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We report a mathematical equivalence between certain models of the Universe relying on domain walls

and noncommutative geometries. It is shown that a two-braneworld made of two domain walls can be seen

as a ‘‘noncommutative’’ two-sheeted spacetime under certain assumptions. This equivalence also implies

a model-independent phenomenology, which is presently studied. Matter swapping between the two

branes (or sheets) is predicted through fermionic oscillations induced by magnetic vector potentials. This

phenomenon, which might be experimentally studied, could reveal the existence of extra dimensions in a

new and accessible way.
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I. INTRODUCTION

During the last two decades, the possibility that our
observable (3þ 1)-dimensional Universe could be a sheet
(a brane) embedded in a higher-dimensional bulk space-
time has received a lot of attention. This line of thought has
shown to provide nice explanations to several puzzling
phenomena such as the hierarchy between the electroweak
and the Planck scales [1], the dark matter origin [2], or the
cosmic acceleration [3]. The domain wall was demon-
strated as a believable mechanism to explain the trapping
of the standard model (SM) particles on branes [4], espe-
cially fermions [5–11]. The confinement of gauge fields on
lower-dimensional hypersurfaces was also investigated
[12,13]. More recent models even suggest that all standard
model particles could be confined on the branes [14].
Therefore, finding physical evidences of extra dimensions
is a major contemporary challenge. Interesting results
could arise from high energy physics (Kaluza-Klein tower
states [15], for instance) or low-energy physics (deviations
from the inverse square law of gravity [16], for instance).

In the present paper, we are mainly motivated by the
quest of new phenomena at a nonrelativistic energy scale.
We explore how the quantum dynamics of fermions is
modified when the higher-dimensional bulk contains
more than only one brane. Hence, we focus on a two-
braneworld (related to two domain walls) and investigate
the dynamics of a massive fermion in this extended frame-
work. It is shown that such a model is formally equivalent
to a two-sheeted spacetime (a product manifold M4 � Z2)
described in the formalism of the noncommutative geome-
try [17–20], at least as a low-energy effective theory.

In previous works [21,22], the present authors have
studied the phenomenology of certain of these M4 � Z2

two-sheeted spacetimes, but no formal proof had been
given that these exotic geometries could be related to
more conventional branes theories: the link between both
approaches was just considered as a fairly working hy-
pothesis. For the first time, in the present paper, a physical
and mathematical proof of this link is derived. Moreover,
the mathematical description of the M4 � Z2 geometry is
enlarged by contrast to the previous works [21,22]. The
demonstration made in the present paper is inspired by
quantum chemistry and the construction of molecular or-
bitals, here extended to branes. As a consequence of the
bulk dimensionality extension, the quantum dynamics phe-
nomenology is considerably enriched: for a five-
dimensional bulk containing two branes, matter swapping
between these two worlds is made possible (although the
effect could remain difficult to observe). More important,
since the obtained equations (extended Dirac and Pauli’s
equations) are completely model independent, we con-
clude that this matter swapping phenomenon might proba-
bly be shared by every model of the Universe containing at
least two ‘‘worlds’’.
In Sec. II, we introduce the kink-antikink domain walls

description of a two-braneworld. Section III gives the
fermion eigenstates in such a braneworld setup. In
Sec. IV, we introduce gauge fields in the two-braneworld
model. In Sec. V, we then derive a two-level description of
the fermion dynamics in a braneworld with two domain
walls in the presence of an electromagnetic field. In
Sec. VI, we show that the two-level description fits with
that of a two-sheeted spacetime as described by noncom-
mutative geometry. Finally, in Sec. VII we underline the
basic phenomenological consequences of the present work.

II. BRANEWORLDS WITH TWO DOMAIN WALLS

The brane concept takes its origin in superstring theories
[23], though earlier similar concepts were proposed in
other theoretical contexts [24,25]. However, since super-
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string theories suffer from mathematical complications,
several simplified approaches relying on more classical
field theories [26] have been suggested. For instance, sev-
eral works [5–11] are now inspired by the approach of
Rubakov and Shaposhnikov [25]. These authors have sug-
gested that elementary particles might be trapped on a
defect (a domain wall) on a higher-dimensional spacetime.
Such a defect would arise from a scalar field whose dy-
namics should be described by a soliton-kink solution in a
’4 theory. Bosonic excitations of the scalar field are
trapped and propagate along the kink. In addition, any
chiral Dirac particle is also trapped on the domain wall
[5,6,25]. More recently, Randall and Sundrum have sug-
gested braneworlds models where the bulk metric is
warped to ensure (3þ 1)-dimensional gravity to be repro-
duced as well [27].

The model considered in the present paper relies on a
usual braneworld description involving domain walls in the
bulk [5,6]. Two branes are here considered living in a
continuous five-dimensional manifold. Branes are de-
scribed by the kink (antikink) solutions of a scalar field
in a ’4 theory. Matter is then described through a five-
dimensional fermionic field coupled to this scalar field.
Since we are not motivated by gravitational considerations,
we use a flat metric for the bulk spacetime, i.e.

ds2 ¼ gABdx
AdxB ¼ g��dx

�dx� � dz2

¼ ���dx
�dx� � dz2; (1)

where gAB is the five-dimensional metric tensor with sig-
nature ðþ;�;�;�;�Þ with A; B ¼ 0; . . . ; 4. ��� is the

four-dimensional Minkowski metric tensor of signature
ðþ;�;�;�Þ with �; � ¼ 0; . . . ; 3, and z the coordinate
along the extra dimension. An improved model involving a
warped metric could be considered as well [5–7], but this
choice would introduce supplementary complications,
which are neither relevant nor necessary to illustrate the
mechanism discussed in this paper. The action S for a real
scalar field � coupled to a matter field � in a five-
dimensional spacetime is then

S ¼
Z �1

2
gABð@A�Þð@B�Þ � Vð�Þ

þ ��ði�A@A � ��Þ�
� ffiffiffi

g
p

d5x: (2)

We assume that the Dirac field � is coupled to the scalar

field � through a Yukawa coupling term � ���� where �
is the coupling constant. It should be pointed out that
another choice for the coupling term [8] would not change
the final conclusions of the paper. In addition, a convenient
potential Vð�Þ is given by [5,6,25]

Vð�Þ ¼ �

4
ð�2 � �2Þ2; (3)

where � and � are constants of the potential. Though

several possibilities can be considered for the potential
[5,6,8], we just assume that it allows the existence of
domain walls (i.e. topological defects) in accordance
with the original Rubakov-Shaposhnikov concept [25].
The scalar field equations of motion can be easily derived
from relation (2)

�00 þ ��2�� ��3 ¼ 0 (4)

from which domain-wall solutions can then be derived.�00
is the second-order derivative of � along the extra
dimension.
For a single brane, two solutions have to be considered:

�ðk=ðakÞÞðzÞ ¼ ��ðzÞ ¼ �� tanhðz=�Þ; (5)

where ‘‘þ’’ (respectively ‘‘�’’) refers to the kink (k)
solution [respectively, antikink (ak) solution]. � is the

brane thickness such that ��1 ¼ �
ffiffiffiffiffiffiffiffiffi
�=2

p
.

Now if we shift from a single brane to a two-braneworld,
the solution can be expressed as a kink-antikink pair, each
wall being localized, respectively, at z ¼ �d=2 and z ¼
þd=2. The field solution of Eq. (4), which describes such a
kink-antikink system, can be approximated by [10,11]

�ðzÞ ¼ ��ðzÞ þ�þðzÞ þ ��

¼ �ðzþ d=2Þ ��ðz� d=2Þ � � (6)

provided that d � �, i.e. the distance d between branes is
larger than the brane thickness. For that reason, we are now
considering that both branes are independent from each
other both from a scalar and a gravitational point of view.

III. FERMIONS IN BRANEWORLDS

From Eq. (2), the five-dimensional massless Dirac equa-
tion can be easily expressed. In what follows, the Dirac
matrices are given by �� ¼ �� and �4 ¼ �i�5 ¼
�0�1�2�3, where �� and �5 are the usual Dirac matrices
in the four-dimensional Minkowski spacetime. The
Clifford algebra is verified since

f�A;�Bg ¼ 2�AB; (7)

where �AB is the five-dimensional metric tensor of the
Minkowski spacetime. The Dirac equation is therefore

ði��@� þ �5@z � ��Þ� ¼ 0: (8)

By using the separating variable method and due to �5

matrix in Eq. (8) the solution � can be expressed as

�ðx; zÞ ¼ fLðzÞc LðxÞ þ fRðzÞc RðxÞ; (9)

where the c L;R are left- and right-handed four-dimensional

spinors such that �5c R=L ¼ �c R=L. x are the four-

dimensional coordinates. For a trapped fermion, we expect
that the five-dimensional Dirac equation can be expressed
as an effective four-dimensional massive equation such
that
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i��@�c L=R ¼ mc R=L; (10)

where m is assumed to be the apparent (four-dimensional)
particle mass. Substituting Eq. (9) into Eq. (8), we get then

@zfR � ��fR þmfL ¼ 0 and

@zfL þ ��fL �mfR ¼ 0:
(11)

After a convenient rearrangement of the equations, we get

� @zzfLðzÞ þWLfLðzÞ ¼ m2fLðzÞ and

� @zzfRðzÞ þWRfRðzÞ ¼ m2fRðzÞ;
(12)

with

WL ¼ �ð��2 � ð@z�ÞÞ; WR ¼ �ð��2 þ ð@z�ÞÞ
(13)

and Z
f�ðzÞf	ðzÞdz ¼ 
�;	 and

Z
ðc y

LðxÞc LðxÞ þ c y
RðxÞc RðxÞÞd4x ¼ 1:

(14)

Obviously, owing to the Schrodinger-like Eqs. (12), fL;RðzÞ
define the localization of the left- and right-handed states
of the fermion along the extra dimension with effective
potentials WL=R. m is the effective mass of the trapped

fermion and it is related to the eigenvalues of the bound
states in the potentialsWL=R. Equations (13) imply that the

effective potential felt by the fermion depends on its he-
licity state. Then, left- and right-handed states are not
necessarily localized at the same place, and it is even
possible that bound state cannot exist. Previous works
[5,6,25] have shown that for a kink solution of the scalar
field, the m ¼ 0 mode is localized on the kink for the left-
handed state, whereas the right-handed state cannot be
localized. By contrast, the m � 0 modes are localized
around the kink whatever their state. In an antikink world,
the m � 0 modes are also localized around the antikink
whatever their state, but in the opposite only right-handed
m ¼ 0 fermions can exist. Note that since the usual four-
dimensional fermion wave function c ðxÞ can be expressed
as

c ðxÞ ¼ c LðxÞ þ c RðxÞ; (15)

it can then be easily shown that Eq. (9) can be rewritten as

�ðx; zÞ ¼ �ðzÞc ðxÞ; (16)

where

�ðzÞ ¼ fðzÞ þ �5�ðzÞ; (17)

with

�ðzÞ ¼ ð1=2ÞðfRðzÞ � fLðzÞÞ;
fðzÞ ¼ ð1=2ÞðfRðzÞ þ fLðzÞÞ

(18)

and Z
�yðzÞ�ðzÞdz ¼ 14�4; (19)

where �ðzÞ defines the localization of the fermion along
the extra dimension for any helicity state. We note that
��ðx; zÞ ¼ �c ðxÞ ��ðzÞ with ��ðzÞ ¼ fðzÞ � �5�ðzÞ.

A. Fermionic wave functions in a single braneworld

A single braneworld solution for a trapped fermion can
be easily derived from Eqs. (12). By first considering a
single kink domain wall, the effective potential derived
from Eqs. (13) and (5) becomes

W1kB
L=RðzÞ ¼

1

�2

�
"2 � "ð"� 1Þ 1

cosh2ðz=�Þ
�
; (20)

where " ¼ �
ffiffiffiffiffiffiffiffiffi
2=�

p ¼ ���. Expression (20) corresponds
to a Pöschl-Teller potential for which Eqs. (12) present
well-known analytical solutions [6]. Let us recall the first
two modes:
(i) For m ¼ m0 ¼ 0

f0;L ¼ N0cosh
�"ðz=�Þ; f0;R ¼ 0 (21)

(ii) For m ¼ m1 ¼ ð1=�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"� 1

p

f1;L ¼ N1cosh
�"ðz=�Þ sinhðz=�Þ;

f1;R ¼ N2cosh
�"þ1ðz=�Þ (22)

with

N0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð"þ 1=2Þ
�

ffiffiffiffi
�

p
�ð"Þ

s
;

N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"� 2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð"þ 1=2Þ
�

ffiffiffiffi
�

p
�ð"Þ

s
; and

N2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð"� 1=2Þ
�

ffiffiffiffi
�

p
�ð"� 1Þ

s
;

(23)

where �ðxÞ is the usual Gamma function. Obviously, "
behaves like a coupling constant between the brane and
the fermion. The trapping mechanism becomes more and
more effective when " increases (the spatial extensions of
solutions (21) and (22) decrease when " increases). For an
antikink-brane, the solutions can be easily deduced from
the previous ones through a simple L $ R substitution.

B. Fermionic wave functions in a two-braneworld

A system of two branes can be described by a two-well
effective potential W2B

L;R derived from Eqs. (6) and (13).

The condition d � � implies that the distance between the
two wells is large. When d ! þ1, each well becomes a
local one, and it behaves as if there was a single kink (or
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antikink) in the bulk. In that case, we obtain the local
potentials W1kB

L=Rðzþ d=2Þ [or W1akB
L=R ðz� d=2Þ] resulting

from a single kink (or antikink) distant from the antikink
(or kink). If we assume that each brane should possess its
own copy of the standard model, it is then legitimate to
build the two-brane fermionic solutions from the local one-
brane fermionic solutions. This way to proceed is similar to
atomic orbital combination used in quantum chemistry to
build molecular orbitals. Similarly, for a system of two
branes we define the global fermion state as

�ðx; zÞ ¼ �þðzÞcþðxÞ þ��ðzÞc�ðxÞ; (24)

where� denote z ¼ �d=2, i.e. the location of each brane.
The states ��ðzÞ correspond to the fermion eigenstates
related to the branes (þ ) and (� ) considered here as
independent from each other. Obviously, c�ðxÞ will differ
from the solutions c ðxÞ obtained by solving Eq. (10) for a
single braneworld. The states��ðzÞ can be easily deduced
from the one-brane fermionic solutions (see Sec. III A).
��ðzÞ will use kink-brane fermionic solutions with a
translation z ! zþ d=2 while �þðzÞ will use antikink-
brane fermionic solutions with a translation z ! z� d=2.

IV. GAUGE FIELDS IN DOMAIN WALLS

In the following, we consider the introduction of gauge
fields in the model with a special emphasis on electromag-
netism. Localizing gauge fields on a domain wall remains a
delicate task [12–14]. Among the numerous approaches
proposed to localize gauge fields on branes [12–14], the
approach of Dvali, Gabadadze, Porrati, and Shifman [13] is
quite generic and model independent. The basic ingredient
is a bulk vectorial field (a photon-like field), which is
minimally coupled to some of the matter fields localized
on a brane. Thus, introducing a Uð1Þ gauge field A in
Eq. (2) the five-dimensional action becomes then

S ¼
Z �

� 1

4G2
F ABF AB þ 1

2
gABð@A�Þð@B�Þ � Vð�Þ

þ ��ði�Að@A þ iAAÞ � ��Þ�
� ffiffiffi

g
p

d5x; (25)

where G is a coupling constant.
Through the quantum fluctuations of the five-

dimensional gauge field, the localized fermionic fields
induce gauge field localization. Indeed, the gauge field
propagator receives corrections from one-loop diagrams
with localized matter fields running in the loops. This leads
to a four-dimensional kinetic term, which results from the
need of a counterterm in the five-dimensional gauge field
Lagrangian. An effective four-dimensional gauge field
theory results on the brane. The bulk field is then forced
to propagate along the three-dimensional space of the
brane, at least for distances lower than a critical cosmo-
logical distance [13]. The same procedure can be used with
more complex domain wall approaches (including those

relying on warped metric) where other phenomena can
contribute to gauge fields confinement on branes [13].

A. Gauge field in a single braneworld

From Eq. (25) the five-dimensional interaction action
between the matter field and the Uð1Þ gauge field takes the
form

Sint ¼ �
Z

d4xdzJAðx; zÞAAðx; zÞ

¼ �
Z

d4xdz ��ðx; zÞ�A�ðx; zÞAAðx; zÞ: (26)

The four-dimensional current is j�ðxÞ ¼ �c ðxÞ��c ðxÞ,
with j�ðxÞ ¼ R

J�ðx; zÞdz and
R
J5ðx; zÞdz ¼ 0. Using

Eqs. (16) to (18), it can be shown that
R
@AJ

Aðx; zÞdz ¼
@�j

�ðxÞ. From the five-dimensional current conservation

@AJ
Aðx; zÞ ¼ 0, as

R
@AJ

Aðx; zÞdz ¼ 0, we deduce then
that @�j

�ðxÞ ¼ 0, i.e. the four-dimensional current is con-

served. This implies the transversality of the loop.
Moreover, we chose the Lorentz gauge in the bulk

@AAAðx; zÞ ¼ 0: (27)

From the four-dimensional transversality of currents we
get @�A�ðx; zÞ ¼ 0 [13] and then from Eq. (27) we

deduce that @zAzðx; zÞ ¼ 0, i.e. Azðx; zÞjx¼Cte ¼ Cte.
As a consequence, the remaining relevant interaction ac-
tion between the localized matter field and the bulk vector
field is then

Sint ¼ �
Z

d4x �c ðxÞ��c ðxÞa�ðxÞ; (28)

where an effective four-dimensional vector field a�ðxÞ can
be defined as

a�ðxÞ ¼ ð1=2Þ
Z
ff2RðzÞ þ f2LðzÞgA�ðx; zÞdz; (29)

a�ðxÞ acts as a Uð1Þ gauge field in a four-dimensional
spacetime. The interaction Lagrangian leads to a supple-
mentary kinetic term induced by localized fermionic one-
loop diagrams with two external a�ðxÞ legs [13]. The low-
energy action on the brane must then contain the induced
term

� 1

4e2
F��F

�� (30)

with

F�� ¼ @�a� � @�a�; (31)

where e is the effective coupling constant. Rigorously
other corrective terms should be also considered in the
action, but we do not discuss them here. Moreover, we
are not considering the details of the propagation of the
gauge field in the bulk or onto the brane (see Ref. [13]).
The matters have already been considered in details in
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previous works [13]. We just note that the separating
variable method leads to write

A ðx; zÞ ¼ �ðzÞAðxÞ; (32)

with �ðzÞ a function that quickly decreases when moving
away from the branes [13].

B. Gauge field in a two-braneworld

Let us now consider the introduction of gauge fields in
our two-braneworld. As previously explained for fermions,
we assume that each brane possesses its own copy of the
standard model. The two-brane gauge field solutions can
be derived from the local one-brane gauge solutions such
that

A ðx; zÞ ¼ Aþðx; zÞ þA�ðx; zÞ
¼ �þðzÞAþðxÞ þ��ðzÞA�ðxÞ; (33)

where� denote z ¼ �d=2, i.e. the location of each brane.
The states ��ðzÞ correspond to the gauge field localized
states related to the branes (þ ) and (� ) considered here
as independent from each other. Obviously, A�ðxÞ will
differ from the solutions AðxÞ in Eq. (32) for a single
braneworld. The states ��ðzÞ can be easily deduced from
the one-brane gauge field solutions. ��ðzÞ (�þðzÞ) is
related to kink-brane (antikink-brane) gauge field solutions
with a translation z ! zþ d=2 (z ! z� d=2).

On each brane, we get the local four-dimensional vector
field

a��ðxÞ ¼ ð1=2Þ
Z
ff2R;�ðzÞ þ f2L;�ðzÞgA�

�ðx; zÞdz: (34)

From Eq. (26), it must be noted that the two-brane
description of the gauge field and of the fermionic field
leads to specific cross terms. For instance, we get

ð1=2Þ
Z
ff2R;þðzÞ þ f2L;þðzÞgA�

�ðx; zÞdz; (35)

which can be interpreted as the four-dimensional gauge
field induced in the brane (þ ) by charges localized in the
brane (� ). In fact, a simple analysis shows that this term
is proportional to expð�2ð"� 1Þd=�Þ, i.e. a charge local-
ized in a brane acts as a kind of ‘‘millicharged’’ particle in
the second brane. For instance, with " ¼ 2 and d=� ¼ 22
(see discussion in Appendix B), a charge qe localized in the
other brane would act in our brane as an effective particle
with a charge q ¼ 10�19qe. For such tiny values, the effect
can be neglected [28].

V. TWO-LEVEL APPROXIMATION OF FERMION
DYNAMICS IN A BRANEWORLD WITH TWO

DOMAIN WALLS

Let us now show that the above two-braneworld model
reduces to a simple two-level quantum description. At low
energy, a brane can be assumed to be an infinitely thin four-

dimensional sheet where SM particles live. Therefore, for a
single kink (antikink)-brane, the projection of Eq. (8) onto
its fL;R eigenstates, will reduce the five-dimensional Dirac

equation to a four-dimensional equation with a mass m
particle located at z ¼ �d=2, for instance, (or z ¼ d=2).
The projection is equivalent to a dimensional reduction
leading to a single four-dimensional Dirac equation.
Similarly, for a system of two thin branes, the projection
of Eq. (8) on the eigenstates of each independent brane,
will lead to two coupled four-dimensional Dirac equations.
Although this approach is quite unusual in the present
context, it is perfectly well founded. It is exactly the
procedure used in quantum chemistry to approximate mo-
lecular orbitals by solving the Hamiltonian in the subspace
of each atomic eigenstates. Here, the Hamiltonian for a
two-braneworld is expressed by using the fermionic eigen-
states of each independent branes. This approximation is
valid as long as both branes are distant enough in the bulk.
Let us now derive the resulting system of four-dimensional
coupled Dirac equations.
Taking account of the electromagnetic gauge vector field

[see Eq. (25)], the five-dimensional Dirac equation can be
expressed in a Schrodinger form:

i@0� ¼ H� (36)

with

H ¼ �i�0��ð@� þ iA�Þ � �0�5ð@z þ iAzÞ
þ �0��þA0; (37)

where � ¼ 1, 2, 3. In the following, we will consider a
specific mass state, and we assume that there is no mixing,
coupling or interaction between this state and other fer-
mion states of different mass. Therefore, the states cþðxÞ
and c�ðxÞ exhibit the same mass. Moreover, since the
terms of higher mass are neglected, our approach remains
clearly an approximation of low energy. Using the expres-
sion of � given by Eq. (24), the equation (36) can be
projected onto the localized states��ðzÞ. Introducing then

hi;j ¼
Z

�y
i ðzÞH�jðzÞdz and

s ¼ sy ¼
Z

�y
þðzÞ��ðzÞdz

(38)

and using a convenient matrix representation, one obtains
easily

i@0
1 s
s 1

� �
cþðxÞ
c�ðxÞ

� �
¼ hþ;þ hþ;�

h�;þ h�;�

� �
cþðxÞ
c�ðxÞ

� �
: (39)

Considering

� ¼ cþðxÞ
c�ðxÞ

� �
(40)

the two-level Dirac-Schrodinger equation
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i@0� ¼ ~H� (41)

can be easily deduced from Eq. (39) with the two-level Hamiltonian ~H given by

~H ¼ 1

1� s2
� hþ;þ � sh�;þ hþ;� � sh�;�

h�;þ � shþþ h�;� � shþ;�

� �
: (42)

Using Eqs. (10), (11), (14)–(18), (37), and (38), the terms in Eq. (42) can be simplified (see Appendix A) to give

~H ¼ �i�0��ð@� þ iqAþ
� Þ þ �0mþ �0
mþ qAþ

0 ��0�5gþ �0mr � �0�5�

�0�5gþ �0mr þ �0�5 �� �i�0��ð@� þ iqA�
� Þ þ �0mþ �0
mþ qA�

0

 !
(43)

with A�
� the electromagnetic fields of the brane (þ )or(� ),

q the electric charge of the fermion, and where

g ¼ �
Z
f�� þ��gff�ðzÞ�þðzÞ � ��ðzÞfþðzÞgdz;

mr ¼ �
Z
f�� þ��gff�ðzÞfþðzÞ � ��ðzÞ�þðzÞgdz;


m ¼ �
Z

��ff2þðzÞ � �2þðzÞgdz (44)

and

� ¼ ’þ �5
; �� ¼ ’� � �5
�; (45)

where ’ and 
 are the scalar components of the off-
diagonal part � of the effective gauge field such that


 ¼ i
Z
ffþðzÞ��ðzÞ � �þðzÞf�ðzÞgfAþ

z ðx; zÞ
þA�

z ðx; zÞgdz
and ’ ¼ i

Z
ffþðzÞf�ðzÞ � �þðzÞ��ðzÞgfAþ

z ðx; zÞ
þA�

z ðx; zÞgdz: (46)

An interpretation of those off-diagonal gauge terms as well
as the way to deal with them will be discussed in the next
section.

Let us apply a convenient SUð2Þ rotation such that

cþðxÞ
c�ðxÞ

� �
! e�i�=4 0

0 ei�=4

 !
cþðxÞ
c�ðxÞ

� �
: (47)

Back to the Dirac form, Eq. (41) then reads

i��ð@�þiqAþ
�Þ�m�
m ig�5�imrþi�5�

ig�5þimrþi�5 �� i��ð@�þiqA�
�Þ�m�
m

 !
�

¼0: (48)

As a consequence of the first order approximation (see
Appendix A), g is only related to the first-order derivative
@z along the continuous extra dimension, while mr is only
related to the scalar field �. From solutions of Eqs. (11)
[see Sec. III A], g, mr, and 
m can be easily estimated as
shown in Appendix B.

Let us now show that Eq. (48) describing the dynamics
of a fermion in a two domain-walls setup is equivalent to

that of a particle embedded in a noncommutative two-
sheeted spacetime.

VI. ‘‘NONCOMMUTATIVE’’ TWO-SHEETED
SPACETIME INTERPRETATION OF THE TWO-

LEVEL APPROXIMATION

A. Noncommutative two-sheeted spacetime

In Refs. [21,22], a model describing the quantum dy-
namics of fermions in a two-sheeted spacetime (i.e. a two-
braneworld) has been proposed. Such a universe corre-
sponds to the product of a four-dimensional continuous
manifold with a discrete two-point space and can be seen
as a five-dimensional universe with a fifth dimension re-
duced to two points with coordinates �
=2 (both sheets
are separated by a phenomenological distance 
).
Mathematically, the model relies on a bi-Euclidean space
X ¼ M4 � Z2 in which any smooth function belong to the
algebra A ¼ C1ðMÞ � C1ðMÞ and can be adequately rep-
resented by a 2� 2 diagonal matrix F such that

F ¼ f1 0
0 f2

� �
: (49)

In the noncommutative formalism, the expression of the
exterior derivative D ¼ dþQ, where d acts on M4 and Q
on the Z2 internal variable, has been given by A. Connes
[17]:D: ðf1; f2Þ ! ðdf1; df2; gðf2 � f1Þ; gðf1 � f2ÞÞwith
g ¼ 1=
. Viet and Wali [19] have proposed a representa-
tion of D acting as a derivative operator and fulfilling the
above requirements (see also [20]). Because of the specific
geometrical structure of the bulk, this operator is given by

D� ¼ @� 0
0 @�

� �
;

� ¼ 0; 1; 2; 3 and D5 ¼ 0 g
�g 0

� �
:

(50)

Where the term g acts as a finite difference operator along
the discrete dimension. Using (50), one can build the Dirac
operator defined as

6D ¼ �NDN ¼ ��D� þ �5D5: (51)

By considering the following extension of the gamma
matrices (we are working in the Hilbert space of spinors,
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see [17])

�� ¼ �� 0
0 ��

� �
and �5 ¼ �5 0

0 ��5

� �
; (52)

where �� and �5 ¼ i�0�1�2�3 are the usual Dirac matri-
ces, it can be easily shown that the Dirac operator given by
Eq. (51) has the following self adjoint realization:

6D ¼ 6Dþ g�5

g�5 6D�

� �
¼ ��@� g�5

g�5 ��@�

 !
: (53)

In some noncommutative two-sheeted models [18], the off-
diagonal terms proportional to g are often related to the
particle mass through the Higgs field. As shown in previous
works [21], g can also be considered as a constant geo-
metrical field and takes the same value for each particle.
We can therefore introduce a mass term as in the standard
Dirac equation, but more general, i.e.

M ¼ m14�4 mc14�4

m�
c14�4 m14�4

� �
; (54)

where ‘‘�’’ denotes the complex conjugate. The two-
sheeted Dirac equation writes

6Ddirac� ¼ ði 6D�MÞ� ¼ ði�NDN �MÞ�

¼ i��@� �m ig�5 �mc

ig�5 �m�
c i��@� �m

 !
cþ
c�

� �
¼ 0;

(55)

with

� ¼ cþ
c�

� �

the two-sheeted wave function. In this notation, the indices
‘‘þ’’ and ‘‘�’’ are purely conventional and simply allow to
discriminate the two sheets (or branes) embedded in the
five-dimensional bulk. It can be noticed that by virtue of
the two-sheeted structure of spacetime, the wave function
c of the fermion is split into two components, each com-
ponent living on a distinct spacetime sheet. If one considers
the (� ) sheet to be our brane, the cþ part of the wave
function, in the (þ ) sheet, can be considered as a hidden
particle component.

B. Gauge fields in the two-sheeted spacetime

Pursuing with the approach introduced in the Sec. IV, we
are now illustrating how the electromagnetic fields behaves
in the present formalism. It should be emphasized that the
results presented here for electromagnetism could be ex-
tended to other interactions as well, especially electroweak
interactions and chromodynamics. To be consistent with
the structure of the Dirac field� in Eq. (55), the usualUð1Þ
electromagnetic gauge field has to be replaced by an ex-
tended Uð1Þ �Uð1Þ gauge field. The group representation
is therefore

G ¼ expð�iq�þÞ 0
0 expð�iq��Þ

� �
: (56)

We are looking for an appropriate gauge field such that the
covariant derivative becomes 6DA ! 6Dþ 6A with the fol-
lowing gauge transformation rule:

6A0 ¼ G 6AGy � iG½ 6Ddirac; G
y�: (57)

A convenient choice is (see Refs. [18–20])

6A ¼ iq��Aþ
� �5�

�5 �� iq��A�
�

 !
; (58)

where �� are the usual Dirac matrices and with

� ¼ ’þ �5
; �� ¼ ’� � �5
�; (59)

where ’ and 
 are the scalar components of the field �.
Those terms are fully equivalent to those in Eq. (45). If� is
different from zero, each charged particle of each brane
becomes sensitive to the electromagnetic fields of both
branes irrespective of their localization in the bulk. This
kind of exotic interactions has been considered previously
in literature within the framework of mirror matter [29] and
is not covered by the present paper. Moreover, to be con-
sistent with known physics, at least at low energies, � is
necessarily tiny (whereas qA�

� needs not to be). This is

theoretically corroborated by Eq. (57), which shows that
during each gauge transformation, j’j (respectively, j
j)
varies with an amplitude of order g (respectively, jmcj)
whatever �þ and ��.
Using the covariant derivative 6DA ! 6Dþ 6A and

according to expression (58), the electromagnetic field
can be easily introduced in the two-brane Dirac equation
[Eq. (55)]

ði 6DA �MÞ�

¼ i��ð@� þ iqAþ
�Þ �m ig�5 �mc þ i�5�

ig�5 �m�
c þ i�5 �� i��ð@� þ iqA�

�Þ �m

 !

� cþ
c�

 !
¼ 0: (60)

C. Noncommutative two-sheeted spacetime
vs two domain walls

It can immediately be noticed that Eqs. (48) and (60) are
globally similar. In the two domain walls approximation,
m ! mþ 
m and mc ¼ imr. The similarity between both
equations was not expected a priori, and it suggests that
Eq. (60) is quite generic in a context of a two-level dis-
cretization of a five-dimensional fermionic field. Note that
in the model introduced in Refs. [21,22], mc ¼ 0.
One notes that in the noncommutative two-sheeted ap-

proach, the term proportional to g [see (50)] is, by defini-
tion, a first order discrete derivative along the Z2 extra
dimension. Similarly, in the domain-wall approach, g is
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related to the continuous extra dimension R1 through an
overlap integral (see Sec. V and Appendix A). From a
pictorial perspective (see Fig. 1), the two-braneworld sys-
tem ‘‘collapses’’ from a continuous description (M4 � R1)
to a discrete one (M4 � Z2). Obviously the similarity
between Eqs. (48) and (60) arises from the separation
ansatz made in Eq. (24) where the five-dimensional fer-
mion is restricted to the sum of two localized (i.e. four-
dimensional) eigenmodes with the same mass (see
Sec. III A). Thus, by construction, there are only two
four-dimensional states in the model, and it seems that
the continuous extra dimension has been reduced to two
points. As a consequence, the continuous real extra dimen-
sion (and its continuous derivative) is replaced by an
effective phenomenological discrete extra dimension
(with its discrete derivative). The effective distance be-
tween branes 
 ¼ 1=g in noncommutative geometry is
then related to the real extra dimension through the integral
in Eqs. (44) [see Appendix B].

One also notes that the five-dimensional Uð1Þ bulk
gauge field is substituted by an effective Uð1Þ �Uð1Þ
gauge field acting in the M4 � Z2 spacetime (see Fig. 1).
This is clearly illustrated through the comparison between
the gauge terms in Eq. (48) and in Eq. (60). This result
could be expected a priori. Indeed, if one considers a
domain wall at low energy, any valid gauge theory on the
bulk should lead to retrieve an effectiveUð1Þ gauge field on
the brane to be consistent with known physics. As a con-
sequence, for a set of two domain walls, it is not surprising
to obtain an effective Uð1Þ �Uð1Þ theory. It is also inter-
esting to note that the extra-dimensional componentAz of
the bulk gauge field is related to the off-diagonal part � of
the gauge field in the two-sheeted spacetime formalism
[see Eqs. (45) and (46)].

However, the link between the noncommutative two-
sheeted spacetime and a system of two domain walls
must be consider cautiously. The validity of such a link
rests on the following conditions:
(i) As previously explained, Eq. (48) is derived for a

single mass state. We have just considered the lowest
massive left-, right-states only, i.e. the localized n ¼
1 fermionic states (see Sec. III A). Of course the n >
1 modes could be used as well. Since we have
neglected the role of the heaviest fields, our model
is therefore valid only for low energies. From that
point of view, the two-sheeted spacetime can be seen
as a simple low-energy approximation of a two
domain-walls system (see Fig. 1). Nevertheless, a
more general calculation would retain all mass states
and would be quite different from the presently
considered noncommutative model. Each domain
wall in the bulk would be then approximated by a
set of strongly coupled sheets, each one being related
to a specific mass instead of a single one. Moreover,
excepted at high energy, this would not change the
main phenomelogical results of the present work
(hereafter discussed).

(ii) As mentioned in Sec. V, the two-level approximation
is valid as long as both branes are assumed to be
distant enough in the bulk. Indeed, the approxima-
tion assumes that quadratic terms (and upper) imply-
ing overlap integrals can be neglected (see
Appendices A and B).

VII. NONRELATIVISTIC LIMIT AND
PHENOMENOLOGY

As explained in the introduction, we are mainly con-
cerned by low energies phenomena occurring at a non-
relativistic scale. To derive the nonrelativistic limit of the
two-brane Dirac equation, we just observe that Eq. (60) can
also be written as

i��ð@� þ iqAþ
�Þ �m i~g�5 � ~mc

i~g��5 � ~m�
c i��ð@� þ iqA�

�Þ �m

 !
cþ
c�

 !

¼ 0 (61)

with

~g ¼ gþ ’; ~mc ¼ mc � i
: (62)

We have just replaced the field � and the coupling pa-
rameters g andmc by the effective fields ~g and ~mc as shown
by Eqs. (62). Without loss of generality, we will consider
now that ~g 	 g and ~mc 	 mc since j’j (respectively, j
j)
should not exceed g (respectively, jmcj) as explained be-
fore. This choice allows to further simplify the model. It is
somewhat equivalent to set the off-diagonal term� to zero.
With such a choice, we simply assume that the electro-
magnetic field of a brane couples only with the particles
belonging to the same brane. Each brane possesses its own

FIG. 1. The two domain walls in a M4 � R1 geometry are
approximated by a M4 � Z2 two-sheeted spacetime with an
effective distance 
 ¼ 
ð�; d; "Þ. The spatial extensions of the
fermion wave functions f"� depend on ". The bulk Uð1Þbulk
gauge group can be substituted by an effective Uð1Þþ �Uð1Þ�
gauge group where Uð1Þþ (respectively, Uð1Þ�) acts on the
brane (þ ) [respectively, (� )]. In this paper, we simply refer
to Uð1Þbulk as Uð1Þ and to Uð1Þþ �Uð1Þ� as Uð1Þ �Uð1Þ.
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current and charge density distribution as sources of the
local electromagnetic fields. On the two branes live then
the distinct Aþ

� and A�
� electromagnetic fields. The photon

fields A�
� behave independently from each other and are

totally trapped in their original brane in accordance with
observations: photons belonging to a given brane are not
able to reach the other brane. As a noticeable consequence,
the structures belonging to the branes are mutually invis-
ible by local observers. Without loss of generality, Eq. (61)
can be recast as

i��ð@� þ iqAþ
�Þ �m ig�5 �mc

ig�5 �m�
c i��ð@� þ iqA�

�Þ �m

 !

� cþ
c�

 !
¼ 0: (63)

Following the well-known standard procedure, a two-
brane Pauli equation can then be derived

i@
@

@t

cþ
c�

� �
¼ fH0 þHcm þHc þHsg cþ

c�

� �
; (64)

where cþ and c� correspond to the wave functions in the
(þ ) and (� ) branes, respectively. cþ and c� are here
Pauli spinors. The Hamiltonian H0 is a block-diagonal
matrix

H 0 ¼ Hþ 0
0 H�

� �
; (65)

where each block is simply the classical Pauli Hamiltonian
expressed in each of the branes:

H� ¼ � @
2

2m

�
r� i

q

@
A�

�
2 þ gs�

1

2
� 
B� þ V�

(66)

such that Aþ and A� correspond to the magnetic vector
potentials in the branes (þ ) and (� ), respectively. The
same convention is applied to the magnetic fields B� and
to the potentials V�. gs� is the magnetic moment of the
particle with gs the gyromagnetic factor and � the mag-
neton. In addition to these ‘‘classical’’ terms, the two-brane
Hamiltonian comprises also new terms specific of the two-
braneworld:

H cm ¼ iggs�
1

2
0 �� 
 fAþ �A�g

� 
 fAþ �A�g 0

� �
(67)

and

H c ¼ 0 mcc
2

m�
cc

2 0

� �
(68)

and

H s ¼ g2@2

2m

1 0
0 1

� �
: (69)

It can be noticed that Hs is constant and vanishes
through a convenient energy rescaling. By contrast, Hc

and Hcm are nonconventional Hamiltonian components
whose effects are now discussed.

A. Spontaneous oscillations between branes?

Hc is a constant term resulting from the off-diagonal
mass terms [Eq. (54)]. It can be responsible for free spon-
taneous oscillations between the two branes. Let us illus-
trate this. For sake of simplicity we assume that B� ¼ 0
and A� ¼ 0.H� reduces then toH� ¼ V� andHcm ¼ 0.
From Eq. (64), it can be shown that a particle initially (t ¼
0) localized in our brane will have a probability to be
located in the other brane at time t given by

PðtÞ ¼ 4	2
c

	2
0 þ 4	2

c

sin2ðð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2

0 þ 4	2
c

q
tÞ; (70)

where 	c ¼ jmcjc2=@ and 	0 ¼ ðVþ � V�Þ=@. Equation
(70) shows that the particle undergoes Rabi-like oscilla-
tions between both branes. 	0@ is an effective potential
mimicking the interactions of the particle with its environ-
ment [21]. 	0@ might contain the contribution of atomic
nuclei electrostatic fields or the Earth’s gravitational field,
for instance [21]. An important point is that the oscillations
are strongly suppressed when 	0@ becomes greater than
jmcjc2, i.e. when the particle is strongly interacting with its
environment through H0. As a consequence, these sponta-
neous oscillations will probably be hardly observed.

B. Induced matter swapping between branes

Hcm is a geometrical coupling involving electromag-
netic fields of the two branes. Hcm vanishes for null
magnetic vector potentials. Hcm also implies Rabi-like
oscillations between the branes. This effect was previously
considered in previous papers in which the reader will find
more detailed explanations [21]. It is only important here
to remind that Eq. (64) holds resonant solutions for a
magnetic vector potential rotating with an angular fre-
quency !. One may consider, for instance, a neutral par-
ticle, endowed with a magnetic moment, initially (t ¼ 0)
localized in our brane in a region of curlless rotating
magnetic vector potential such that A� ¼ ApeðtÞ and

Aþ ¼ 0, with eðtÞ ¼ ðcos!t; sin!t; 0Þ. ! is the angular
frequency of the field A� and can be possibly null (static
field case). Let us assume that the conventional part of the
Pauli Hamiltonian H� can be written as H� ¼ V�.
Moreover, Hc is neglected relative to Hcm. From
Eq. (64), it can be shown that any particle initially in a
spin-down state for instance (according to e3 ¼ ð0; 0; 1Þ)
and localized in our brane at t ¼ 0 can be detected in the
second brane at time t with a probability [21]
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PðtÞ ¼ 4	2
p

ð	0 �!Þ2 þ 4	2
p

sin2ðð1=2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	0 �!Þ2 þ 4	2

p

q
tÞ; (71)

where 	p ¼ ggs�Ap=ð2@Þ and 	0 ¼ ðVþ � V�Þ=@. In

addition, in the second brane, the particle is then in a
spin-up state. 	0@ is still an effective potential mimicking
the interactions of the particle with its environment [21].
Equation (71) shows how the induced matter swapping
between branes occurs through a Rabi-like phenomenon.
The resonant exchange occurs whenever the magnetic
vector potential rotates with an angular frequency ! ¼
	0. It is clear that the situation described in Eq. (71)
remains rather simplistic. More realistic descriptions to
achieve experimental conditions of matter swapping are
suggested elsewhere [30]. It can be easily checked that a
static field case allows matter swapping to occur as well.
However, the amplitude of the vector potential must be
huge to overcome the particle confinement induced by the
environment [21]. From an experimental point of view, the
resonant mechanism appears as a worth studying
alternative.

Again, it is necessary to stress that the matter swapping
mechanism described here depends on the Hcm term only.
Since this term is predicted by distinct mathematical ap-
proaches, we expect that induced matter swapping between
branes might be a generic phenomenon of any five-
dimensional model containing two lower-dimensional
(four-dimensional) sheets.

VIII. DISCUSSION AND CONCLUSIONS

(1) Rewriting the five-dimensional continuous Dirac
equation in a two-level form presents many advan-
tages:

(i) It allows a dramatic simplification of the equations
and allows a better understanding of the quantum
behavior of particles in a two-braneworld setup.

(ii) Connes et al. have shown the great potential of
noncommutative geometries [17], especially of
two-sheeted spacetime representations which are
suitable to recover the standard model of particles
[17,18]. In the present paper, a formal equivalence
between domain-walls approaches and certain non-
commutative geometries has been shown.
Noncommutativity appears here as a consequence
of a two-level simplification. Nevertheless, the
arena where physical events take place still remains
commutative. This unexpected bridge between do-
main walls and noncommutativity clearly deserves
further studies.

(2) In the present model, the kink-domain wall local-
ized at z ¼ �d=2 [i.e. the (� ) brane] undergoes
left-handed neutrinos, while the antikink-domain
wall localized at z ¼ d=2 [i.e. the (þ ) brane]

undergoes right-handed neutrinos. As a conse-
quence, and due to the doubling of the wave func-
tion, this can be seen as a reminiscence of the
mirror-matter concept [31]. Nevertheless, while it
is true that hidden sector models and present ap-
proach share several common points, it is equally
true that they differ in many ways:

(i) In the mirror-matter formalism, there is only one
four-dimensional manifold that justifies the left/
right parity by introducing implicit new internal
degrees of freedom to particles. In the present
work, it can be noted that the number of particle
families remains unchanged but the particles have
now access granted to two distinct branes.

(ii) Moreover, in the mirror-matter approach, the mix-
ing between our world and the mirror world occurs
through a photon/mirror photon kinetic mixing [29]
(gravitation also is assumed to mediate interactions
between matter and mirror matter but it is not
relevant in the present discussion). Nevertheless,
the present two-brane structure demonstrates the
existence of oscillations without recourse to a pho-
ton/mirror photon kinetic mixing.

(3) It is suggested that the ‘‘swapping effect’’ (see
Sec. VII B) involving induced Rabi-like oscillations
of matter between adjacent branes might be a com-
mon feature of any braneworld theory involving
more than one brane in the bulk. Indeed, the method
used in Sec. V to obtain the relevant Eq. (48) is quite
general and it does not rely on any assumption
concerning the domain walls. The Hamiltonian
term Hcm [see Eq. (67)] is due to the ig�5 terms
in Eq. (63), which are related to the overlap integral
over the fifth dimension of the product of the extra-
dimensional fermionic wave functions related to
each brane. We expect that in more complex
domain-walls models (involving warped metric,
for instance, like in Randall-Sundrum braneworlds),
we would just have obtained different expressions
for g, mr and 
m [see Eqs. (44)]. Finally, if one
considers two parallel three-branes in a bulk with
more than five dimensions (say 3þ N þ 1, with
N > 1), the situation should be quite similar to
that described in this paper. Indeed, considering a
bijective relation between the two three-branes, one
can build a fiber bundle linking each point of the
branes. Each fiber allows to define a preferential
fifth dimension connecting both branes. Moreover,
since the fermionic wave functions spread over the
N � 1 other extra dimensions, they must quickly
decrease when going away from the branes. The
system would therefore reduce from 3þNþ1 to
3þ1þ1 dimensions similar to the setup considered
in this paper [9].
As a consequence, we conjecture that at low energy,
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any multidimensional setup containing two branes
can be described by a two-sheeted spacetime in the
formalism of the noncommutative geometry. As a
result, we also conjecture that the so-called ‘‘swap-
ping effect’’ originally predicted in the context of
M4 � Z2 geometries [21,22] might be a model-
independent feature of any multidimensional setup
containing at least two branes. Note that, due to the
links expected between domain walls and string
theories [26], one might also wonder to what extent
the ‘‘swapping effect’’ described here could be hid-
den in string theories as well.

APPENDIX A: DERIVATION OF THE EXPLICIT
EXPRESSION OF ~H

In the following, we detail how Eq. (43) can be derived
from Eq. (42). In Eq. (42), the two-level Hamiltonian ~H
was written as

~H ¼ 1

1� s2
� hþ;þ � sh�;þ hþ;� � sh�;�

h�;þ � shþþ h�;� � shþ;�

� �
: (A1)

Using Eqs. (6), (10), (11), (14)–(18), (37), and (38), the
terms of (A1) can be expressed as follows:

s ¼ aþ �5b (A2)

with

a ¼
Z
ffþðzÞf�ðzÞ þ ��ðzÞ�þðzÞgdz;

b ¼
Z
ff�ðzÞ�þðzÞ þ ��ðzÞfþðzÞgdz

(A3)

and

hi;j ¼
�Z

�y
i ðzÞ�jðzÞdz

�
f�i�0��@�g þ �0�5�i;j

þ �0	i;j þ �0��Gi;j þ �0�5 ~Gi;j (A4)

with

�i;j ¼ �
Z
f�iðzÞ þ��gffiðzÞ�jðzÞ � �iðzÞfjðzÞgdz�mb

if i � j; and �i;i ¼ 0 (A5)

and

	i;j ¼ �
Z
f�iðzÞ þ ��gffiðzÞfjðzÞ � �iðzÞ�jðzÞgdzþma

if i � j;

	i;i ¼ mþ �
Z

�jðzÞff2i ðzÞ � �2
i ðzÞgdz where i � j:

(A6)

We note that, according to Eqs. (5) and (6), ��ðzÞ ¼
��ðz� d=2Þ and �� ¼ ��. �i;j is related to the projec-

tion of the first derivative @z term of H [see Eq. (37)] onto
the independent states of each brane. 	i;j is related to the

projection of the scalar field � term of H onto the inde-
pendent states of each brane.
Recalling that Aðx; zÞ ¼ Aþðx; zÞ þA�ðx; zÞ (see

Sec. IVB) and using A ¼ ��A�, one also gets

Gi;j ¼ Aþ
i;j þA�

i;j � iAþ
z;i;j � iA�

z;i;j and

~Gi;j ¼ Bþ
i;j þB�

i;j þ iBþ
z;i;j þ iB�

z;i;j

(A7)

with

A�
i;j ¼

Z
ffiðzÞfjðzÞ þ �iðzÞ�jðzÞgA�dz;

A�
z;i;j ¼

Z
ffiðzÞ�jðzÞ � �iðzÞfjðzÞgA�

z dz;

B�
i;j ¼ �

Z
ffiðzÞ�jðzÞ þ �iðzÞfjðzÞgA�dz;

B�
z;i;j ¼ �

Z
ffiðzÞfjðzÞ � �iðzÞ�jðzÞgA�

z dz:

(A8)

Hence, the Hamiltonian (A1) can be written as

~H¼ �i�0��@� 0

0 �i�0��@�

 !
þ 1

1� s2

� �0ð	þ;þþb��;þ�a	�;þÞ��0�5ða��;þ�b	�;þÞ �0�5ð�þ;�þb	�;�Þþ�0ð	þ;��a	�;�Þ
�0�5ð��;þþb	þ;þÞþ�0ð	�;þ�a	þ;þÞ �0ð	�;�þb�þ;��a	þ;�Þ��0�5ða�þ;��b	þ;�Þ

 !

þ 1

1� s2
�
��0ðGþ;þ�aG�;þ�b ~G�;þÞþ�0�5ð ~Gþ;þ�a ~G�;þ�bG�;þÞ
�0ðG�;þ�aGþ;þ�b ~Gþ;þÞþ�0�5ð ~G�;þ�a ~Gþ;þ�bGþ;þÞ

�0ðGþ;��aG�;��b ~G�;�Þþ�0�5ð ~Gþ;��a ~G�;��bG�;�Þ
�0ðG�;��aGþ;��b ~Gþ;�Þþ�0�5ð ~G�;��a ~Gþ;��bGþ;�Þ

�
: (A9)

The integrals a, b, �i;j (with i � j) and 	i;j (with i � j)

involve the overlapping of the fermionic wave functions of
each brane. These terms have to be small enough to act as a

correction and for a sake of simplicity, we assume that
higher-order terms (i.e. a2; b2; ab; a��;�; b��;�; a	�;�;
b	�;�; . . . ) can be fairly neglected.

EQUIVALENCE BETWEEN DOMAIN WALLS AND . . . PHYSICAL REVIEW D 81, 035014 (2010)

035014-11



The terms related to the gauge field [see Eqs. (A7) and
(A8)] must be considered with caution. Indeed, since the
gauge terms are related to quantum corrections of the five-
dimensional gauge field, one must take care of undesirable
anomalies that could break the gauge invariance or the
Hermiticity of the two-level Hamiltonian. Assuming for
instance that the Hamiltonian remains hermitic requires
these undesirable terms to vanish. In practice, the terms
inducing anomalies can be cancelled by adding convenient

extra fermion species, or compensated through some quan-
tum number flows in the bulk [32]. In addition, the inte-

gralsGi;j and ~Gi;j (with i � j) also imply an overlapping of

the fermionic wave functions of each brane. These terms
should act as perturbative terms. For similar reasons, the
higher-order terms aGi;j, bGi;j, aGi;j and bGi;j can be

fairly neglected. Keeping the only relevant gauge field
terms (see Sec. IV), the Hamiltonian (A9) reduces then to

~H ¼ �i�0��@� þ �0mþ �0
mþ þ �0Aþþ;þ �0�5gþ;� þ �0mþ;� � �0�5�

�0�5g�;þ þ �0m�;þ þ �0�5 �� �i�0��@� þ �0mþ �0
m� þ �0A��;�

 !
; (A10)

where

g�;� ¼ ��
Z
f�� þ ��gff�ðzÞ�þðzÞ � ��ðzÞfþðzÞgdz;

m�;� ¼ �
Z
f�� þ��gff�ðzÞfþðzÞ � ��ðzÞ�þðzÞgdz;


m� ¼ �
Z

��ff2�ðzÞ � �2�ðzÞgdz (A11)

and

� ¼ ’þ �5
; �� ¼ ’� � �5
� (A12)

with


 ¼ i
Z
ffþðzÞ��ðzÞ � �þðzÞf�ðzÞgfAþ

z þA�
z gdz;

’ ¼ i
Z
ffþðzÞf�ðzÞ � �þðzÞ��ðzÞgfAþ

z þA�
z gdz:
(A13)

Since ~H must be hermitic, the properties of gij andmij can
be easily deduced. We get gþ;� ¼ �g�;þ ¼ �g and
m�;þ ¼ mþ;� ¼ mr. Because of the symmetry between
both branes, we get 
m� ¼ 
m. Finally, the effective
Hamiltonian reads

~H ¼ �i�0��ð@� þ iqAþ
� Þ þ �0mþ �0
mþ qAþ

0 ��0�5gþ �0mr � �0�5�

�0�5gþ �0mr þ �0�5 �� �i�0��ð@� þ iqA�
� Þ þ �0mþ �0
mþ qA�

0

 !
; (A14)

where we have assumed that

qA�
� ¼

Z
ff2�ðzÞ þ �2�ðzÞgA�

�ðx; zÞdz (A15)

with the field redefinition a�� ! qA�
� . The constant with

the dimension of a charge q gives to the effective gauge
vector fields the correct usual physical dimensions. A�

�

correspond to the usual electromagnetic fields onto the
brane (þ ) or (� ).

Assuming the first-order approximation, g (respectively,
mr) is only related to �i;j (respectively, 	i;j) [see Eqs. (A5)

and (A6)]. In that case, g depends only on the first-order
derivative @z along the continuous extra dimension, while
mr is only related to the scalar field �.

APPENDIX B: ESTIMATION OF g, mr AND �m

In the present appendix we consider the behavior of g,
mr and 
m from the expressions given by Eqs. (44). Using
expressions (6) and (18), the equations (44) can be written
as

g ¼ ð1=2Þ��
Z
ftanhððzþ d=2Þ=�Þ � 1g

� ffR;þðzÞfL;�ðzÞ � fL;þðzÞfR;�ðzÞgdz;
mr ¼ ð1=2Þ��

Z
ftanhððzþ d=2Þ=�Þ � 1g

� ffL;þðzÞfR;�ðzÞ þ fR;þðzÞfL;�ðzÞgdz;

m ¼ ��

Z
tanhððzþ d=2Þ=�ÞfR;þðzÞfL;þðzÞdz: (B1)

The expressions of fL=R;�ðzÞ are easily deduced from ex-

pressions (21) to (23). It can be shown (with the help of a
numerical tool like MATHEMATICA,, for instance) that there
is no trivial analytical expressions for such integrals (B1)

except if " ¼ �
ffiffiffiffiffiffiffiffiffi
2=�

p ¼ ��� is an integer. In that case, the
above integrals can be written as a ratio of two functions.
Each function appears then as a sum of exponential terms:
expð�nd=�Þ and ðd=�Þ expð�nd=�Þ, where n are integers.
In the two-brane solutions considered here, we have d � �
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and the integrals can then be approximated by a single exponential function. By considering the first massive mode, several
cases can be considered related to the mass m ¼ m1 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"� 1

p
of the particle trapped on a brane (we set k ¼ 1=�):

Fermion mass m Coupling constant g Off-diagonal mass mr Mass correction 
m

" ¼ 1 k 0 0 0

" ¼ 2 k
ffiffiffi
3

p
2ke�kd �2ke�kd 8

ffiffiffi
3

p
kðkd� 1Þe�2kd

" ¼ 3 k
ffiffiffi
5

p
24ke�2kd 6ke�2kd 6

ffiffiffi
5

p
ke�2kd

" ¼ 4 k
ffiffiffi
7

p
180ke�3kd 100ke�3kd 4

ffiffiffi
7

p
ke�2kd

" ¼ 5 3k 1120ke�4kd 770ke�4kd 10ke�2kd

A first noticeable point is that the coupling constant g
decreases when " increases. Indeed, it should be kept in
mind that the fermionic wave functions become sharply
localized when " increases (see Sec. III A), such that the
overlap of the fermionic states of each brane also de-
creases. It is also noticeable that g can be written as g ¼
f"k expð�nkdÞ (where n is an integer related to " and f" a
constant which depends of "). As a consequence, the
phenomenological distance 
 between the branes becomes

 ¼ f�1

" � expðnd=�Þ and is related to the real distance d
between branes and to the brane thickness �.

Let us consider, for instance, the case " ¼ 2 (for which

m ¼ k
ffiffiffi
3

p ¼ ffiffiffi
3

p
=�) assuming a mass m equals to the elec-

tron mass. We get g ¼ 103 m�1 i.e. 
 ¼ 1 mm when d ¼

1, 46 
 10�11 m (i.e. about 22 times the brane thickness).
For d ¼ 2, 38 
 10�11 m (i.e. about 36 times the brane
thickness) we get g ¼ 10�3 m�1, i.e. 
 ¼ 1 km.
Therefore, the real distance d between branes is in agree-
ment with our d � � hypothesis. Furthermore, the values
of the coupling constant g are also consistent with observ-
able phenomena in the context of present day technology
[21,22,30,33]. It can be noticed that slight fluctuations of
the actual distance d between branes lead to strong varia-
tions of the coupling constant g (g is multiplied by 106

when d is divided by 1, 6). Finally, for a range of distances
d between branes, the model remains fully consistent with
constraints induced by Newton law variation measure-
ments [16].

[1] N. Arkani-Hamed, S. Dimopoulos, and J. March-Russell,
Phys. Rev. D 63, 064020 (2001); L. Randall and R.
Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[2] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and N.
Kaloper, J. High Energy Phys. 12 (2000) 010.

[3] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok,
Phys. Rev. D 64, 123522 (2001); S. Rasanen, Nucl.
Phys. B626, 183 (2002).

[4] R. Davies, D. P. George, and R. R. Volkas, Phys. Rev. D
77, 124038 (2008); R. R. Volkas, AIP Conf. Proc. 957, 279
(2007); G.A. Palma, Phys. Rev. D 73, 045023 (2006).

[5] R. Davies and D. P. George, Phys. Rev. D 76, 104010
(2007); C. Ringeval, P. Peter, and J.-P. Uzan, Phys. Rev. D
65, 044016 (2002); R. Koley and S. Kar, Classical
Quantum Gravity 22, 753 (2005); A. Melfo, N. Pantoja,
and J. D. Tempo, Phys. Rev. D 73, 044033 (2006); J.
Hisano and N. Okada, Phys. Rev. D 61, 106003 (2000).

[6] D. P. George and R. R. Volkas, Phys. Rev. D 75, 105007
(2007).

[7] R. Gregory, V. A. Rubakov, and S.M. Sibiryakov,
Classical Quantum Gravity 17, 4437 (2000); S. L.
Dubovsky, V. A. Rubakov, and P.G. Tinyakov, Phys.
Rev. D 62, 105011 (2000).

[8] Y.-X. Liu, L.-D. Zhang, L.-J. Zhang, and Y.-S. Duan,
Phys. Rev. D 78, 065025 (2008); A.A. Andrianov, V. A.
Andrianov, P. Giacconi, and R. Soldati, J. High Energy
Phys. 07 (2003) 063.

[9] H. Collins and B. Holdom, Phys. Rev. D 64, 064003

(2001); Z.-Q. Guo and B.-Q. Ma, J. High Energy Phys. 08
(2008) 065.

[10] G. Gibbons, K.-I. Maeda, and Y.-I. Takamizu, Phys. Lett.
B 647, 1 (2007).

[11] Y. Brihaye and T. Delsate, Phys. Rev. D 78, 025014
(2008); Y.-Z. Chu and T. Vachaspati, Phys. Rev. D 77,
025006 (2008).

[12] P. Dimopoulos, K. Farakos, A. Kehagias, and G.
Koutsoumbas, Nucl. Phys. B617, 237 (2001); M. J. Duff,
J. T. Liu, and W.A. Sabra, Nucl. Phys. B605, 234 (2001);
G. Dvali and M. Shifman, Phys. Lett. B 396, 64 (1997); K.
Ghoroku and A. Nakamura, Phys. Rev. D 65, 084017
(2002); E. Kh. Akhmedov, Phys. Lett. B 521, 79 (2001).

[13] G. Dvali, G. Gabadadze, and M. Shifman, Phys. Lett. B
497, 271 (2001); G. Dvali, G. Gabadadze, and M. Porrati,
Phys. Lett. B 485, 208 (2000); S. L. Dubovsky and V.A.
Rubakov, Int. J. Mod. Phys. A 16, 4331 (2001).

[14] Y.-X. Liu, Z.-H. Zhao, S.-W. Wei, and Y.-S. Duan, J.
Cosmol. Astropart. Phys. 02 (2009) 003; Y.-X. Liu, L.-
D. Zhang, S.-W. Wei, and Y.-S. Duan, J. High Energy
Phys. 08 (2008) 041.

[15] D. Hooper and S. Profumo, Phys. Rep. 453, 29 (2007); I.
Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G.
Dvali, Phys. Lett. B 436, 257 (1998).

[16] J. Chiaverini, S. J. Smullin, A. A. Geraci, D.M. Weld, and
A. Kapitulnik, Phys. Rev. Lett. 90, 151101 (2003); Y.
Shtanov and A. Viznyuk, Classical Quantum Gravity 22,
987 (2005).

EQUIVALENCE BETWEEN DOMAIN WALLS AND . . . PHYSICAL REVIEW D 81, 035014 (2010)

035014-13



[17] A. Connes and J. Lott, Nucl. Phys. B, Proc. Suppl. 18, 29
(1991); A. Connes, Non-Commutative Geometry
(Academic Press, San Diego, CA, 1994).

[18] J.M. Gracia-Bondia, B. Iochum, and T. Schucker, Phys.
Lett. B 416, 123 (1998); F. Lizzi, G. Mangano, G. Miele,
and G. Sparano, Mod. Phys. Lett. A 13, 231 (1998); Phys.
Rev. D 55, 6357 (1997); H. Kase, K. Morita, and Y.
Okumura, Int. J. Mod. Phys. A 16, 3203 (2001); C.
Macesanu and K. C. Wali, Int. J. Mod. Phys. A 21, 4519
(2006).

[19] N. A. Viet and K. C. Wali, Phys. Rev. D 67, 124029
(2003); Int. J. Mod. Phys. A 11, 533 (1996).

[20] H. Kase, K. Morita, and Y. Okumura, Prog. Theor. Phys.
101, 1093 (1999).

[21] F. Petit and M. Sarrazin, Phys. Lett. B 612, 105 (2005); M.
Sarrazin and F. Petit, Int. J. Mod. Phys. A 22, 2629 (2007).

[22] M. Sarrazin and F. Petit, Acta Phys. Pol. B 36, 1933
(2005); F. Petit and M. Sarrazin, Phys. Rev. D 76,
085005 (2007).

[23] P. Horava and E. Witten, Nucl. Phys. B460, 506 (1996);
B475, 94 (1996).

[24] K. Akama, Lect. Notes Phys. 176, 267 (1983); M. Pavsic,
Phys. Lett. 116A, 1 (1986).

[25] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. 125B,
136 (1983).

[26] A. Lukas, B. A. Ovrut, K. S. Stelle, and D. Waldram, Phys.
Rev. D 59, 086001 (1999); N. D. Antunes, E. J. Copeland,

M. Hindmarsh, and A. Lukas, Phys. Rev. D 68, 066005
(2003); J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231
(1998); C. Kokorelis, Nucl. Phys. B677, 115 (2004); D.
Cremades, L. E. Ibanez, and F. Marchesano, Nucl. Phys.
B643, 93 (2002).

[27] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[28] A. Melchiorri, A. Polosa, and A. Strumia, Phys. Lett. B
650, 416 (2007); S. N. Gninenko, N.V. Krasnikov, and A.
Rubbia, Phys. Rev. D 75, 075014 (2007); S. L. Dubovsky,
D. S. Gorbunov, and G. I. Rubtsov, JETP Lett. 79, 1
(2004); A. A. Prinz, R. Baggs, J. Ballam, S. Ecklund, C.
Fertig, J. A. Jaros, K. Kase, A. Kulikov, W.G. J.
Langeveld, R. Leonard, T. Marvin, T. Nakashima, W. R.
Nelson, A. Odian, M. Pertsova, G. Putallaz, and A.
Weinstein, Phys. Rev. Lett. 81, 1175 (1998).

[29] S. Abel and B. Schofield, Nucl. Phys. B685, 150 (2004);
R. Foot, A. Yu. Ignatiev, and R. R. Volkas, Phys. Lett. B
503, 355 (2001).

[30] M. Sarrazin and F. Petit, arXiv:0809.2060.
[31] R. Foot, H. Lew, and R. R. Volkas, J. High Energy Phys.

07 (2000) 032.
[32] C. G. Callan and J. A. Harvey, Nucl. Phys. B250, 427

(1985).
[33] M. Sarrazin and F. Petit, Int. J. Mod. Phys. A 21, 6303

(2006).

MICHAËL SARRAZIN AND FABRICE PETIT PHYSICAL REVIEW D 81, 035014 (2010)

035014-14


