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Phase diagram of a chiral random matrix model with the two degenerate quarks (u and d) and the s-

quark at finite temperature and density is presented. The model exhibits a first-order transition at finite

temperature for three massless flavors, owing to the UAð1Þ breaking determinant term. We study the order

of the transition with changing the quark masses and the quark chemical potential, and show that the first-

order transition region expands as the chemical potential increases. We also discuss the behavior of the

meson masses and the susceptibilities near the critical point.
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I. INTRODUCTION

Study of the QCD critical point (CP) [1–3] is an intrigu-
ing fundamental issue since its experimental confirmation
will yield a strong evidence for the QCD phase transition,
and energy-scan experiments searching for the QCD CP
are being performed at the Relativistic Heavy Ion Collider
at BNL. Although the existence of the critical point in the
QCD phase diagram is presumably inferred from the model
studies and lattice QCD results [1,2,4], its absence is also a
possibility [4,5]. In this paper, we adopt as a schematic
model for QCD the chiral random matrix (ChRM) model
[6] which incorporates the UAð1Þ-breaking determinant
term [7,8]. We report the phase diagram of this model
with the degenerate ud-quark mass mud and the s-quark
mass ms at finite temperature T and quark chemical poten-
tial �.

The ChRM models have been successfully applied for
qualitative study of chiral properties of QCD [9,10]. In a
ChRMmodel the Dirac operator on gluon field background
is modeled by a matrix D in the space of constant modes
with small Dirac eigenvalues, retaining the chiral symme-
try fD;�5g ¼ 0. The partition function of the model is
given as an average of detD over random ensemble of
matrix elements, which mimics the complexity of the
gluon dynamics. The finite T and � effects are treated
schematically as nonrandom external parameters appear-
ing in D. In Ref. [10], the phase diagram of the ChRM
model has been explored in the T-� plane and a tricritical
point (TCP) is found on the phase boundary in the massless
limit. The TCP changes to a simple CP when the quark
mass is nonzero. This result is consistent with the phase
structure obtained in other model studies with two quark
flavors [1,2,11] implying the scenario that the CP exists in
the QCD phase diagram as an endpoint of the first-order
phase boundary.

Nature of the chiral transition in QCD is sensitive to the
number of light quark flavors, especially to the value of the
s-quark mass ms. Unfortunately, however, the phase struc-
ture of the conventional ChRM model [10] is independent
of the number of flavors Nf. In order to remedy this

problem, we have recently incorporated the UAð1Þ-
breaking determinant interaction [7,8] in the ChRM model
[6] by extending the zero-mode space [12] with the in-
stanton gas model picture in mind. This is the first ChRM
model which describes the Nf dependence of the chiral

transition allowing us to explore the phase structure vary-
ing the parameters mud and ms in addition to T and �.

II. MODELWITH DETERMINANT INTERACTION

The chiral symmetry breaking manifests itself in the
nonzero density of the zero Dirac eigenvalues through
the Banks-Casher relation [13]. The origin of small Dirac
eigenvalues may be instanton configurations of back-
ground gauge field and other nonperturbative gluon dy-
namics. Here in our model we divide these fermionic
modes into two categories, Nþ and N� topological zero
modes associated with Nþ instantons and N� anti-
instantons, respectively, and 2N near-zero modes gener-
ated by other complex dynamics [6,12]. The Dirac operator
D then approximated with a matrix of 2N þ Nþ þ N�
dimensions with Nþ, N� and N being of the order of the
space-time volume OðVÞ. The thermodynamic limit is
taken as 2N þ Nþ þ N� ! 1. Note that N� should vary
depending on the instanton distribution.
For fixed number of zero modes the model partition

function is written in the chiral basis as

ZNþ;N� ¼
Z

dRe�N�2trRRy YNf

f¼1

detðDþmfÞ; (1)

with

D ¼ 0 iRþ C
iRy þ CT 0

� �
; (2)

whereR 2 CðNþNþÞ�ðNþN�Þ is a randommatrix following a
Gaussian ensemble distribution with the variance 1=ðN�2Þ
and C 2 CðNþNþÞ�ðNþN�Þ is a matrix representing the ef-
fects of T and �. The matrix D has jNþ � N�j exact zero
eigenvalues when R and C are rectangular, which is inter-
preted as a realization of the index theorem in the ChRM
model. We adopt here the simplest form for C [10]:
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C ¼
ð�þ iTÞ1N=2 0 0

0 ð�� iTÞ1N=2 0
0 0 0

0
@

1
A; (3)

where T and � are schematic representation for the tem-
perature and chemical potential effects, respectively. Note
that D with � � 0 is non-Hermitian, whereas the partition
function (1) is still invariant under � $ ��. One should
appreciate that the Nþ � N� right-bottom block in C
corresponding to the topological zero modes is set to
zero. This seems a reasonable assumption if one notices
that the finite T and � effects are introduced as a boundary
condition in the Matsubara formalism and that the local-
ized topological zero modes will be insensitive to the
boundary. This discrimination is important indeed in re-
producing the physical T dependence of the topological
susceptibility [6,14].

The complete partition function of the model is obtained
by summing over Nþ and N� with a distribution PðN�Þ:

ZRM ¼ X
Nþ;N�

PðNþÞPðN�ÞZNþ;N� : (4)

The PðN�Þ reflects a modeling of the instanton distribution
in the QCD ground state. The authors of Ref. [12] adopted
the Poisson distribution, which involves arbitrarily large
number for N� and results in a model with no stable
ground state. Inspired by the lattice gas model within a
finite box, we instead choose the binomial distribution [6],

PðN�Þ ¼ �N
N�

� �
pN�ð1� pÞ�N�N� ; (5)

where � is a parameter ofOðV0Þ and p is interpreted as the
probability for a single instanton to occupy a unit volume
V=ð�NÞ. This distribution sets an upper bound �N for N�
and gives rise to a stable effective potential as a function of
order parameters. In fact, applying the standard bosoniza-
tion procedure to (4), we find

ZRM ¼
Z

dSe�N�2trSyS

� detN=2½ðSþMÞðSy þMyÞ� ð�þ iTÞ2�
� detN=2½ðSþMÞðSy þMyÞ� ð�� iTÞ2�
� ½�detðSþMÞ þ 1��N½�detðSy þMyÞþ 1��N

�
Z

dSe�2N�ðS;T;�Þ; (6)

where we defined the effective potential �ðS;T;�Þ in the
last line. S 2 CNf�Nf is the order parameter matrix, and
M is the mass matrix. The parameter � ¼ p=ð1� pÞ.
Note that the integrand of ZRM is a polynomial of S except
for the exponential factor originating from the Gaussian
ensemble distribution. Large values of S are suppressed by
this Gaussian weight.

The determinant term with the coefficient � represents
the anomaly which breaks explicitly the UAð1Þ symmetry
of �ðSÞ. For S ¼ �1Nf

(� 2 R) with M ¼ 0, � simpli-

fies to

�Nf
¼ Nf

2

�
�2�2 � 1

2
ln½�2 � ð�þ iTÞ2�

� ½�2 � ð�� iTÞ2�
�
� � lnj��Nf þ 1j: (7)

We see that the anomaly term yields ����Nf when
expanded. In Ref. [6] we studied this ChRM model with
two and three equal-mass flavors at finite T with � ¼ 0, to
show a second- (first-) order phase transition for Nf ¼
2ð3Þ.

III. PHASE DIAGRAM AND MESON MASSES
WITH 2þ 1 FLAVORS

Choosing S ¼ diagð�ud; �ud; �sÞ in the 2þ 1 flavor
case with M ¼ diagðmud; mud; msÞ, we have
� ¼ �2�2

ud � 1
2ðln½’2

ud � ð�þ iTÞ2� þ ðT ! �TÞÞ
þ 1

2

�
�2�2

s � 1
2ðln½’2

s � ð�þ iTÞ2� þ ðT ! �TÞÞ
�

� � lnj�’2
ud’s þ 1j; (8)

where ’ud ¼ �ud þmud and ’s ¼ �s þms. The ground
state is determined by the saddle-point condition

@�

@�ud

¼ 0;
@�

@�s

¼ 0; (9)

which becomes exact in the thermodynamic limit.
Prior to the numerical analysis, we comment on the

model parameters �, �, and �. Setting � ¼ 1 by redefini-
tion of S and other parameters, we searched such a set of
parameters �, �, mud, and ms, which reproduces quantita-
tively the (ratios of the) meson masses in the vacuum, but it
was unsuccessful. However, the model can describe the
mass hierarchy qualitatively as seen below in Fig. 3, and
we wish to study the model phase diagram as an schematic
model for QCD. Note that all the quantities are dimension-
less in this work.
We also remark that the anomaly term makes a

symmetry-broken phase more stable. Indeed, no symmetry
restoration occurs at finite T for ��>�2ð¼ 1Þ with Nf ¼
2, and the situation is similar even for Nf ¼ 3. Hence, one

must assume �� & 1 for study of the chiral restoration.
Finally, the transition at finite � � 0with T ¼ 0 is first-

order. It is seen in the simple case (7) because the sym-
metric phase � ¼ 0 and the broken phase �>� are
separated with the point � ¼ � where � ¼ 1 or the
integrand of ZRM vanishes. This feature survives in more
general cases with 2þ 1 flavors.
Let us study the phase diagram in the T-mud-ms space.

Since our model shows a first-order transition at finite T for
mud ¼ ms ¼ 0 and a crossover for large mud and ms [6],
there must be a line of a second-order transition separating
these two regions in the mud-ms plane. This critical line is

determined by the condition �ðnÞ ¼ 0 (n ¼ 1, 2, 3) with

�ðnÞ � @n�=@�n
ud, where� is a function of a single order

parameter �ud with �s eliminated by the second equation
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in (9). Note that �ð2Þ ¼ 0 is equivalent to
det½@2�ðSÞ=@�i@�j� ¼ 0 (i, j ¼ ud, s), which implies

the vanishing � mass (see below).
We present in Fig. 1 the critical line projected on the

mud-ms plane for several values of � and �. When we
increase the strength of the anomaly term � and/or �, the
region of the first-order transition expands. For each pa-
rameter a TCP is found on the ms axis, where the Nf ¼ 2

chiral transition changes from a first to a second-order one.

Near the TCP the critical line behaves as ðmTCP
s �msÞ /

m2=5
ud as is expected from the Landau-Ginzburg analysis,

which is clearly seen in Fig. 1(b). On the other hand, the
line smoothly intersects the mud axis with a finite slope. In
fact, the model with the anomaly term is symmetric under
mud $ �mud but asymmetric under ms $ �ms.

Next we extend our calculation to the finite � case.
Figure 2 exhibits the phase diagram in the mud-ms-�

2

space. We see that the region of the first-order transition
expands as � is increased. This behavior indicates the
existence of the CP in the T-� plane with the physical
quark masses, provided that the finite-T transition at � ¼
0 is crossover. Varying the anomaly parameters � and �,
we have confirmed that the expansion of the first-order
region with increasing � is a robust result in our model as
far as we keep � and � constant.

The (screening) mass matrices for the scalar and pseu-
doscalar mesons are defined as the curvature of the poten-
tial around �S ¼ diagð�ud; �ud; �sÞ:

Ms2
ab ¼ @2�ðSÞ

@�a@�b

��������S¼ �S
; M

ps2
ab ¼ @2�ðSÞ

@�a@�b

��������S¼ �S
; (10)

where S ¼ �að�a þ i�aÞ=
ffiffiffi
2

p
with real parameters �a and

�a, and with �a being the Gell-Mann matrices and �0 ¼ffiffi
2
3

q
diagð1; 1; 1Þ. See the Appendix for explicit expressions

for M2
ab. Because the SU(3) flavor symmetry is broken by

mud � ms, there are nonzero mixing M2
08 ¼ M2

80 � 0 and

the mass eigenvalues � and f0 for the scalars and � and �0
for the pseudoscalars are obtained after diagonalization.
One can show that the flat direction of�ð�ud; �sÞ near the
CP coincides with the � fluctuation direction.

In Fig. 3, we show the meson masses as a function of �
at T ¼ Tc with parameters � ¼ 1, � ¼ 0:5, mud ¼ 0:05
and ms ¼ 1:0. The model reproduces the empirical hier-
archy of the meson masses qualitatively in small � region,
thanks to the anomaly term.With increasing T and/or� the
pseudoscalar meson masses remain nearly constant while
the scalar ones, especially the � mass, decrease. At the CP
(T ¼ Tc, � ¼ �c), the � meson becomes massless. At
higher �>�c, pairs of the masses M�-M�, M	-MK,
and M
-M�0 get almost degenerate, reflecting the approxi-

mate Nf ¼ 2 chiral symmetry.

Generalizing the mass matrix toM ¼ �aðsa þ ipaÞ=
ffiffiffi
2

p
with real sources sa and pa, the scalar susceptibilities are
defined as

�s
ab ¼ �@2�ðSðMÞ;MÞ

@sa@sb
; (11)

where SðMÞ solves (9) for a fixed M, and the derivatives
are evaluated at M ¼ diagðmud; mud; msÞ. The pseudosca-
lar susceptibilities �

ps
ab are defined similarly as the response

to pa. We find the (pseudo-)scalar susceptibilities �
sðpsÞ
ab in a

diagonal form

�
sðpsÞ
ab ¼ 
ab�

2ð�2=M
sðpsÞ2
aa � 1Þ (12)

for a; b ¼ 1; . . . ; 7. There is an mixing term for a, b ¼ 0, 8
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FIG. 1 (color online). The critical curves on the mud-ms plane
(a) for � ¼ 0:3, 0.4, 0.5 with � ¼ 1 and (b) for � ¼ 0:9, 1.0, 1.1
with � ¼ 0:5. The finite-T transition is first order in the smaller-
mass region and crossover in the larger-mass region. On the ms

axis with mud ¼ 0, there is the Nf ¼ 2 chiral symmetry. The

TCP is denoted by a dot for each parameter.
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FIG. 2 (color online). Critical surface in the mud-ms-�
2 space

with the parameters � ¼ 1 and � ¼ 0:5. A series of TCP’s is
denoted by a thick line, and the second-order transition with
Nf ¼ 2 chiral symmetry occurs in the shaded area.
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FIG. 3 (color online). Mesonic masses as functions of � with
T ¼ Tc fixed for parameters � ¼ 1, � ¼ 0:5, mud ¼ 0:05, and
ms ¼ 1:0. The critical point locates at ðTc;�cÞ ¼ ð0:817; 0:738Þ.
Thin (thick) lines indicate (pseudo-)scalar mesons.
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due to the SU(3) breaking:

�sðpsÞ
ab ¼ �2ð�2ðMsðpsÞ2Þ�1

ab � 
abÞ; (13)

which becomes diagonal when the mass matrix MsðpsÞ2 is
transformed to be diagonal. Note that the scalar suscepti-
bility in the � channel diverges when the (screening) mass
M� vanishes at the CP. So do the quark number suscepti-
bility �q ¼ �@2�=@�2 as well as the ‘‘specific heat’’

�T ¼ �@2�=@T2, through the mode mixing generated
by the finite condensate ’ud and ’s [15].

IV. CONCLUSION

As a schematic model for QCD, we have analyzed for
the first time in the ChRM model the phase structure with
2þ 1 flavors at finite T and �, which becomes possible by
the inclusion of the UAð1Þ breaking term [6]. We have
drawn the critical curve separating the first-order transition
region and the crossover region in the mud-ms plane with
� ¼ 0, and we have shown that the first-order transition
region expands as the strength of the anomaly term is
increased.

Extending the model to the finite� case, we have shown
the critical surface in the mud-ms-� space. We have found
that the first-order transition region expands with increas-
ing �, which is a supportive result for the existence of
QCD CP on the T-� plane: one encounters a CP as � is
increased from zero, provided that the finite-T transition is
crossover at � ¼ 0. The meson mass hierarchy in the
vacuum is qualitatively reproduced with the UAð1Þ anom-
aly term and the SU(3) flavor breaking. At the CP the
(screening) mass of � vanishes. Although we treat the

model parameters independent of T and �, possible rapid
quenching of these parameters at finite � can give rise to a
shrinkage of the first-order transition region [16].
Furthermore, the role of the vector interaction between
the quarks [17] deserves further study. These are beyond
the scope of this schematic model.

APPENDIX

The mass matrixM2
ab is diagonal except for a, b ¼ 0 and

8. For a ¼ 1, 2, 3 and for a ¼ 4; . . . ; 7, respectively,

M2

;� ¼ �2 � Re

’2
ud � z2

ð’2
ud � z2Þ2 � �

�’s

�’2
ud’s þ 1

; (A1)

M2
	;K ¼ �2 � Re

’ud’s � z2

ð’2
ud � z2Þð’2

s � z2Þ � �
�’ud

�’2
ud’s þ 1

;

(A2)

where z ¼ �þ iT. The upper (lower) sign corresponds to
the (pseudo-) scalar meson. The elements M2

ab for a, b ¼
0, 8 are written concisely in another basis of �ud �
diagð1; 1; 0Þ and �s � diagð0; 0; ffiffiffi

2
p Þ, instead of �0;8:

M2
ud;ud ¼�2�Re

’2
ud� z2

ð’2
ud� z2Þ2��

�2’2
ud’

2
s ��’s

ð�’2
ud’sþ 1Þ2 ; (A3)

M2
s;s ¼ �2 � Re

’2
s � z2

ð’2
s � z2Þ2 � �

�2’4
ud

ð�’2
ud’s þ 1Þ2 ; (A4)

M2
ud;s ¼ M2

s;ud ¼ � ffiffiffi
2

p
�

�’ud

ð�’2
ud’s þ 1Þ2 : (A5)

[1] M. Asakawa and K. Yazaki, Nucl. Phys. A504, 668
(1989).

[2] A. Barducci et al., Phys. Lett. B 231, 463 (1989).
[3] For review, M. Stephanov, Prog. Theor. Phys. Suppl. 153,

139 (2004); Proc. Sci., LAT2006 (2007) 024.
[4] For review, E. Laermann and O. Philipsen, Annu. Rev.

Nucl. Part. Sci. 53, 163 (2003); O. Philipsen, Prog. Theor.
Phys. Suppl. 174, 206 (2008); P. de Forcrand, Proc. Sci.,
LAT2009 (2009) 010.

[5] P. de Forcrand and O. Philipsen, J. High Energy Phys. 01
(2007) 077.

[6] T. Sano, H. Fujii, and M. Ohtani, Phys. Rev. D 80, 034007
(2009).

[7] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 44,
1422 (1970); M. Kobayashi, H. Kondo, and T. Maskawa,
Prog. Theor. Phys. 45, 1955 (1971).

[8] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14,
3432 (1976); 18, 2199(E) (1978).

[9] E. V. Shuryak and J. J.M. Verbaarschot, Nucl. Phys. A560,
306 (1993); A.D. Jackson and J. J.M. Verbaarschot, Phys.
Rev. D 53, 7223 (1996); T. Wettig, A. Schäfer, and H.A.
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