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We systematically study the unification of gauge couplings in the presence of (one or more) effective

dimension-5 operators cHG��G
��=4Mpl, induced into the grand unified theory by gravitational inter-

actions at the Planck scale. These operators alter the usual condition for gauge-coupling unification, which

can, depending on the Higgs content H and vacuum expectation value, result in unification at scales MX

significantly different than naively expected. We find nonsupersymmetric models of SUð5Þ and SOð10Þ
unification, with natural Wilson coefficients c, that easily satisfy the constraints from proton decay.

Furthermore, gauge-coupling unification at scales as high as the Planck scale seems feasible, possibly

hinting at simultaneous unification of gauge and gravitational interactions. In the Appendix we work out

the group theoretical aspects of this scenario for SUð5Þ and SOð10Þ unified groups in detail; this material is

also relevant in the analysis of nonuniversal gaugino masses obtained from supergravity.
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I. INTRODUCTION AND OUTLINE

What are the boundary conditions for grand unification?
One typically assumes that the gauge couplings of the
broken subgroups must become numerically equal at the
unification scale MX [1]. However, effects from physics
above the unification scale can alter the gauge-coupling
unification condition. In an effective field theory approach,
such effects can be caused by dimension-5 operators of the
form cHG��G

��=4Mpl, which shift the coefficients of the

gauge kinetic terms in the low-energy theory after the
Higgs H acquires a vacuum expectation value in grand
unified symmetry breaking [2,3]; one obvious source of
such operators is quantum gravitational effects. Indeed, it
would be unnatural (or require some special explanation)
to assume that the Wilson coefficients c above be zero or
especially small [4]; the default assumption should be that
these coefficients are of order unity in grand unified mod-
els, with consequent unification conditions.

In conventional unification models, one might expect
hHi � 1016 GeV, plausibly leading to effects from quan-
tum gravity of order a fraction of a percent, hHi=Mpl �
10�3, on the gauge-coupling unification condition. In [5]
we showed that these dimension-5 operators can be even
more relevant than previously suspected since the Planck
mass Mpl tends to be smaller than naively assumed due to

its renormalization group evolution [6,7] under the influ-
ence of the large number of fields in supersymmetric grand
unified theories. It was noted [5] that these dimension-5
operators introduce in supersymmetric unification models
an uncertainty that can be bigger than the two-loop effects
which are considered to be necessary to obtain good nu-
merical unification of the gauge couplings.

The aim of this paper is different. We study whether the
dimension-5 operators discussed above can lead to perfect
gauge-coupling unification without supersymmetry by
their modifying of the gauge-coupling unification condi-
tion. This unification scheme has been studied previously
in the literature for models with and without supersymme-
try, e.g., in [2,3,5,8–15], but in less detail and generality
and mostly only the effect from a single gravitational
operator has been considered.
In particular, in this paper we examine, in a systematic

way, the effects when two or more dimension-5 operators
are present in a theory. Unification under multiple
dimension-5 operators has been studied before [13] for
the supersymmetric case [16], for which, however, viable
gauge-coupling unification is well known [17–19]. The
main result of the present paper is that the measurement
of the gauge couplings at the Z mass [20] is compatible
with nonsupersymmetric grand unification based on SUð5Þ
or bigger groups like SOð10Þ. That is, grand unification
does not require a supersymmetric extension of the stan-
dard model for a range of natural values of the Wilson
coefficients c.
As opposed to models with one dimension-5 operator, in

unified models with two or more such operators, the uni-
fication scale MX can be varied in a continuous and con-
trolled manner with the Wilson coefficients c and Higgs
value expectation values (VEVs), and we examine this
quantitatively in SUð5Þ and SOð10Þ theories, primarily
for the nonsupersymmetric case (cf. [13] for the super-
symmetric case). We find that unification under this
scheme can naturally raise the unification scale MX much
above the conventional 1015 GeV to 1016 GeV, and even
allows one to obtain gauge-coupling unification at or near
the Planck mass which is suggestive of unification of all
gauge and gravitational forces at a common scale (see also
[21,22]). Any such unification is safe from the proton
decay constraint. This, and the fact that exact gauge-
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coupling unification in the first place can be accomplished,
may be a useful tool for model building.

Note,due to the gravitational origin of thesedimension-5
operators, the unification scheme considered here is dis-
tinct from the Lavoura-Wolfenstein result [23] or similar
effects [24], according to which nonsupersymmetric uni-
fication can result from particle thresholds. In particular, as
can be seen from the form of these effective operators, their
effect increases as the unification scale gets closer to the
Planck scale, i.e., as the Higgs VEVs get bigger, which in
turn allows one to self-consistently shift MX to values
much larger than conventionally assumed.

Realistic supersymmetric unification theories have is-
sues linked to their large particle content. One is the
presence of Landau poles between the unification and the
Planck scale, another is possible lack of calculability in
these theories due to potentially large running of the Planck
mass [5]. Both issues are avoided in their nonsupersym-
metric counterparts. On the other hand, if supersymmetry
is abandoned, the unification scale needs to be stabilized
with respect to the gravitational scale (as, of course, does
the weak scale). This ‘‘little hierarchy problem’’ can be
avoided by one of the scenarios mentioned above where
grand unification happens close to the Planck mass,
thereby reducing or eliminating the hierarchy between
the two scales.

Outline of the paper: For a physical description of the
scenario and effects and for exemplary numerical results,
see the Introduction and Summary, Secs. I and VIII. More
detail is given in the main text, and the group theoretical
formalism in the Appendix.

In Sec. II, we introduce the dimension-5 operators
cHG��G

��=4Mpl under investigation, first specifically

for the case of an SUð5Þ grand unified theory, and also
discuss possible sensible choices for the Planck scale Mpl

suppressing these operators. We then describe how these
operators modify the usual gauge-coupling unification
condition. This section sets up the notation necessary to
understand the figures, tables, and most of the details in the
main text.

In Sec. III, we look at numerical results for possible
gauge-coupling unification under the modified gauge-
coupling unification condition in nonsupersymmetric
SUð5Þ models. First (Sec. III A) we review the known
effects in the presence of a single such operator
[2,3,9,15], also addressing uncertainties in low-energy
measurements of the gauge couplings and modifications
due to two-loop running. Then, in Sec. III B, it is numeri-
cally shown that (and how) the unification scale may be
continuously varied in models with two different
dimension-5 operators. This, being one of the main results
of this paper, is also true in models with more such opera-
tors, and we give the general treatment in Sec. III C, also
deriving an estimate to assess which unification scales MX

are achievable naturally.

With these numerical results and estimates, in Sec. IV
we see that even the lowest unification scales MX that are
achievable in a natural way through our effect, are not in
conflict with the current lower bounds on the proton life-
time, coming from the nonobservation of proton decay so
far. Thus, the dimension-5 operators can facilitate exact
gauge-coupling unification without supersymmetry and
also allow the proton decay limit to be evaded [unlike in
naive SUð5Þ unification]. We also investigate how further
improvements in the proton lifetime bound constrain our
models.
In Sec. V, we note that numerical gauge-coupling uni-

fication is possible near or at the Planck scale in a very
natural way in models with two or more dimension-5
operators. We speculate that this might hint at unification
of the gauge interactions and gravity at a common scale
(‘‘gauge-gravity unification,’’ see [21]).
Section VI contains the scenario for an SOð10Þ grand

unified gauge group. The setup and unification results for
exemplary cases are described, analogous to the SUð5Þ
case in the preceding sections. The main differences to
SUð5Þ are emphasized, namely, the fact that a continuously
varying MX can be achieved with merely a single
dimension-5 operator, and the possible role of these opera-
tors in SOð10Þ breaking with intermediate scales is briefly
described.
In Sec. VII we briefly look at the effect of the

dimension-5 operators in models of supersymmetric uni-
fication [16–18], making contact to the literature (e.g.,
[5,13,15]). We find that in supersymmetric models the
unification scale can also be shifted around, although uni-
fication close to the expected 2� 1016 GeV seems most
likely. The main part of the present paper focuses on non-
supersymmetric models as it is those where viable unifica-
tion is commonly believed to be difficult or impossible (for
further reasons, see the last paragraph of Sec. II).
We conclude and summarize the main ideas and mecha-

nisms in Sec. VIII, illustrated with some numerical ex-
amples showing the size of the effects.
In an extensive Appendix, we present all normalization

conventions and group theoretical details. In particular we
carefully derive and give all of the Clebsch-Gordan coef-
ficients �s

ðrÞt associated with SUð5Þ and SOð10Þ breaking
(the latter case takes up most of the work) to the standard
model, in different bases ftg; only the coefficients relating
to the standard model gauge group factors s have been
given before in the literature, see especially [25], and often
only their relative sizes, whereas we here follow a uniform
absolute normalization scheme across different represen-
tations r. These analytical results are also useful for the
treatment of nonuniversal gaugino masses obtained from
N ¼ 1 supergravity models of SUð5Þ or SOð10Þ, for
which the group theory involved is very similar, see, e.g.,
[26,27]. The Appendix furthermore describes the modified
gauge-coupling unification condition and a systematic
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method (which was used for the numerical work in this
paper) for its solution.

II. DIMENSION-5 OPERATORS AND
UNIFICATION CONDITION—SUð5Þ CASE

In this section we describe, specifically for the case of
nonsupersymmetric SUð5Þ grand unification models [28],
first the operators necessary for our scenario and then their
effect on the condition for gauge-coupling unification. The
SOð10Þ case holds additional subtleties and possibilities, to
be deferred to Sec. VI. We present actual numerical uni-
fication results for the SUð5Þ case in Sec. III and elaborate
on physically interesting scenarios in Secs. IV and V.

At the energies available to us in present-day particle
physics experiments, nature is described very well by non-
Abelian gauge field theories which are nongravitational,
although we know that at some energy scale a more com-
plete description must take gravity into account. In other
words, at our energies the effective Lagrangian of the
world is a gauge theory with certain additional nonrenor-
malizable operators of dimension 5 and higher, accounting
for the gravitational interactions that have been integrated
out. These operators must obey the symmetries (gauge and
Lorentz invariance, etc.) of the low-energy theory and are
suppressed by powers of the gravitational scale Mpl, so

they are seemingly negligible at our energies. By this logic,
grand unification also appears as an effective theory, valid
between the unification scale MX and well below the
Planck scale Mpl, and contains higher-dimensional opera-

tors induced by gravity and suppressed by Mpl; at energies

�MX, however, such operators are potentially much more
significant due to the proximity of the scales MX and Mpl.

One set of such dimension-5 operators, that may have
important effects in grand unification, are singlets formed
from gauge field strengths G�� and Higgs multiplets Hi of

the grand unified gauge group G ¼ SUð5Þ,

L ¼ ci
4Mpl

Hab
i Ga

��G
b��; (1)

suppressed by one power of the Planck mass Mpl such that

ci are dimensionless (Wilson) coefficients. The index i is
summed implicitly and includes the possibility that the
effective Lagrangian may contain several such operators
involving different Higgs multiplets Hi of the theory,
which will be one of our main tools later on. In an SUð5Þ
gauge theory, operators (1) can be formed gauge invari-
antly only with Hi in the representations ri ¼ 1, 24, 75, or
200 (although the theory might contain additional multip-
lets in other representations); these irreducible representa-
tions (irreps) can all uniformly be written in component
notation with symmetric adjoint indices a, b of the gauge
group, which establishes a common normalization for the
different operators i in (1). (Here and later, see the
Appendix for a careful treatment of the relevant group

theoretical aspects and normalization conventions; see
also [29].)
The dimension-5 operators (1) are suppressed by the

Planck scale Mpl, the energy scale at which quantum

gravity sets in, which, as an interaction not accounted for
by the renormalizable terms in the Lagrangian, induces
these effective operators. There is some ambiguity (or
arbitrariness) as to whether the appropriate suppression
scale Mpl should be taken to be the ‘‘naive’’ Planck scale

G�1=2
N ¼ 1:2� 1019 GeV or, more commonly, the reduced

Planck scale ð8�GNÞ�1=2 ¼ 2:4� 1018 GeV, as this is the
quantity that controls quantum gravity computations. To
leave this choice open, we parametrize

Mpl � G�1=2
N

�
¼ 1:2� 1019 GeV

�
; (2)

� ¼ 1 corresponds to the choice of the naive Planck scale

as the suppression scale, �red ¼
ffiffiffiffiffiffiffi
8�

p � 5 to the reduced
Planck scale, which is what we assume (implicitly) in most
discussions. The smaller a suppression scale Mpl one ac-

cepts, i.e., the bigger � one chooses, the more pronounced
the effects of the operators (1) will be, at fixed Wilson
coefficients ci. Effects of equal size can be achieved for
indirectly proportional coefficients ci ! ci=�when chang-
ing �. [Conservatively, we put an explicit factor 1=4 in (1)
to avoid overcounting of terms in the contraction of two
gauge field strengths, just as in the canonical gauge boson
kinetic term.]
Also concerning the choice of an appropriate suppres-

sion scale Mpl, we have shown previously [5,7] that the

fundamental value of Newton’s constant (i.e., at high en-
ergies) is different from its observed low-energy value GN

used in (2): matter field fluctuations of N0 real scalar, N1=2

Weyl fermion, and N1 gauge boson fields lead to a running
of Newton’s constant

1

Gð�Þ ¼ 1

GN

� �2

12�
ðN0 þ N1=2 � 4N1Þ (3)

at one loop, similar to the running of gauge couplings
(see also [6,30,31]). Then determining the funda-

mental gravitational scale Mpl via Gð� ¼ MplÞ�1=2 �
Mpl yields a value lower by a factor of � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðN0 þ N1=2 � 4N1Þ=12�

q
than without the running.

This additional change in the suppression scale Mpl is

easily incorporated into our parametrization (2) via � !
�run ¼ ��, and Table I illustrates the size of this running
effect in various grand unified models. Furthermore, as
illustrated in the last row of the table, appropriate choices
of � can accommodate suppression scales Mpl of other

origin as well, e.g., string compactification scales as in [3].
Because they respect the symmetries of the theory and

because quantum gravity effects are mediated at the scale
Mpl, operators (1) should be expected in the effective
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Lagrangian of grand unification and, although their sizes
cannot be computed in this effective field theory point of
view, they are expected a priori with natural Wilson co-
efficients of order jcij �Oð1Þ (for values much bigger than
this, the proposed effective theory is not a good low-energy
description and one loses perturbative control, whereas
jcij � 1 seemingly constitutes fine-tuning [4]). And even
though irrelevant for our purposes here, there are several
known ways to generate these operators. For example, they
arise from an N ¼ 1 supergravity ultraviolet completion
with noncanonical gauge kinetic function fabðHiÞ as the
lowest order (nontrivial) terms in an expansion of fab in
Mpl [26,27] (in this scenario, supersymmetry needs to be

broken in the grand unified theory atMpl to conform to our

nonsupersymmetric analysis). Gravitational instantons can
induce such effects also [32]. And in descending from
higher-dimensional completions to four dimensions, spon-
taneous compactification generates operators (1) sup-
pressed by the compactification scale Mc ¼ Mpl [33]. At

any rate, lacking knowledge of quantum gravity, it seems
most reasonable to assume the presence of effective opera-
tors (1) with coefficients ci of order one.

We now describe the effect of the operators (1) on the
condition for gauge-coupling unification. At the scale MX

of grand unified symmetry breaking, some Higgs multip-
lets Hi acquire nonzero VEVs. For simplicity and definite-

ness we assume that all Higgs fields, except for the
multiplet containing the standard model Higgs, acquire
VEVs at the scale MX; as will become clear, other multip-
lets, that get nonzero VEVs only at lower scales, contribute
proportionally less, but can in principle be treated equiv-
alently (this assumption also avoids the introduction of
further mass hierarchies into the model).
The VEVs hHii, acquired well above the electroweak

scale, have to be invariant under the standard model sub-
group G321 ¼ SUð3ÞC � SUð2ÞL �Uð1ÞY � SUð5Þ. For
each multiplet Hi that can occur in the dimension-5 opera-
tors (1), this requirement determines its VEVs hHab

i i up to
an overall scale vi (see the Appendix). Replacing Hi by
their VEVs, the operators (1) modify the kinetic terms of
the gauge bosons in the Lagrangian at the unification scale
MX by adding to them:

L ¼ � 1

4
Ga

��G
a�� þX

i

ci
4Mpl

hHab
i iGa

��G
b��

¼ � 1

4
ð1þ �3ÞFa

��F
a��
SUð3Þ �

1

4
ð1þ �2ÞFa

��F
a��
SUð2Þ

� 1

4
ð1þ �1ÞF��F

��
Uð1Þ þ . . . ; (4)

where the ellipses denote the non-standard model gauge
bosons of SUð5Þ, which become massive and (quasi) non-

TABLE I. For models with various particle contents, the third column shows the effectMpl ! Mpl=� on the Planck scale entailed by
the running (3) of Newton’s constant. The fourth column gives numerical values for � in (2) if the additional reduction factor

ffiffiffiffiffiffiffi
8�

p
from perturbative quantum gravity is taken into the suppression scale, as commonly done. Throughout we assume three generations of
fermions, and grand unified models are characterized by their gauge group and Higgs content. In almost all cases—and certainly in all
models of our main interest, namely, in nonsupersymmetric grand unified models with several different Higgs multiplets at the
unification scale—reasonable values forMpl are smaller than the naive value 1:2� 1019 GeV, in some cases by as much as roughly an

order of magnitude, i.e., 1 � � & Oð10Þ in (2). The last column quantifies roughly how many orders of magnitude above the
unification scaleMX the grand unified gauge theories enter nonperturbative strong coupling regime gGðMnpÞ ¼

ffiffiffiffiffiffiffi
4�

p
, center dots ( 	 	 	 )

indicating that the theory is asymptotically free; here, we have assumed gGðMXÞ2=4� ¼ 1=40 for the nonsupersymmetric and
(conservatively) gGðMXÞ2=4� ¼ 1=30 for the supersymmetric cases. When Mnp >Mpl, the unified field theory has a chance of

describing Nature perturbatively up to the onset of quantum gravity at Mpl.

Particle physics model N ¼ N0 þ N1=2 � 4N1 � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N=12�

p ¼ �run �run
red ¼ ffiffiffiffiffiffiffi

8�
p

� log10Mnp=MX

No running of GN 1 5.0

Standard model 1 1.0 5.1

SUð5Þw=5, 24 �17 0.74 3.71 	 	 	
SUð5Þw=5, 200 159 2.3 11.5 42

SUð5Þw=5, 24, 75 58 1.6 8.0 	 	 	
SUð5Þw=5, 24, 75, 200 258 2.8 14.0 14

SOð10Þw=10, 16, 45 �35 0.27 1.34 	 	 	
SOð10Þw=10, 16, 210 130 2.1 10.6 	 	 	
SOð10Þw=10, 16, 770 690 4.4 22.0 3.9

SUSY-SUð5Þw=5, �5, 24 165 2.3 11.6 	 	 	
SUSY-SUð5Þw=5, �5, 24, 75 390 3.4 16.9 3.6

SUSY-SUð5Þw=5, �5, 200 693 4.4 22.1 0.85

SUSY-SOð10Þw=10, 16, 16, 45, 54 432 3.5 17.7 11

SUSY-SOð10Þw=10, 16, 16, 210 765 4.6 23.1 1.8

SUSY-SOð10Þw=10, 16, 16, 770 2445 8.1 40.7 0.27

Compactification scale Mc (e.g., [3]) up to �� 100
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dynamical below MX. The �s indicate the modifications to
the gauge kinetic terms,

�s ¼
X
i

ci
Mpl

vi�
ðiÞ
s ðfor s ¼ 3; 2; 1Þ; (5)

they generically differ for each factor s ¼ 3, 2, 1 of the
standard model gauge group G321 and depend on the Higgs
content Hi and on the sizes civi=Mpl of the VEVs and

Wilson coefficients relative to the suppression scale (thus,
a Higgs that acquires its VEV v�MI � MX at an inter-
mediate scale contributes much less than a Higgs at MX).

The �ðiÞ
s are group theoretical factors (Clebsch-Gordan

coefficients) specific to the embedding G321 � SUð5Þ and
characterize the possible standard model singlet VEVs
hHii; they depend only on the representation ri of Hi and
are given in Table II.

In the effective Lagrangian below the unification scale
MX, one would like to have canonically normalized gauge
fields as opposed to (4), since it is the coupling constants
associated with those that obey the familiar renormaliza-
tion group (RG) equations (�-functions) and that are mea-
sured in low-energy experiments. This can be achieved by

a finite (and usually small, see later) redefinition A
�
ðsÞ !

ð1þ �sÞ1=2A�
ðsÞ of the gauge fields associated with each

standard model factor s ¼ 3; 2; 1, which has to be accom-

panied by a redefinition gs ! ð1þ �sÞ�1=2gs, so as not to
affect the interaction strength. Gauge-coupling unification
requires that at the unification scale MX the couplings
before this redefinition meet at a common value gG ¼
gGðMXÞ, the gauge coupling of the unified group G at the
unification scale. In terms of the rescaled couplings 	s �
g2s=4�, this reads:

ð1þ �1Þ	1ðMXÞ ¼ ð1þ �2Þ	2ðMXÞ ¼ ð1þ �3Þ	3ðMXÞ

¼ g2G
4�

� 	G: (6)

Under our assumption of one-step breaking at MX to the
standard model, the running coupling functions 	sð� �
MXÞ are fixed by the fairly precise low-energy measure-
ments [20] and their RG evolution [17]; the low-energy
values and �-functions to one loop are given in the
Appendix (A30)–(A32).

In Sec. III we will be looking for nonsupersymmetric
models of SUð5Þ grand unification (specified by their
Higgs content Hi) which feature exact unification of the
standard model gauge couplings 	sð�Þ under the unifica-
tion condition (6). Such gauge-coupling unification can
happen naturally at scales MX > 1016 GeV, larger than
normally expected, so as to escape the proton decay limit
usually encountered in nonsupersymmetric grand unifica-
tion, and even at scales as large as the Planck scale.
Through several criteria we will assess reasonableness of
these models, in particular, by checking whether their
required Wilson coefficients have natural sizes jcij �
Oð1Þ and also by looking at the modifications to the gauge
kinetic terms in (4) (e.g., if �s <�1 for any s, the gauge
kinetic terms in the broken theory would have the wrong
sign).
One other criterion for all models, necessary to sensibly

claim unification, is the requirement that the masses of all
non-standard model gauge bosons (‘‘superheavy gauge
bosons’’) be close to the scale of grand unified symmetry
breaking, i.e., close to the unification scale MX. This is to
ensure rightful use of the standard model RG equations
with three differently evolving gauge couplings up to the
scaleMX, where the gauge couplings are to unify at gG (6),
and of the running of a single coupling of the unified gauge
theory thenceforth with all gauge bosons being massless.
At least this is necessary in the absence of intermediate
scales, which is usually understood for SUð5Þ unification
models (see above). In SUð5Þ, all superheavy gauge bosons
get equal masses from grand unified symmetry breaking,

Mgb ¼ gG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

C2ðriÞ
12

v2
i

vuut ; (7)

where the sum now runs over all Higgs multiplets i in the
theory that acquire nonzero VEV vi at MX, with the
Casimir invariants C2 of the representations ri
(cf. Table V). For definiteness, and to conform to standard
treatment, we take the above requirement then to be

Mgb ¼ MX: (8)

Furthermore, since Higgses in any of the representations
24, 75, 200 can achieve grand unified symmetry breaking
SUð5Þ ! G321, we will make the simplifying assumption
that the theory only contain Higgses able to form the
dimension-5 operators (1); the more general case is not
harder to treat but increases the particle content of the
models and requires larger Wilson coefficients to achieve
the desired effects.
A requirement similar to (8) should be put on the masses

of the superheavy scalars as well, i.e., the Higgs fields that
acquire nonzero VEV at MX, which we, however, will
neglect since generically most superheavy scalars are
more massive than the (lightest of the) superheavy gauge
bosons and since the superheavy scalars do not influence

TABLE II. The Clebsch-Gordan coefficients �s in (5) associ-
ated with the embedding G321 � SUð5Þ, for each irrep r of
SUð5Þ that can occur as a multiplet Hi in (1). Sensible normal-
ization conventions (see the Appendix), which ensure uniform
treatment of different dimension-5 operators (1), fix the values of

all �ðrÞ
s up to an overall sign for each r.

SUð5Þ irrep r �ðrÞ
1 �ðrÞ

2 �ðrÞ
3

1 �1=
ffiffiffiffiffiffi
24

p �1=
ffiffiffiffiffiffi
24

p �1=
ffiffiffiffiffiffi
24

p
24 1=

ffiffiffiffiffiffi
63

p
3=

ffiffiffiffiffiffi
63

p �2=
ffiffiffiffiffiffi
63

p
75 5=

ffiffiffiffiffiffi
72

p �3=
ffiffiffiffiffiffi
72

p �1=
ffiffiffiffiffiffi
72

p
200 �10=

ffiffiffiffiffiffiffiffi
168

p �2=
ffiffiffiffiffiffiffiffi
168

p �1=
ffiffiffiffiffiffiffiffi
168

p
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the running of the standard model gauge couplings at one
loop. Also, we neglect heavy particle thresholds [23,24], to
demonstrate unification due specifically to the dimension-5
operators (1) as a proof of principle, cleanly separated from
other effects.

In this paper we focus on nonsupersymmetric grand
unification. Contrary to the standard lore, and this is one
of our main findings (Secs. III and IV), the altered uni-
fication condition (6) can yield successful nonsupersym-
metric unification models which satisfy the proton lifetime
constraint. Furthermore, nonsupersymmetric grand unified
models hold the attractive hope of describing physics up to
the Planck scale in a perturbative way, whereas supersym-
metric models commonly become strongly coupled before
reaching the Planck scale. For several nonsupersymmetric
as well as supersymmetric grand unified models, the right
column in Table I indicates roughly how many orders of
magnitude above the unification scale MX the theories
become nonperturbative (i.e., near a Landau pole) and
illustrates that generally only nonsupersymmetric models
are safe in that regard, requiring roughly 3 orders of
magnitude between MX and the nonperturbative regime
Mnp. Furthermore, as they contain fewer scalars and fer-

mions, the running (3) of Newton’s constant and the asso-
ciated change of the Planck scale Mpl from its naive or

reduced value tend to be smaller in the nonsupersymmetric
models (see Table I), diminishing uncertainties in these
models [5].

III. MODELS AND UNIFICATION RESULTS IN
THE NONSUPERSYMMETRIC SUð5Þ CASE

In this section, wewill quantitatively examine the effects
of multiple gravitationally induced dimension-5 operators
(1) and of the subsequently modified condition (6) for
gauge-coupling unification in several nonsupersymmetric
SUð5Þ models. All models are presumed to have the mini-
mal fermionic content of three standard model families, but
differ in their Higgs content responsible for grand unified
symmetry breaking; without loss (see above) we only
consider Higgs representations 1, 24, 75, 200. As the
Higgs multiplets under consideration are suitable for
breaking SUð5Þ down to the standard model, we do not
consider the Higgs (scalar) potential in these unified theo-
ries explicitly; rather, we take as the parameters of the
models the Higgs VEVs vi directly, which are acquired
in grand unified symmetry breaking as a consequence of
the Higgs potential, and the Wilson coefficients ci of the
dimension-5 operators (1).

Our method is then as follows. After specifying a grand
unified model by its Higgs content, we scan its parameter
space fci; vig for points that, below the breaking scale MX,
yield the actual running gauge couplings 	sð�Þ of the
standard model. Phrased in a bottom-up language, we are
looking for points fci; vig in parameter space that result in a

unification condition (6), according to which the actually
observed gauge couplings 	sð�Þ of the standard model
unify, while simultaneously requirement (8) holds, namely,
that the superheavy gauge boson masses (7) be equal to the
unification scale. In fact, any such point fci; vig determines
MX and the unified gauge coupling gG � gGðMXÞ
uniquely; see the Appendix below (A33) where we also
outline how all points fci; vig may be found.
In the next subsection we look at the known scenario in

which the theory contains only one Higgs that can form a
dimension-5 operator, as a warm-up and comparison to
established results [2,3,15]. For the case of two or more
operators (1), we find points in parameter space that yield
physically viable unification. These effects are described in
detail exemplarily for scenarios with two dimension-5
operators in Sec. III B, before moving on to a more general
treatment of models with any number of dimension-5
operators where we also pay special attention to
naturalness.

A. Unification in models with one dimension-5 operator

When the modifications �s to the gauge kinetic terms (4)
come from only one Higgs (1), their ratio �1:�2:�3 is
completely determined; see (5). For the given running
gauge-coupling functions 	sð�Þ of the standard model,
this ratio uniquely determines, via the unification condition
(6), the possible unification scale MX, the unified coupling
	G ¼ g2G=4�, and the required absolute sizes of all �s;
subsequently, the required Higgs VEV v and Wilson coef-
ficient c necessary for unification may be computed. It then
has to be checked whether all these values are physically
reasonable.
For numerical results, see Table III which shows these

quantities for the SUð5Þmodels with a sole Higgs multiplet
24, 75, or 200. A sole singlet 1 cannot modify condition (6)
to make the standard model gauge couplings unify since
�1 ¼ �2 ¼ �3 in this case, neither can a singlet VEV break
the unified symmetry in the first place. Although the re-
quired modifications �s to the gauge kinetic terms are not
problematic (in particular, �s >�1) and even small, the
necessary Wilson coefficients c are big in the case of a 75
and especially large for a 24 Higgs, regardless of any
reasonable choice of suppression scale; operators (1)
with such large coefficients are not expected naturally in
an effective theory and might preclude a perturbative treat-
ment. Furthermore, in the case of a 24 the unification scale
MX would be far too low to satisfy current constraints on
the proton lifetime, and possibly slightly too low for a 75
(for details, see Sec. IV). For a 200 Higgs the Wilson
coefficient c has natural size and, depending on convention
(2), the unification scale may still lie below or at the Planck
scale Mpl, which may be taken as a hint to a scenario of

simultaneous gauge-gravity unification (see Sec. V).
These unification results largely agree with [15]. There

is, however, some disagreement on a sensible normaliza-
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tion among the dimension-5 operators with Higgses in
different representations, which directly affects the re-
quired sizes of the Wilson coefficients c. We have chosen
to write all possible dimension-5 operators in a common
form (1) with uniform normalization conventions (see the
Appendix), and believe that this allows for a sensible cross
comparison between the Wilson coefficients of different
operators. Furthermore, within these conventions, jcj � 1
is believed to be a natural size for the dimension-5 opera-
tors from an effective field theory point of view (see Sec. II
and the Appendix). Since the low-energy gauge couplings
	sðmZÞ had not been measured well at the time and were
therefore partly treated as free parameters, Table III cannot
be directly compared to the pioneering work [2,3], that
looked only at the case of a sole 24 Higgs, but the results
tend in the same direction.

Table III also shows results obtained by using two-loop
renormalization group equations [17] (neglecting matter
fields) instead of (A30). A full two-loop treatment would
further incorporate the effect of thresholds, as partly done
in [15], and couplings to the fermion and Higgs fields,
increasing arbitrariness and decreasing predictivity
[23,24]; there would also be some renormalization scheme
dependence. The one-loop values are not significantly
altered, so a one-loop analysis can show, with reasonable
numerical accuracy, whether the modified condition (6)
can make the standard model gauge couplings unify, as a
proof of principle.

Furthermore, endowing the measured low-energy cou-
plings (A32) with error bars would put uncertainties on the
MX and c necessary to achieve unification under these
initial conditions; for example, in the case of a 75, the
error bars (less than 4% [20]) given in (A32) result in
MX ¼ ð8:1
 6:9Þ � 1015 GeV and c ¼ ð�129
 93Þ=�,
which would not significantly influence whether (natural)
unification is considered a reasonable possibility or not. (In
a previous paper [5], however, the relative effect from the
uncertainty on the necessary Wilson coefficients c was
seen to be much bigger, as very small Wilson coefficients
are required in supersymmetric unification models in the
first place.) Besides being predictive, our analysis shows
the effect due solely to the modified unification condition

(6) cleanly separated from other effects like, e.g., threshold
corrections [23,24].

B. Unification in models with two
dimension-5 operators

In the case of multiple dimension-5 operators (1) the
modification to the gauge kinetic terms (4) is a linear
combination of the effects from single operators, weighted
by the Wilson coefficients and Higgs VEVs; see (5). The
idea is that now, as one can vary these contributions with
the model parameters in a continuous way, one can find
subsets of parameter space that result in perfect gauge-
coupling unification at continuously variable scales MX.
In the case of two dimension-5 operators (not in the

same representation) these subsets are two dimensional, by
counting the number of parameters (ci and vi for each
Higgs i) less the two unification constraints (6): 2 	 2�
2 ¼ 2. To emphasize the possibility of varying MX con-
tinuously, we choose to parametrize these subsets by the
unification scaleMX itself and by the ratio v1:v2 of the two
Higgs VEVs, which, without fine-tuning the Higgs poten-
tial, should probably be within an order of magnitude of
each other.
Numerical results for the model with a 24 and a 75

Higgs are shown in Fig. 1. For a given choice of maxi-
mally (naturally) acceptable Wilson coefficients
maxfjc24j; jc75jg, the lowest unification scale MX can be
achieved for the (not finely-tuned) VEV ratio of roughly
v24:v75 ¼ 1:3 (solid bold curve in the figure). For example,
demanding jc24j; jc75j< 1 and choosing the suppression
scale Mpl ¼ 1:2� 1019 GeV=�red ¼ 2:4� 1018 GeV,

then any unification scale MX � 5� 1017 GeV can be
achieved, whereas, if one allows jc24j, jc75j< 5 with
Mpl ¼ 1:2� 1019 GeV=�run

red ¼ 1:5� 1018 GeV, then any

MX � 3� 1016 GeV is possible, getting close to the con-
straint on proton decay (Sec. IV). The right panel shows the
modifications to the gauge kinetic terms (4) necessary to
achieve unification at MX in this model; in no case are big
�s required that would invalidate the analysis (in particular,
�s >�1 always).
Similar results obtain for the two models with 24, 200,

respectively, 75, 200 Higgses; see Fig. 2. Within the allow-

TABLE III. For all suitable Higgs irreps, this table shows the parameters a nonsupersymmetric SUð5Þ model must have if unification
of the standard model happens by means of mechanism (6) with only one dimension-5 operator (1). Columns 2–6 are obtained by using
the one loop �-functions for the standard model gauge couplings, columns 7–8 by two loop for comparison. The size of the required
Wilson coefficients c depends on the chosen suppression scale (2) parametrized by �, four plausible values of which are given for each
model: naive or reduced Planck scale, either or not taking the running of Newton’s constant into account, cf. Table I. For the last
column, see below estimate (13).

H irrep MX=GeV 1=	G c v=GeV maxsj�sj M
ð2lpÞ
X =GeV cð2lpÞ � ¼ 1 �red ¼

ffiffiffiffiffiffiffi
8�

p
�run �run

red O in (13)

1 Unification by mechanism (6) (and symmetry breaking) impossible

24 4:6� 1013 40.6 18700=� 1:3� 1014 0.076 4:0� 1013 19200=� 1 5 0.74 3.71 0.072

75 8:1� 1015 43.3 �129=� 1:8� 1016 0.116 3:7� 1015 �248=� 1 5 1.4 6.9 0.087

200 5:2� 1018 53.4 0:53=� 1:1� 1019 0.363 9:8� 1017 2:6=� 1 5 2.3 11.5 0.23
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ances of the previous paragraph, the widest unification
scales achievable are MX � 1:4� 1016 GeV, namely, for
the model with 75, 200 Higgses, when accepting
maxfjc75j; jc200jg< 5 and assuming Mpl ¼ 1:2�
1019 GeV=�run

red . Requiring maxijcij< 1 and assuming the

nonreduced Planck scale, one can achieve unification at
any MX � 8� 1017 GeV (roughly the same for both
models).

In models with two dimension-5 operators (1) involving
Higgs multiplets in identical irreps (e.g., two 24 Higgses),
one cannot shift the unification scale continuously since
the ratio between the �s cannot be varied continuously. In
fact, only the unification scales MX given in Table III are
possible, with Higgs VEVs and Wilson coefficients modi-

fied by Oð1Þ factors. Furthermore, in models with one
singlet and one nonsinglet Higgs (e.g., one 1 and one 24
Higgs) the unification equations do not have physically
sensible solutions (formally, the equations yield 	sðMXÞ �
0 at any MX).

C. Effects in general models

The behavior from Figs. 1 and 2 is generic for models
with at least two dimension-5 operators, as we will see
now. In particular, there are no points in parameter space
which yield unification at some given MX for significantly
smaller Wilson coefficients than shown in these figures.
This is true in models with at least two dimension-5
operators (1) and involving Higgses in at least two unequal
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FIG. 1. Numerical gauge-coupling unification results for the SUð5Þ model with a 24 and a 75 Higgs. Left panel: For different fixed
ratios v24:v75 of the Higgs VEVs, the curves characterize the size of the Wilson coefficients ci necessary to achieve unification atMX.
The straight horizontal dashed and solid lines indicate two possible choices for the parameter �run ¼ 1:6 and �run

red ¼ 8:0 in (2) (cf. also
Table I), and the vertical lines the corresponding suppression scales Mpl ¼ 1:2� 1019 GeV=� (it may not make sense to consider

scales MX larger than Mpl). Right: The �s in (6) necessary to achieve unification at a given MX (not dependent on the ratio v24:v75 of

Higgs VEVs).
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FIG. 2. Similar to the left panel of Fig. 1, but for the models with 24, 200 Higgses (left: �run ¼ 2:42, �run
red ¼ 12:1) and 75, 200

Higgses (right: �run ¼ 2:68, �run
red ¼ 13:6). For the 24, 200 model, the ratio of Higgs VEVs that achieves any chosen MX with the

smallest Wilson coefficients is roughly v24:v200 ¼ 1:3 (solid bold curve), and for the 75, 200 model this ratio depends on MX and lies
between 1:3 and 3:1, requiring no fine-tuning of the Higgs potential. In both models, j�sj< 0:5 at all unification scalesMX shown here
(cf. right panel of Fig. 1).
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irreps from the set 24, 75, 200; in all other models, accept-
able exact unification via mechanism (6) is impossible for
general MX, as we have just seen, and can at most happen
at the discrete scales MX from Table III.

Writing c � P
h
i¼1 ci and v � P

h
i¼1 vi with h the num-

ber of Higgs multiplets at the grand unification scale,
Eqs. (5)–(8), together yield for the Wilson coefficients ci:

ci ¼ ci
c

Mpl

MX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�	GðMXÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh
j¼1

C2ðrjÞ
12

�
vj

v

�
2

vuuut �
	GðMXÞ
	sðMXÞ � 1

�

�
�Xh
k¼1

ck
c

vk

v
�ðkÞ
s

��1 ðfor any s ¼ 1; 2; 3Þ: (9)

(Higgs fields in representations ri =2 f1; 24; 75; 200g can

easily be accommodated by setting ci � �ðiÞ
s � 0). Then

setting vi=v � 1=h (no large hierarchies between VEVs
vi), maxijci=cj * Oð1� 5Þ=h � 1=h (the constant of pro-
portionality depends on the hierarchy between and the
signs of the ci), 	GðMXÞ * 1=50 (typical for nonsuper-
symmetric unification; see also Table III) and

P
jC2ðrjÞ ¼

h �C2 * 5h (see Table V), and using that (9) is valid for all
s ¼ 1, 2, 3 gives

max
i
jcij * 1

h

Mpl

MX

ffiffiffiffiffiffiffi
4�

50

s ffiffiffiffiffiffiffiffiffiffiffiffi
5h

12

1

h2

s ��������	GðMXÞ
	sðMXÞ � 1

��������
�
�
max
s0

��������X
k

ck
c

1

h
�ðkÞ
s0

��������
��1

*
1ffiffiffiffiffiffi
3h

p Mpl

MX

�
1

3

X3
s¼1

��������	GðMXÞ
	sðMXÞ � 1

��������
�
ðmax
s0;k

j�ðkÞ
s0 jÞ�1:

(10)

The last factor depends on the group theory constants �ðrÞ
s

associated with the embedding of the standard model into

SUð5Þ and numerically equals ð10= ffiffiffiffiffiffiffiffi
168

p Þ�1 (see Table II);
the other factor largely characterizes how well (or how
badly) the actual running couplings 	sð�Þ of the standard
model unify without any modification to the unification
condition since it can be estimated with (6):X3
s¼1

��������	GðMXÞ
	sðMXÞ � 1

��������� 2

��������	1ðMXÞ�	2ðMXÞ
	1ðMXÞþ	2ðMXÞ

��������
þ
�
	1 !	2

	2 !	3

�
þ
�
	1 !	3

	2 !	1

�
* 0:25

ðfor1015 �MX=GeV� 1019Þ; (11)

yielding finally:

max
i
jcij * 1

15
ffiffiffi
h

p Mpl

MX

ðfor 1015 � MX=GeV � 1019Þ:
(12)

This estimate captures unification according to the
modified unification condition (6) pretty well for models
with several Higgs multiplets (as specified above), as can
be seen from numerical studies: from the numerical be-
havior, to achieve equality in (12), 1=15 should be replaced

by some factor of order Oð0:08 ! 4Þ, depending on the
Higgs content of the model, on the ratio of VEVs and ci’s,
and on MX. The following lower bound can be strict in
some models, but has leeway in most situations:

max
i
jcij * Oð0:1Þffiffiffi

h
p Mpl

MX

¼ Oð0:1Þ
�

ffiffiffi
h

p 1:2� 1019 GeV

MX

ðfor all 1013 � MX=GeV � 1020Þ:
(13)

Furthermore, unification at any given MX can be achieved
in any such model when allowing coefficients ci of the size
(13) with the constant being Oð0:5Þ.
For justification of (13) and its Oð0:1Þ factor in a model

with three Higgs multiplets, see Fig. 3, especially the right
panel where the Oð0:1Þ factor to achieve equality in (13)
has been plotted for 30 000 randomly sampled points of the
parameter space that yield unification. (One can formally
achieve small Wilson coefficients by making the number h
of Higgs multiplets large, but these models face issues such
as Landau poles close to the unification scale and small
Higgs VEVs which lead to scalar masses potentially far
below the unification scale.) An estimate like (13) allows
one to quickly judge whether, for some given Higgs con-
tent, unification via (6) at a desired scale MX is possible
with natural-size Wilson coefficients ci. Models containing
Higgs multiplets in representations r =2 f24; 75; 200g have
larger required ci than models without such multiplets; see
(9). Estimate (13) is also quite accurate at the unification
point MX in models with only one dimension-5 operator,
see last column of Table III; however, in those models,MX

cannot be continuously shifted to other values as in the
models considered in this subsection here.
The ingredients of the unification mechanism discussed

in this paper are well illustrated by (13): For models with
Higgs multiplets in at least two of the irreps 24, 75, 200,
unification at continuously variable scale MX may be
achieved due to the presence of gravitationally induced
effective dimension-5 operators (1) in the grand unified
theory, since two or more such operators allow for a
continuous set of solutions to unification condition (6).
To actually achieve unification at a given MX, however,
these operators need to have the right sizes ci, see (13) for
an estimate, and these sizes influence whether one consid-
ers unification at MX possible in a natural way (requiring,
very roughly, jcij �Oð0:1 ! 10Þ or so). The sizes of the ci
are further directly affected by the choice of the Planck
scaleMpl (2) that suppresses the dimension-5 operators (1).

Reasonable choices in (13) are � ¼ 1 (naive Planck scale)

or, more commonly, �red ¼
ffiffiffiffiffiffiffi
8�

p � 5 (reduced Planck
scale), possibly further enhanced by factors Oð1:5 ! 5Þ
if the running of Newton’s constant (3) in such models is
taken into account as another, additional gravitational ef-
fect (cf. � in Table I). These latter considerations about the
appropriate choice of the Planck scale merely influence the
required numerical values of the Wilson coefficients ci by
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factors of order Oð1 ! 25Þ, and thus are only secondary to
the possibility of continuous variability of the unification
condition (6), which facilitates exact gauge-coupling uni-
fication for some values of the ci in the first place.

In this section we have discussed how models can
achieve exact gauge-coupling unification through unifica-
tion condition (6) and whether this is possible with natural
coefficients. The former is a formal numerical requirement
which grand unified theories ought to obey. But it is a
further question whether those models are physically sen-
sible and viable, e.g., if they are allowed by experimental
constraints. In the following two sections (IV and V), we
will look at some of the physics of these unification
models.

IV. NONSUPERSYMMETRIC UNIFICATION NEAR
THE PROTON LIFETIME LIMIT

In this and in the following section we will demonstrate
and analyze two possible implications of models which
employ the unification mechanism just described.

Here, we display and examine models which allow non-
supersymmetric unification of the standard model into
SUð5Þ without intermediate symmetry breaking scales,
while easily avoiding constraints from proton decay, con-
trary to a widely held belief. This scenario seems attractive
as it does not require presently unobserved supersymmetry
and as nonsupersymmetric models offer the possibility of
describing physics up to the onset of quantum gravity in a
perturbative way; see the right column in Table I and the
last paragraph of Sec. II. However, the proposed models
are not completely minimal in their Higgs content as
mechanism (6) requires at least two multiplets for contin-
uously shifting MX around (the minimal choice being a 24

and a 75 Higgs), whereas one 24 alone would already be
sufficient to break the grand unified symmetry; neverthe-
less, as described in Sec. II, when this Higgs content is
assumed, the presence of the gravitational operators (1) is
to be expected and does not further detract from
minimality.
In nonsupersymmetric models, proton decay is mediated

by gauge d ¼ 6 operators (baryon number violating opera-
tors after integrating out the superheavy gauge fields) and
Higgs d ¼ 6 operators (after integrating out superheavy
Higgses). The latter are strongly dependent on the Higgs
sector and Yukawa couplings; since they are, apart from the
potentially dangerous triplet route, generically less impor-
tant than the gauge d ¼ 6 operators (see [34] for a review),
we will concentrate on the gauge contribution for the
following estimates (also neglecting potential ‘‘textures’’
in flavor space that could partially rotate away the effective
gauge d ¼ 6 interactions, yielding a slower decay rate and
weaker bounds [35]). Under these assumptions, the proton
decay rate 1=
ðp!eþ�0Þ through the dominant (in our mod-

els) channel p ! eþ�0 is related to the superheavy gauge
boson masses MX (8) by


ðp!eþ�0Þ ¼ Oð1Þ M4
X

	2
Gm

5
p

; (14)

with the proton mass mp and we take the Oð1Þ constant of
proportionality to be 1 for the following. The current
experimental bound on this decay channel is [20,36]


ðp!eþ�0Þ > f� 1033 years with f ¼ 1:6 or f ¼ 5:4:

(15)

This sets a proton lifetime bound on the unification scale

FIG. 3. For a model with the three (h ¼ 3) Higgs multiplets 24, 75, and 200, a random sample is taken of 30 000 points fci; vig of the
parameter space which yield gauge-coupling unification. The point plot on the left characterizes the required sizes of the Wilson
coefficients ci to achieve unification, as in Figs. 1 and 2; unification at smaller scales MX requires proportionally larger Wilson
coefficients. To illustrate the validity of (13), the right panel shows, for each sample point, the Oð0:1Þ constant to achieve equality in
(13); numerical gauge-coupling unification at any 1013 GeV<MX < 1020 GeV can be achieved by choosing 0.5 as this constant, and
a lower bound is obtained by the choice 0.1. However, this should not be mistaken: unification at smallMX & 1016 GeV requires large
dimensionless Wilson coefficients ci (see left panel).
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MX in nonsupersymmetric models:

MX > ð40	GÞ1=2
�
f

1:6

�
1=4

2:4� 1015 GeV

� ð1:9� 3:8Þ � 1015 GeV;

(16)

where the latter illustrates the range given by (15) and
	G ¼ 1=60� 1=30 [typical for nonsupersymmetric mod-
els using (6), cf. also Table III]. Within the next ten years, if
proton decay remains unobserved, improvements in the
bound (15) up to f ¼ 100 are expected [37], constraining
MX > 8� 1015 GeV.

One can now see that all of our models that achieve
natural gauge-coupling unification, i.e., with Wilson coef-
ficients of order jcijmax & Oð10Þ, satisfy the proton decay
constraint (16) easily, and are also fairly safe against the
expected ten-year improvements in the bound. For ex-
ample, of the models with one Higgs multiplet (see
Table III), only the 200 model (and possibly the 75 model,
depending on the choice of Mpl) feature natural gauge-

coupling unification, with the unification scale 5�
1018 GeV (respectively, 8� 1015 GeV) above the bound
(16) in either case. This also holds for models with two
Higgs multiplets; see Figs. 1 and 2. Under the condition
jcijmax < 5, the lowest unification scale MX ¼ 1:4�
1016 GeV is here achieved in the model with a 75 and a
200 Higgs (Fig. 2, right panel) when assuming � ¼ �run

red ¼
13:6; the other two models with two multiplets automati-
cally have MX > 3� 1016 GeV if gauge-coupling unifica-
tion with Wilson coefficients of this size is required.

Quite generally, any reasonable nonsupersymmetric uni-
fication model featuring natural gauge-coupling unification
via (6) satisfies the proton decay constraint (16). This can
be seen from the general estimate (13) of the parameters
necessary for gauge-coupling unification:

MX *
Oð0:1Þ
�

ffiffiffi
h

p 1:2� 1019 GeV

max
i
jcij

*
0:1

15
ffiffiffi
4

p 1:2� 1019 GeV

10

¼ 4� 1015 GeV; (17)

so that (16) still holds despite all the very conservative
parameter choices in (17) which are by no means necessary
or particularly desirable. Models with more natural pa-
rameters (i.e., with smaller jcijmax, reasonable h, and pos-

sibly choosing �red ¼
ffiffiffiffiffiffiffi
8�

p
) satisfy the proton lifetime

constraint very easily.
The intuitive reason why our models naturally obey the

proton decay constraint so readily is clear: In nonsuper-
symmetric models, the couplings 	sð�Þmiss each other by
quite a bit, so the modifications to the unification condition
(6) need to be relatively sizeable �s �Oð0:1Þ in order to
achieve exact gauge-coupling unification; then, since we
require naturalness jcijmax & Oð10Þ, these sizes �s �

ciMX=Mpl of the effective gravitational corrections (4)

must be due mainly to the proximity of the Planck scale
Mpl ¼ 1:2� 1019 GeV=� to the unification scale MX and,

consequently, to the gauge boson masses (8). Typically,
such heavy gauge bosons ensure the proton decay con-
straint (16).
On the other hand, whereas the natural models easily

satisfy current proton decay limits, there are situations
conceivable in which the constraints in the not too distant
future will come close to testing some of the models, either
excluding them or, if the proton is actually seen to decay,
strongly restricting their parameter space. For example, a
model with Higgs content 24, 75, and 200 can achieve
unification at MX ¼ 8� 1015 GeV, the projected con-
straint in less than ten years from now [37], if merely the

reduced Planck scale (� ¼ �red ¼
ffiffiffiffiffiffiffi
8�

p � 5) and some-
what large coefficients jcijmax � 20 are accepted (see
Fig. 3). Alternatively, the smallest model with two Higgs
multiplets 24 and 75 can reach this limit when taking � ¼
�run
red ¼ 8 and allowing jcijmax � 15, and similarly can the

other models with two multiplets (in each example, only
the product �jcijmax is fixed whereas the sizes of both
factors can be traded back and forth). Regarding the exact
numerical values in this discussion, one has to keep in
mind that there is some uncertainty in the exact numerical
Oð1Þ factor in (14), although it enters the final bound (16)
only to the power of 1=4, and in higher-order and threshold
corrections to the gauge coupling running.
We have seen that the natural models with gauge-

coupling unification through (6) are physically viable as
they automatically evade the proton lifetime constraint that
naively excludes nonsupersymmetric unification. How-
ever, some of the less natural unification models will
come close to the proton limit in the near future, which
will exclude some of them, or constrain their parameter
space drastically if proton decay is observed.

V. SIMULTANEOUS UNIFICATION OF GAUGE
AND GRAVITATIONAL INTERACTIONS

As can be seen from Figs. 1–3 or from estimate (13),
gauge-coupling unification at large MX �Mpl is possible

through mechanism (6) naturally, i.e., with small Wilson
coefficients ci. Unification of the three standard model
gauge interactions with each other on the one hand and
with the gravitational interaction on the other hand at the
same scale (‘‘gauge-gravity unification’’; cf. [21,22])
therefore constitutes another scenario naturally achievable
through the modified unification condition (6). However,
one should keep in mind that our analysis is based on an
effective theory approach and we should therefore consider
carefully the expansion we are using. If the operators of
dimension 5 and higher that we are considering are of
nonperturbative nature, then the expansion is in powers
of 1=Mpl and one may worry that it could break down once

the Higgs VEVs get close to the Planck mass Mpl. In any
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case, it is an interesting numerical coincidence that the
corrections to the unification condition allow one to shift
the unification scale close to the Planck scale for a natural
set of parameters.

Approximate parameter values ci of such gauge-gravity
unification models can be read off from estimate (13) by
setting MX ¼ Mpl=Oð1Þ:

max
i
jcij � Oð1ÞOð0:2 ! 1Þffiffiffi

h
p ; (18)

where the Oð0:2 ! 1Þ estimate stems from the MX � Mpl

range of numerical studies like Fig. 3 (right panel) and h
denotes the number of Higgs multiplets at the grand uni-
fication scale. This suggests the possibility of very natural
gauge-coupling unification at or near Mpl and is already

apparent in the only model with one Higgs multiplet that
achieves unification close to the Planck scale: The 200
model has MX ¼ 5:2� 1018 GeV, which is related to the
Planck scale by MX ¼ 0:4�Mpl, and the required Wilson

coefficient is natural c ¼ 0:53=� (see Table III). As an-
other example, gauge-coupling unification can be achieved
for appropriate parameter choices in the model with a 24
and a 75 (Fig. 1) at the scale MX ¼ Mpl ¼ 1:2�
1019 GeV=� for any of the reasonable exemplary choices

� ¼ 1, �red ¼
ffiffiffiffiffiffiffi
8�

p
, �run ¼ 1:6, or �run

red ¼ 8:0; the corre-

sponding model parameters jcijmax ¼ 0:23, 0.21, 0.23, and
0.20 are all natural and of almost equal sizes independent
of �; see (18). Similar numerical estimates hold for the
other two- and three-Higgs models. In these models, any
Oð1Þ factor in the relation MX ¼ Mpl=Oð1Þ can be easily

accommodated as well by corresponding Oð1Þ changes to
the Wilson coefficients, whereas this is not possible for the
sole-200 model as it only permits one discrete unification
scale (Table III).

In the effective field theory spirit of Sec. II, operators of
dimension higher than 5 are also present, e.g., higher-
dimensional generalizations of (1):

L ¼ c6
4M2

pl

H1H2G��G
�� þ c7

4M3
pl

H1H2H3G��G
�� þ . . .

(19)

After the Higgs multiplets acquire VEVs at the scaleMX ¼
Mpl=Oð1Þ, they contribute to the gauge kinetic terms (4) as

well:

L ¼ X3
s¼1

� 1

4

�
1þ �s þ c6�

ð6Þ
s

g2GOð1Þ2 þ
c7�

ð7Þ
s

g3GOð1Þ3 þ . . .

�

� Fa
ðsÞ��F

a��
ðsÞ ; (20)

with the corrections �s � c5�sMX=gGMpl from the

dimension-5 operators (5). Depending on the group theory

factors �ð6;7Þ
s (analogous to the �s in Table II) and on the

constant in the relation MX ¼ Mpl=Oð1Þ, this expansion

might or might not be controlled perturbatively. If it is not,
one cannot claim perturbative gauge-gravity unification at

the Planck scale. Nevertheless, the fact that mechanism (6)
allows one in principle to naturally adjust the unification
scale to a high scale�Mpl might at least be taken as a hint

that gauge-gravity unification is a possible scenario, even if
the necessary parameter values or the last piece of the
evolution cannot be computed perturbatively.

VI. THE NONSUPERSYMMETRIC SOð10Þ CASE
In this section we give an account of the effects from the

dimension-5 operators (1) in models with grand unified
group G ¼ SOð10Þ. We will describe the setup for SOð10Þ
by emphasizing the differences to the SUð5Þ case described
in Sec. II and give a few numerical unification results
similar to Sec. III. We find that the effects from Secs. IV
(on proton decay) and V (on gauge-gravity unification) can
occur with similar sizes for SOð10Þ as well, although the
SOð10Þ formalism is more general than the SUð5Þ one; in
particular, a continuously variable unification scaleMX can
now be achieved with only one single dimension-5 opera-
tor. For this reason, and for the beauty of SOð10Þ unifica-
tion, we find this treatment worthwhile.
For G ¼ SOð10Þ, there are two inequivalent ways to

embed the standard model group G321 ¼ SUð3ÞC �
SUð2ÞL �Uð1ÞY into G consistent with the charge assign-
ments of the standard model fermions: the ‘‘normal em-
bedding’’ G321 � SUð5Þ � SOð10Þ [38], and the ‘‘flipped
embedding’’ G321 � SUð5Þ �Uð1ÞX � SOð10Þ with
G321 ⊈ SUð5Þ [39] (see the Appendix for a careful treat-
ment of the SOð10Þ group theory). Statements without
qualifier in the following apply to either embedding.
Note, nowhere are we implying that either SUð5Þ or
SUð5Þ �Uð1ÞX (or any other subgroup) be intermediate
unbroken symmetries at any scale.
In the SOð10Þ grand unified theory, the gravitationally

induced effective dimension-5 operators (1) can be formed
with Higgs multiplets Hi in any of the four irreps ri ¼ 1,
54, 210, 770. However, contrary to the SUð5Þ case, the
VEV hHii is not necessarily uniquely specified (up to
normalization) by requiring it to be invariant under the
standard model group G321; rather, this G321 invariance
merely restricts to a 3-, respectively, 4-dimensional sub-
space inside the 210, respectively, 770 irreps, so that the
length as well as the direction of the VEV has to be
specified for Higgses in these irreps. This will have the
important consequence that with merely one dimension-5
operator (1), built with either a 210 or 770 Higgs, one can
continuously vary the ratio among the �s in the unification
condition (6) by continuous variation of the VEV direction,
ultimately leading to a continuously variable unification
scale MX; the SUð5Þ case could achieve this continuity
only with at least two Higgs multiplets.
To parametrize these VEV directions for calculations,

one has to specify a basis in these 3- or 4-dimensional
subspaces. Two possible, distinct choices of this basis are
given in the Appendix: the vectors in the first, respectively,
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second basis have definite transformation properties under
the SUð5Þ �Uð1ÞX, respectively, SUð4ÞC � SUð2ÞL �
SUð2ÞR maximal subgroups of SOð10Þ (see the first two
columns of Tables VII, respectively, VIII for these trans-
formation properties). We choose to classify according to
these two subgroups since they are the only maximal
subgroups that can occur as intermediate symmetries in
SOð10Þ ! G321 breaking consistent with the standard
model charge assignments. These two choices therefore
readily facilitate the analysis of SOð10Þ breaking with
intermediate gauge symmetries; see below (the absence
of intermediate symmetries is assumed for now).

With such a chosen basis, the modifications �s to the
three standard model gauge kinetic terms (4) are now,
instead of (5), double sums (A28)

�s ¼
X
i

ci
Mpl

X
j

vðiÞj�
ðiÞj
s ðfor s ¼ 3; 2; 1Þ; (21)

where the second sum runs over the directions j ¼
1; . . . ; 3ð4Þ if Hi is in the 210 (770) representation (for
the 1 and 54 irreps, j ¼ 1 only). The Clebsch-Gordan

coefficients �ðiÞj
s depend on the embedding G321 �

SOð10Þ (normal or flipped), on the representation ri of
the Higgs Hi and on the choice of basis vectors j in the
standard model singlet subspace of the respective repre-

sentation. These �ðiÞj
s can all be taken from Table VII [for

basis vectors with definite SUð5Þ �Uð1ÞX transformation
properties] and Table VIII [definite SUð4ÞC � SUð2ÞL �
SUð2ÞR transformations] via (A28).

One other difference between the SOð10Þ and the SUð5Þ
cases is the fact that none of the 54, 210, or 770 multiplets
can give mass to all of the non-standard model (‘‘super-
heavy’’) gauge bosons and that, furthermore, the masses of
the gauge bosons which actually do acquire mass from
these multiplets are generally unequal. Therefore, both the
statement from the SUð5Þ case that the mass Mgb of the

superheavy gauge bosons may originate solely from
Higgses involved in dimension-5 operators (1) and the
requirement (8) that this mass be close (or equal) to the
unification scale MX have to be amended. First, additional
Higgs multiplets in other irreps (typically 45, 16, or 126;
see also Table I) are necessary to break the SOð10Þ gauge
symmetry down to the standard model G321 and they
contribute to the masses of the superheavy gauge bosons
as well. And for definiteness, we now assume that the
Higgs multiplets involved in dimension-5 operators (1)
account for half of the average squared superheavy gauge
boson masses, and we require that this averaged super-
heavy mass now be equal to the unification scale; see (A25)
in the Appendix. The necessity for some such choice
causes uncertainty in actual numerical unification calcula-
tions greater than in the SUð5Þ case.

As mentioned above, continuously variable unification
scalesMX can be achieved in SOð10Þ models with a single
Higgs in either the 210 or the 770 representation, since the

direction fvði¼1Þjgj¼1;...;3ð4Þ of their VEV can be varied

continuously in (21). Minimizing the Higgs content and
the number of dimension-5 operators in this way seems
attractive. Further note, that a 770 causes the strong cou-
pling regime of the grand unified theory to be quite close to
the unification scale (Table I), although, depending on the
gap between the unification and the Planck scale, the
theory may still be perturbative up to the onset of quantum
gravity.
As a numerical example, Fig. 4 shows gauge-coupling

unification results in the SOð10Þ model with a single 210
Higgs [identical results obtain for both the normal and the
flipped embedding due to the orthogonal relation (A18)],
similar to Fig. 3 for SUð5Þ with three Higgses. The lower
bound (13) holds here as well, even with the same factor
Oð0:1Þ, and unification can be achieved for any MX in the
displayed range if this factor is allowed to be 0.5 (see right
panel). Therefore, unification is naturally safe from the
proton lifetime limit in SOð10Þ as well, but can also
come close to it for some points in the parameter space,
and unification near or at the Planck scale is achievable in a
very natural way, both similar to the corresponding SUð5Þ
scenarios described in detail in Secs. IV and V.
In a scenario with several breaking scales, if the inter-

mediate gauge symmetry is SUð5Þ �Uð1ÞX [or merely
SUð5Þ] or the Pati-Salam group SUð4ÞC � SUð2ÞL �
SUð2ÞR, respectively, the directions of both the 210 and
770 VEVs at the unification scale MX are fixed, as these
VEVs have to be singlets under the intermediate group,

which allows only the �ðiÞj
s from rows 1, 3, 6 in Table VII,

respectively, rows 1, 2, 3, 6 in Table VIII. Therefore,
similar to the case of an SUð5Þ unified group, only linear
combinations of the effects from at least two operators (1)
can achieve continuously varying MX. The effect of a
dimension-5 operator with a Higgs that acquires its VEV
at an intermediate scale MI <MX is suppressed relatively
by �MI=MX. Note, since there are no singlet VEVs for a
54 Higgs under the SUð5Þ intermediate group, it can ac-
quire nonzero VEV only at the final breaking scale to the
standard model group G321 and is therefore almost irrele-
vant for our effect in the case of an SUð5Þ intermediate
gauge symmetry.
In several previous analyses of the SOð10Þ case

(e.g., [15]), only Higgs VEVs that are invariant under
intermediate gauge groups larger than G321 have been
considered [namely under the SUð5Þ Georgi-Glashow or
the SUð4ÞC � SUð2ÞL � SUð2ÞR Pati-Salam subgroups],
thereby omitting most of the possibilities discussed above
for SOð10Þ breaking without intermediate symmetries, i.e.,
the continuous variability of MX with merely one
dimension-5 operator.
Exactly analogous effects obtain for other grand unified

gauge groups, like E6, and they are even of similar size as
in SUð5Þ and SOð10Þ [15,25]. Furthermore, the formalism
necessary for the SOð10Þ treatment is already the most
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general for any unification group, so we leave the analysis
of gauge-coupling unification through the mechanism of
dimension-5 operators (1) at the SUð5Þ and SOð10Þ cases
discussed so far.

VII. COMPARISON TO THE SUPERSYMMETRIC
CASE

The influence of the dimension-5 operators (1) has been
studied [2] in models of supersymmetric grand unification
[16–18] as well, although most studies have focused on the
effect of the supersymmetrized version of (1) in the crea-
tion of nonuniversal gaugino masses in a scenario where
the UV completion is a N ¼ 1 supergravity theory; see
[25] and references therein. The group theory needed to
calculate the resulting gaugino mass ratios is very similar
to the formalism for obtaining the modified unification
condition (6) [26,27]; see the Appendix for the detailed
SUð5Þ and SOð10Þ group theory.

The effect of these dimension-5 operators on the uni-
fication of gauge couplings in supersymmetric theories and
on the unification scale has been noted before
[2,5,13,15,26,27]. In some of these works, however, the
low-energy inputs 	sðmZÞ or the supersymmetry (SUSY)
breaking scale mSUSY [above which the �-function coef-

ficients (A31) are taken to be ðb1; b2; b3Þ ¼ ð33=5; 1;�3Þ]
have been treated as uncertain parameters, and mostly only
the effect from a single dimension-5 operator had been
taken into account (except in [13]).
Fixing the low-energy gauge-coupling values (A32) and

mSUSY ¼ 1 TeV [19], as roughly required to solve the
hierarchy problem of the standard model, one obtains for
supersymmetric SUð5Þ models with one dimension-5 op-
erator the unification possibilities in Table IV (at one loop),
in analogy with Table III for nonsupersymmetric SUð5Þ
[note, supersymmetric SUð5Þ with a 200 Higgs enters
strong coupling shortly above the unification scale,
cf. Table I].
For a general number of Higgs fields, the situation is

shown in Fig. 5, in analogy to Fig. 3. As can be seen, exact
supersymmetric gauge-coupling unification around
2� 1016 GeV can be achieved with natural-sized
dimension-5 operators (1), which is expected as this is
where the standard model gauge couplings come closest
to each other in supersymmetric models; but higher uni-
fication scales are also possible in a natural way with
certain values of the coefficients ci. Note that the super-
symmetric unification model from Fig. 5 has a Landau pole
roughly half an order of magnitude above the unification
scale MX, cf. Table I.

TABLE IV. This table shows the parameters that a SUSY-SUð5Þ model must have if, at one
loop, unification happens by means of mechanism (6) with only one dimension-5 operator (1).
The sizes of the required Wilson coefficients c depend on the chosen suppression scale (2),
parametrized by �.

H irrep MX=GeV 1=	G c v=GeV maxsj�sj � ¼ 1 �red ¼
ffiffiffiffiffiffiffi
8�

p
�run �run

red

1 Unification by mechanism (6) impossible

24 1:1� 1016 25.9 31:1=� 2:4� 1016 0.024 1 5 2.3 11.6

75 3:2� 1016 25.8�12:0=� 5:6� 1016 0.033 1 5 3.1 15.4

200 8:5� 1016 26.8 13:1=� 1:2� 1017 0.105 1 5 4.4 22.1

FIG. 4. For the SOð10Þ model with a 210 Higgs, a random sample is taken of 30 000 points fc210; vð210Þjg of the parameter space
which yield gauge-coupling unification; cf. Figure 3. Estimate (13) is valid here as well (see right panel), and numerical gauge-
coupling unification at any 1013 GeV<MX < 1020 GeV can be achieved with theOð0:1Þ constant in (13) being at most 0.5 (the caveat
from Fig. 3 applies here as well).
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VIII. SUMMARYAND CONCLUSION

We have studied the effects from multiple gravitation-
ally induced dimension-5 interactions ciHiG��G

��=4Mpl

(1), naturally present in any grand unified theory, on the
unification of gauge couplings. These operators can modify
the canonical gauge kinetic terms (4) and the coupling
unification condition (6) by up to �s � cihHii=Mpl �
ciMX=gGMpl � 0:1%–30% (5) after the Higgs multiplets

acquire VEVs in grand unified symmetry breaking. The
size of the effect depends on the unification scale MX, the
Wilson coefficients 0:1 & jcij & 10, and the suppression
scale 5� 1017 GeV & Mpl & 1:2� 1019 GeV (2).

Modifications �s of this size can effect perfect gauge-
coupling unification, at scales MX significantly different
than naively expected, as the standard model gauge cou-
plings 	sð�Þ (s ¼ 1, 2, 3) differ from each other by at most
& 50% in the wide range 1013 GeV<�< 1019 GeV,
both in the case with and without supersymmetry. When
two or more dimension-5 operators are present in a theory
[or a single 210 or 770 in SOð10Þ, see Sec. VI], then the
scale MX of gauge-coupling unification can be varied in a
continuous and controlled way as a function of the Wilson
coefficients ci and Higgs VEVs hHii, which are practically
model parameters. We have focused on nonsupersymmet-
ric SUð5Þ and SOð10Þ theories, for which grand unification
seemed, previously, to be difficult [19], and we find that
gauge-coupling unification is possible, in a natural way, at
any MX � 1017 GeV� 1:2� 1019 GeV. For illustration
we now give a few numerical unification results (all non-
supersymmetric models):

(a) SUð5Þ with 24 and 75 Higgses, see Fig. 1: Perfect
gauge-coupling unification at MX ¼ 1017 GeV hap-
pens for some choice of parameter values c24, c75
with jcij & 3, if Mpl ¼ 1:2� 1019 GeV=

ffiffiffiffiffiffiffi
8�

p ¼
2:4� 1018 GeV is assumed; the modifications �s
to the gauge kinetic terms are all less than 15%.

(b) SUð5Þwith 24, 75, and 200, Fig. 3 and estimate (13):
Unification at any MX > 1018 GeV is possible for
several choices of c24, c75, c200 with jcij< 2, when
Mpl ¼ 1:2� 1019 GeV is assumed. In fact, the big-

ger a unification scale one wants to achieve, the
smaller Wilson coefficients are required:maxijcij �
2 	 ð1018 GeV=MXÞ; analogous statements hold (at
fixed Mpl) in all examples (a)–(c) with continuous

variability of MX, cf. (13).
(c) SOð10Þwith a single 210, Fig. 4: Exact unification at

MX ¼ 3� 1017 GeV is possible with c210 � 2:5 for
a certain (continuous) set of directions of the Higgs

VEV hHabi, if Mpl ¼ 1:2� 1019 GeV=
ffiffiffiffiffiffiffi
8�

p ¼
2:4� 1018 GeV is assumed.

(d) SUð5Þ with 24 and 75, Fig. 1 and Eq. (18):
Numerical gauge-coupling unification at the very
high scale MX ¼ Mpl, i.e., at the Planck scale, is

possible for some choice of Wilson coefficients with
jc24j, jc75j< 0:25 (irrespective of the specific
choice of Mpl).

(e) SUð5Þ with a single 200, Table III: Exact gauge-
coupling unification can happen, but only for a dis-
crete choice c200 ¼ 0:5 [15] (here, Mpl ¼
1:2� 1019 GeV is assumed); in this case, the uni-
fication scale MX ¼ 5:2� 1018 GeV cannot be
shifted continuously.

We have shown (Sec. IV) that nonsupersymmetric uni-
fication, achieved via these dimension-5 operators, is not in
conflict with the current bound on the proton lifetime (16),
since, with natural-sized Wilson coefficients ci, only uni-
fication scales MX * 1016 GeV are reasonably possible,
cf. (17). Consequently, experimental improvements of the
proton decay bound will constrain our models only weakly
within the foreseeable future. Our main conclusion is that
fairly minimal models of nonsupersymmetric SUð5Þ and
SOð10Þ unification are easily viable through the mecha-

FIG. 5. Similar to Fig. 3, but for the supersymmetric SUð5Þ model with the three (h ¼ 3) Higgs multiplets 24, 75, and 200. Again,
numerical gauge-coupling unification at any 1013 GeV<MX < 1020 GeV can be achieved by choosing 0.5 as the constant in (13) (but
cf. caveat from Fig. 3). Most of the randomly chosen unification points lead to unification scales MX � 2� 1016 GeV, where, in
supersymmetric models, the standard model gauge couplings almost meet.
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nism described. In particular, supersymmetry does not
have to be invoked to save the idea of grand unification.

We also note that, with two or more dimension-5 opera-
tors in the theory, gauge-coupling unification at or near the
Planck scale MX �Mpl can happen for very natural pa-

rameter choices ci �Oð0:1 ! 1Þ, cf. (18) in Sec. V. Of
course, our approach cannot be fully justified very near the
Planck scale, due to incalculable corrections from quantum
gravity. But the fact that one can, by continuous variation
of the Wilson coefficients ci in a natural domain, push the
unification scale MX close towards the Planck scale, may
be suggestive of a scenario of simultaneous gauge-gravity
unification.

As we have seen, when unification happens according to
the mechanism presented in this paper, then unification
scales MX much larger than usually assumed are favored,
in the sense that probably only those are achievable in a
natural way. Thus, the mechanism here is distinct from
some other known unification scenarios [23,24]. The dif-
ference lies in the fact that the importance of the
dimension-5 operators (1) increases for unification scales
MX closer to the Planck scale (implying larger Higgs VEVs
hHi), which causes a bigger modification to the unification
condition (6) and makes this largerMX consistent. But, for
example, two-loop and threshold effects are not signifi-
cantly enhanced at larger unification scales, since they
originate from within the grand unified theory, rather
than from intrinsically shorter distance effects like strong
quantum gravity.
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APPENDIX: NORMALIZATION CONVENTIONS
AND GROUP THEORY

In this appendix, we give a self-contained account of the
group theoretical aspects and normalization details that
were omitted in the main text.

Our first goal is to establish conventions for the quanti-
ties appearing in the dimension-5 operators (1) of interest,
aiming towards criteria for assessing the individual size
and importance of each operator i based on its Wilson
coefficient ci, and also the relative sizes of different op-
erators (1) appearing in the same Lagrangian. We intend to
establish normalization conventions in such a way that
operators with Wilson coefficients jcij � 1 are expected
in the effective Lagrangian of a grand unified theory after
integrating out gravitational interactions, which then helps
judge the naturalness of a particular model, i.e., its reason-
ableness: If jcij � 1 (for any i), the effective Lagrangian
might not be a good low-energy description and one might
lose perturbative control, whereas jcij � 1 constitutes

fine-tuning, as setting c ¼ 0 does not enhance the symme-
try [4]. Note, the calculations and numerical gauge-
coupling unification results in this paper are valid, at face
value, regardless of such criteria.
The effective operators �HG��G

�� we are considering

are formed from two gauge field strengths G��, transform-

ing in the adjoint representation G of the grand unified
gauge groupG, and one Higgs multipletH, transforming in
an irreducible representation (irrep). The contraction
HG��G

�� can yield a gauge singlet only if H transforms

in an irrep contained in the (conjugate of the) symmetric
product ðG 
GÞs of two adjoint representations of the
gauge group. For SUð5Þ and SOð10Þ unified gauge groups
G, these possible irreps are the direct summands in the
following decompositions (for this and other group theory
facts, see [29]):

G ¼ SUð5Þ; G ¼ 24:

ð24 
 24Þs ¼ 1 � 24 � 75 � 200;

G ¼ SOð10Þ; G ¼ 45:

ð45 
 45Þs ¼ 1 � 54 � 210 � 770: (A1)

[In this paper, the 210 of SOð10Þ will always denote the
210-dimensional irrep in the same congruency class as the
54 and 770, namely, in the congruency class 0, to which
also the adjoint G ¼ 45 belongs.] The irreps on the right-
hand sides of (A1) are all real representations, as the
adjoint G is real itself.
Since they are contained in ðG 
GÞs, each multiplet H

in an irrep (A1) can be written in component form as Hab

with symmetric indices a, b of the respective adjoint
representation G. Under an infinitesimal gauge transfor-
mation (1þ i	cTc) these components then transform ac-
cording to

Hab ! Hab þ i	cððtcGÞaa0�bb0 þ �aa0 ðtcGÞbb0 ÞHa0b0

¼ Hab þ i	c½tcG; H�ab; (A2)

with the representation matrices ðtcGÞab � �ifabc of the

adjoint G, where fabc are completely antisymmetric struc-
ture constants of the gauge group. We normalize the real
fields Hab and the gauge fields Ga

�� � @�A
a
� � @�A

a
� þ

gGf
abcAb

�A
c
�, along with the gauge coupling gG and the

structure constants fabc, in such a way that their kinetic
terms have the (standard) form

L ¼ 1
2ð@�Hab � igGA

c
�½tcG; H�abÞð@�Hab

� igGA
d�½tdG; H�abÞ � 1

4G
a
��G

a�� (A3)

with the index of the adjoint representation CðGÞ�ab ¼
trðtaGtbGÞ ¼ facdfbcd normalized to

SUð5Þ: CðGÞ ¼ Cð24Þ ¼ 5; (A4)

SOð10Þ: CðGÞ ¼ Cð45Þ ¼ 8: (A5)

The assignment (A5) follows from (A4) if one demands the
structure constants of SOð10Þ, restricted to its ‘‘normal’’
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SUð5Þ subgroup which we will be interested in later, to
coincide with the SUð5Þ structure constants normalized
according to (A4), which itself follows from the standard
assignment Cð5Þ ¼ 1=2 for the fundamental representation
5 of SUð5Þ. We use this standard choice CðNÞ ¼ 1=2 for
the fundamental representation N of any unitary group
SUðNÞ.

In this notation, the unique gauge (and Lorentz) singlet
contraction is

HGG ’ HabGa
��G

b��: (A6)

Writing the dimension-5 operators of interest in this com-
mon form for all of the admissible Higgs irreps (A1),
together with the normalization (A3) of the kinetic terms
of the gauge and Higgs fields, establishes a convention (up
to the sign) for the—a priori arbitrary—overall factor of
the singlet contraction of one Higgs multiplet with two
gauge fields. It moreover asserts, as a convention, that the
two operatorsHiGG and HjGG, even with HiggsesHi, Hj

in different irreps, are of equal size and strength. The
overall sign of the gauge singlet contraction is arbitrary,
as it contains the Higgs fieldH to one power and as there is
no invariant way to fix the sign ofH through the (quadratic)
kinetic term (A3). Consequently, this leaves the overall
sign of the Wilson coefficients ci in (1) open, but allows
naturalness assessments based on the absolute values jcij.

In (1) we wrote the dimension-5 operators as

L ¼ X
i

ci
Mpl

Hab
i

1

4
Ga

��G
b�� (A7)

(the Hi do not all have to be in distinct representations).
The justification for the factor 1=4 is the same as in the
gauge boson kinetic term (A3), as the squared time deriva-
tives of the spatial gauge fields appear as 2ð@0Aa

i Þ2 in the
contraction �Ga

��G
a��, whereas squared time derivatives

of boson fields canonically appear with factors of 1=2 as
kinetic terms in the Lagrangian L. To avoid the same
overcounting, we explicitly put 1=4 into the operator
(A7) as well, noting that this might be a conservative
choice (i.e., require a larger value of jcij in order to achieve
the same effect). Mpl, which we parametrize as Mpl ¼
1:2� 1019 GeV=� [cf. (2)], should be the scale of the
physics generating the operators (A7), and we imagine
this to be gravitational interactions (see the beginning of
Sec. II). This completes the setup of normalization con-
ventions that satisfy the goal formulated at the beginning of
this appendix.

After a Higgs field Hi has acquired a (nonzero) vacuum
expectation value (VEV) hHii, the effective interaction
(A7) contributes a term

L ¼ cihHab
i i

4Mpl

Ga
��G

b��; (A8)

to the Lagrangian, similar to the gauge boson kinetic term
in (A3). Our next goal is to look quantitatively at this
contribution and its immediate effects.

The contributions (A8) scale roughly like hHab
i i=Mpl �

M=Mpl ifHi assumes its VEVat energy scaleM, and so are

completely negligible for M anywhere near or below the
electroweak scale. On the other hand, above the electro-
weak scale the standard model subgroup G321 ¼
SUð3ÞC � SUð2ÞL �Uð1ÞY of the grand unified group G
is unbroken, so the VEVs of all scalar fields in the theory,
in particular, all VEVs appearing in (A8), have to be
invariant under G321 (this includes zero VEV). This re-
quirement on hHab

i i constrains the contributions (A8) to the
gauge kinetic terms. Next we will find, for the cases of
SUð5Þ and SOð10Þ grand unified gauge groups G and for
each of the allowed irreps (A1), all possible hHab

i i that are
invariant under the standard model subgroup G321 � G.
The method employed is similar to [25] (Sec. I), but we

do not only want to find relative contributions, but rather
also absolute values within our normalization conventions
above, and we furthermore want to establish a relation
between the Higgs VEVs and the masses of the superheavy
gauge bosons (see later). Let � � ð�abÞ be a vector, trans-
forming like hHabi as the symmetric product of two adjoint
representationsG of the gauge groupG; see (A2). Choose1

an explicit basis ftaGga of generators of the adjoint repre-

sentation G such that they satisfy the normalization (A4)
and (A5) and that the generators of the standard model
subgroup G123 correspond to a ¼ 1; . . . ; 8 [for the SUð3ÞC
factor; called ‘‘set I’’ of the generators], a ¼ 9, 10, 11
[SUð2ÞL; set II], and a ¼ 12 [Uð1ÞY ; set III or set III0, see
later]; this allows for easy examination of the transforma-
tion properties of � under the standard model subgroup
G321. Also, the remaining generators a ¼ 13; . . . ; dðGÞ
may be identified according to their transformation prop-
erties under subgroups of the full gauge group G, and we
need such a naming scheme later to address the compo-
nents of�ab of different superheavy gauge bosons. For our
purposes we choose one of the following classifications of
generators ta (applicable to any representation):
(a) For SUð5Þ: The adjoint G ¼ 24 of SUð5Þ, under

which the generators transform, branches under the
standard model subgroup G321 into

24 !G321 ð8; 1; 0Þ|fflfflffl{zfflfflffl}
I

�ð1; 3; 0Þ|fflfflffl{zfflfflffl}
II

� ð1; 1; 0Þ|fflfflffl{zfflfflffl}
III

�
��
3; 2;� 5

6

�
� H:c:

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IV

:
(A9)

Besides the irreps I, II, and III, there is only one

1One way to choose such an explicit basis taG of adjoint
generators is to choose an explicit basis taF for the fundamental
representation F of G, normalized to trðtaFtbFÞ ¼ CðFÞ�ab, such
that the taF already obey the desired classification, which may be
more easily accomplished than the same classification for the taG.
Here, F ¼ 5 or 10 for G ¼ SUð5Þ or SOð10Þ, respectively, and
Cð5SUð5ÞÞ ¼ 1=2 and Cð10SOð10ÞÞ ¼ 1. Then ðtaGÞbc � �ifabc

with fabc � �i trð½taF; tbF�tcFÞ=CðFÞ have the desired properties.
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real representation of G321 contained in the 24, and
those 12 generators make up set IV of generators.

(b) For SOð10Þ: Two different classifications are pos-
sible since G321 can be embedded in two different
ways (normal [38] or ‘‘flipped’’ [39] embedding)
into SOð10Þ with the correct charge assignments for
each standard model family of fermions from a 16 of
SOð10Þ. For either embedding, SUð5Þ in the follow-
ing denotes the SUð5Þ � SOð10Þ subgroup which
contains the SUð3ÞC and SUð2ÞL factors ofG321, and
Uð1ÞX the Abelian factor such that SUð5Þ �
Uð1ÞX � SOð10Þ is a maximal subgroup.

(i) Normal (Georgi-Glashow-like) embedding G321 �
SUð5Þ � SOð10Þ [38]:
45 !SUð5Þ

24 � 1 � ð10 � H:c:Þ
!G321 ð8; 1; 0Þ|fflfflffl{zfflfflffl}

I

�ð1; 3; 0Þ|fflfflffl{zfflfflffl}
II

� ð1; 1; 0Þ|fflfflffl{zfflfflffl}
III

� ðð3; 2;�5
6Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
IV

� ð1; 1; 0Þ|fflfflffl{zfflfflffl}
V

� ðð3; 2; 16Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
VI

� ðð�3; 1;�2
3Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
VII

� ðð1; 1; 1Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
VIII

: (A10)

The number of generators in sets IV, V, VI, VII,
VIII is 12, 1, 12, 6, 2. Sets I, II, III, IV correspond
to I, II, III, IV in (A9) (this is the Georgi-Glashow
embedding). Note, the generators III [generating
Uð1ÞY � G321] and V [generating Uð1ÞX] both have
the same standard model quantum numbers (both are
standard model singlets), whereas all other sets of
generators have distinct ones

(ii) Flipped embedding G321 � SUð5Þ �Uð1ÞX �
SOð10Þ with G321 ⊈ SUð5Þ [more precisely, the
Uð1ÞY factor of G321 is not contained in SUð5Þ] [39]:

45 !SUð5Þ�Uð1ÞX
24ð0Þ � 1ð0Þ � ð10ð�

ffiffi
2
3

q
Þ � H:c:Þ

!G321 ð8; 1; 0Þ|fflfflffl{zfflfflffl}
I

�ð1; 3; 0Þ|fflfflffl{zfflfflffl}
II

� ð1; 1; 0Þ|fflfflffl{zfflfflffl}
III0

� ðð3; 2; 16Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
IV

� ð1; 1; 0Þ|fflfflffl{zfflfflffl}
V0

� ðð3; 2;�5
6Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
VI

� ðð�3; 1;�2
3Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
VII

� ðð1; 1;�1Þ � H:c:Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VIII

: (A11)

Again, only the generators III0 and V0 have the same
transformation properties under the standard model.
The sets I, II, IV, VI, VII, and VIII of generators
here can be identified with the respective sets in

(A10), whereas the two generators tIII
0
[generating

Uð1ÞY ⊈ SUð5Þ] and tV0
here are linear combinations

of the generators tIII and tV from (A10),

tIII
0

tV
0

 !
¼ V

tIII

tV

� �
with

V ¼ � 1
5 s

IIIsIII
0 2

ffiffi
6

p
5 sVsIII

0

2
ffiffi
6

p
5 sIII

0
sV

0 1
5 s

VsV
0

 !
;

(A12)

where sIII, sV , sIII
0
, sV

0 ¼
1 are signs that depend

on the choice of signs of the generators tIII, tV , tIII
0
,

and tV
0
, which are not fixed by our normalization

conventions above. V is a real orthogonal matrix,

VVT ¼ I2, and the gauge bosons FIII0
�� , F

V0
�� corre-

sponding to the generators tIII
0
, tV

0
are related to

the gauge bosons FIII
��, FV

�� via ðFIII0 ; FV0 Þ ¼
ðFIII; FVÞVT .

In this explicit basis, the requirement that �ab be invari-
ant under G321 then, according to (A2), translates into

ðtcG
GÞðabÞða0b0Þ�a0b0 � ½tcG; ��ab ¼ 0

for all c ¼ 1; . . . ; 12:
(A13)

Solving this system of (linear) equations (along with en-
forcing symmetry �ab¼�ba) yields 4 (respectively, 9)
linearly independent solutions �ab

t (t ¼ 1; . . . ; 4, respec-
tively, t¼1; . . . ;9) in the case of G ¼ SUð5Þ [respectively,
G ¼ SOð10Þ], their linear combinations exhausting all
standard model singlet VEVs contained in ðG 
GÞs. In
order to find all possible standard model singlet VEVs for
each of the Higgs irreps (A1), one has to form linear
combinations of the solutions �t that transform in those
irreps. To this end, one evaluates the quadratic Casimir
operator on each of the linearly independent solutions �t,
expressing the result again as their linear combination,

C2�t �
XdðGÞ
c¼1

½tcG; ½tcG; �t�� ¼
X
u

cut�u; (A14)

which is possible since the restriction of the action of the
Casimir operator to an irrep is proportional to the identity
on that irrep; Table V gives the respective constants of pro-
portionality (‘‘quadratic Casimir invariants’’) for irreps of
several groups of interest here and later. The matrix ðcutÞ is
diagonalizable,

P
tcutv

ðwÞ
t ¼CðwÞ

2 vðwÞ
u with linearly inde-

pendent eigenvectors vðwÞ,w¼1;...;4ð9Þ forG¼SUð5Þ [G¼
SOð10Þ]. The 4 (respectively, 9) vectors �w � P

tv
ðwÞ
t �t

then form a basis of the standard model singlet subspace as

TABLE V. Quadratic Casimir invariants C2ðrÞ for some irreps
r of several groups of interest, in the conventions described
above. C2ð1Þ ¼ 0 for the singlet 1 of any group.

Group C2ðr1Þ C2ðr2Þ C2ðr3Þ
SUð5Þ C2ð24Þ ¼ 5 C2ð75Þ ¼ 8 C2ð200Þ ¼ 12
SOð10Þ C2ð54Þ ¼ 10 C2ð210Þ ¼ 12 C2ð770Þ ¼ 18
SUð4Þ C2ð15Þ ¼ 4 C2ð84Þ ¼ 20
SUð2Þ C2ð3Þ ¼ 2 C2ð5Þ ¼ 6
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well, and each �w transforms in a representation r of G
whose quadratic Casimir invariant C2ðrÞ is equal to the

eigenvalue CðwÞ
2 . Since, in the SUð5Þ as well as the SOð10Þ

case, the different irreps in (A1) have distinct quadratic
Casimir invariants, and since each irrep only occurs once in
the direct sum decomposition (A1) of ðG 
GÞs, it is
ensured that each �w actually is contained in an irrep r,
and r can be read off from the corresponding eigenvalue

CðwÞ
2 via Table V.

What one finds, in theG¼SUð5Þ case, is that each of the
four irreps 1, 24, 75, and 200, into which ð24 
 24Þs de-
composes (A1), contains exactly one standard model sin-
glet�w (the 4 eigenvalues of cut are nondegenerate: 0, 5, 8,
12). Therefore, in SUð5Þ, specifying the irrep of H deter-
mines its (standard model singlet) VEV and subsequently
its contributions to (A8) up to an overall factor; in particu-
lar, the relative contributions between terms Ga

��G
b�� in

(A8) are completely determined.
For the SOð10Þ unified gauge group, however, only the 1

and 54 irreps contain exactly one standard model singlet;
the 210 contains three, and the 770 contains four linearly
independent standard model singlets (the 9 eigenvalues of
cut are partly degenerate: 0, 10, 3� 12, 4� 18). These
statements hold for both the normal (Georgi-Glashow) and
the flipped embedding of G321 into SOð10Þ, and, in fact, it
is found that the set of standard model singlets is the same
in either case.

In order to distinguish these linearly independent G321

singlets within the 210 or the 770 of SOð10Þ, one can
specify their transformation properties under subgroups
of SOð10Þ that contain the standard modelG321 (the normal
or the flipped G321, respectively). We consider here two
such subgroups, namely, the two maximal subgroups of
SOð10Þ consistent with the charge assignments for the
standard model fermions; these are (a) the extended
Georgi-Glashow subgroup SUð5Þ�Uð1ÞX�SOð10Þ, and
(b) the Pati-Salam subgroup SUð4ÞC�SUð2ÞL�SUð2ÞR.
To achieve this practically, the method of the Casimir
operator (A14) is employed again; however, the sum over
c in (A14) is now restricted to the generators of the desired
subgroup, or, more precisely, to the generators of each
simple factor of the subgroup, in order to find linear

combinations of the �w that transform in irreps of the
subgroup (factors). It turns out that either one of the
subgroups (a) or (b) can resolve the degeneracy of the
vectors �w transforming within the 210 or the 770 of
SOð10Þ; see the second column of Tables VII and VIII
for cases (a) and (b), respectively.
So, for each of the irreps r on the right-hand sides of

(A1) in the SUð5Þ as well as the SOð10Þ case, we have
found a basis f�ðrÞtgt, such that any standard model singlet

�ab in the irrep r can be written as a linear combination
�ab ¼ P

tct�
ab
ðrÞt with real coefficients ct; the index t runs

over t ¼ 1 only, except for SOð10Þ in the cases of r ¼ 210
(where t ¼ 1, 2, 3) or r ¼ 770 (t ¼ 1, 2, 3, 4), for which
the �ðrÞt can be given definite transformation properties

under (maximal) subgroups of SOð10Þ, as described above.
To be specific, we normalize the overall magnitude of each
�ðrÞt such that

P
ab�

ab
ðrÞt�

ab
ðrÞt¼1, resulting in�ab

ðrÞt�
ab
ðr0Þt0 ¼

�rr0�tt0 . Also, it turns out that �
ab
ðrÞt ¼ 0 whenever a and b

belong to two subsets of generators with different trans-
formation properties underG321, see (A9), (A10), or (A11),
and �ab

ðrÞt is proportional to the identity matrix when a and

b are restricted to one set of generators. Therefore, nonzero
off-diagonal elements �a�b

ðrÞt � 0 can possibly occur only

in the SOð10Þ case when a and b correspond to the two
degenerate G321-singlet generators III, V or III0, V0. In
particular, �ab

ðrÞt is diagonal in a, b on the set a, b ¼
1; . . . ; 12 and is proportional to the identity matrix on
each simple factor of the standard model a, b ¼ 1; . . . ; 8
[SUð3ÞC], a, b ¼ 9, 10, 11 [SUð2ÞL], and a, b ¼ 12
[Uð1ÞY]; one could therefore arbitrarily, as an invariant
convention, for each r and t choose the sign of �ðrÞt such
that, e.g., the nonzero diagonal entry �a¼b

ðrÞt with smallest

a ¼ b is positive; however, to save some writing, we
reverse this convention for the flipped embedding case in
rows 5 and 8 of Table VIII.
We are now ready to write down the matrices �ab

ðrÞt,
obtained in this way, explicitly. Since, as just described,
each matrix �ðrÞt contains only a few independent entries,

they can be written down in an economical way (Id denotes
the identity matrix of size d� d):

for SUð5Þ: �ab ¼
�II8

�III3
�III

�IVI12

0
BBB@

1
CCCA

ab

; (A15)

for SOð10Þ: �ab ¼

�II8
�III3

�III 0 �III;V

0 �IVI12 0
�III;V 0 �V

�VII12
�VIII6

�VIIII2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ab

: (A16)
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For the SUð5Þ case, the numerical entries of each matrix
�ðrÞt � �ðrÞ (A15) are listed in Table VI (in this case, t ¼
1 only, see above). For both the normal and the flipped
embedding ofG321 � SOð10Þ, Table VII lists the entries of
each �ðrÞt (A16) (for the flipped embedding, �III0

ðrÞt , �
V0
ðrÞt,

and �III0;V0
ðrÞt should be used from Table VII instead of the

unprimed�III
ðrÞt, etc.), where theG321 singlets (labeled by t)

within each SOð10Þ irrep r are further classified according
to their transformation under the maximal subgroup
SUð5Þ �Uð1ÞX � SOð10Þ, see above; Table VIII is simi-
lar, but with the G321 singlets �

0
ðrÞt classified according to

their transformation properties under the maximal sub-
group SUð4ÞC � SUð2ÞL � SUð2ÞR � SOð10Þ [of course,
all G321 singlets are SUð2ÞL singlets, since SUð2ÞL �
G321]. In all cases, the matrices (A16) with specified trans-
formation properties under any subgroup are identical for
the normal and flipped embedding except for the�III,�V ,
and �III;V entries (which correspond to generators tIII, tV

that have the same quantum numbers under G321), and
these entries are related by

�III0 �III0;V 0

�III0;V0
�V0

 !
¼ V

�III �III;V

�III;V �V

� �
VT; (A17)

with the 2� 2 matrix V from (A12).
Furthermore, for each SOð10Þ irrep r separately, the

VEVs �ðrÞt, classified according to SUð5Þ �Uð1ÞX (see

Table VII), and the VEVs �0
ðrÞt, classified according to

SUð4ÞC � SUð2ÞR (Table VIII), are linear combinations
of each other, in fact, they are related by orthogonal trans-
formations; when their overall signs are chosen as shown in
the tables, then, for both the normal and the flipped embed-
ding, the relation between the �ðrÞt and the �0

ðrÞt is

�0
ð1Þ1 ¼ �ð1Þ1; �0

ð54Þ1 ¼ �ð54Þ1;

�0
ð210Þ1

�0
ð210Þ2

�0
ð210Þ3

0
B@

1
CA ¼

1ffiffiffiffi
10

p �
ffiffi
2
5

q
1ffiffi
2

pffiffiffiffi
3
10

q ffiffiffiffi
8
15

q
1ffiffi
6

pffiffi
3
5

q
� 1ffiffiffiffi

15
p � 1ffiffi

3
p

0
BBBB@

1
CCCCA

�ð210Þ1
�ð210Þ2
�ð210Þ3

0
B@

1
CA;

�0
ð770Þ1

�0
ð770Þ2

�0
ð770Þ3

�0
ð770Þ4

0
BBBB@

1
CCCCA ¼

1
5 �

ffiffiffiffiffiffi
3
175

q ffiffi
3
5

q ffiffiffiffi
12
35

q
ffiffiffiffi
3
20

q
� 4ffiffiffiffi

35
p � 1

2
1ffiffi
7

p

� 3
2
ffiffi
5

p 2ffiffiffiffiffiffi
105

p � 1
2
ffiffi
3

p
ffiffi
3
7

q
3
5

16
5
ffiffiffiffi
21

p � 1ffiffiffiffi
15

p
ffiffiffiffi
3
35

q

0
BBBBBBBB@

1
CCCCCCCCA

�
�ð770Þ1
�ð770Þ2
�ð770Þ3
�ð770Þ4

0
BBB@

1
CCCA:

(A18)
TABLE VI. The standard model singlets �ðrÞ in each of the
irreps r (A1) of SUð5Þ in the explicit version (A15) with the
conventions described above.

r �I
ðrÞ �II

ðrÞ �III
ðrÞ �IV

ðrÞ
1 1=

ffiffiffiffiffiffi
24

p
1=

ffiffiffiffiffiffi
24

p
1=

ffiffiffiffiffiffi
24

p
1=

ffiffiffiffiffiffi
24

p
24 2=

ffiffiffiffiffiffi
63

p �3=
ffiffiffiffiffiffi
63

p �1=
ffiffiffiffiffiffi
63

p �1=2
ffiffiffiffiffiffi
63

p
75 1=

ffiffiffiffiffiffi
72

p
3=

ffiffiffiffiffiffi
72

p �5=
ffiffiffiffiffiffi
72

p �1=
ffiffiffiffiffiffi
72

p
200 1=

ffiffiffiffiffiffiffiffi
168

p
2=

ffiffiffiffiffiffiffiffi
168

p
10=

ffiffiffiffiffiffiffiffi
168

p �2=
ffiffiffiffiffiffiffiffi
168

p

TABLE VII. The standard model singlets �ðrÞt in each of the irreps r (A1) of SOð10Þ, classified according to their transformation
properties under the SUð5Þ �Uð1ÞX � SOð10Þ maximal subgroup [second column; note, all standard model singlets�ðrÞt also happen
to be Uð1ÞX singlets], in the explicit version (A16) with the conventions described above. The entries of the matrices�ðrÞt (A16) agree
between the normal and the flipped embedding of G321 � SOð10Þ, except for the�III

ðrÞt,�
V
ðrÞt, and�

III;V
ðrÞt entries, where the primed ones

(�III0
ðrÞt , etc., see last three columns) should be used instead for the flipped embedding; cf. also (A17). [For both the normal and the

flipped embedding, the SUð5Þ here denotes the SUð5Þ � SOð10Þ containing SUð3ÞC � SUð2ÞL.]
SOð10Þ SUð5Þ �Uð1ÞX �I
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By classifying the standard model singlets �ðrÞt, in the

SOð10Þ case, into irreps under (maximal) subgroups of
SOð10Þ as in Tables VII and VIII, we do not mean to imply
a grand unified symmetry breaking scenario where SOð10Þ
is broken to the standard model G321 necessarily via some
intermediate gauge group, although this classification is
well suited for such a scenario; see the end of Sec. VI.
Moreover, such a classification, in particular, can serve as a
parametrization for standard model singlets hHab

i i (A8),
transforming in irreps ri, in terms the of the basis vectors
�ðiÞt � �ðriÞt:

hHab
i i �X

t

vðiÞt�ab
ðiÞt � vi�

ab
i (A19)

with real scalars vðiÞt, vi, and where, e.g., for ri ¼ 210,

�ab
i ¼ �ab

ð210Þ1 cos�1 þ�ab
ð210Þ2 sin�1 cos�2

þ�ab
ð210Þ3 sin�1 sin�2; (A20)

such that �ab
i �ab

i ¼ 1 and
P

tv
2
ðiÞt ¼ v2

i for all i; then the

kinetic terms of the vi and vðiÞt field degrees of freedom,

before assuming VEVs, are canonical (A3) L ¼ 1
2 �

ð@�Hab
i þ . . .Þð@�Hab

i þ . . .Þ ¼ 1
2 ð@�viÞ2 þ . . . . [The two

parametrizations in (A19) differ only if Hi is a 210 or 770
of SOð10Þ, since in all other cases the summerely runs over
t ¼ 1.]

We assume, for definiteness and simplicity (see Secs. II
and VI), one-step breaking of the grand unified gauge
group G to the standard model G321 at the unification scale
MX. Below MX, all Higgs multiplets Hi responsible for
grand unified symmetry breaking assume nonzero VEVs
(A19), and, in particular, give masses to the non-G321

gauge bosons [henceforth called superheavy gauge bosons,
although not all of them can get mass from the Higgses

(A1), see below], see (A3):

L ¼ 1
2g

2
GA

a
�A

b�
X
i

Trð�½taG; hHii�½tbG; hHii�Þ

� 1
2m

2
abA

a
�A

b�; (A21)

each Higgs Hi contributes independently to the gauge
boson squared mass matrix m2

ab. For an SUð5Þ grand

unified group, each of the 12 superheavy gauge bosons
acquires equal mass:

SUð5Þ: m2
ab ¼

X
i

C2ðriÞ
12

g2Gv
2
i �ab � M2

gb�ab

for a; b ¼ 13; . . . ; 24;

(A22)

where C2ðriÞ is the quadratic Casimir invariant of irrep ri
[cf. Table V for the irreps (A1)], and vi the VEVof Hi [cf.
(A19) and below]. In SOð10Þ, the situation is more com-
plicated: Higgs multiplets in any of the irreps (A1) of
interest for the dimension-5 operators (A7) fail to give
mass to all of the superheavy gauge bosons. In particular,

the non-G321 gauge boson GV
�� (or GV0

�� for the flipped

embedding) belonging to the set V [or V0; see (A10) or
(A11)] of generators is always left massless by Higgses in
irreps (A1), provided only that their VEVs are G321 sin-
glets; cf. also the second column of Table VII. Also, some
of the other superheavy gauge bosons might remain mass-
less, and, at any rate, do not receive equal masses. Higgses
Hi in representations ri other than those on the right-hand
side of (A1) are needed to give mass to all of the 33
non-G321 gauge bosons in the SOð10Þ case, and they cannot
occur in dimension-5 operators (A7). Independent of the
individual directions �ab

i (A19) of the VEVs hHii ¼ vi�i,
the averaged superheavy gauge boson squared mass is

TABLE VIII. Same as Table VII, but with the standard model singlets �0
ðrÞt classified according to their transformation properties

under the SUð4ÞC � SUð2ÞL � SUð2ÞR � SOð10Þ maximal subgroup [second column: all entries are SUð2ÞL singlets, since SUð2ÞL �
G321]. [The SUð4ÞC here denotes the SUð4Þ factor in SUð4Þ � SUð2Þ � SUð2Þ � SOð10Þ with SUð4Þ � SUð3ÞC, where one of the two
SUð2Þ factors is SUð2ÞL.]
SOð10Þ SUð4ÞC � SUð2ÞR �0I

ðrÞt �0II
ðrÞt �0III

ðrÞt �0IV
ðrÞt �0V
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SOð10Þ: �m2
ab ¼

X
i

C2ðriÞ
33

g2Gv
2
i �ab � M2

gb�ab

for a; b ¼ 13; . . . ; 45;

(A23)

where the sum runs over all Higgs multiplets at the grand
unification scale, whether or not they occur in (A7).

Grand unification asserts that the masses of the super-
heavy gauge bosons are related to the scale MX of gauge-
coupling unification; namely, their masses have to be
somewhere around MX, such that the renormalization
group equations of the standard model apply below the
scale MX, at which the gauge couplings unify and above
which the unified gauge coupling evolves according to the
�-function of the unified gauge theory. For definiteness in
obtaining numerical values, we assert for the analysis in the
main text, that the superheavy gauge boson masses [or the
averaged superheavy gauge boson mass (A23) in the
SOð10Þ case] have to exactly equal the unification scale:

Mgb ¼ MX: (A24)

In the SUð5Þ case, any of the Higgses in (A1) can give mass
to all of the superheavy gauge bosons; so we assert, again
for definiteness (see Secs. II and III), that no Higgs mul-
tiplets in irreps other than (A1) are present in the theory
[nor, for that matter, in the sum (A22)]. In the SOð10Þ
analysis, however, we assert that the Higgs multiplets in
irreps (A1) account for some fraction 1=f, e.g., half, of the
average gauge boson squared mass:

MX ¼ Mgb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f

dðGÞ � 12

X
fijriinðA1Þg

C2ðriÞg2Gv2
i

vuut (A25)

¼ gGv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

dðGÞ � 12

X
fijriinðA1Þg

C2ðriÞx2i
vuut ; (A26)

with f ¼ 1 (respectively, f ¼ 2) for SUð5Þ [respectively,
SOð10Þ], and dðGÞ � 12 ¼ 12 (respectively ¼ 33) the
number of superheavy gauge bosons. The form (A26)
arises when the VEVs vi ¼ xiv are to obey some given
ratio x1:x2: . . . , with an open overall scale v, which will be
useful later.

Now, plugging the Higgs VEVs (A19) back into the
Lagrangian (A8) and adding the gauge boson kinetic term
(A3), one obtains:

L ¼ � 1

4
Ga

��G
a�� þX

i

ci
4Mpl

X
t

vðiÞt�ab
ðiÞtG

a
��G

b��

¼ � 1

4

�
1�X

i

ci
Mpl

X
t

vðiÞt�I
ðiÞt

�
Fa
��F

a��
SUð3Þ

� 1

4

�
1�X

i

ci
Mpl

X
t

vðiÞt�II
ðiÞt

�
Fa
��F

a��
SUð2Þ

� 1

4

�
1�X

i

ci
Mpl

X
t

vðiÞt�III
ðiÞt

�
F��F

��
Uð1Þ þ . . .

� � 1

4
ð1þ �3ÞFa

��F
a��
SUð3Þ �

1

4
ð1þ �2ÞFa

��F
a��
SUð2Þ

� 1

4
ð1þ �1ÞF��F

��
Uð1Þ þ . . . (A27)

Here, we have used the forms (A15) and (A16) of the
standard model singlets �ðiÞt on the subspace I, II, III
(or III0) of G321 generators and have omitted the super-
heavy gauge bosons, assuming the Lagrangian (A27) to be
valid below the unification scale MX where they have
acquired mass and are integrated out; the last line defines
what we mean by �s, s ¼ 1, 2, 3, namely, the corrections to
the gauge boson kinetic terms originating from the Higgs
multiplets in the dimension-5 operators assuming nonzero
VEVs (A8):

�s ¼
X
i

ci
Mpl

X
t

vðiÞt�
ðiÞt
s ðfor s¼ 1;2;3Þ;

where �ðiÞt
1 ���III

ðiÞt; �ðiÞt
2 ���II

ðiÞt; �ðiÞt
3 ���I

ðiÞt;

(A28)

the �ðiÞt
s can be read off from Tables VI, VII, and VIII for

the SUð5Þ and the SOð10Þ cases [use �ðiÞt
1 � ��III0

ðiÞt for the
flipped embedding G321 � SOð10Þ], and Table II in the
main text gives them for SUð5Þ explicitly (in this case, t ¼
1 only).

As shown in Sec. II, after rescaling F��
ðsÞ ! ð1þ

�sÞ1=2F��
ðsÞ and gs ! ð1þ �sÞ�1=2gs to the observed low-

energy gauge field strengths and gauge couplings by
amounts which are different for each of the standard model
gauge group factors s ¼ 1, 2, 3, the condition for gauge-
coupling unification at the scale MX into the unified group
reads, in terms of the observed (running) gauge couplings
	s ¼ 	sð�Þ ¼ gsð�Þ2=4� of the theory below MX:

ð1þ �1Þ	1ðMXÞ ¼ ð1þ �2Þ	2ðMXÞ ¼ ð1þ �3Þ	3ðMXÞ

¼ g2G
4�

� 	G; (A29)

where gG � gGðMXÞ is the gauge coupling of the unified
theory at the scale � ¼ MX. The functions 	sð�Þ are fixed
through their low-energy measurements (e.g., at the scale
� ¼ mZ of the Z mass) and their renormalization group
evolution; in the nonsupersymmetric standard model to
one-loop order with one standard model Higgs doublet:
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1

	sð�Þ ¼ 1

	sðmZÞ �
bs
2�

ln
�

mZ

(A30)

with �-function coefficients

b1 ¼ 41
10; b2 ¼ �19

6 ; b3 ¼ �7; (A31)

and initial values [20]

	1ðmZÞ ¼ 0:016 887
 0:000 40;

	2ðmZÞ ¼ 0:033 22
 0:000 25;

	3ðmZÞ ¼ 0:1176
 0:005

(A32)

for the couplings at the scalemZ ¼ 91:1876 GeV. For two-
loop evolution, which we use in Sec. III A for comparison
to one loop, see [17].

Under the perspective of this Appendix, unification is
the numerical requirement that the unification scale MX,
the unified gauge coupling gG, the Wilson coefficients ci,
and the Higgs VEVs v2

i ¼
P

tv
2
ðiÞt satisfy Eqs. (A25),

(A28), and (A29) simultaneously, with the given running
coupling functions 	sð�Þ of the standard model, e.g.,
(A30)–(A32) to one loop. In the main text, we further
demand that the values of these quantities are ‘‘natural,’’
so that physically sensible unification can be claimed, and
we exhibit such models.

We outline here a procedure to solve these equations
simultaneously, after having chosen the unified gauge
group [SUð5Þ or SOð10Þ] and the Higgs content Hi [the
multiplets that may occur in the dimension-5 operators
(A7)]: Fix any ratio x1:x2: . . . between the Higgs VEVs

vi ¼ xiv (without loss of generality,
P

ix
2
i ¼ 1 with, e.g.,

spherical coordinates); for Higgs multipletsHi in a 210 or a
770 of SOð10Þ, also fix the direction of the VEV hHii by
fixing the ratio yðiÞ1:yðiÞ2: . . . between the vðiÞt ¼ yðiÞtvi

(with
P

ty
2
ðiÞt ¼ 1); see (A19). Also fix the ratio z1:z2: . . .

between the Wilson coefficients ci ¼ zic (with
P

iz
2
i ¼ 1).

With these inputs, the ratio between the �s (s ¼ 1, 2, 3) in
(A28) is completely fixed:

�s ¼ cv

Mpl

X
i

zi
X
t

xiyðiÞt�
ðiÞt
s : (A33)

A key observation is now that any such given ratio
�1:�2:�3, along with the given functions 	sð�Þ, determines
MX and the values �s uniquely by solving the two left
equalities in (A29); this can be seen analytically to one-
loop order when (A30) is plugged back into (A29) (the
linear system of equations for lnMX has nonvanishing
determinant for almost any given ratio �1:�2:�3), but also
holds at two-loop order. Then, the unified coupling 	G ¼
g2G=4� is determined by (A29) as well, and so is the overall

scale v of the VEVs via (A26). Finally, with a choice (2) of
the Planck scaleMpl, the required Wilson coefficients ci ¼
zic can be computed from (A33). Note, that this last step is
the only place where the choice of the Planck scale Mpl ¼
1:2� 1019 GeV=� comes in: the smaller a Planck scale
one chooses, the smaller the Wilson coefficients ci have to
be in order to achieve unification (at the same xi, yðiÞt, zi);
in fact, the necessary Wilson coefficients are inversely
proportional to the choice of � in (2).
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