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We discuss the correlated systematic theoretical uncertainties that may be ascribed to the next-to-

leading order QCD theory used to predict the one-jet inclusive cross section in hadron collisions. We

estimate the magnitude of these errors as functions of the jet transverse momentum and rapidity. The total

theoretical error is decomposed into a set of functions of transverse momentum and rapidity that give a

model for statistically independent contributions to the error. This representation can be used to include

the systematic theoretical errors in fits to the experimental data.
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I. INTRODUCTION

Predictions of the standard model are typically made
with the aid of next-to-leading order (NLO) perturbative
calculations (or sometimes with NNLO calculations).
Evidently, these predictions are not exactly equal to what
one should measure if the standard model is correct. If we
have an NLO calculation, we leave out NNLO and N3LO
contributions, etc. We also leave out contributions that are
suppressed by a power of the large momentum scale of the
problem. Of course, we do not know exactly how big these
contributions are: if we could calculate them, we would
include them in the prediction. Nevertheless, we can esti-
mate the size of the corrections. They then constitute
‘‘theory errors’’ in the prediction, which are quite similar
to experimental systematic errors in the measurement.

In this paper we distinguish between errors associated
with higher order contributions and power suppressed
contributions to the cross section, which we call theory
errors, and errors associated with our imperfect knowledge
of the parton distribution functions needed for the predic-
tion. Estimated theory errors are needed in two contexts.
First, if an experiment does not agree with the theoretical
prediction within the experimental statistical and system-
atic errors, then we need to see if there is agreement within
the combined experimental and theory errors and the errors
from the parton distributions used in the prediction. In the
case that the disagreement is outside of the combined
errors, then we have a signal for new physics.

The second context in which we need estimated theory
errors is in the determination of parton distribution func-
tions from experimental measurements. The theory errors
give a contribution to the errors that we associate with the
parton distribution functions that emerge from a fit to the
data. Evidently, if we do not include theory errors, the
resulting errors in the parton distribution functions will
be too small. Additionally, if for one kind of process the

theory errors are large while for another kind of process the
theory errors are small, then we will give the large-error
process too much weight in the fit.
In this paper, we provide an estimate of the theory error

for the one-jet inclusive cross section d2�=dPTdy in
hadron-hadron collisions, where PT is the transverse mo-
mentum or ‘‘transverse energy’’ of the jet, and y is the
rapidity of the jet. There is good data for this process from
the CDF and D0 experiments at Fermilab, including care-
ful estimates of the experimental systematic errors.
Estimates of the theory errors are needed to accompany
the estimates of the experimental systematic errors.
We warn that there is no unique method to estimate

theory errors. Thus our task is to provide a method that is
defensible if not necessarily optimal. We seek to provide an
estimate in a form that includes the correlations from one
fPT; yg point to another.

II. GENERAL SETUP

We treat theory errors in a fashion that is similar to that
used for correlated systematic errors in the experimental
results. We use next-to-leading order quantum chromody-
namics (QCD) theory to make predictions for the one-jet
inclusive cross section1

d�

dPTdy
¼

Z
dx1

Z
dx2fa=Aðx1; �Þfb=Bðx2; �Þd�̂ab!jet

dPTdy
:

In the calculation, one uses Monte Carlo integration so that
there is a random statistical error for each point fPT; yg. We
do not include these statistical errors in the analysis here
since they are typically quite small (say 2%) and one can
reduce them by running the program for a longer time. If
we wished to include the errors from fluctuations in the
Monte Carlo integrations, that task would be straightfor-

*olness@smu.edu
†soper@uoregon.edu

1Specifically, we use the program of Ref. [1], although there
are other programs that can give the same results. The code is
available at http://zebu.uoregon.edu/~soper/EKSJets/jet.html
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ward because the statistical nature of these fluctuations is
known.

Wewill start our investigation by studying jet production
corresponding to the Tevatron Run 2, with

ffiffiffi
s

p ¼
1960 GeV, as a function of PT and y. We will display the
results for y ¼ f0; 1; 2g as functions of PT; we also present
formulas for the PT and y dependence, from which esti-
mated errors for the specific kinematic ranges used by CDF
and D0 can be inferred.

We need estimated errors that can be used in a statistical
analysis. However, we do not have at hand a statistical
ensemble of worlds in which terms beyond those included
in the NLO theory vary. Thus we make estimates that we
hope are reasonable but that can and should be subject to
debate.

We formulate the treatment of theory errors as follows.
We let

d�

dPTdy
¼

�
d�

dPTdy

�
NLO

�
1þX

J

�JfJðPT; yÞ
�
: (1)

Here the functions fJðPT; yÞ are definite functions, while
the �J are unknown parameters. Thus �JfJðPT; yÞ repre-
sents an unknown theoretical contribution that might mod-
ify the NLO theory. We treat the �J as Gaussian random
variables with variance 1. That is, the size of the uncer-
tainty with label J is represented by how big fJðPT; yÞ is. If
one thinks of this as representing an imaginary ensemble of
worlds in which theory calculations come out differently,
then these worlds all have the same fJ but the �J vary.

We will propose to use just a few functions fJ. We offer
the following defense of this strategy. Consider a simplified
case of a cross section that is a function of just one variable,
PT . If we were to believe that the uncertainty in the
prediction of this cross section is of order, say, 10%, but
we have no idea of what the shape of the true cross section
is within a 10% band about the prediction, then we would
choose many functions fJðPTÞ, each of size 0.10, but with

each being nonzero only in a very tiny range of PT . This
approach is illustrated in Fig. 1(a); such a view seems to us
unreasonable.
Experience with various perturbative and nonperturba-

tive contributions teaches that they are smooth functions of
the relevant variables, PT in this case. This arguably more
reasonable scenario is illustrated in Fig. 1(b). As illustrated
by the three curves,2 one contribution beyond NLO could
be flat, amounting to a constant ‘‘K factor,’’ another might
be a smoothly increasing function of PT , while yet another
might be positive at high and low PT and negative in
between. However, we judge it unlikely that a currently
uncalculated contribution would have multiple maxima
between low and high PT .
Thus we seek a few functions fJðPT; yÞ that have some

dependence on fPT; yg and represent, as best we can de-
termine, our understanding of the character of uncalculated
contributions. In the following sections, we analyze several
sources of theory errors and associate them with functions
fJðPT; yÞ.

III. PERTURBATIVE UNCERTAINTY

The main source of uncertainty at large jet transverse
momentum, at least in our estimation, is the fact that we
have calculated only at NLO, leaving contributions from
higher orders of perturbation uncalculated. We estimate
this uncertainty using the dependence of the computed
cross section on the renormalization and factorization
scales. We present this estimate in this section. In the

FIG. 1 (color online). illustration of (a) uncorrelated and (b) correlated theoretical errors. In (a), the total error is about 10% for all
PT , but the error at any PT is not correlated with the error at nearby points. In (b), there are just three functions fJðPTÞ giving, again,
about a 10% total error at any one PT . Because the fJðPTÞ are smooth functions, the theoretical error at a given PT will be smoothly
related to the error at other PT values.

2Specifically, in this figure we use the functions f1ðPTÞ ¼ 0:1,
f2ðPTÞ ¼ 0:08 logðPT=MÞ, and f3ðPTÞ ¼ 0:06f½logðPT=MÞ�2 �
0:1g where M ¼ 150 GeV. These curves are for illustrative
purposes only, and the fJðPTÞ functions differ from the set
fJðPT; yÞ we will use to parametrize the correlated systematic
uncertainties.
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following section, we check this estimate using an inde-
pendent method involving threshold effects.

A. Error estimate from scale dependence

The first ingredient in our estimation of theory errors is
based on the traditional method in which one evaluates the
dependence of the computed NLO cross section on two
scales: the renormalization scale �R and the factorization
scale �F. One often makes a standard choice for these
scales: �R ¼ �F ¼ PT=2. We will take this choice as our
central value and define

x1 ¼ log2

�
�R

PT=2

�
; x2 ¼ log2

�
�F

PT=2

�
: (2)

We compute the cross section near x1 ¼ x2 ¼ 0, that is
near the scale choice �R ¼ �F ¼ PT=2. Then fx1; x2g
measures (logarithmically) the distance from this central
value. We then fit the cross section to a quadratic poly-
nomial Pð ~xÞ in ~x-space,�

d�ðx1; x2Þ
dPT

�
NLO

�
�
d�ð0; 0Þ
dPT

�
NLO

½1þ Pð ~xÞ�; (3)

where

Pð ~xÞ ¼ X
J

xJAJ þ
X
J;K

xJMJKxK; (4)

with ~x ¼ ðx1; x2Þ and J, K ¼ f1; 2g.
We know that if we had an NNLO calculation, the

dependence of the cross section on ~x would be canceled
to order �2

s . Thus the coefficients AJ and MJK carry infor-
mation about the perturbative coefficients beyond NLO.
For this reason, we use the coefficients AJ and MJK to
provide an estimate of the error induced by truncating the
perturbative expansion at one-loop order. We define a
simple recipe for this purpose. We define an estimated
error3 Escale as the root-mean-square average of Pð ~xÞ over
a circle with a certain radius j ~xj,

E 2
scale ¼

1

2�

Z 2�

0
d�Pðj ~xj cos�; j ~xj sin�Þ2: (5)

We need to select a value of j ~xj, and we make the choice

j ~xj ¼ 2: (6)

In the most common method of estimating errors from
scale variation, we would vary ð2�R=PT; 2�F=PTÞ be-
tween (1, 1) and (2, 2) and between (1, 1) and ð1=2; 1=2Þ.
This amounts to changing ~x from 0 to a vector of length

j ~xj ¼ ffiffiffi
2

p
in a particular direction that corresponds to

something close to the direction of strongest variation.
The choice j ~xj ¼ 2 is somewhat larger than this standard
choice. For instance, j ~xj ¼ 2 in the direction ~x / ð1; 1Þ

corresponds to�
�R

PT=2
;
�F

PT=2

�
¼ ð2

ffiffi
2

p
; 2

ffiffi
2

p
Þ � ð2:7; 2:7Þ: (7)

We average over the directions of ~x instead of taking a
particular direction. For this reason, the value of Eq. (6)
gives results that are similar to the method that is often
used. While varying the �-scales along the (1, 1) direction
will often work, our averaging technique provides a gen-
eral method that seems sensible even when the one of the
directions of slowest variation happens to align with the
(1, 1) direction.
A straightforward calculation shows that, with the defi-

nition (5),

E 2
scale ¼

j ~xj2
2

~A2 þ j ~xj4
8

½ðTrMÞ2 þ 2TrM2�: (8)

We determine the coefficients AJ and MJK by calculating
the one-jet inclusive cross section for a given value of PT

and rapidity. We use nine points in ~x-space, obtained by
setting each f�R; �Fg scale to f14PT;

1
2PT; PTg and fit the

results to the form given in Eqs. (3) and (4).

B. Contour plots

We illustrate this procedure for estimating the theoreti-
cal error from this source in Fig. 2, where we display
contour plots of 1þ Pð ~xÞ corresponding to the jet cross
section at the Tevatron with PT ¼ 100 GeV for y ¼ 0 and
for y ¼ 2. For both values of y, we find a saddle point in the
vicinity of fx1; x2g ¼ f0; 0g which corresponds to
f�R; �Fg ¼ fPT=2; PT=2g. This location of the saddle
point is a general feature that holds throughout much of
the kinematic range; it motivates the choice f�R; �Fg ¼
fPT=2; PT=2g as our central values.
The estimated scale dependence error, Escale, is then

obtained by averaging the deviation of the cross section
at a given radius in ~x-space. As discussed above, we choose
a radius of j ~xj¼2, as indicated by the circle in Fig. 2. The
slope of the fx1; x2g surface is steeper for the y ¼ 2 case as
compared with the y¼0 case. Consequently, we find a
larger Escale for y ¼ 2 (�18%) as compared to y ¼ 0 (�
9%).

C. Comment on the range of scale choices

In the above analysis, we estimate the theoretical uncer-
tainty by varying the � scales by a factor about a central
value. This is a conventional choice, but is it reasonable?
To examine this question, one can look at cases in which
NNLO calculations exist. Here, we choose one typical case
as an example. In Fig. 3, we show the NNLO cross section
for Higgs production at the Large Hadron Collider (LHC)
as a function of the Pveto

T parameter as calculated by
Ref. [2]. Here, the renormalization and factorization scales
are varied by a factor of 2, f�R; �Fg 2 ½Mh=2; 2Mh�.

3We shall use Escale to denote the theoretical systematic error
due to scale dependence only, and E (no subscript) to denote the
total theoretical systematic error.
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Consider, for example, Pveto
T near 80 GeV. To simplify

our argument, let us suppose that the exact QCD result is
known and that it lies in the middle of the NNLO error
band. We then ask whether the estimated NLO error band
was reasonable, now that we know the exact answer. To do
a real statistical analysis, we should have at hand many
NLO calculations of separate and independent quantities,
each with its error estimate. For each such quantity, a
NNLO calculation that we can regard as nearly ‘‘exact’’
should be available. We would then plot the distribution of
the differences between the NLO central value and the true
answer in units of the NLO 1� error estimate. If the error
estimates are reliable, this distribution should be a
Gaussian distribution with width 1. We cannot do that
with just one datum. However, we can say that if the

NLO estimate is reasonable then the central NNLO value
in the one case that we have should be roughly 1� away
from the NLO central value. If it is 3� away, then it seems
likely that the NLO error was underestimated. If it is 0:1�
away, then seems likely that the NLO error was overesti-
mated. In the case at hand, the difference is about 1�, so we
have some evidence that the error was correctly estimated.

D. Scale dependence total uncertainty

Implementing the procedure outlined above, we find the
theoretical systematic error estimated from scale depen-
dence, Escale; this is displayed in Fig. 4. The (blue) points
are Escale computed as described above from the NLO cross
section [1] and the (red) curve is a smooth fit to these
points.
We see that EscaleðPT; yÞ, is a slowly rising function of

PT . For the rapidity y ¼ 0 at the Tevatron (
ffiffiffi
s

p ¼
1960 GeV), we find that EscaleðPT; yÞ varies from 9% to
11%. For y ¼ 1, the uncertainty ranges from 9% to 20%,
and for y ¼ 2 the uncertainty increases even more, ranging
from 12% to 25% over a more limited PT range.

E. Scale dependence correlated uncertainty

As described in Sec. II, we decompose the total scale
dependence uncertainty, Escale, into a (small) number of
functions fJðPT; yÞ which then combine to form the total
uncertainty Escale.
Since the fJðPT; yÞ functions represent independent

sources of uncertainty, Escale is the quadrature sum

E scaleðPT; yÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

fJðPT; yÞ2
s

: (9)

We chose a set of functions fJðPT; yÞ that satisfies Eq. (9).

FIG. 3 (color online). The cross section for Higgs production
at the LHC for LO, NLO, and NNLO calculations as taken from

Ref. [2]. The computed cross section vetos jets (P
jet
T > Pveto

T ) in

the central region j�j< 2:5.

FIG. 2 (color online). Contour plot of the jet cross section in
the fx1; x2g plane for the Tevatron (

ffiffiffi
s

p ¼ 1960 GeV) with PT ¼
100 GeV and (a) central rapidity y ¼ 0 and (b) forward rapidity
y ¼ 2. We plot the ratio of the cross section compared to the
central value at fx1; x2g ¼ f0; 0g. Contour lines are drawn at
intervals of 0.10. The (red) circle is at radius jxj ¼ 2.
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We take the fJðPT; yÞ to depend on y and on the ratio of PT

to the quantity4

MðyÞ ¼ ffiffiffi
s

p
e�y: (10)

For the set of fJðPT; yÞ functions we choose

f1ðPT; yÞ ¼ 9:62� 10�2

logðMðyÞ=PTÞ ;

f2ðPT; yÞ ¼ 2:89� 10�2y2

logðMðyÞ=PTÞ ;

f3ðPT; yÞ ¼ 8:42� 10�2;

f4ðPT; yÞ ¼ 0:842� 10�2y2;

f5ðPT; yÞ ¼ 1:68� 10�2 log

�
15PT

MðyÞ
�
;

f6ðPT; yÞ ¼ 0:336� 10�2y2 log

�
15PT

MðyÞ
�
:

(11)

These functions are illustrated in Fig. 5. The first two terms
are singular as PT ! MðyÞ. The first controls the singular
behavior near y ¼ 0while the second modifies the singular
behavior for large y. The remaining terms constitute a
polynomial in logðPTÞ and y2. Thus, we parametrize the
y-dependence with the set of functions f1; y2g, and the
PT-dependence with the set of functions f1=L; 1; Lg where
L represents a logarithmic function of PT . We believe that
the parametrization in terms of these 2� 3 ¼ 6 functions
is sufficient to reasonably describe the theoretical
uncertainties.
Note that the coefficients of f3 and f4 are in the ratio

10:1 and the coefficients of f5 and f6 are in the ratio 5:1.
While we could find an excellent fit without f4 and f6, we
retain these terms to provide flexibility when one tries to fit
the �J coefficients to actual data.
We can perform a similar exercise for the LHC as well;

these results will be compiled and presented in Sec. VII.

IV. SUMMATION OF THRESHOLD LOGS

For parton-parton scattering near the threshold for the
production of a jet with a given PT , there is restricted phase
space for real gluon emission. Thus, there is an incomplete

FIG. 5 (color online). The estimate of the uncertainty Escale due to the scale variation as given in Eq. (8) for the Tevatron (
ffiffiffi
s

p ¼
1960 GeV) with y ¼ f0; 1; 2g. The combined uncertainty Escale is shown as the upper thick (red) curve, and the individual functions
fJðPT; yÞ are indicated below.

FIG. 4 (color online). The estimate of the uncertainty EðPT; yÞ ¼ Escale due to the scale variation as given in Eq. (8) for the Tevatron
(

ffiffiffi
s

p ¼ 1960 GeV) with y ¼ f0; 1; 2g. The calculation from the jet code is represented by the (blue) points, and the fit based on Eq. (9)
is shown with the solid (red) curve.

4We scale PT by MðyÞ to make the argument of the logarithms
dimensionless. This quantity provides a simple scaling, and
roughly corresponds to scaling by the maximum PT , P

max
T �ffiffiffi

s
p

=ð2 coshðyÞÞ, for large y.
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cancellation of infrared divergences between real and vir-
tual graphs, resulting in large logarithms L inside the
integration over parton momentum fractions. At nth order
in �s these logarithms enter the cross section in the general
form �n

sL
2n. The leading logarithms can be summed to all

orders in �s. We make use of the numerical results from
Ref. [3], which has been implemented in the FASTNLO

program [4].
Figure 6 displays the size of the threshold correction for

Tevatron jet measurements at y ¼ 0. The curve is pre-
sented for the scale choice � ¼ PT=2; we note that for
this scale choice, the threshold correction is generally
smaller than with other scale choices.5

We find the threshold corrections in this kinematic re-
gime to be less than those discussed in the previous section
(Sec. III) and shown in Fig. 5. As the threshold corrections
also arise from uncomputed higher-order terms, these cor-
rections are, in a sense, already accommodated by the
larger uncertainty that we estimated from scale variation
in Eq. (11). Indeed, the functions fJ for J ¼ 1 and J ¼ 2
contain singularities for PT ! MðyÞ that are meant to
incorporate the threshold singularities. For this reason,
we will not add a separate fJðPT; yÞ function in the ex-
pression for the total uncertainty E to represent the effects
of threshold logarithms.

V. UNDERLYING EVENTAND HADRONIZATION

A separate source of uncertainties in jet measurements
comes from what is colloquially known as ‘‘splash-in’’ and
‘‘splash-out’’ corrections. ‘‘Splash-in’’ corrections arise
from the underlying event, which can deposit additional
energy into the jet cone; we will refer to these more
formally as underlying event (UE) corrections. ‘‘Splash-
out’’ corrections come from the hadronization process of
the jet which may move some of the jet energy outside the
defined jet cone. We will refer to these as hadronization
corrections (HC).
In either case, the correction is modeled as adding an

amount �PT to the observed transverse momentum (or
transverse energy) of the jet. We denote the average over
many events of �PT by h�PTi. A complete analysis of the
UE and HC contributions was performed by Cacciari,
Dasgupta, Magnea, Salam in Refs. [5–7]. We find this to
be an entirely suitable method for our estimate of h�PTi,
and we adapt their results in the following.

A. Underlying event (UE)

We can parametrize the effect of the underlying event
corrections on the apparent PT of the jet as

h�PTiUE ¼ �UE
1
2R

2 ; (12)

where R is the cone radius of the jet and�UE is the average
transverse energy per unit rapidity in the underlying event.
Because we model the ‘‘splash-in’’ energy as random and
uncorrelated with how the jet develops, the contribution
from the underlying event will scale as the area of the jet
cone—hence the factor of R2 in Eq. (12). At Tevatron
energies, Ref. [5] finds

�UEð1960 GeVÞ � 3� 1 GeV: (13)

Thus, the hPTi shift from the underlying event corrections
is given by

h�PTiUE � þ0:7 GeV� 0:3 GeV; (14)

for a jet cone with R ¼ 0:7.

B. Hadronization correction (HC)

The R dependence of hadronization correction is very
different from that of the underlying event correction [5–
7]. The smaller the jet cone is, the more likely it is that
hadronization will spray hadrons out of the cone. Hence,
we will parametrize these corrections as proportional to
1=R. Following Ref. [5], we write the hadronization cor-
rection as

h�Pi
TiHC ¼ �Ci

2

R
Að�I Þ ; (15)

where Að�IÞ parametrizes the soft gluon radiation.
Reference [5] takes �I ¼ 2 GeV, and finds Að2 GeVÞ �
0:2 GeV. In Eq. (15), Ci is a color factor that depends on

FIG. 6 (color online). The ratio of the two-loop threshold
resummation contributions for jet production compared to the
total NLO cross section �resum=�NLO at the Tevatron (

ffiffiffi
s

p ¼
1960 GeV) vs PT in GeV. We have set the scales to �F ¼ �R ¼
PT=2, and used y ¼ 0. The points are computed using the
implementation of the 2-loop threshold resummation by
Kidonakis and Owens [9].

5We do not present curves for y ¼ 1 and y ¼ 2 because these
curves show a rise of the correction as PT decreases from
200 GeV, even though decreasing PT puts us farther from the
threshold. This rise is more pronounced for large y than we see
for y ¼ 0 in Fig. 6. We suspect that this behavior is an artifact of
kinematic choices in the algorithm for summing threshold log-
arithms, rather than being a real physical effect.
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whether the jet is initiated by a quark, for which Ci ¼
CF ¼ 4=3, or by a gluon, for which Ci ¼ CA ¼ 3. We thus
need an estimate of the fraction of jets that are gluon jets.
Using calculations from the literature [8], we estimate that,
for the Tevatron in the low PT region, the fractions of quark
and gluon jets are approximately

fq � 2
3; fg � 1

3:

Using these fractions, we can form a weighted average of
the quark and gluon terms to obtain

h�PTiHC ¼ fqh�Pq
TiHC þ fgh�Pg

TiHC
¼ �fq

2CF

R
Að�IÞ � fg

2CA

R
Að�IÞ

� �1 GeV� 0:5 GeV: (16)

Here, we have used a typical cone radius of R ¼ 0:7 and
taken a conservative choice for the uncertainty of 50% of
the correction.

C. h�PTi from the UE and HC

Combining the underlying event of Eq. (14) and the
hadronization corrections of Eq. (16), the net PT shift is

h�PTi � �0:3 GeV� 0:6 GeV; (17)

where we have added the separate uncertainties in
quadrature.

The individual underlying event and hadronization re-
sults for h�PTi are displayed in Fig. 7 for the Tevatron
using the parametrizations of Eq. (14) and (16). The com-
bined result for h�PTi, including the uncertainty band, is
also displayed. The underlying event and hadronization

corrections have opposite sign, and we note that for a jet
cone radius of R ¼ 0:7, the two corrections nearly cancel
each other.

D. From h�PTi to ��

The differential jet cross section can be approximated by
a power law of the form

d�ðPTÞ
dPT

� const

Pn
T

: (18)

in the specific PT range of interest. For jets at the Tevatron
in the intermediate PT range of �½50; 300� GeV, we find
n � 7 as illustrated by Fig. 8.
The effect of the underlying event and hadronization

corrections is to shift the jet PT from its value P
pert
T at the

NLO parton level to a new value

PT ¼ P
pert
T þ h�PTi ;

where h�PTi is the average change in the transverse jet
transverse momentum due to underlying event additions
and hadronization subtractions from Eq. (17).
If we write the true differential cross section as a func-

tion f,

d�ðPTÞ
dPT

� fðPTÞ ;

then f is related to the perturbatively calculated function
fpert by

fðPTÞ � fpertðPpert
T Þ ¼ fpertðPT � h�PTiÞ:

We can perform a Taylor expansion about PT for small
�PT ,

FIG. 7 (color online). We display the expected PT shift, h�PTi,
in GeV vs jet cone radius R for the UE, HC, and combined
results (TOT) at the Tevatron. The calculation of the HC uses a
combination of quark-initiated (fq ¼ 2=3) and gluon-initiated

(fg ¼ 1=3) jets. The upper solid (blue) line represents the UE

correction, and the lower solid (green) line represents the HC
terms. The combination of these corrections (TOT) is repre-
sented by the central (red) band including the uncertainties. The
vertical line corresponds to R ¼ 0:7.

FIG. 8 (color online). Jet cross section d2�=dPT=dy vs PT in
GeV with y ¼ 0 at the Tevatron in units of nb/GeV. The line is a
power law fit with n ¼ 7; this describes the slope of the jet data
in the range PT � ½50; 300� GeV.
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fðPTÞ � fpertðPT � h�PTiÞ

� fpertðPTÞ � h�PTi
df0pertðPTÞ

dPT

¼ fpertðPTÞ
�
1þ n

h�PTi
PT

�
:

Here we have used the power law of Eq. (18) to replace
f0ðPTÞ by �nfðPTÞ=PT . Thus, to first order we find6

d�

dPT

� d�pert

dPT

�
1þ n

h�PTi
PT

þ � � �
�
; (19)

so that the fractional correction is nh�PTi=PT . Using n �
7 and the estimate from Eq. (17) of h�PTi, we find that the
fractional correction to the cross section is approximately

7��0:3 GeV� 0:6 GeV

PT

� � 2 GeV

PT

� 4 GeV

PT

:

Thus we estimate the fractional uncertainty from the
underlying event and hadronization to be 4 GeV=PT .

We account for this source of uncertainty by adding a
new function fJðPT; yÞ with J ¼ 7,

f7ðPT; yÞ ¼ 4 GeV

PT

(20)

for Tevatron jets in the PT range of �½50; 300� GeV.

VI. SUMMARY FOR THE TEVATRON

We have described the correlated theoretical systematic
uncertainty using a total of seven functions, as summarized
in Table I. The net error at any one value of fPT; yg is
obtained by adding these seven functions in quadrature

E ðPT; yÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

fJðPT; yÞ2
s

: (21)

We now summarize the complete set of contributions to
the uncertainty of the differential jet cross section as a
function of fPT; yg for the Tevatron:

f1ðPT; yÞ ¼ 9:62� 10�2

logðMðyÞ=PTÞ ; f2ðPT; yÞ ¼ 2:89� 10�2y2

logðMðyÞ=PTÞ
f3ðPT; yÞ ¼ 8:42� 10�2; f4ðPT; yÞ ¼ 0:842� 10�2y2;

f5ðPT; yÞ ¼ 1:68� 10�2 log

�
15PT

MðyÞ
�
;

f6ðPT; yÞ ¼ 0:336� 10�2y2 log

�
15PT

MðyÞ
�
;

f7ðPT; yÞ ¼ 4 GeV

PT

: (22)

We display these results in Fig. 9. For PT * 100 GeV, the
perturbative uncertainties are dominant, and slowly rise

with increasing PT; this results holds across the full
y-range, but the rise with PT is more pronounced at large
y. For PT & 100 GeV, the uncertainty from the UE and
HC terms become increasingly important as PT decreases.

VII. THEORY ERRORS AT THE LHC

Having demonstrated the method for determining the
theoretical systematic uncertainty at the Tevatron, we per-
form a parallel analysis for the Large Hadron Collider
(LHC).

A. Perturbative uncertainty

We again estimate the error from not having calculated
beyond NLO by using the dependence of the NLO cross
section on the scales f�R; �Fg, just as in the Tevatron case,
and this yields the functions ff1; f2; f3; f4; f5; f6g summa-
rized in Eq. (27) at the end of this section.

B. Underlying event and hadronization

We proceed as in Sec. V for the Tevatron, accounting for
the changed circumstances at the LHC. We first need to
estimate the error in the determination of the contribution
to the average jet transverse momentum, h�PTi, arising
from the underlying event and from hadronization.
The underlying event contribution to h�PTi is deter-

mined by the parameter �UE in Eq. (12). Consistently
with Refs. [5–7], for the LHC we take �UEð14 TeVÞ �
10� 4 GeV, and obtain

h�PTiUE � þ2:5 GeV� 1 GeV: (23)

For the contribution to h�PTi from hadronization, we
use Eq. (16) with Að�IÞ � 0:2 GeV as before. For the
fractions fq and fg of quark and gluon jets in the relatively

low PT region where the hadronization corrections are
significant, we use

fq � 1
3; fg � 2

3:

Using these fractions, we can form a weighted average of
the quark and gluon terms and estimate the hadronization
contribution to h�PTi to be

h�PTiHC ¼ �1:4 GeV� 0:7 GeV: (24)

TABLE I. A compilation of the source of uncertainties (fJ)
that comprise the total jet cross section uncertainty E. The
perturbative uncertainties arise from the higher, uncalculated,
orders of perturbation theory and are estimated using the
f�F; �Rg scale variation of the calculated cross section. The
nonperturbative uncertainties are an estimate of the underlying
event and hadronization corrections.

Uncertainty fJ Source

ff1; f2; f3; f4; f5; f6g perturbative

f7 nonperturbative

6Cf., Eq. (5.9) of Dasgupta et al. in Ref. [5]
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Combining the underlying event and hadronization con-
tributions, we estimate

h�PTi � þ1 GeV� 1:2 GeV; (25)

where we have added the separate uncertainties in
quadrature.

The results for the underlying event and hadronization
contribution to h�PTi are displayed in Fig. 10 for the LHC
using the parametrizations of Eq. (24) and (23) but with a
variable cone size R.

The correction to h�PTi determines the correction to the
cross section via Eq. (19). For this, we need the power n
that describes the approximate power law fall off of the
cross section. As illustrated in Fig. 11, a power law with
n � 6 describes the data over the range PT �
½100; 1000� GeV. Using n � 6 and the estimate from
Eq. (25) of h�PTi, we find that the fractional correction
to the cross section is approximately

6� 1 GeV� 1:2 GeV

PT

� 6 GeV

PT

� 7 GeV

PT

:

Thus we estimate the fractional uncertainty from the
underlying event and hadronization to be 7 GeV=PT . We
include this in the estimate of systematic theoretical errors
by including a function f7ðPTÞ given by

f7ðPTÞ ¼ 7 GeV

PT

(26)

for LHC jets in the range PT � ½100; 1000� GeV.

C. Summary: LHC

We now summarize the complete set of contributions to
the uncertainty of the differential jet cross section as a
function of fPT; yg for the LHC:

FIG. 10 (color online). We display the expected PT shift,
h�PTi, in GeV vs jet cone radius R for the UE, HC, and
combined results (TOT) at the LHC. The calculation of the
HC uses a combination of quark-initiated (fq ¼ 1=3) and

gluon-initiated (fg ¼ 2=3) jets. The upper solid (blue) line

represents the UE correction, and the lower solid (green) line
represents the HC terms. The combination of these corrections
(TOT) is represented by the central (red) band including the
uncertainties. The vertical line corresponds to R ¼ 0:7.

FIG. 11 (color online). Jet cross section d2�=dPT=dy vs PT in
GeV with y ¼ 0 at the LHC (

ffiffiffi
s

p ¼ 14 TeV) in units of nb/GeV.
The line is a power law fit with n ¼ 6; this describes the slope of
the jet data in the range PT � ½100; 1000� GeV.

FIG. 9 (color online). A compilation of the uncertainties for jet production at the Tevatron (
ffiffiffi
s

p ¼ 1960 GeV) for y ¼ f0; 1; 2g. The
numeric label corresponds to the error components summarized in Eq. (27). The upper thick (red) line is the quadrature sum of the
individual errors.
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f1ðPT; yÞ ¼ 4:56� 10�2

logðMðyÞ=PTÞ ; f2ðPT; yÞ ¼ 1:24� 10�2y2

logðMðyÞ=PTÞ
f3ðPT; yÞ ¼ 5:36� 10�2; f4ðPT; yÞ ¼ 0:536� 10�2y2;

f5ðPT; yÞ ¼ 1:07� 10�2 log

�
15PT

MðyÞ
�
;

f6ðPT; yÞ ¼ 0:214� 10�2y2 log

�
15PT

MðyÞ
�
;

f7ðPT; yÞ ¼ 7 GeV

PT

: (27)

We display these results in Fig. 12. In the central rapidity
(y� 0) region for PT * 500 GeV the perturbative uncer-
tainties are dominant and slowly rise with increasing PT ,
while for PT & 500 GeV the nonperturbative uncertainties
become increasingly important. For y ¼ 2, the transition
PT is closer to 300 GeV than 500 GeV.

VIII. CONCLUSIONS

As the LHC prepares to take data, it is important that we
be able to determine whether a physics signal is consistent
with the standard model. For example, if we observe a
signal that is inconsistent with the standard model predic-

tion, but this inconsistency includes only experimental
errors, we cannot claim this is ‘‘new physics’’ until we
demonstrate it is also inconsistent including both experi-
mental and theoretical errors. This paper provides a frame-
work to quantitatively make such a determination in the
case of jet physics. Similarly, this paper provides a frame-
work to quantitatively fit parton distribution functions to
Tevatron and LHC jet data, including estimated errors from
the theory.
The framework that we provide involves functions

fJðPT; yÞ that represent independent contributions to the
theory error. We note that other authors might estimate the
errors differently and thus produce different functions
fJðPT; yÞ. We hope that this will happen and that the merit
of different choices will be debated.
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