sys-
tem, without implying the existence of only two real roots
in the metric functions (see [17], for instance). This is not
done at the expense of changing the asymptotic behavior of
the spacetime (as opposite of the embedding of the Ernst
solution [18] which is asymptotic to a magnetic universe).
It is worth remarking that when the cosmological constant
is present the Ernst trick to obtain a radiative spacetime
without conical singularities does not work. The configu-
rations that we introduce here are the first radiative solu-
tions that have no conical singularities. They have compact
event horizons, thus representing localized sources of mat-
ter. These configurations can be rotating and the cosmo-
logical constant as well as a Uð1Þ gauge field can be
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included, besides the scalar field, without spoiling any of
these properties.

Second, as pointed out in [19], the AdS C metric can be
interpreted as a single black hole in a certain range of the
parameters. Our new black hole turns out to be a
cohomogeneity-two black hole whose event horizon is
neither an Einstein nor a homogenous manifold, resem-
bling the structure of the five-dimensional stationary black
holes constructed in [20].

Third, even in the limit where the metric has constant
curvature, the scalar field can develop a nontrivial vacuum
expectation value: the energy-momentum tensor vanishes
but the scalar field is nontrivial. These peculiar configura-
tions have been observed to occur for Minkowski [21], dS,
and AdS spacetimes [8,22].

The elimination of the conical singularities in the C
metric, due to the scalar field backreaction, is an interesting
result and deserves some comments. The conical singular-
ities associated with the acceleration can be neatly de-
scribed as follows. The charged C metric can be written
as [16,17]

ds2 ¼ 1

Aðq� pÞ2
�
dp2

XðpÞ þ XðpÞd�2 þ dq2

YðqÞ � YðqÞdt2
�
;

XðpÞ ¼ 1� p2 � 2mAp3 � e2A2p4; YðqÞ ¼ �XðqÞ;
(1.1)

where A, m, and e are acceleration, mass, and charge
parameters, respectively. The manifold spanned by the
coordinates ðp;�Þ is Euclidean if XðpÞ � 0 and compact
if XðpÞ has at least two real roots. Indeed, requiring regu-
larity of the Killing vector field @� at the degeneration
surfaces one finds that either (i)m ¼ 0 or (ii)m ¼ �ewith
4Ae <�1 or 4Ae > 1, which in turn implies that XðpÞ has
exactly two real roots.

The situation drastically changes in the presence of the
scalar field. Slowly decaying scalar fields have nontrivial
contributions to the total mass of the spacetime [23,24].
Therefore, it is in principle possible to eliminate the pa-
rameter m from the metric functions, and thus the conical
singularities, still keeping the total mass of the spacetime
positive. Although this claim is not explicitly proven be-
low, it is supported due to the existence of solutions with
four distinct real roots even in the vanishingm limit, which
represent black holes free from conical singularities.

Our notations follows [25]. The conventions of curva-
ture tensors are ½r�;r��V� ¼ R�

���V
� and R�� ¼

R�
���. The metric signature is taken to be ð�;þ;þ;þÞ,

Greek letters are spacetime indices, and we set c ¼ 1.

II. THE STATIONARY SOLUTION

The Einstein-Maxwell-� system with a conformally
coupled scalar field � with quartic self-interaction can be
defined by the following set of equations:

G�� þ�g�� ¼ �

4�

�
F��F�

� � 1

4
g��F��F

��

�
þ �Tð�Þ

�� ;

(2.1)

Tð�Þ
�� ¼ @��@��� 1

2
g��@��@��� �g���

4

þ 1

6
ðg��h�r�r� þG��Þ�2; (2.2)

h� ¼ 1

6
R�þ 4��3; F��

;� ¼ 0; (2.3)

where � :¼ 8�G, F�� :¼ 2r½�A��, and � is a constant.

Using (2.3) the trace of Eq. (2.1) reduces to R ¼ 4�. Given
the Plebański-Demiański ansatz [the metric form (2.4)
given below], the trace equation can be integrated to give
the metric functions. Replacing it back in the full set of
field equations, we find that the most general solution has
the following form:

ds2 ¼ 1

ð1� qpÞ2
�
ðp2 þ q2Þ

�
dp2

XðpÞ þ
dq2

YðqÞ
�
þ XðpÞ

p2 þ q2

� ðd	þ q2d�Þ2 � YðqÞ
p2 þ q2

ðd	� p2d�Þ2
�
; (2.4)

XðpÞ ¼ a0 þ a2p
2 �

�
a0 þ a4 þ�

3

�
p4;

YðqÞ ¼ a0 þ a4 � a2q
2 �

�
a0 þ�

3

�
q4;

(2.5)

A�dx
� ¼ c1qþ c2p

q2 þ p2
d	þ pq

c2q� c1p

q2 þ p2
d�;

� ¼
ffiffiffiffi
6

�

s
Bð1� pqÞ
Cþ 1� pq

; (2.6)

where the constraints on the parameters a0, a2, a4, c1, c2,
B, and C depending on the values of � and � are summa-
rized in Table I.
The most relevant conclusion following from Table I is

that the spacetime has nontrivial rotation.
Indeed, for B ¼ 0, the scalar field vanishes and the

metric corresponds to the usual Plebański-Demiański fam-
ily of solutions with 8�a4 ¼ �ðc21 þ c22Þ and vanishing
mass and Newman-Unti-Tamburino parameters. Thus,
the metric contains the accelerated version of the zero-
mass Kerr-Newman spacetime. This fact makes us confi-
dent that the angular momentum is not pure gauge in the
above metric with BC � 0. In our next paper, it will be
shown that that spacetime has nontrivial angular momen-
tum by an explicit computation of the conserved charges,
and that it represent a black hole for certain values of the
parameters [13].
The family of solutions supporting a nontrivial scalar

field, BC � 0, has two branches, and the parameters of the
metric are accordingly related in a different way. The first
branch is when a4 ¼ c1 ¼ c2 ¼ 0; then the metric has
constant curvature, R��


� ¼ ð�=3Þð��

 �

�
� � �

�
���


Þ, and

the parameters are related through the single relation
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36�B2=� ¼ ��ðCþ 1Þ2 � 3a0CðCþ 2Þ. It follows that
the scalar field carries an integration constant and that it is a
stealth field [8,21,22], namely, a nontrivial scalar field

giving Tð�Þ
�� � 0.

For a4 � 0, the metric is no longer of constant curva-
ture. In the case of� ¼ 0 ¼ �, the above configuration is a
solution with a nonconstant scalar field if and only if C ¼
�2 and B2 ¼ ½8�a4 � �ðc21 þ c22Þ�=8�a4. This relation
entails the main difference from the Plebański-Demiański
family with vanishing scalar field. As we remarked before,
B ¼ 0 results in 8�a4 ¼ �ðc21 þ c22Þ, and the parameter a4
in the metric functions must be strictly positive. The scalar
field relaxes this condition allowing a negative a4. As we
discuss in the next section, in the nonrotating case, this
implies the existence of a new family of black holes that do
not exist when the scalar field vanishes. For ��< 0, the
above relation becomes

B2 ¼ 8�a4 � �ðc21 þ c22Þ
8�a4

¼ � ��

36�
: (2.7)

We note that the value of B is not arbitrary but fixed as
B2 ¼ 1 when we obtain the stealth configuration by taking
the limit a4 ! 0 from the nontrivial solution with c1 ¼
c2 ¼ 0 with a4 � 0.

III. RECOVERING THE KNOWN SOLUTIONS

In this section, we show that the nontrivial solution,
namely, C ¼ �2 and the relation given in (2.7), reduces
to the known solutions as limiting cases. First, we consider
the static limit of our stationary solution (2.4), (2.5), and
(2.6): its static limit is achieved after the coordinate trans-
formations p ! p=n, q ! n=q, � ! �=n, and 	 ! 	=n
together with the redefinitions of the parameters such that
a2 ! n2a2, a4 ! n4a4, c1 ! n2c1, and c2 ! n2c2 and the
limit n ! 1. The further coordinate transformations p !
�p� a3=ð4a4Þ, q ! q� a3=ð4a4Þ, and � ! �=� and
redefinitions a0 ! �2a0 � ð16a2a4 � a23Þa23=ð256a34Þ and

a2 ! a2 þ 3a23=ð8a4Þ bring the solution to the form of

[modulo a gauge transformation of the Uð1Þ field]

ds2 ¼ 1

ðq��pÞ2
�
dq2

YðqÞ�YðqÞd	2þ dp2

XðpÞþXðpÞd�2

�
;

A�dx
� ¼ c1qd	þ c2pd�; (3.1)

XðpÞ ¼ a0 þ a1
�
pþ a2p

2 þ �a3p
3 � �2a4p

4;

YðqÞ ¼ ��2a0 � a1q� a2q
2 � a3q

3 þ a4q
4 ��

3
;

(3.2)

� ¼
ffiffiffiffi
6

�

s
Bð�p� qÞ

�pþ q� a3=ð2a4Þ ;

a1 ¼ � a3ð4a2a4 þ a23Þ
8a24

;

(3.3)

where a4 � 0 is assumed and new parameters a1, a3, and�
were introduced. They allow considering the zero-
acceleration limit, � ! 0. It is noted that if no coordinate
transformations are done after the static limit, n ! 1, the
configuration (3.3) would have been in the same form but
with � ¼ 1 and a1 ¼ a3 ¼ 0. Then, we can set ja2j ¼ 1 or
ja4j ¼ 1 if a2a4 � 0 using a remaining degree of freedom
p ! dp, q ! dq, 	 ! d	, � ! d�, c1 ! c1=d

2, and
c2 ! c2=d

2 with a constant d. Hence, for � � 0, there
are five independent parameters.
Let us consider now the zero-acceleration limit � ! 0

of the static solution (3.1), (3.2), and (3.3). This makes
sense only in the case of a1 ¼ 0, which requires a3 ¼ 0 or
a4 ¼ �a23=ð4a2Þ with a2 � 0. In the case of a3 ¼ 0, the
limit implies a constant scalar field. Note that in the
previously known solutions of this system the scalar field
does not carry any continuous parameter that allows driv-
ing it to a nonzero constant value. In the case where a4 ¼
�a23=4a2, by the coordinate transformation r :¼ 1=q and

the rescaling of the coordinates 	 ! 	=
ffiffiffiffiffiffiffiffija2j

p
, r ! ffiffiffiffiffiffiffiffija2j

p
r,

p ! ffiffiffiffiffiffiffiffija0j
p

p=
ffiffiffiffiffiffiffiffija2j

p
, and � ! �=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffija0jja2j

p Þ together with
the redefinition of the parameters such as e :¼ c1=ja2j,
g :¼ c2=ja2j, MG :¼ �a3=ð2a2ja2j1=2Þ, and k :¼
�signða2Þ, the limit provides the dyonic extension of the
black hole obtained in [7];

ds2 ¼ �fðrÞd	2 þ dr2

fðrÞ
þ r2

�
dp2

signða0Þ � kp2
þ ðsignða0Þ � kp2Þd�2

�
;

A�dx
� ¼ e

r
d	þ gpd�; (3.4)

TABLE I. The constraints on the parameters in the solution (2.4), (2.5), and (2.6) depending on � and�. We do not consider the case
with with BC ¼ 0, which gives the constant scalar field. The spacetime has constant curvature for a4 ¼ 0, which we abbreviate as

‘‘C.C.’’. ‘‘Stealth’’ means that the scalar field, �, is nontrivial but its energy-momentum tensor vanishes, Tð�Þ
�� � 0.

Constraints Note

� ¼ 0 and � ¼ 0 B2 ¼ ½8�a4 � �ðc21 þ c22Þ�=ð8�a4Þ, a4 � 0, and C ¼ �2 Hairy extension of the PD spacetime

� ¼ 0 and � ¼ 0 c1 ¼ c2 ¼ a4 ¼ 0 and a0ðCþ 2Þ ¼ 0 Stealth field on a C.C. spacetime

� ¼ 0 and � � 0 c1 ¼ c2 ¼ a4 ¼ 0, a0 ¼ ��ðCþ 1Þ2=½3CðCþ 2Þ�, and C � �2 Stealth field on a C.C. spacetime

� � 0 and � ¼ 0 c1 ¼ c2 ¼ a4 ¼ 0 and B2 ¼ �a0CðCþ 2Þ�=ð12�Þ Stealth field on a C.C. spacetime

�� � 0 B2 ¼ ½8�a4 � �ðc21 þ c22Þ�=ð8�a4Þ ¼ ���=ð36�Þ, a4 � 0, and C ¼ �2 Hairy extension of the PD spacetime

�� � 0 36�B2=� ¼ ��ðCþ 1Þ2 � 3a0CðCþ 2Þ and c1 ¼ c2 ¼ a4 ¼ 0 Stealth field on a C.C. spacetime
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fðrÞ ¼ k

�
1�MG

r

�
2 ��

3
r2;

� ¼ �
ffiffiffiffiffiffiffi
3

4�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2G� kðe2 þ g2Þp

r�GM
;

k
e2 þ g2

M2
¼ Gþ 2��

9�
G2; (3.5)

where ��< 0 is required for the scalar field to be real and
k represents the curvature of the two-dimensional section
of ðp;�Þ. Although the limit is not well-defined for a2 ¼ 0
corresponding to k ¼ 0, the above solution is valid even for
k ¼ 0, in which e ¼ g ¼ 0 is required. Thus, all the known
solutions of the relevant system are contained within the
static family (3.1), (3.2), and (3.3).

IV. NEWCOHOMOGENEITY-TWOBLACKHOLES

Now let us see the important consequence of the scalar
hair in the static case (3.1), (3.2), and (3.3), where we can
set � ¼ 1 and hence a1 ¼ a3 ¼ 0 without loss of general-
ity. There are then two different families of solutions,
depending on the sign of a4. For a4 > 0, the geometry is
the same as in the extremal case of theUð1Þ charged (A)dS
C metric; the relation of this case with a conformally
coupled scalar field is analyzed in [26]. Interestingly, the
case with negative a4ð¼: �b2Þ is possible in the presence
of the scalar hair. This case does not occur within the pure
Einstein-Maxwell-� system. In what follows we focus on
this case.

The ðp;�Þ submanifold is Euclidean and compact if and
only if XðpÞ has four real roots. In terms of these roots the
metric functions are

XðpÞ ¼ b2ðp2 � 
2
1Þðp2 � 
2

2Þ; (4.1)

YðqÞ ¼ �b2ðq2 � 
2
1Þðq2 � 
2

2Þ �
�

3
; (4.2)

where we set 0< 
1 < 
2 without loss of generality. It
follows that the required signature and compactness is
obtained if �
1 � p � 
1. From the expansion of the
metric around the degeneration surfaces of the angular
Killing vector @=@�, it follows that the spacetime is free
from conical singularities, as can be seen from the relation
jX0ð
1Þj ¼ jX0ð�
1Þj ¼ 2b2
1ð
2

2 � 
2
1Þ, where a prime

denotes the derivative. Conformal infinity is located at p ¼
q and there are curvature singularities at q ¼ �1, so the
domain of the coordinate q is p < q <1.

When the cosmological constant vanishes, there is an
event horizon at q ¼ 
2 and an acceleration horizon at q ¼

1. For � � 0, the roots of YðqÞ ¼ 0, q1ðþÞ, q1ð�Þ, q2ðþÞ,
and q2ð�Þ, are given by

q"ð�Þ :¼� 1ffiffiffi
2

p
�

2
1þ
2

2�"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
2

1�
2
2Þ2�

4�

3b2

s �
1=2

; (4.3)

where " ¼ �1. q ¼ q1ðþÞ and q ¼ q2ðþÞ correspond to the
acceleration horizon and the event horizon, respectively.
Let us count the number of the real roots of YðqÞ ¼ 0.

When �> 3b2ð
2
1 � 
2

2Þ2=4, there is no root of YðqÞ ¼ 0
and the Killing vector @=@	 becomes spacelike every-
where. There are two roots for � ¼ 3b2ð
2

1 � 
2
2Þ2=4;

here the event and acceleration horizon coalesce. In the
case of �< 3b2ð
2

1 � 
2
2Þ2=4, there are four, three, and

two roots for �>�3b2
2
1


2
2, � ¼ �3b2
2

1

2
2, and �<

�3b2
2
1


2
2, respectively.

In the case of the positive or vanishing cosmological
constant, the spacetime is not static near the conformal
infinity. The situation is quite different for the negative
cosmological constant. The acceleration horizon exists
only for �3b2
2

1

2
2 � �< 0 with equality holding for

the case with the extremal horizon. For �<�3b2
2
1


2
2,

in contrast, there is no acceleration horizon and the space-
time is static near the conformal infinity. When the asymp-
totic region is static, the interpretation of the C metric
changes and it corresponds to the geometry of a single
black hole [19]. Thus, these cases represent new asymptoti-
cally locally AdS black holes without conical singularities.
It should be noted that, when the cosmological constant

is negative, the coordinate rank q > p implies the exis-
tence of constant p slices which do not intersect the two
acceleration horizons. Whenever the acceleration horizons
exist and the cosmological constant is nonpositive, these
horizons reach infinity. When the cosmological constant is
positive, the acceleration horizon is replaced by a compact
cosmological horizon for the allowed values of � dis-
cussed before.
The spacetime is regular everywhere outside the event

horizon. Now let us consider the behavior of the conformal
scalar field, which is given by

� ¼
ffiffiffiffi
6

�

s
Bðp� qÞ
pþ q

: (4.4)

The scalar field diverges on the surface pþ q ¼ 0. This
surface is outside the cosmological horizon for �> 0.
Depending on the value of p, it is outside or on the
acceleration horizon for � ¼ 0 and outside, on, or inside
the acceleration horizon for �3b2
2

1

2
2 <�< 0. For � ¼

�3b2
2
1


2
2, it is completely inside of an extremal horizon.

Note that in the spherically symmetric Bocharova-
Bronnikov-Melnikov-Bekenstein black hole, that surface
is located precisely on the event horizon [4,5]. The scalar
field reduces to zero at the conformal infinity and is regular
on the event horizon.
The horizon metric with constant 	 is given by

ds2H ¼ 1

ðqH � pÞ2
�
dp2

XðpÞ þ XðpÞd�2

�
; (4.5)

where qH is the value of q at the event horizon. Note that
the horizon manifold MH is neither Einstein nor homoge-
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neous. The topology of this event horizon is defined by its
Euler characteristic �. The lack of conical singularities
implies that � 2 ½0; 2�=fb2
1ð
2

2 � 
2
1Þg�, from which it

follows

� :¼ 1

4�

Z
MH

ð2ÞR
ffiffiffi
g

p
dpd� ¼ 2; (4.6)

where ð2ÞR is the two-dimensional Ricci scalar of MH.
Therefore, the horizon is diffeomorphic to a two-sphere.
The metric is asymptotically locally (A)dS in the sense that

R��

�jp¼q ¼ �

3
ð��


�
�
� � ��

���

Þ: (4.7)

As a final remark we would like to stress that the
parameters given in the metric have not been labeled as
mass, electric, or magnetic charge because these quantities
are meaningful only when they are defined as surface
integrals. We make a more extended analysis of these
issues as well as the thermodynamical properties of these
spacetimes in a forthcoming work [13].
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