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The lightest Higgs scalar boson mass in supersymmetry can be raised significantly by extra vectorlike

quark and lepton supermultiplets with large Yukawa couplings but dominantly electroweak-singlet

masses. I consider models of this type that maintain perturbative gauge coupling unification. The impact

of the new particles on precision electroweak observables is found to be moderate, with the fit to Z-pole

data as good or better than that of the standard model even if the new Yukawa couplings are as large as

their fixed-point values and the extra vectorlike quark masses are as light as 400 GeV. I study the size of

corrections to the lightest Higgs boson mass, taking into account the fixed-point behavior of the scalar

trilinear couplings. I also discuss the decay branching ratios of the lightest new quarks and leptons and

general features of the resulting collider signatures.
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I. INTRODUCTION

The minimal supersymmetric standard model [1]
(MSSM) predicts that the lightest neutral Higgs boson,
h0, has a mass that can only exceed that of the Z0 boson
by virtue of radiative corrections. If the superpartners are
not too heavy, then it becomes a challenge to evade the
constraints on h0 set by CERN LEPII eþe� collider
searches. On the other hand, larger superpartner masses
tend to require some tuning in order to accommodate the
electroweak symmetry breaking scale. In recent years this
has motivated an exploration of models that extend the
MSSM and can raise the prediction for mh0 .

In the MSSM, the largest radiative corrections to mh0

come from loop diagrams involving top quarks and
squarks, and are proportional to the fourth power of the
top Yukawa coupling. This suggests that one can further
raise the Higgs mass by introducing new heavy supermul-
tiplets with associated large Yukawa couplings. In recent
years there has been renewed interest [2–20] in the possi-
bility of a fourth family of quarks and leptons, which can
be reconciled with precision electroweak constraints with
or without supersymmetry. However, within the context of
supersymmetry, if the new heavy supermultiplets are chiral
(e.g. a sequential fourth family), then in order to evade
discovery at the Fermilab Tevatron p �p collider the Yukawa
couplings would have to be so large that perturbation
theory would break down not far above the electroweak
scale. This would negate the success of apparent gauge
coupling unification in the MSSM. Furthermore, the cor-
rections to precision electroweak physics would rule out
such models without some mild tuning of the fourth family
quark and lepton masses.

These problems can be avoided if the extra supermul-
tiplets are instead vectorlike, as proposed in [21–24]. If the
scalar members of the new supermultiplets are heavier than
the fermions, then there is a positive correction tomh0 . As I

will show below, the corrections to precision electroweak
parameters decouple fast enough to render them benign.
To illustrate the general structure of such models, sup-

pose that the new left-handed chiral supermultiplets in-
clude an SUð2ÞL doublet � with weak hypercharge Y and
an SUð2ÞL singlet �� with weak hypercharge �Y � 1=2,

and �� and � with the opposite gauge quantum numbers.
The fields� and� transform as the same representation of
SUð3ÞC (either a singlet, a fundamental, or an antifunda-

mental), and �� and �� transform appropriately as the
opposite. The superpotential allows the terms:

W ¼ M�� ��þM�� ��þ kHu� ��� hHd
���; (1.1)

where M� and M� are vectorlike (gauge-singlet) masses,

and k and h are Yukawa couplings to the weak hypercharge
þ1=2 and �1=2 MSSM Higgs fields Hu and Hd, respec-
tively. In the following, I will consistently use the letter k
for Yukawa couplings of new fields to Hu, and h for
couplings to Hd. Products of weak isospin doublet fields
implicitly have their SUð2ÞL indices contracted with an
antisymmetric tensor �12 ¼ ��21 ¼ 1, with the first com-
ponent of every doublet having weak isospin T3 ¼ 1=2 and

the second T3 ¼ �1=2. So, for example, � �� ¼ �1
��2 �

�2
��1, with the components �1, �2,

��1, and
��2 having

electric charges Y þ 1=2, Y � 1=2, �Y þ 1=2, and �Y �
1=2 respectively.
The scalar members of the new chiral supermultiplets

participate in soft supersymmetry-breaking Lagrangian
terms:

�Lsoft ¼ ðb�� ��þ b�� ��þ akHu� ��� ahHd
���Þ

þ c:c:þm2
�j�j2 þm2

�j�j2; (1.2)

where I use the same name for each chiral superfield and its
scalar component.
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The fermion content of this model consists of two Dirac
fermion-anti-fermion pairs with electric charges �ðY þ
1=2Þ and one Dirac fermion-anti-fermion pair with electric
charges�ðY � 1=2Þ. The doubly degenerate squared-mass
eigenvalues of the fermions with charge �ðY þ 1=2Þ are
obtained at tree-level by diagonalizing the matrix

m2
F ¼ MFM

y
F 0

0 My
FMF

 !
(1.3)

with

M F ¼ M� kvu

hvd M�

� �
; (1.4)

which is assumed to be dominated by the M� and M�

entries on the diagonal. Here vu ¼ v sin� and vd ¼
v cos� are the vacuum expectation values (VEVs) of the
MSSM Higgs fields Hu and Hd, in a normalization where
v � 175 GeV. The scalar partners of these have a squared-

mass matrix given by, in the basis ð�; �; ���; ���Þ:

m2
S ¼ m2

F þ
m2

� þ �1=2;Yþ1=2 0 b�� a�kvu � k�vd

0 m2
� þ �0;Yþ1=2 a�hvd � h�vu b��

b� ahvd � h��vu m2
��
þ ��1=2;�Y�1=2 0

akvu � k��vd b� 0 m2
��
þ�0;�Y�1=2

0
BBBB@

1
CCCCA (1.5)

where the �T3;q ¼ ½T3 � qsin2�W� cosð2�Þm2
Z are electroweak D-terms, with T3 and q the weak isospin and electric

charge. The scalar particle squared-mass eigenvalues of Eq. (1.5) are presumably larger than those of their fermionic

partners because of the effects of m2
�, m

2
�, m

2
��
and m2

��
, inducing a significant positive 1-loop correction to m2

h0
. If tan� is

not too small, the corrections to m2
h0
are largest if the k-type Yukawa coupling is as large as possible, i.e. near its infrared

quasi-fixed point.
The fermions of charge �ðY � 1=2Þ have squared mass M2

�, and their scalar partners have a squared-mass matrix

jM�j2 þm2
� þ��1=2;Y�1=2 �b���b� jM�j2 þm2

��
þ�1=2;�Yþ1=2

 !
: (1.6)

These particles do not contribute tom2
h0
except through the

small electroweakD-terms, since they do not have Yukawa
couplings to the neutral Higgs boson. Since that contribu-
tion is therefore parametrically suppressed, it will be ne-
glected in the following.

With the phases of Hu and Hd chosen so that their
vacuum expectation values (VEVs) are real, then in com-
plete generality only three of the new parametersM�,M�,

k and h can be simultaneously chosen real and positive by
convention. Nevertheless, I will take all four to be real and
positive below. (I will usually be assuming that the magni-
tude of at least one of the new Yukawa couplings is small,
so that the potential CP-violating effects are negligible
anyway.)

In the MSSM, the running gauge couplings extrapolated
to very high mass scales appear to approximately unify
near Q ¼ Munif ¼ 2:4� 1016 GeV. In order to maintain
this success, it is necessary to include additional chiral
supermultiplets, besides the ones just mentioned. These
other fields again do not have Yukawa couplings to the
Higgs boson, so their contribution to �m2

h0
will be ne-

glected below.
I will be assuming that the superpotential vectorlike

mass terms are not much larger than the TeV scale. This
can be accomplished by whatever mechanism also gener-
ates the � term in the MSSM. For example, it may be that

the terms M� and M� are forbidden at tree-level in the

renormalizable Lagrangian, and arise from nonrenormaliz-
able terms in the superpotential of the form:

W ¼ �

MPl

S �S� ��þ �0

MPl

S �S� ��; (1.7)

after the scalar components of singlet supermultiplets S
and �S obtain vacuum expectation values of order the geo-
metric mean of the Planck and soft supersymmetry-
breaking scales. Then M�, M� & 1 TeV can be natural,

just as for � in the MSSM.
In the remainder of this paper, I will discuss aspects of

the phenomenology of models of this type, concentrating
on the particle content and renormalization group running
(Sec. II), corrections to mh0 (Sec. III), precision electro-
weak corrections (Sec. IV), and branching ratios and sig-
natures for the lightest of the new fermions in each model
(Sec. V).

II. SUPERSYMMETRIC MODELS WITH NEW
VECTORLIKE FIELDS

A. Field and particle content

To construct and describe models, consider the follow-
ing possible fields defined by their transformation proper-
ties under SUð3ÞC � SUð2ÞL �Uð1ÞY :
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Q ¼ ð3; 2; 1=6Þ; �Q ¼ ð�3; 2;�1=6Þ;
U ¼ ð3; 1; 2=3Þ; �U ¼ ð�3; 1;�2=3Þ;
D ¼ ð3; 1;�1=3Þ; �D ¼ ð�3; 1; 1=3Þ;
L ¼ ð1; 2;�1=2Þ; �L ¼ ð1; 2; 1=2Þ;
E ¼ ð1; 1;�1Þ; �E ¼ ð1; 1; 1Þ;
N ¼ ð1; 1; 0Þ; �N ¼ ð1; 1; 0Þ:

(2.1)

Restricting the new supermultiplets to this list assures that
small mixings with the MSSM fields can eliminate stable
exotic particles which could be disastrous relics from the
early universe. In this paper, I will reserve the above
capital letters for new extra chiral supermultiplets, and
use lowercase letters for the MSSM quark and lepton
supermultiplets:

qi ¼ ð3; 2; 1=6Þ; �ui ¼ ð�3; 1;�2=3Þ;
�di ¼ ð�3; 1; 1=3Þ; ‘i ¼ ð1; 2;�1=2Þ;
�ei ¼ ð1; 1; 1Þ; Hu ¼ ð1; 2; 1=2Þ;

Hd ¼ ð1; 2;�1=2Þ;

(2.2)

with i ¼ 1, 2, 3 denoting the three families. So the MSSM
superpotential, in the approximation that only third-family
Yukawa couplings are included, is

W ¼ �HuHd þ ytHuq3 �u3 � ybHdq3 �d3 � y�Hd‘3 �e3:

(2.3)

It is well known that gauge coupling unification is main-
tained if the new fields taken together transform as com-
plete SUð5Þ multiplets. However, this is not a necessary
condition. There are three types of models that can suc-
cessfully maintain perturbative gauge coupling unification
with the masses of new extra chiral supermultiplets at the
TeV scale.

First, there is a model to be called the ‘‘LND model’’ in
this paper, consisting of chiral supermultiplets L, �L, N, �N,
D, �D , with a superpotential

W ¼ MLL �LþMNN �N þMDD �Dþ kNHuL �N

� hNHd
�LN: (2.4)

Here L, �L play the role of �, �� and N, �N the role of �, ��
in Eqs. (1.1), (1.2), (1.3), (1.4), (1.5), and (1.6). In most of
the following, I will consider only the case that the multi-
plicity of each of these fields is 1, although 1, 2, or 3 copies
of each would be consistent with perturbative gauge cou-
pling unification. These fields consist of a 5þ �5 of SUð5Þ,
plus a pair1 of singlet fields. The non-MSSM mass eigen-

state fermions consist of a charged lepton �0, a pair of
neutral fermions �0

1;2, and a charge �1=3 quark b0. Their
superpartners are complex scalars ~�01;2, ~�0

1;2;3;4, and
~b01;2.

The primes are used to distinguish these states from those
of the usual MSSM that have the same charges.

Second, one has a model consisting of a 10þ 10 of
SUð5Þ, to be called the ‘‘QUE model’’ below, consisting
of fields Q, �Q, U, �U, E, �E with a superpotential

W ¼ MQQ �QþMUU �UþMEE �Eþ kUHuQ �U

� hUHd
�QU: (2.5)

The non-MSSM particles in this case consist of charge
þ2=3 quarks t01;2, a charge �1=3 quark b0, and a charged

lepton �0, and their scalar partners ~t01;2;3;4, ~b
0
1;2 and ~�01;2.

Third, one has a ‘‘QDEE model’’ consisting of fields Q,
�Q, D, �D, Ei, �Ei (i ¼ 1, 2) with a superpotential

W ¼ MQQ �QþMUD �DþMEi
Ei

�Ei þ kDHu
�QD

� hDHdQ �D: (2.6)

Although this particle content does not happen to contain
complete multiplets of SUð5Þ, it still gives perturbative
gauge coupling unification. The non-MSSM particles in
this model consist of charge �1=3 quarks b01;2, a charge

þ2=3 quark t0, and two charged leptons �01;2, and their

scalar partners ~b01;2;3;4, ~t01;2 and ~�01;2;3;4.
The field and particle content of these three models is

summarized in Table I.
In Ref. [24], it is suggested that a model with extra chiral

supermultiplets in 5þ �5þ 10þ 10 of SUð5Þ, or equiva-
lently (if a pair of singlets is added) 16þ 16 of SOð10Þ,
will also result in gauge coupling unification. However, the
multiloop running of gauge couplings actually renders
them nonperturbative below the putative unification scale,
unless the new particles have masses well above the 1 TeV
scale. For example, working to 3-loop order, if one requires
that the unified coupling (defined to be the common value
of 	1 and 	2 at their meeting point) satisfies the perturba-
tivity condition 	unif < 0:35, then the average threshold of
the new particles must exceed 5 TeV if the MSSM particles
are treated as having a common threshold at or below
1 TeV as suggested by naturalness and the little hierarchy
problem. In that case, the new particles will certainly
decouple from LHC phenomenology. Even if one allows
the MSSM soft mass scale to be as heavy as the new
particles, treating all non-standard model particles as hav-
ing a common threshold, I find that this threshold must be
at least 2.8 TeV if the new Yukawa couplings vanish and at
least 2.1 TeV if the new Yukawa couplings are as large as
their fixed-point values. While such heavy mass spectra are
possible, they go directly against the motivation provided
by the little hierarchy problem. Furthermore, at the scale of
apparent unification of 	1 and 	2 in such models, the value
of 	3 is considerably smaller, rendering the apparent uni-

1Here I choose the minimal model of this type that includes
Yukawa couplings of the kind mentioned in the Introduction
while not violating lepton number. It is also possible to identify
the fields N and �N, since they are gauge singlets, or to eliminate
them (and their Yukawa couplings) entirely.
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fication of gauge couplings at best completely accidental,
dependent on the whim of out-of-control high-scale thresh-
old corrections. I will therefore not consider that model
further here, although it could be viable if one accepts the
loss of perturbative unification and control at high scales.
The collider phenomenology should be qualitatively simi-
lar to that of the LND and QUE models, since the particle
content is just the union of them.

B. Renormalization group running

The unification of running gauge couplings in the
MSSM, LND, and QUE models is shown in Fig. 1. In
this graph, 3-loop beta functions are used for the MSSM
gauge couplings, and mt ¼ 173:1 GeV and tan� ¼ 10,
and all non-standard-model particles are taken to decouple
atQ ¼ 600 GeV. (The Yukawa couplings kN and hN in the
LND model and kU and hU in the QUE model are set to 0
here for simplicity; they do not have a dramatic effect on
the results as long as they are at or below their fixed-point

trajectories.) The running for the QDEE model is not
shown, because it is very similar to that for the QUE
model. Indeed, it will turn out that many features of the
QUE and QDEE models are similar, insofar as the Uþ �U
fields can be interchanged with the Dþ �Dþ Eþ �E fields.
This similarity does not extend, however, to the collider
phenomenology as discussed in Sec. V. Note that the
unification scale, defined as the renormalization scale Q
at which 	1 ¼ 	2, is somewhat higher with the extra chiral
supermultiplets in place; in the MSSM, Munif �
2:4� 1016 GeV, but Munif � 2:65� 1016 GeV in the
LND model, and Munif � 8:3� 1016 GeV in the QUE
and QDEE models. The strong coupling 	3 misses the
unified 	1 and 	2, but by a small amount that can be
reasonably ascribed to threshold corrections of whatever
new physics occurs at Munif .
The largest corrections to mh0 are obtained when the

new Yukawa couplings of the type kN , kU, or kD are as
large as possible in the LND, QUE, and QDEE models,
respectively. These new Yukawa couplings have infrared
quasi-fixed point behavior, which limits how large they can
be at the TeV scale while staying consistent with perturba-
tive unification. This is illustrated in Fig. 2, which shows
the renormalization group running2 of the kN coupling in
the LND model and kU in the QUE model. The running of
kD in the QDEEmodel is very similar to the latter (and so is
not shown). In this paper, I will somewhat arbitrarily define
the fixed-point trajectories to be those for which the ex-
treme Yukawa couplings are equal to3 3 at the scale Munif

where	1 and	2 unify. Then, assuming that only one of the
new Yukawa couplings is turned on at a time, and that
tan� ¼ 10 withmt ¼ 173:1 GeV and with all new particle
thresholds taken to be at Q ¼ 600 GeV, the fixed-point
values also evaluated at Q ¼ 600 GeV are

2 4 6 8 10 12 14 16

Log10(Q/GeV)

0

10

20

30

40

50

60

α-1

MSSM
MSSM + 5 + 5
MSSM + 10 + 10

U(1)

SU(2)

SU(3)

_
_

FIG. 1 (color online). Gauge coupling unification in the
MSSM, LND and QUE models. The running is performed
with 3-loop beta functions, with all particles beyond the standard
model taken to decouple atQ ¼ 600 GeV, andmt ¼ 173:1 GeV
with tan� ¼ 10.

TABLE I. The new chiral supermultiplets and the new particle content of the models discussed
in this paper. The notation for �, ��, �, �� follows that of the Introduction.

Model New supermultiplets New particles

�, �� �, �� Others Spin 1=2 Spin 0

LND L, �L N, �N D, �D �0
1;2 �0 b0 ~�0

1;2;3;4 ~�01;2 ~b01;2
QUE Q, �Q U, �U E, �E t01;2 b0 �0 ~t01;2;3;4 ~b01;2 ~�01;2
QDEE �Q, Q �D, D E1;2, �E1;2 b01;2 t0 �01;2 ~b01;2;3;4 ~t01;2 ~�01;2;3;4

2In this paper, I use 3-loop beta functions for the gauge
couplings and gaugino masses, and 2-loop beta functions for
the Yukawa couplings, soft scalar trilinear couplings, and soft
scalar squared masses. These can be obtained quite straightfor-
wardly from the general results listed in [25–27], and so are not
given explicitly here.

3Formally, it turns out that the 2-loop and 3-loop beta func-
tions for these Yukawa couplings have ultraviolet-stable fixed
points, although these occur at such large values (> 5) that they
cannot be trusted to reflect the true behavior. Simply requiring
the high-scale value of the Yukawa couplings to be somewhat
smaller avoids this issue.

STEPHEN P. MARTIN PHYSICAL REVIEW D 81, 035004 (2010)

035004-4



LND model: kN ¼ 0:765 or hN ¼ 0:905; (2.7)

QUE model: kU ¼ 1:050 or hU ¼ 1:203; (2.8)

QDEE model: kD ¼ 1:043 or hD ¼ 1:196: (2.9)

Turning on both Yukawa couplings at the same time in
each model hardly affects the results at all, because ki, hi
decouple from each other’s beta functions at 1-loop order
for each of i ¼ N, U, D. This is illustrated by the very
nearly rectangular shape of the fixed-line contours in
Fig. 3.

The phenomenology of supersymmetric models is cru-
cially dependent on the ratios of gaugino masses. In the
MSSM, it is will known that if the gaugino masses unify at
Munif , then working to 1-loop order they obey M1=	1 ¼
M2=	2 ¼ M3=	3 ¼ m1=2=	unif , and this relation has only

moderate corrections from higher-loop contributions to the
beta functions. The presence of extra matter particles
strongly affects this prediction, however. In Table II, the
predictions for M1, M2, and M3 at Q ¼ 1 TeV are given
for the MSSM, the LND model, the QUE model, and the
QDEE model. In the latter two cases, I distinguish between
the cases of vanishing extra Yukawa couplings and the
fixed-point trajectories with ðkU; hUÞ ¼ ð3; 0Þ and
ðkD; hDÞ ¼ ð3; 0Þ, respectively, at Q ¼ Munif . As before, I
have used tan� ¼ 10 and mt ¼ 173:1 GeV, and taken all
new particle thresholds to be at Q ¼ 600 GeV, and as-
sumed for simplicity that the new scalar trilinear couplings
vanish at Q ¼ Munif . The results will change slightly if
these assumptions are modified, but there are a couple of

0 0.2 0.4 0.6 0.8 1 1.2
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h

FIG. 3 (color online). The contours represent the infrared-
stable quasi-fixed points of the 2-loop renormalization group
equations in the plane of Yukawa couplings ðki; hiÞ evaluated at
Q ¼ 500 GeV. The allowed perturbative regions (defined by ki,
hi < 3 at Q ¼ Munif) are to the left and below the contours. The
long dashed (blue) line corresponds to kN , hN in the LND model.
The solid (black) line corresponds to kU, hU in the QUE model,
and the nearly overlapping short dashed (red) line corresponds to
kD, hD in the QDEE model. Here mt ¼ 173:1 GeV and tan� ¼
10 are assumed. The very nearly rectangular shape of these
contours reflects the absence of direct coupling between the
Yukawa couplings in the 1-loop � functions.

2 4 6 8 10 12 14 16
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FIG. 2 (color online). Renormalization group trajectories near the fixed point for kN in the LND model (left panel) and kU in the
QUE model (right panel), showing the infrared-stable quasi-fixed-point behaviors. Heremt ¼ 173:1 GeV and tan� ¼ 10 are assumed.
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striking and robust features to be pointed out about the
gaugino masses in these models. First, because the unified
gauge couplings are so much larger in the models with
extra matter than in the MSSM, the gaugino masses at the
TeV scale are suppressed relative to m1=2 by a significant

amount compared to the MSSM. Second, the 1-loop pre-
diction for the ratios of gaugino masses is very strongly
violated by 2-loop effects4 in the extended models, which
were evidently neglected in [24]. For example, in both the
QUE and QDEE models, the 1-loop prediction is that
M3 ¼ m1=2, independent of Q, since the 1-loop beta func-

tion for M3 happens to vanish because the total number of
quark and antiquark chiral supermultiplets is equal to 18,
exactly cancelling the 6Nc contribution from the gluon/
gluino supermultiplet. However, the correct result beyond
leading order is that M3 does run significantly, with
M3=m1=2 reduced by some 40% from unity, depending

on the Yukawa coupling value. This reflects, in part, the
accidental vanishing of the 1-loop beta function; in con-
trast, the 3-loop contribution to the running is quite small
compared to the 2-loop one, which is over a factor of 3
larger than in the MSSM near the TeV scale. This is
illustrated for the QUE model in Fig. 4, which shows the
renormalization-scale dependence of the running gaugino
mass parameters M1, M2, and M3 in the QUE model [with
ðkU; hUÞ ¼ ð3; 0Þ at Q ¼ Munif], evolved according to the
1, 2, and 3-loop beta functions.

Another notable feature of the extended models is that
they permit gaugino mass domination for the soft
supersymmetry-breaking terms at the unification scale,
according to which all soft scalar masses and scalar tri-
linear couplings are assumed negligible compared to the
gaugino masses, or A0 ¼ 0,m2

0 ¼ 0 in the usual mSUGRA

language. In the MSSM, this ‘‘no-scale’’ boundary condi-
tion is problematic if applied strictly, because it predicts
that the lightest supersymmetric particle (LSP) is not a
neutralino. However, in the QUE and QDEE models, the
increased size of the gauge couplings at high scales gives
extra gaugino-mediated renormalization group contribu-
tions to the scalar squared masses, so that they are safely

heavier than the binolike LSP. For the squarks and sleptons
of the first two families, this is illustrated in Table III (for
the same models as in Table II), by giving the ratios of the
running masses to the unified gaugino-mass parameter
m1=2. The contributions of the gaugino masses to the new

extra squarks and sleptons in the LND, QUE, and QDEE
models are listed below:

LND : ðmD;m �D;mL;m �L;mN;m �NÞ
¼ ð1:80; 1:80; 0:63; 0:63; 0; 0Þ; (2.10)

QUE : ðmQ;m �Q;mU;m �U;mE;m �EÞ
¼ ð1:17; 1:29; 1:25; 0:94; 0:267; 0:299Þ; (2.11)

TABLE II. Gaugino masses Ma=m1=2 for (a ¼ 1, 2, 3) and ratios of gaugino masses M2=M1

and M3=M1, evaluated at Q ¼ 1 TeV in the models described in the text, assuming unified
gaugino masses m1=2 at Munif .

M1=m1=2 M2=m1=2 M3=m1=2 M2=M1 M3=M1

MSSM 0.41 0.77 2.28 1.88 5.53

LND 0.32 0.59 1.75 1.86 5.52

QUE (kU ¼ 0) 0.097 0.147 0.571 1.52 5.90

(kUðMunifÞ ¼ 3) 0.109 0.176 0.617 1.61 5.66

QDEE (kD ¼ 0) 0.094 0.153 0.572 1.62 6.08

(kDðMunifÞ ¼ 3) 0.107 0.178 0.615 1.66 5.72
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FIG. 4 (color online). Running of gaugino masses in the QUE
model, assuming a unified value m1=2 at Munif . The gluino mass

parameter M3 is evolved according to the 1-, 2-, and 3-loop beta
functions in the top three lines. The 1- and 3-loop beta functions
are shown for the parameters M1 (bottom two lines) and M2, for
which the 2-loop and 3-loop results are not visually distinguish-
able. Note the significant running ofM3 due to multiloop effects.

4Similar effects have been noted long ago in the context of
‘‘semiperturbative unification’’ [28].
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QDEE : ðmQ;m �Q;mD;m �D;mE;m �EÞ
¼ ð1:30; 1:18; 0:94; 1:24; 0:266; 0:304Þ: (2.12)

Here I have chosen to display the results for boundary
conditions at Munif of kN ¼ hN ¼ 0 and for kU ¼ 3, hU ¼
0 and for kD ¼ 3, hD ¼ 0, respectively. It should be noted
that these are all running mass parameters, and the physical
mass parameters will be different. Also, if there are non-
zero contributions to the running scalar squared masses and
scalar trilinear couplings atMunif , the results will of course
change. For example, including a nonzero common m2

0, as

in mSUGRA, will raise all of the scalar squared masses,
yielding a more degenerate scalar mass spectrum.

For the QUE and QDEE models, we see from Tables II
and III and Eqs. (2.11) and (2.12) that the bino mass

parameter is well over a factor of 2 smaller than the lightest
slepton mass, for unified, dominant gaugino masses. Since
neutralino mixing only decreases the LSP mass compared
to the bino mass parameter, the LSP will be a neutralino. In
contrast, for the LNDmodels, the gaugino mass dominance
boundary condition would predict that the scalar compo-
nent ofN or �N (a non-MSSM sneutrino) should be the LSP,
and should be nearly massless. In fact, including a nonzero
Yukawa coupling hN or kN would give the corresponding
scalar a negative squared mass. If there is an additional
positive contribution to that sneutrino mass, then it can be
the LSP, and it might be interesting to consider it as a
possible dark matter candidate.
The corrections to the lightest Higgs squared mass con-

sidered in the next section depend on the scalar trilinear
coupling akN , akU , or akD of the type appearing in Eq. (1.2).

It is therefore useful to note that these couplings have a
strongly attractive fixed-point behavior in the infrared
when the corresponding superpotential couplings kN , kU
and kD are near their fixed points. To illustrate this, con-
sider the quantities

AkN � akN=kN; AkU � akU=kU; AkD � akD=kD;

(2.13)

for the LND, QUE, and QDEE models, respectively. The
renormalization group runnings of AkN and AkU (each

normalized to m1=2) are shown in Fig. 5, for various input

values at the unification scale. The running of AkN in the

LND model is seen to have a mild focusing behavior,

TABLE III. Ratios of first- and second-family MSSM squark
and slepton mass parameters to m1=2, evaluated at Q ¼ 1 TeV,

assuming unified gaugino-mass dominance at Q ¼ Munif (m
2
0 ¼

0 and A0 ¼ 0).

m~q m~�u m~�d
m~‘ m~�e

MSSM 2.08 2.01 2.00 0.67 0.37

LND 1.89 1.82 1.81 0.63 0.35

QUE (kU ¼ 0) 1.24 1.20 1.19 0.45 0.28

(kUðMunifÞ ¼ 3) 1.29 1.24 1.24 0.47 0.30

QDEE (kD ¼ 0) 1.24 1.20 1.20 0.45 0.28

(kDðMunifÞ ¼ 3) 1.30 1.25 1.24 0.47 0.30

2 4 6 8 10 12 14 16
Log10(Q/GeV)

-3

-2

-1

0

1

2

3

A
k/m

1/
2

2 4 6 8 10 12 14 16
Log10(Q/GeV)

-3

-2

-1

0

1

2

3

A
k/m

1/
2

FIG. 5 (color online). Renormalization group running of scalar trilinear couplings AkN in the LND model (left panel) and AkU in the
QUE model (right panel), normalized to m1=2, the common gaugino-mass parameter at the unification scale Munif . The different lines

correspond to different boundary conditions atMunif . The corresponding Yukawa couplings kN and kU are taken to be near their fixed-
point trajectories, with kN ¼ 3 and kU ¼ 3 atMunif . The running of AkD in the QDEE model is very similar to that shown here for AkU .
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leading to values at the weak scale of�0:1 & AkN=m1=2 &

0:6 for input values at Munif in the range �3 &

AkN=m1=2 & 3. In the case of AkU in the QUE model, one

finds an even stronger focusing behavior leading to
�0:5 & AkU=m1=2 & �0:3 at the weak scale. The running

of AkD in the QDEE model is very similar (and so is not

shown). It is useful to note that in the cases of AkU in the

QUE model and AkD in the QDEE model, most of the

contribution to the running comes from the gluino mass
parameter. This will still be true if one does not assume
gaugino mass unification, provided only that the gluino
mass parameterM3 is not very small compared to the bino
and wino mass parameters M1 and M2. Therefore, the
previous results concerning the fixed-point behavior of
AkD and AkU remain approximately valid ifm1=2 is replaced

by the value of M3 at the unification scale.

C. Fine-tuning considerations

One of the primary model-building motivations in recent
years is the supersymmetric little hierarchy problem,
which concerns the tuning required to obtain the electro-
weak scale, given the large supersymmetry-breaking ef-
fects needed to avoid a light Higgs boson that should have
been seen at LEP and to evade direct searches for super-
partners at LEP and the Tevatron. One way to express this
problem is to note that the Z boson mass is related to the
parameters j�j and m2

Hu
near the weak scale by

� 1

2
m2

Z ¼ j�j2 þm2
Hu

þ 1

2vu

@

@vu

�V þOð1=tan2�Þ;
(2.14)

where �V is the radiative part of the effective potential.
Although there can be no such thing as an objective mea-
sure of fine-tuning in parameter space, the cancellation
needed between j�j2 andm2

Hu
can be taken as an indication

of how ‘‘difficult’’ it is to achieve the observed weak scale.
Large values of �m2

Hu
require more tuning in this sense.

In the MSSM, with the gauge and Yukawa couplings
taken to be the values of the infamous benchmark point
SPS1a0 [29] for a concrete example, one finds

�m2
Hu

¼ 1:82M̂2
3 � 0:212M̂2

2 þ 0:156M̂3M̂2

þ 0:023M̂1M̂3 � 0:32ÂtM̂3 � 0:07ÂtM̂2

þ 0:11Â2
t � 0:64m̂2

Hu
þ 0:36m̂2

~q3
þ 0:28m̂2

~u3

þ . . . : (2.15)

Here m2
Hu

on the left side is evaluated at the scale Q ¼
600 GeV, where corrections to �V are presumably not too
large. The non-MSSM particle thresholds are also taken to
be at the same scale. The hats on the parameters on the
right side denote that they are inputs at the apparent uni-
fication scale Munif ¼ 2:4� 1016 GeV. They consist of

gaugino masses M̂1;2;3, scalar squared masses m̂2
Hu
, m̂2

~q3

and m̂2
~u3
, and Ât � at=yt. I have neglected to write other

contributions with small coefficients. Note that the gaugino
masses and scalar squared masses are not assumed to be
unified here. The essence of the supersymmetric little
hierarchy problem is that after constraints from nonobser-
vation of the lightest Higgs boson, the charged supersym-
metric particles, and from the relic abundance of dark
matter are taken into account, the remaining parameter
space tends to yield �m2

Hu
� m2

Z=2, so that some fine

adjustment is needed between�m2
Hu

and j�j2. It was noted
long ago in Ref. [30] that the gluino mass parameter M3 is
actually mostly responsible for the tuning needed in m2

Hu
,

because of its large coefficient as seen in Eq. (2.15), and
this problem can be ameliorated significantly by taking

jM̂3=M̂2j smaller than unity at Munif . This can easily be
achieved in non-mSUGRA models. For example, taking

jM̂3=M̂2j 	 1=3 produces near cancellation between the

M̂2
3 and M̂2

2 terms with opposite signs in Eq. (2.15), yield-
ing a smaller value for m2

Hu
.

Now let us compare to the corresponding formulas in the
LND, QUE and QDEE models under study here. For the
QUE model, I find near the fixed point kU ¼ 1:05 with
hU ¼ 0 that the most significant contributions are approxi-
mately

�m2
Hu

¼ 2:10M̂2
3 þ 0:035M̂2

2 þ 0:019M̂2
1 � 0:014M̂3M̂2

� 0:075ÂtM̂3 � 0:016ÂtM̂2 þ 0:022ÂkUM̂3

þ 0:014ÂkUM̂2 þ 0:057Â2
t � 0:015ÂtÂkU

þ 0:25Â2
kU

� 0:17m̂2
Hu

þ 0:34m̂2
~q3
þ 0:27m̂2

~u3

þ 0:47m2
Q þ 0:40m2

�U
þ . . . : (2.16)

Again the hats on parameters on the right side denote their
status as input values at Munif , and m2

Hu
on the left side is

evaluated at Q ¼ 600 GeV, which is also where the new
particle thresholds are placed, and tan� ¼ 10. The result of
Eq. (2.16) seems to reflect a worsening of the little hier-
archy problem, since the contribution to �m2

Hu
propor-

tional to M̂2
3 is even larger than in the MSSM case, while

the physical MSSM superpartner masses are actually lower
for fixed values of the input soft parameters, as can be seen
from Tables II and III. This implies that for a given scale of
physical superpartner masses, including notably the top
squarks that contribute strongly tom2

h0
, one will need larger

�m2
Hu
, and thus larger j�j2, and so a more delicate can-

cellation between the two. Note also that since the contri-

bution proportional to M̂2
2 is positive (and quite small),

there cannot be a cancellation as in the MSSM for large

jM̂2=M̂3j. Counteracting these considerations, there is the
fact that there are large positive corrections tom2

h0
from the

new particles, as discussed in the following section, so that
the top squark masses need not be so large.
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It is interesting to compare with the corresponding result
when the new Yukawa coupling kU is instead taken to
vanish:

�m2
Hu

¼ 1:14M̂2
3 � 0:107M̂2

2 þ 0:153M̂3M̂2

þ 0:022M̂1M̂3 � 0:436ÂtM̂3 � 0:090ÂtM̂2

þ 0:125Â2
t � 0:70m̂2

Hu
þ 0:30m̂2

~q3
þ 0:21m̂2

~u3

þ . . . (2.17)

for kU ¼ 0. Here the impact on fine-tuning is not as bad as

in Eq. (2.16) because the coefficient of M̂2
3 is reduced, there

is no large positive contribution from the new scalar soft
masses, and the possibility of significant cancellation be-
tween the gluino and wino mass contributions (if

jM̂2=M̂3j> 1) is restored. But, counteracting this, there
is no large positive contribution to m2

h0
from the extra

vectorlike sector when kU ¼ 0.
Results for the QDEE model are quite similar. At the

fixed point with kD ¼ 1:043, I find

�m2
Hu

¼ 2:12M̂2
3 þ 0:034M̂2

2 þ 0:006M̂2
1 � 0:013M̂3M̂2

� 0:085ÂtM̂3 � 0:017ÂtM̂2 þ 0:029ÂkDM̂3

þ 0:014ÂkDM̂2 þ 0:054Â2
t � 0:027ÂtÂkD

þ 0:12Â2
kD

� 0:22m̂2
Hu

þ 0:33m̂2
~q3
þ 0:26m̂2

~u3

þ 0:37m2
�Q
þ 0:39m2

D þ . . . ; (2.18)

and for kD ¼ 0,

�m2
Hu

¼ 1:15M̂2
3 � 0:106M̂2

2 þ 0:154M̂3M̂2

þ 0:024M̂1M̂3 � 0:439ÂtM̂3 � 0:090ÂtM̂2

þ 0:125Â2
t � 0:70m̂2

Hu
þ 0:30m̂2

~q3
þ 0:21m̂2

~u3

þ . . . : (2.19)

The same general comments therefore apply for the QDEE
model as for the QUE model.

Treating the LND model in the same way, I find for
kN ¼ 0:765:

�m2
Hu

¼ 1:74M̂2
3 � 0:166M̂2

2 þ 0:131M̂3M̂2

þ 0:020M̂3M̂1 � 0:33ÂtM̂3 � 0:06ÂtM̂2

þ 0:07ÂkNM̂3 þ 0:11Â2
t � 0:04ÂtÂkN þ 0:05Â2

kN

� 0:62m̂2
Hu

þ 0:38m̂2
~q3
þ 0:30m̂2

~u3
þ . . . : (2.20)

The dependence on the soft parameters in the sector of new
extra particles is very slight, due to the fact that the fixed-
point Yukawa coupling is not too large. Here we see that
even at its fixed point the LND model is qualitatively quite

similar to the MSSM, in that a ratio of jM̂2=M̂3j larger than
1 at the unification scale can reduce �m2

Hu
and therefore

mitigate the amount of tuning required with j�j2. For
comparison, the result with kN ¼ 0 is

�m2
Hu

¼ 1:68M̂2
3 � 0:178M̂2

2 þ 0:164M̂3M̂2

þ 0:020M̂3M̂1 � 0:36ÂtM̂3 � 0:08ÂtM̂2

þ 0:12Â2
t � 0:66m̂2

Hu
þ 0:34m̂2

~q3
þ 0:26m̂2

~u3

þ . . . ; (2.21)

which shows quite similar characteristics.
Summarizing the preceding discussion, there are two

general counteracting effects on the little hierarchy prob-
lem from introducing vectorlike supermultiplets with large
Yukawa couplings. The impact of contributions to �m2

Hu

generally tends to worsen the problem, but the additional
correction to m2

h0
discussed in the next section works to

mitigate the problem. (Ref. [24] obtained qualitatively
similar results, but with quite different numerical details,
presumably due to neglect of higher-loop contributions to
the running of gaugino masses, as noted above.) I will
make no attempt to further quantify the competition be-
tween these two competing and opposite impacts on the
little hierarchy problem, because there is simply no such
thing as an objective measure on parameter space, and
because there is great latitude in choosing the remaining
parameters anyway.

III. CORRECTIONS TO THE LIGHTEST HIGGS
SCALAR BOSON MASS

The contributions of the new supermultiplets to the
lightest Higgs scalar boson mass can be computed using
the effective potential approximation, which amounts to
neglecting nonzero external momentum effects in h0 self-
energy diagrams. Sincem2

h0
is much smaller than any of the

new particle masses, this approximation is quite good for
these contributions. The 1-loop contribution to the effec-
tive potential due to the supermultiplets in Eqs. (1.1), (1.2),
(1.3), (1.4), and (1.5) is

�V ¼ 2Nc

X4
i¼1

½FðM2
Si
Þ � FðM2

Fi
Þ�; (3.1)

where Nc is the number of colors of �, and M2
Si
and M2

Fi

are the squared-mass eigenvalues of Eqs. (1.3) and (1.5),
and FðxÞ ¼ x2½lnðx=Q2Þ � 3=2�=64
2: Here Q is the re-
normalization scale. I will assume the decoupling approxi-
mation that the neutral Higgs mixing angle is
	 � �� 
=2, which is valid if m2

A0 � m2
h0
. Then the

correction to m2
h0

is

�m2
h0

¼
�
sin2�

2

�
@2

@v2
u

� 1

vu

@

@vu

�

þ cos2�

2

�
@2

@v2
d

� 1

vd

@

@vd

�
þ sin� cos�

@2

@vu@vd

�

� �V: (3.2)
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Before presenting some numerical results, it is useful to
note a relatively simple analytical result that can be ob-
tained if the superpotential vectorlike fermion masses are
taken to be equal (M� ¼ M� � MF) and the soft

supersymmetry-breaking nonholomorphic masses are
equal (m2

� ¼ m2
��
¼ m2

� ¼ m2
��
� m2), and the small elec-

troweak D-terms and the holomorphic soft mass terms b�
and b� are neglected. Then, writing

M2
S ¼ M2

F þm2 ¼ average scalar mass (3.3)

x � M2
S=M

2
F (3.4)

�k � k sin�; �h � h cos�; (3.5)

Xk � Ak �� cot�; Xh � Ah �� tan�; (3.6)

and expanding to leading order in the normalized Yukawa
couplings �k and �h, one obtains

�m2
h0

¼ Ncv
2

4
2

�
�k4
�
fðxÞ þ X2

k

xM2

�
1� 1

3x

�
� X4

k

12x2M4

�
þ �k3 �h

�
� 2

3

�
2� 1

x

��
1� 1

x

�
� Xkð2Xk þ XhÞ=ð3x2M2Þ

�

þ �k2 �h2
�
�
�
1� 1

x

�
2 � ðXk þ XhÞ2=ð3x2M2Þ

�
þ �k �h3

�
� 2

3

�
2� 1

x

��
1� 1

x

�
� Xhð2Xh þ XkÞ=ð3x2M2Þ

�

þ �h4
�
fðxÞ þ X2

h

xM2

�
1� 1

3x

�
� X4

h

12x2M4

��
; (3.7)

where

fðxÞ � lnðxÞ � 1

6

�
5� 1

x

��
1� 1

x

�
: (3.8)

It is often a good approximation to keep only the contri-
bution proportional to �k4, corresponding to the case where
k tan� � h. In that limit, Eq. (3.7) agrees with the result
given in [24], which can be rewritten as simply

�m2
h0

¼ Nc

4
2
k4v2sin4�

�
fðxÞ þ X2

k

xM2

�
1� 1

3x

�

� X4
k

12x2M4

�
: (3.9)

Note that x is, to first approximation, the ratio of the mean
squared masses of the scalars to the fermions. A key
feature of the result for �m2

h0
is that the contribution of

the vectorlike particles does not decouple with the overall
extra particle mass scale, provided that there is a hierarchy
x maintained between the scalar and fermion squared
masses. To get an idea of the impact of this hierarchy,
the function fðxÞ is depicted in Fig. 6. In the limit of
unbroken supersymmetry, fð1Þ ¼ 0, and fðxÞ monotoni-
cally increases for scalars heavier than fermions (x > 1).
The other significant feature that could lead to enhanced
�m2

h0
is the mixing parametrized by Xk. The maximum

possible value of the Xk contribution in Eq. (3.9) is ob-
tained when X2

k ¼ 2M2ð3x� 1Þ, leading to a ‘‘maximal
mixing’’ result �m2

h0
¼ Nc

4
2 k
4v2sin4�fmaxðxÞ where

fmax ¼ fðxÞ þ ð3� 1=xÞ2=3. This function is also graphed
in Fig. 6 to show the maximal effects of mixing from the
new fermion sector. In Fig. 7, I show an estimate of the
corresponding corrections to �mh0 , taking Nc ¼ 3 and
k4v2sin4� ¼ ð190 GeVÞ2 (corresponding roughly to the

QUE or QDEE model near the fixed point with reasonably
large tan�) and assuming that the predicted Higgs mass
before the correction is 110 GeV, so that �mh0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð110 GeVÞ2 þ �m2

h0

q
� 110 GeV.

The previous depiction may be too simplistic, since the
superpotential and soft supersymmetry-breaking masses
need not have the simple degeneracies that were assumed.
Also, as found in the previous section, the scalar trilinear

1 2 3 4 5

x
1/2

0

1

2

3

4

5

f(x)

fmax(x)

FIG. 6 (color online). The functions fðxÞ and fmaxðxÞ de-
scribed in the text, graphed as a function of

ffiffiffi
x

p ¼
the average ratio of scalar to fermion masses.
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coupling has a fixed-point behavior that implies that the
mixing is neither maximal nor zero (but closer to the
latter). A more realistic estimate is therefore as depicted
in Fig. 8. Here, I take scalar masses inspired by the renor-
malization group solutions of the previous section for the
QUE model. In particular, I take three cases for the vector-
like superpotential masses at the TeV scale, MQ ¼ MU �
MF ¼ 400, 600, and 800 GeV. The Yukawa couplings are
taken to be at the fixed-point values kU ¼ 1:05 and hU ¼
0. The soft supersymmetry-breaking terms are parame-
trized by ðmQ;m �Q;mU;m �UÞ ¼ ð1:17; 1:29; 1:25; 0:94Þm1=2

and ðbQ; bUÞ ¼ �ðMQ;MUÞm1=2, and Ak ¼ �0:3m1=2 and

�0:5m1=2, all at a renormalization scale of 1 TeV. The

results turn out to be not very sensitive to bQ or bU, or to

the MSSM supersymmetric Higgs mass parameter �
(taken to be 800 GeV here), or to tan� as long as it is
not too small ( tan� ¼ 10 was used here). Figure 8

shows the results for �mh0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð110 GeVÞ2 þ�m2

h0

q
�

110 GeV, as a function of MS, the geometric mean of the
scalar masses. Quite similar results obtain for the QDEE
model at the fixed point with kD ¼ 1:043, hD ¼ 0.

Figure 8 illustrates that the contribution of the new extra
particles to mh0 is probably much less than the ‘‘maximal
mixing’’ scenario, if one assumes that the TeV-scale pa-

rameters (particularly the scalar trilinear coupling ak) can
be obtained by renormalization group running from the
unification scale. Note that the models illustrated in Fig. 8
represent gaugino-mass dominated examples. If one as-
sumes that the soft scalar squared masses at Munif actually
have significant positive values (from, for example, run-
ning between Munif and MPlanck), then the low-scale model
will be even closer to the no-mixing scenario, since the
diagonal entries in the scalar mass matrix will be enhanced,
while the mixing terms are still subject to the strong
focusing behavior seen in Fig. 5.
In the case of the minimal LND model, one expects the

maximum contributions to �m2
h0

to be suppressed by a

factor of roughly ðkN=kUÞ4=Nc � ð0:765=1:05Þ4=3 �
0:094. This leads to corrections that are typically not large
compared to the inherent uncertainties in the total predic-
tion. This counts against the minimal LND model as a way
of significantly increasing the Higgs mass. One can also
consider n > 1 copies of the LND model, with each kN
Yukawa coupling near a common fixed point to maximize
�m2

h0
. However, then the common fixed-point value is even

smaller, with kN ¼ 0:695 for n ¼ 2, and kN ¼ 0:650 for
n ¼ 3. (A much more significant correction to m2

h0
can

occur if one enhances the model with several copies of the
extra fields connected by the ‘‘lateral’’ gauge group idea of
[23].)

1 2 3 4 5

x
1/2

0

10

20

30

40

50

60
∆m

h  [
G

eV
]

No mixing

Maximal mixing

FIG. 7 (color online). Estimates for the corrections to the
Higgs mass as a function of

ffiffiffi
x

p
, where x ¼ ðM2 þm2Þ=M2 is

the ratio of the mean scalar squared mass to the mean fermion
squared mass, in the simplified model framework used in
Eq. (3.9) of the text, using Nc ¼ 3 and k4v2sin4� ¼
ð190 GeVÞ2, corresponding roughly to the QUE or QDEE model
near the fixed point with reasonably large tan�. The lower line is
the no-mixing case Xk ¼ 0, and the upper line is the maximal
mixing case Xk ¼ 2M2ð3x� 1Þ. The Higgs mass before the
correction is taken to be 110 GeV.
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FIG. 8 (color online). Corrections to mh0 in the QUE model
with kU ¼ 1:05, for varying m1=2 with other parameters de-

scribed in the text. Here MF ¼ 400, 600, and 800 GeV is the
vectorlike superpotential fermion mass term, and MS is the
geometric mean of the new up-type scalar masses. The upper
and lower lines in each case correspond to Ak ¼ �0:5m1=2 and

Ak ¼ �0:3m1=2, respectively, at the TeV scale. The value of mh0

before these corrections is assumed to be 110 GeV.
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IV. PRECISION ELECTROWEAK EFFECTS

Because the Yukawa couplings responsible for large
effects on m2

h0
break the custodial symmetry of the Higgs

sector, it is necessary to consider the possibility of con-
straints due to precision electroweak observables arising
from virtual corrections to electroweak vector boson self-
energies. In this section, I will show that these corrections
are actually benign (and much smaller than previously
estimated), at least if one uses only Mt, MW , and Z-peak
observables as in the LEP Electroweak Working Group
analyses [31,32] rather than including also low-energy
observables as in [33]. The essential reason for this is
that the corrections decouple with larger vectorlike masses,
even if the Yukawa couplings are large and soft
supersymmetry-breaking effects produce a large scalar-
fermion hierarchy. Indeed, they decouple even when the
corrections to m2

h0
do not.

The most important new physics contributions to preci-
sion electroweak observables can be summarized in terms
of the Peskin-Takeuchi S and T parameters [34] (similar
parametrizations of oblique electroweak observables were
discussed in [35–39]). For the measurements of standard
model observables, I use the updated values:

s2eff ¼ 0:23153� 0:00016 (4.1)

Reference [31];

MW ¼ 80:399� 0:025 GeV (4.2)

References [32,40];

�‘ ¼ 83:985� 0:086 MeV (4.3)

Reference [31];

�	ð5Þ
h ðMZÞ ¼ 0:02758� 0:00035 (4.4)

Reference [31];

Mt ¼ 173:1� 1:3 GeV (4.5)

Reference [41];

	sðMZÞ ¼ 0:1187� 0:0020 (4.6)

Reference [33]; with MZ ¼ 91:1875 GeV held fixed. For
the standard model predictions for s2eff , MW , and �‘ in

terms of the other parameters, I use Refs. [42–44], respec-
tively. These values are then used to determine the best
experimental fit values and the 68% and 95% confidence
level (CL) ellipses for S and T, relative to a standard model
template with Mt ¼ 173:1 GeV and Mh ¼ 115 GeV, us-
ing

s2eff
ðs2effÞSM

¼ 1þ 	

4s2Wc2W
S� 	c2W

c2W
T; (4.7)

M2
W

ðM2
WÞSM

¼ 1� 	

2c2W
Sþ 	c2W

c2W
T; (4.8)

�‘

ð�‘ÞSM ¼ 1� 	dWSþ 	ð1þ s22WdWÞT; (4.9)

where sW ¼ sin�W , cW ¼ cos�W , s2W ¼ sinð2�WÞ, c2W ¼
cosð2�WÞ, and dW ¼ ð1� 4s2WÞ=½ð1� 4s2W þ 8s4WÞc2W�.
The best fit turns out to be S ¼ 0:057 and T ¼ 0:080.
The new physics contributions to S and T are given in

terms of 1-loop corrections to the electroweak vector boson
self-energies �WW , �ZZ, �Z� and ���, which are com-

puted for each of the LND, QUE and QDEE models in
Appendix A. They are dominated by the contributions
from the fermions when the soft supersymmetry-breaking
scalar masses are large. It is useful and instructive to
consider the simplified example that occurs when, in the
notation of the Introduction, M� ¼ M� ¼ MF with an

expansion in small mu � kvu, md � hvd, and MW . Then
one finds for the new fermion contributions

�T ¼ Nc

480
s2WM
2
WM

2
F

½13ðm4
u þm4

dÞ þ 2ðm3
umd þm3

dmuÞ

þ 18m2
um

2
d� (4.10)

�S ¼ Nc

30
M2
F

½4ðm2
u þm2

dÞ þmumdð3þ 20Y�Þ�;
(4.11)

where Y� is the weak hypercharge of the left-handed
fermion doublet, denoted � in the Introduction, that has
a Yukawa coupling to Hu (so that Y� ¼ �1=2, 1=6, and
�1=6 for the LND, QUE, and QDEE models, respec-
tively). Equations (4.10) and (4.11) agree5 with the results
found in [45,46]. An important feature of this is that the
corrections decouple quadratically with increasing MF,
regardless of the soft supersymmetry-breaking terms.
This is in contrast to the contributions to �m2

h0
, which do

not decouple as long as there is a hierarchy between the
scalar and fermion masses within a heavy supermultiplet. It
also contrasts with the situation for chiral fermions (as in a
sequential fourth family), which yields much larger �S,
�T.
If h ¼ 0, then the results of Eqs. (4.10) and (4.11) from

the fermions become, numerically,

�T ¼ 0:54Nck
4sin4ð�Þ

�
100 GeV

MF

�
2
; (4.12)

�S ¼ 0:13Nck
2sin2ð�Þ

�
100 GeV

MF

�
2
: (4.13)

These rough formulas show that it is not too hard to obtain

5However, note that the result for �T quoted in Ref. [24]
actually corresponds to the improbable case hvd ¼ kvu, rather
than h ¼ 0. So, for small h, the actual correction to �T is almost
a factor of 4 smaller than their estimate. As a result, much
smaller values forMF are admissible than would be indicated by
Ref. [24].
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agreement with the precision electroweak data, provided
that MF is not too small, but it should be noted that
especially for light new fermions with mass of order
100 GeV, the expansion in large MF is not very accurate,
with Eqs. (4.12) and (4.13) overestimating the actual
corrections.

A more precise evaluation, using the formulas of
Appendix A, is shown in Figs. 9 and 10, which compare
the experimental best fit and 68% and 95% CL ellipses to
the predictions from the models. Note that in these figures
I do not include the contributions from the ordinary
MSSM superpartners, which are typically not very large
and which become small quadratically with large soft
supersymmetry-breaking masses. Figure 9 shows the cor-
rections for the LND model at the Yukawa coupling fixed
point ðkN; hNÞ ¼ ð0:765; 0Þ, for varying MN ¼ ML ¼
m�0 > 100 GeV as a line segment with dots at m�0 ¼
100, 120, 150, 200, 250, 400 GeV and 1. These contribu-
tions are due to the fermions �0

1;2, �
0, with their scalar

superpartners assumed heavy enough to decouple. Note

that in the LND model b0 and ~b01;2 do not contribute to S,
T as defined above, since they do not have Yukawa cou-
plings to the Higgs sector. Figure 9 shows that even for m�0

as small as 100 GeV, the S and T parameters remain within
the 68% CL ellipse, and can even give a slightly better fit to

the experimental results provided that m�0 * 120 GeV. If
the Yukawa coupling kN is less than the fixed-point value,
or ifML <MN , then the corrections to S and T are smaller,
for a given m�0 .
Figure 10 shows the corrections for the QUE model at

the Yukawa coupling fixed point ðkU; hUÞ ¼ ð1:050; 0Þ, for
varying MU ¼ MQ ¼ mb0 as a line segment with dots at

mt0
1
¼ 275, 300, 350, 400, 500, 700, 1000 GeVand1. [For

a comparison to the approximate formulas (4.12) and
(4.13), the appropriate values are MF ¼ mb0 � 355, 381,
432, 483, 584, 786, 1088 GeVand1, respectively.] Here, I
have included the contributions from the scalar states ~t1;2;3;4
and ~b1;2, obtained for m1=2 ¼ 600 GeV and AkU ¼
�0:4m1=2 and m0 ¼ 0 and bQ ¼ bU ¼ �m1=2MQ, using

Eqs. (2.11) and (2.13). Smaller values ofm1=2 would imply

a chargino lighter than the LEP2 bound; see Table II. From
Fig. 10 we see that a slightly better fit than the standard
model can be obtained for mt0

1
* 400 GeV, but even for

mt01 as light as 275 GeV, the corrections remain within the

95% CL ellipse. The corrections to S and T for a given mt0
1

are even smaller (and so the fit is even better) if any of the
following conditions apply: the Yukawa coupling kU is

-0.2 -0.1 0 0.1 0.2 0.3

∆S

-0.2

-0.1
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0.1

0.2

0.3
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95%

68%

FIG. 9 (color online). Corrections to electroweak precision
observables S, T from the LND model at the fixed point
ðkN; hNÞ ¼ ð0:765; 0Þ, for varying ML ¼ MN ¼ m�0 >
100 GeV, in the limit of heavy scalar superpartners. The seven
dots on the line segment correspond tom�0 ¼ 100, 120, 150, 200,
250, 400 GeVand 1, from top to bottom. The experimental best
fit is shown as the � at ð�S;�TÞ ¼ ð0:057; 0:080Þ. Also shown
are the 68% and 95% CL ellipses, obtained as described in the
text. The point �S ¼ �T ¼ 0 is defined to be the standard
model prediction for mt ¼ 173:1 GeV and mh0 ¼ 115 GeV.
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FIG. 10 (color online). Corrections to electroweak precision
observables S, T from the QUE model at the fixed point
ðkU; hUÞ ¼ ð1:050; 0Þ, for varying MQ ¼ MU ¼ mb0 , with

m1=2 ¼ 600 GeV and AkU ¼ �0:4m1=2 and m0 ¼ 0 and bQ ¼
bU ¼ �m1=2MQ, using Eqs. (2.11) and (2.13). The eight dots on

the line segment correspond to mt0
1
¼ 275, 300, 350, 400, 500,

700, 1000 GeV and 1, from top to bottom. The experimental
best fit is shown as the � at ð�S;�TÞ ¼ ð0:057; 0:080Þ. Also
shown are the 68% and 95% CL ellipses, obtained as described
in the text. The point �S ¼ �T ¼ 0 is defined to be the standard
model prediction for mt ¼ 173:1 GeV and mh0 ¼ 115 GeV.
Results for the QDEE model are very similar.
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below its fixed-point value, m1=2 or m0 is larger so that the

new squarks are heavier, or MQ � MU. For t
0
1 masses less

than about 400 GeV, the fit also improves slightly if mh0 is
larger than 115 GeV.

I have also looked at the QDEE model at its fixed point
ðkD; hDÞ ¼ ð1:043; 0Þ, with scalar squared-mass soft terms
given by Eq. (2.12) with m1=2 ¼ 600 GeV. The results are
nearly identical to those found in the QUEmodel in Fig. 10
with the values for mt01 replaced by mb01 , and so are not

depicted.
If one also included lower energy data as used in [33],

the fits to S and T would be somewhat worse, so it is
important to keep in mind that the results above are sensi-
tive to the choice of following the LEP Electroweak
Working Group [31,32] in using fits based on the Z-pole
data and mt and mW . With this caveat, one may conclude
that the models considered here fit at least as well as the
standard model, provided that the new quarks with large
Yukawa couplings are heavier than roughly 400 GeV, and
can do even better if the new squarks are heavy enough to
decouple.

V. COLLIDER PHENOMENOLOGY OF THE
EXTRA FERMIONS

The extra particles in the models discussed above will
add considerable richness to the already complicated LHC
phenomenology of the MSSM. A full discussion of the
different signals, and how to disentangle them, is beyond
the scope of the present paper, but it is likely that the most
important distinguishing collider signals will arise from
production of the new fermions, especially the new
quarks. This is simply because of the relatively large
production cross section compared to the scalars, which
are presumably much heavier due to the effects of soft
supersymmetry-breaking masses. One can therefore expect
signals from direction pair production of the lightest new
quark, and possibly also from cascade decays of somewhat
heavier fermions down to them. For concreteness, I will
concentrate on only the final states from decays of the
lightest new quark in each model.

In general, the lightest new quark and the lightest new
lepton would be stable, were it not for mixing with the
standard model fermions. At least some small such mixing
is necessary to avoid a cosmological disaster from un-
wanted heavy relics. If the mixing is very small, then the
new fermions could be quasistable, with decay lengths on
the scale of collider detectors. Then the collider signatures
will involve particles that leave highly-ionizing and slow
muonlike tracks in the detectors, or feature macroscopic
decay kinks or charge-changing tracks. These can be either
the new charged leptons or hadronic bound states of the
new quarks. The hadron collider signals have been dis-
cussed before in a variety of different model-building
contexts, see for example [47–59]. The LHC signals de-
pend sensitively on the detector characteristics for the

ionization loss dE=dx and time-of-flight measurements,
so it is difficult to make a definitive estimate of the
ATLAS and CMS capabilities, but conservatively the
LHC in early running should discover new quasistable
quarks up to at least 1 TeV [55,56,58] and leptons up to
several hundred GeV [51,53]. The mass for a 500 GeV
quasistable quark should be measurable to within 20 GeV
or so using time-of-flight [57]. Measurements of angular
distributions of quasistable fermion pair production will
enable them to be distinguished from spin-0 squarks and
sleptons [54].
In the following, I will instead assume that the mixing of

the new fermions with standard model fermions is large
enough to provide for prompt decays. Mixing of the new
fermions with the first- and second-family standard model
fermions is highly constrained by flavor-changing neutral
currents, since the vectorlike gauge quantum number as-
signments eliminate the GIM-type suppression. Therefore,
I will assume that the mixing is with the third standard
model family, for which the constraints are much easier to
satisfy. Then the final states of the decays will always
involve a single third-family quark or lepton, together
with a W, Z, or h0 boson. Below, I will discuss the
possibilities for the branching ratios of the new quarks
and leptons, and their dependence on the type of mixing.
There are existing limits on the extra quarks coming

from Tevatron, although these have mostly been found
with assumed 100% branching ratios for particular decay
modes (which as we will see below is not necessarily
likely). The current limits are, for prompt decays:
(i) mt0 > 311 GeV for BRðt0 ! WqÞ ¼ 1, based on

2:8 fb�1 [60]
(ii) mb0 > 325 GeV for BRðb0 ! WtÞ ¼ 1, based on

2:7 fb�1 [61]
(iii) mb0 > 268 GeV for BRðb0 ! ZbÞ ¼ 1, based on

1:06 fb�1 [62]
(iv) mb0 > 295 GeV for BRðb0 ! Wt; Zb; h0bÞ ¼ 0:5,

0.25, 0.25, based on 1:2 fb�1 [63]

and for quasistable quarks:
(i) mt0 > 220 GeV, based on dE=dx for 90 pb�1 atffiffiffi

s
p ¼ 1:8 TeV [64]

(ii) mb0 > 190 GeV, based on dE=dx for 90 pb�1 atffiffiffi
s

p ¼ 1:8 TeV [64]
(iii) mb0 > 170 GeV for 3 mm< c�b0 < 20 mm, based

on 163 pb�1 [65]

Also, if the cross-section upper bound found from time-of-
flight measurements with 1:0 fb�1 in Ref. [66] for stable
top squarks also applies to stable t0 quarks with no change
in efficiency, then I estimate a bound mt0 * 360 GeV
should be obtainable, with a somewhat weaker bound for
stable b0 due to a lower detector efficiency.
At hadron colliders, the production cross section of the

new quarks is due to gg and q �q initial states and is
mediated by the strong interactions, and so is nearly
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model-independent when expressed as a function of the
mass. The leading-order cross section is shown in Fig. 11
for the Tevatron p �p collider at

ffiffiffi
s

p ¼ 1:96 TeV and for the
LHC pp collider with

ffiffiffi
s

p ¼ 7, 10, 12, and 14 TeV. Note
the Tevatron will probably be unable to strengthen the
existing constraints very significantly, at least for promptly
decaying new quarks, due to the rather steep fall of the
production cross-section with mass. At the LHC pair pro-
duction of mostly vectorlike quarks should provide a ro-
bust signal; see, for example, studies (in diverse other
model contexts) in Refs. [6,67–71]. (Note that in the
models under study here, there is no reason that the
flavor-violating charged-current couplings should be large
enough to enable a viable signal from single q0 production
in association with a standard model fermion through
t-channel W exchange, unlike in other model contexts as
studied in Refs. [72–78].) The branching ratios and pos-
sible signals for the LND, QUE, and QDEE models are
examined below.

A. The LND model

In the LND model, the fermions consist of a b0, �0, and
two neutral fermions �0

1 and �0
2. The �0

1 is always lighter
than the �0. The fermions b0 and �0

1 can therefore decay
only through their mixing with the standard model fermi-
ons from the superpotential

W ¼ ��DHdq3 �Dþ �NHu‘3 �N � �EHdL �e3; (5.1)

where �D, �N , and �E are new Yukawa couplings that are

assumed here to be small enough to provide mass mixings
that can be treated as perturbations compared to the other
entries in the mass matrices.
First consider the decays of b0. The mass matrix for the

down-type quarks resulting from Eqs. (2.3), (2.4), and (5.1)
is

M d ¼ MD 0
�Dvd ybvd

� �
; (5.2)

with eigenstates b and b0. The b0 decay can take place only
through the �D coupling, to final states Wt, Zb, and h0b.
Formulas for these decay widths are given in Appendix B.
To leading order, the branching ratios only depend on the
mass of the b0, and the results are graphed in Fig. 12. Note
that in the limit of large mb0 , the branching ratios are
‘‘democratic’’ between charged and neutral currents, ap-
proaching 0.5, 0.25, and 0.25 for Wt, Zb, and h0b respec-
tively, in accord with the Goldstone boson equivalence
theorem. However, for smaller masses, kinematic suppres-
sion reduces the Wt branching ratio, so that, for example,
the three final states have comparable branching ratios for
mb0 in the vicinity of 300 to 400 GeV.
The LHC signals include pp ! b01 �b

0
1 ! WþW�t�t !

WþW�WþW�b �b. When two same-chargeW’s decay lep-
tonically and the other two W’s decay hadronically, this
leads to a same-charge dilepton plus multijets (including
two b jets) plus missing transverse energy signal, with a
total branching ratio as high as 25%. This signal is also the
basis for the current Tevatron bound mb0 > 325 GeV, but
this assumes BRðb0 ! WtÞ ¼ 100%; since the actual
branching ratio predicted by the LND model for that
mass range is more than a factor of 3 smaller, the model
prediction for the signal in the channel that was searched is
more than an order of magnitude smaller, and decreases
sharply for lower mb0

1
. In over half of the other b01 �b01

production events, there will be four or more b jets, coming
mostly from events with h0b ! bb �b decays but also from
Zb ! bb �b. The Tevatron limit [62] of mb0 > 268 GeV
from assuming BRðb0 ! ZbÞ ¼ 100% is in a mass range
where the actual branching ratio is about 0.55, so the actual
predicted signal from the LND model is more than a factor
of 3 smaller. The limit of mb0 > 295 GeV from [63], a
search which is motivated in part by [79,80], is based on
the idealized large mass limit democratic branching, but in
the relevant mass range the model prediction has BRðb0 !
WtÞ more than a factor of 2 smaller, and decreasing very
rapidly for smaller mb0 , due to the kinematic suppression.
The neutral-current decays, including Z ! ‘þ‘�, could
also play an important role at the LHC, see for example
[71] for a similar case.
The decay of �0

1 in the LND model is dependent on two
different mixing Yukawa couplings �N and �E. The mass
matrix for the neutral leptons in the ðL;N; ‘3; �L; �NÞ basis
resulting from Eqs. (2.3), (2.4), and (5.1) is
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FIG. 11 (color online). Production cross section for new
quarks as a function of the mass, for the Tevatron p �p collisions
at

ffiffiffi
s

p ¼ 1:96 TeV, and for the LHC pp collisions with
ffiffiffi
s

p ¼ 7,
10, 12, and 14 TeV. The graph was made at leading order using
CTEQ5LO parton distribution functions [82] with Q ¼ mq0 and

applying a K factor of 1.5 for LHC and 1.25 for Tevatron.
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0 M�

MT
� 0

� �
; where MT

� ¼ ML hNvd 0
kNvu MN �NvU

� �
;

(5.3)

with the masses of the standard model neutrinos neglected.
The corresponding mass eigenstates are a standard model
neutrino � and two extra massive neutrino states �0

1 and �
0
2.

The mass matrix for the charged leptons is

M e ¼ �ML �Evd

0 y�vd

� �
: (5.4)

Formulas for the resulting decay widths for �0
1 ! W� and

Z� and h0� are given in Appendix B. If one assumes that
�E � �N , then the decay �0

1 ! W� has a nearly 100%
branching ratio. If the opposite limit applies, �N � �E,
then the branching ratios as a function of m�0

1
are as shown

in the right panel of Fig. 12. Note that in the limit of large
m�0

1
, the branching ratios forW�, Z�, and h0� asymptote to

0.5, 0.25, 0.25, respectively, when �N dominates, again in
accordance with Goldstone boson equivalence with equal
charged and neutral currents. So, depending on which
Yukawa coupling dominates, one could have interesting
hadron collider signatures from �0

1 ��
0
1 production, such as

WþW��þ��, and h0h0 þ Emiss
T , and ZZþ Emiss

T , and
Wh0 þ Emiss

T and Zh0 þ Emiss
T . So far, there are no pub-

lished limits specifically on m�0 based on collider pair
production with these final states. If ML & MN in this
model, then �0 will be not much heavier than �0

1, and so
there will be additional contributions to the signal from

�0�0
1 production and �0þ�0� production, followed by �0 !

Wð�Þ�0. It should also be noted that production of �0
1;2 and

�01 might well be dominated by cascade decays from heav-
ier strongly interacting superpartners.

B. The QUE model

In the QUE model, the lightest of the new quarks is
always the charge 2=3 quark t01. After being pair-produced
at hadron colliders, it can decay due to mixing with the
standard model fermions through the superpotential

W ¼ �UHuq3 �Uþ �0UHuQ �u3 � �DHdQ �d3; (5.5)

where �U, �
0
U, and �D are new Yukawa couplings that are

assumed here to be small enough to treat as perturbations
compared to other entries in the mass matrices. The result-
ing mass matrices for the up-type quarks and down-type
quarks are

Mu ¼
MQ kUvu �0Uvu

hUvd MU 0

0 �Uvu ytvu

0
BB@

1
CCA;

Md ¼ �MQ �Dvd

0 ybvd

 !
;

(5.6)

with mass eigenstates t, t01, t02 and b, b0 respectively.
Formulas for the resulting decay widths for t01 to Wb, Zt,
and h0t are presented in Appendix B. I will concentrate on
the three cases where one of the mixing Yukawa couplings
in Eq. (5.5) dominates over the other two. The branching
ratios depend on the mass of t01 and on the type of mixing. If
�D provides the dominant effect, then the decays are dom-
inantly charged-current, or ‘‘W-philic,’’ with BRðt01 !
WbÞ ¼ 1. This is the scenario for which the Tevatron limit
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FIG. 12 (color online). The branching ratios of the lightest new quark b0 (left panel) and the lightest new lepton �0
1 (right panel) in the

LND model. The �0
1 results assume that �N � �E; if instead �E � �N then BRð�0

1 ! W�Þ ¼ 1 (not shown).
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is now mt0 > 311 GeV [60]. If instead �0U dominates, then
the decays are dominantly neutral-current, or ‘‘W-phobic’’;
in the limit of large mt0 , the branching ratios asymptote to
BRðt01 ! WbÞ ¼ 0 and BRðt01 ! ZtÞ ¼ BRðt01 ! h0tÞ ¼
0:5. Finally, if �U dominates, the decays are democratic,
with branching ratios for Wb, Zt, and h0 approaching 0.5,
0.25, and 0.25, respectively, in the large mt0

1
limit.

Numerical results are shown in Fig. 13 as a function of
mt01 , for the case that kU is at its fixed-point value, and

hU ¼ 0, and MQ ¼ MU. (The results are only mildly sen-

sitive to the last two assumptions.) By taking the different
mixing Yukawa couplings �U, �

0
U, and �D to be compa-

rable, one can get essentially any result one wants for the
branching ratios, but it seems reasonable to assume that
one of the individual mixing Yukawa couplings dominates
in the absence of some organizing principle. So the pos-
sible signatures will include WþW�b �b, (similar to the
standard model t�t signature, but with larger invariant
masses; see [6,67,68,70,71] for recent studies of compa-
rable signals), and ZZt�t and h0h0t�t, etc. If MQ & MU in

this model, then the b0 will be not much heavier than the t0,
and one should expect an additional component of the

signal from b0 �t0 and b0 �b0 production, followed by b0 !
Wð�Þt0.

The �0 in the QUE model mixes with the standard model
� lepton through a superpotential term:

W ¼ ��EHd‘3 �E: (5.7)

The mass matrix for the charged leptons resulting from this
and Eqs. (2.3) and (2.5) is

M e ¼ ME 0
�Evd y�vd

� �
; (5.8)

with mass eigenstates � and �0. It follows that �0 can decay
to W�, Z�, and h0�, with decay widths that are computed
in Appendix B. Because there is only one relevant Yukawa
mixing term, the branching ratios depend only on m�0 .
They are shown in Fig. 14, assuming mh0 ¼ 115 GeV.
The largest branching ratio for �0 is always to W�, and in
the large m�0 limit, Goldstone boson equivalence provides
that the W�, Z�, and h0� branching ratios approach 0.5,
0.25, and 0.25, respectively. The most immediately rele-
vant searches at hadron colliders will be in the mass range
of m�0 just above 100 GeV, where the electroweak pair-
production cross section can be sufficiently large, and
limits do not presently exist. However, note that the ap-
pearance of �01 could easily be dominated by cascade
decays from heavier strongly interacting superpartners.

C The QDEE model

In the QDEE model, the new fermions consist of a b01,
b02, t

0, and �01, �
0
2. In this model, the lighter charge �1=3

quark b01 is always lighter than the t0. The decays of b01 in
the QDEE model are brought about by superpotential
mixing terms with third-family quarks:

W ¼ ��DHdq3 �D� �0DHdQ �d3 þ �UHuQ �u3: (5.9)

In the gauge eigenstate basis, the resulting mass matrices
for the down-type quarks and up-type quarks are
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FIG. 13 (color online). Branching ratios for the lightest extra quark, t01, in the QUE model withMQ ¼ MU, to final statesWb, Zt, and
h0t, as a function of m~t1 . The left panel shows the democratic case that arises when �U dominates (with equal charged and neutral

currents), and the right panel shows the ‘‘W-phobic’’ (mostly neutral current) case that arises when �0U dominates. In the ‘‘W-philic’’

case that arises when �D dominates, then BRðt0 ! WbÞ ¼ 1 (not shown).
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Md ¼
MQ kDvu 0

hDvd MD �Dvd

�0Dvd 0 ybvd

0
BB@

1
CCA;

Mu ¼ �MQ 0

�Uvu ytvu

 !
;

(5.10)

with mass eigenstates b, b01, b02 and t, t0 respectively.

Formulas for the resulting decay widths for b01 to Wt, Zb,
and h0b are given in Appendix B. As in the case of the
QUE model, I will consider the three cases where one of
the mixing Yukawa couplings in Eq. (5.9) dominates over
the other two. Then the branching ratios depend on the
mass of b01 and on the type of mixing. If �U provides the

dominant effect, then the decays are dominantly charged-
current, or ‘‘W-philic,’’ with BRðb01 ! WtÞ ¼ 1 provided

that it is kinematically allowed. The resulting signal
at hadron colliders will be b01 �b

0
1 ! WþW�t�t !

WþWþW�W�b �b. This is the scenario for which the
Tevatron limit is presently mb0 > 325 GeV [61], based on
the same-charge dilepton plus b-jets signal already men-
tioned above for the LNDmodel. If instead �0D is dominant,
then the decays are dominantly neutral-current, or
‘‘W-phobic,’’ with BRðb01 ! WtÞ ¼ 0; in the limit of large

mb0 , the branching ratios slowly approach BRðb01 ! ZbÞ ¼
BRðb01 ! h0bÞ ¼ 0:5, but with h0b larger for finite masses.

Finally, if �D is dominant, the decays are democratic, with
branching ratios forWt, Zb, and h0b approaching 0.5, 0.25,
and 0.25, respectively, in the largemb0

1
limit. The predicted

branching ratios are shown in Fig. 15 as a function of mb0
1

for the latter two cases, assuming kD is at its fixed-point
value, and hD ¼ 0 and MQ ¼ MD. (However, it should be

noted that, unlike in the QUEmodel case, the results shown
are somewhat sensitive to the last of these assumptions.)
Note that in the democratic case, the branching ratios are
similar to what one obtains for the b0 of the LND model.
The CDF limit mb0 > 295 GeV was obtained in the ideal-
ized case of branching ratios obtained in the high mass
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FIG. 15 (color online). Branching ratios for the lightest extra quark, b01, in the QDEE model with MQ ¼ MD, to final states Wt, Zb,
and h0b. The left panel shows the democratic case that �D dominates, and the right panel shows the ‘‘W-phobic’’ case that �0D
dominates, leading to mostly neutral-current decays. In the ‘‘W-philic’’ case that �U dominates leading to mostly charged-current
decays, then BRðb01 ! WtÞ ¼ 1 (not shown).
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Z�, and h0� in the QUE and QDEE models, as a function of m�0 .
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limit, but for finite mb0 , the actual BRðb0 ! WtÞ is much
smaller and BRðb0 ! h0bÞ is larger. In contrast, the same-
charge dilepton signal from b01b

0
1 ! WþW�t�t is turned off

in the ‘‘W-phobic’’ case, where the largest overall branch-
ing ratio is typically to six b quarks, yielding the interesting
possible signal b01b

0
1 ! h0h0b �b ! bbb �b �b �b . Decays to

leptons through Z bosons are unfortunately suppressed
by both small BRðZ ! ‘þ‘�Þ and small BRðb01 ! ZbÞ in
this case. IfMQ & MD in this model, then the t0 will be not
much heavier than the b0, and one should expect an addi-
tional component of the signal from t0 �b0 and t0 �t0 produc-
tion, followed by t0 ! Wð�Þb0.

For �01 in the QDEE model, the branching ratio situation
is essentially the same as for the QUE model as discussed
above.

VI. OUTLOOK

In this paper, I have studied supersymmetric models that
have vectorlike fermions that are consistent with perturba-
tive gauge coupling unification and have large Yukawa
couplings that can significantly raise the Higgs mass in
supersymmetry. Some of the more important features
found for these models are

(i) There are three types of models consistent with
perturbative gauge coupling unification and all new
particles near the TeV scale. The first type (LND)
contains up to three copies of the 5þ �5 of SUð5Þ.
The second type (QUE) contains a 10þ 10 of SUð5Þ.
The third type (QDEE) is not classifiable in terms of
complete representations of SUð5Þ, but consists of
the fields Q, D, E, E and their conjugates.

(ii) A complete vectorlike family (i.e. a 16þ 16 of
SOð10Þ) could also be entertained, but was not
considered here because a multiloop renormaliza-
tion group analysis shows that this would forfeit
perturbative unification and high-scale control un-
less (at least some of) the new particles are much
heavier than 1 TeV.

(iii) The constraints imposed by oblique corrections to
electroweak observables are rather mild, especially
in comparison to the corresponding constraints on a
chiral fourth family, and are easily accommodated
by present data as long as the new quarks with
Yukawa couplings are heavier than about
400 GeV, and perhaps considerably lower.

(iv) The model framework is consistent with the hy-
pothesis that gaugino masses dominate soft super-
symmetry breaking near the unification scale,
without problems from sleptons being too light as
is the case in so-called mSUGRA models.

(v) The lightest Higgs mass can be substantially raised
in the QUE and QDEE models if the Yukawa cou-
plings are near their fixed points. However, the
extent of this is limited if one takes seriously the
prediction for the fixed-point behavior of the scalar

trilinear couplings, which limits the mixing in the
new squark sector. For example, if the new quarks
are at MF ¼ 400 GeV, and their scalar partners
have an average mass of MS ¼ 1000 GeV, then
one finds an increase in mh0 of up to about
15 GeV (see Fig. 8). For largerMS, this contribution
increases, but at the expense of apparently more
severe fine-tuning of the electroweak scale.

(vi) Despite the sizable positive contribution to the
lightest Higgs, the contributions to the� parameter
are also raised, so it is difficult to make any un-
ambiguous claim for an improvement in the super-
symmetric little hierarchy problem.

(vii) The new fermions can decay through any mixture
of neutral and charged currents to third-family
fermions and W, Z, h0 weak bosons, but with
different combinations correlated to the possible
superpotential couplings that mix the new fermi-
ons with the standard model ones.

(viii) Existing bounds from direct searches at the
Tevatron do not significantly constrain the pa-
rameter space of these models after precision
electroweak constraints are taken into account.

The collider phenomenology of the MSSM augmented by
the new particles in these models should be both rich and
confusing, leading to a difficult challenge at the LHC and
beyond in deciphering the new discoveries. The new
quarks and leptons can also impact the production and
decay rates for the Higgs boson, through virtual corrections
to the hgg, h��, hWþW�, and hZZ effective couplings,
which should be studied. The implications of these models
for dark matter are also well worthy of future study.
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APPENDIX A: CONTRIBUTIONS TO PRECISION
ELECTROWEAK PARAMETERS

This appendix gives formulas for the contributions of the
new chiral supermultiplets to the Peskin-Takeuchi preci-
sion electroweak parameters [34]. For convenience I will
follow the notations and conventions of [81]. The oblique
parameters S and T are defined in terms of electroweak
vector boson self-energies by

	S

4s2Wc
2
W

¼
�
�ZZðM2

ZÞ ��ZZð0Þ � c2W
cWsW

�Z�ðM2
ZÞ

����ðM2
ZÞ
�
=M2

Z; (A1)
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	T ¼ �WWð0Þ=M2
W ��ZZð0Þ=M2

Z: (A2)

In the following, the 1-loop integral functions GðxÞ,
Hðx; yÞ, Bðx; yÞ, and Fðx; yÞ are as defined in Ref. [81],
and particle names should be understood to stand for the
squared mass when used as an argument of one of these
functions, which also have an implicit argument s, which is
identified with the invariant mass of the self-energy func-
tion in which they appear.

1. Corrections to electroweak vector boson self-energies
in the LND model

For the LND model, define the gauge eigenstate new
neutral lepton mass matrix by

M � ¼ ML kNvu

hNvd MN

� �
; (A3)

and unitary mixing matrices L and R by

L�M�R
y ¼ diagðm�0

1
; m�0

2
Þ; (A4)

and note m�0 ¼ ML. Then the ð�0
1; �

0
2; �

0Þ fermion contri-
butions to the electroweak vector boson self-energies are:

���� ¼ � Nc

16
2
2g2s2We

2
eGð�0Þ; (A5)

��Z� ¼ � Nc

16
2
gsWeeðgZ�0�0y � gZ

��0 ��0y ÞGð�0Þ; (A6)

��ZZ ¼ � Nc

16
2

�
ðjgZ

�0�0y j2 þ jgZ
��0 ��0y j2ÞGð�0Þ

þ X2
i;j¼1

ðjgZ
�0
i�

0y
j

j2 þ jgZ
��0
i ��

0y
j

j2ÞHð�0
i; �

0
jÞ

� 4ReðgZ
�0
i�

0y
j

gZ
��0
i ��

0y
j

Þm�0
i
m�0

j
Bð�0

i; �
0
jÞ
�
; (A7)

��WW ¼ � Nc

16
2

X
i¼1;2

½ðjgW
�0
i�

0y j2 þ jgW
��0i ��

0y j2ÞHð�0; �0
iÞ

� 4ReðgW
�0
i�

0yg
W
��0
i ��

0y Þm�0m�0
i
Bð�0; �0

iÞ�; (A8)

where Nc ¼ 1 and ee ¼ �1 and the massive vector boson
couplings with the new leptons are

gZ
�0
i�

0y
j

¼ g

2cW
L�
i1Lj1; gZ

��0i ��
0y
j

¼ � g

2cW
R�
i1Rj1; (A9)

gZ
�0�0y ¼ �gZ

��0 ��0y ¼ g

cW

�
� 1

2
� ees

2
W

�
; (A10)

gW
�0
i�

0y ¼ gL�
i1=

ffiffiffi
2

p
; gW

��0
i ��

0y ¼ �gR�
i1=

ffiffiffi
2

p
: (A11)

To obtain the ð~�0
1;2;3;4; ~�

0
1;2Þ scalar contribution, consider

the new sneutrino squared-mass matrix:

M2
~� ¼ M2

� þ
m2

L þ �ð1=2Þ;0 0 b�L a�kNvu ��kNvd

0 m2
N a�hNvd ��hNvu b�N

bL ahNvd ���hNvu m2
�L
þ ��ð1=2Þ;0 0

akNvu ���kNvd bN 0 m2
�N

0
BBBB@

1
CCCCA; (A12)

where the supersymmetric part (also equal to the fermion
squared-mass matrix) is

M2
� ¼ M�M

y
� 0

0 My
�M�

 !
: (A13)

Also, the new charged slepton squared-mass matrix is
given by

M2
~e ¼

M2
L þm2

L þ��ð1=2Þ;�1 �b�L
�bL M2

L þm2
L
þ�ð1=2Þ;1

 !
:

(A14)

Now define unitary scalar mixing matrices U and V by

UM2
~�U

y ¼ diagðm2
~�0
1
; m2

~�0
2
; m2

~�0
3
; m2

~�0
4
Þ;

VM2
~eV

y ¼ diagðm2
~�0
1
; m2

~�0
2
Þ:

(A15)

Then the scalar contributions to the vector boson self-
energies are

���� ¼ Nc

16
2
g2s2We

2
e

X2
i¼1

Fð~�0i; ~�0iÞ; (A16)

��Z� ¼ Nc

16
2
gsWee

X2
i¼1

gZ~�0i~�0�i
Fð~�0i; ~�0iÞ; (A17)

��ZZ ¼ Nc

16
2

�X4
i;j¼1

jgZ~�0
i~�

0�
j
j2Fð~�0

i; ~�
0
jÞ

þ X2
i;j¼1

jgZ~�0i~�0�j j
2Fð~�0i; ~�0jÞ

�
; (A18)

��WW ¼ Nc

16
2

X2
i¼1

X4
j¼1

jgW
~�0i~�

0�
j
j2Fð~�0i; ~�0

jÞ; (A19)

where the vector boson couplings with the new sleptons are
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gZ~�0
i~�

0�
j
¼ g

2cW
ðU�

i1Uj1 þU�
i3Uj3Þ;

gZ~�0i~�0�j
¼ g

cW

�
� 1

2
� ees

2
W

�
�ij;

(A20)

gW
~�0i~�

0�
j
¼ gðV�

i1Uj1 � V�
i2Uj3Þ=

ffiffiffi
2

p
: (A21)

2. Corrections to electroweak vector boson self-energies
in the QUE model

For the QUE model, the gauge eigenstate new up-type
quark mass matrix is

M u ¼ MQ kUvu

hUvd MU

� �
; (A22)

with unitary mixing matrices L and R defined by

L�MuR
y ¼ diagðmt0

1
; mt0

2
Þ; (A23)

and mb0 ¼ MQ. Then the ðt01; t02; b0Þ fermion contributions

to the electroweak vector boson self-energies are

���� ¼ � Nc

16
2
2g2s2W

�
e2u
X
i¼1;2

Gðt0iÞ þ e2dGðb0Þ
�
;

(A24)

��Z� ¼ � Nc

16
2
gsW

�
eu
X
i¼1;2

ðgZ
t0it

0y
i

� gZ
�t0i �t

0y
i

ÞGðt0iÞ

þ edðgZb0b0y � gZ�b0 �b0y ÞGðb0Þ
�
; (A25)

��ZZ ¼ � Nc

16
2

�
ðjgZ

b0b0y j2 þ jgZ�b0 �b0y j2ÞGðb0Þ

þ X2
i;j¼1

ðjgZ
t0it

0y
j

j2 þ jgZ
�t0i �t

0y
j

j2ÞHðt0i; t0jÞ

� 4ReðgZ
t0it

0y
j

gZ
�t0i �t

0y
j

Þmt0imt0jBðt0i; t0jÞ
�
; (A26)

��WW ¼ � Nc

16
2

X
i¼1;2

½ðjgW
t0ib

0y j2 þ jgW�t0i �b0y j
2ÞHðb0; t0iÞ

� 4ReðgW
t0ib

0yg
W
�t0i �b

0y Þmb0mt0iBðb0; t0iÞ�; (A27)

where Nc ¼ 3 and eu ¼ 2=3 and ed ¼ �1=3 and the mas-
sive vector boson couplings with the new quarks are

gZ
t0it

0y
j

¼ g

cW

�
1

2
L�
i1Lj1 � eus

2
W�ij

�
;

gZ
�t0i �t

0y
j

¼ g

cW

�
� 1

2
R�
i1Rj1 þ eus

2
W�ij

�
;

(A28)

gZ
b0b0y ¼ �gZ�b0 �b0y ¼ g

cW

�
� 1

2
� eds

2
W

�
; (A29)

gW
t0ib

0y ¼ gL�
i1=

ffiffiffi
2

p
; gW�t0i �b0y

¼ �gR�
i1=

ffiffiffi
2

p
: (A30)

To obtain the ð~t01;2;3;4; ~b01;2Þ scalar contribution, consider
the up-type squark squared-mass matrix:

M2
~u ¼ M2

u þ
m2

Q þ�ð1=2Þ;ð2=3Þ 0 b�Q a�kUvu ��kUvd

0 m2
U þ �0;ð2=3Þ a�hUvd ��hUvu b�U

bQ ahUvd ���hUvu m2
�Q
þ ��ð1=2Þ;�ð2=3Þ 0

akUvu ���kUvd bU 0 m2
�U
þ �0;�ð2=3Þ

0
BBBB@

1
CCCCA; (A31)

where the supersymmetric part (also equal to the fermion squared-mass matrix) is

M2
u ¼ MuM

y
u 0

0 My
uMu

 !
: (A32)

Also, the down-type squark mass matrix is

M2
~d
¼ M2

Q þm2
Q þ��ð1=2Þ;�ð1=3Þ �b�Q
�bQ M2

Q þm2
�Q
þ�ð1=2Þ;ð1=3Þ

 !
: (A33)

Now define unitary scalar mixing matrices U and V by

UM2
~uU

y ¼ diagðm2
~t0
1
; m2

~t0
2
; m2

~t0
3
; m2

~t0
4
Þ; VM2

~d
Vy ¼ diagðm2

~b01
; m2

~b02
Þ: (A34)

Then the scalar contributions to the vector boson self-energies are:

���� ¼ Nc

16
2
g2s2W

�
e2u
X4
i¼1

Fð~t0i;~t0iÞ þ e2d
X2
i¼1

Fð~b0i; ~b0iÞ
�
; (A35)
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��Z� ¼ Nc

16
2
gsW

�
eu
X4
i¼1

gZ~t0i~t0�i
Fð~t0i;~t0iÞ

þ ed
X2
i¼1

gZ~b0i ~b0�i
Fð~b0i; ~b0iÞ

�
; (A36)

��ZZ ¼ Nc

16
2

�X4
i;j¼1

jgZ~t0i~t0�j j
2Fð~t0i;~t0jÞ

þ X2
i;j¼1

jgZ~b0i ~b0�j j
2Fð~b0i; ~b0jÞ

�
; (A37)

��WW ¼ Nc

16
2

X2
i¼1

X4
j¼1

jgW~b0i~t0�j j
2Fð~b0i;~t0jÞ; (A38)

where the vector boson couplings with the new squarks are

gZ~t0i~t0�j
¼ g

cW

�
1

2
ðU�

i1Uj1 þU�
i3Uj3Þ � eus

2
W�ij

�
;

gZ~b0i ~b0�j
¼ g

cW

�
� 1

2
� eds

2
W

�
�ij;

(A39)

gW~b0i~t0�j
¼ gðV�

i1Uj1 � V�
i2Uj3Þ=

ffiffiffi
2

p
: (A40)

3. Corrections to electroweak vector boson self-energies
in the QDEE model

For the QDEE model, define the gauge eigenstate new
down-type quark mass matrix by

M d ¼ MQ kDvu

hDvd MD

� �
(A41)

and unitary mixing matrices L and R by

R�MdL
y ¼ diagðmb0

1
; mb0

2
Þ; (A42)

and note mt0 ¼ MQ. Then the ðb01; b02; t0Þ fermion contribu-

tions to the electroweak vector boson self-energies are

���� ¼ � Nc

16
2
2g2s2W

�
e2d
X
i¼1;2

Gðb0iÞ þ e2uGðt0Þ
�
;

(A43)

��Z� ¼ � Nc

16
2
gsW

�
ed
X
i¼1;2

ðgZ
b0ib

0y
i

� gZ�b0i �b
0y
i

ÞGðb0iÞ

þ euðgZt0t0y � gZ�t0 �t0y ÞGðt0Þ
�
; (A44)

��ZZ ¼ � Nc

16
2

�
ðjgZ

t0t0y j2 þ jgZ�t0 �t0y j2ÞGðt0Þ

þ X2
i;j¼1

ðjgZ
b0ib

0y
j

j2 þ jgZ�b0i �b0yj j
2ÞHðb0i; b0jÞ

� 4ReðgZ
b0ib

0y
j

gZ�b0i �b
0y
j

Þmb0imb0jBðb0i; b0jÞ
�
; (A45)

��WW ¼ � Nc

16
2

X
i¼1;2

½ðjgW
b0it

0y j2 þ jgW�b0i �t0y j
2ÞHðt0; b0iÞ

� 4ReðgW
b0it

0yg
W
�b0i �t

0y Þmt0mb0iBðt0; b0iÞ�; (A46)

where Nc ¼ 3 and eu ¼ 2=3 and ed ¼ �1=3 and the mas-
sive vector boson couplings with the new quarks are

gZ
b0ib

0y
j

¼ g

cW

�
� 1

2
L�
i1Lj1 � eds

2
W�ij

�
;

gZ�b0i �b
0y
j

¼ g

cW

�
1

2
R�
i1Rj1 þ eds

2
W�ij

�
;

(A47)

gZ
t0t0y ¼ �gZ�t0 �t0y ¼ g

cW

�
1

2
� eus

2
W

�
; (A48)

gW
b0it

0y ¼ �gL�
i1=

ffiffiffi
2

p
; gW�b0i �t0y

¼ gR�
i1=

ffiffiffi
2

p
: (A49)

To obtain the ð~b01;2;3;4;~t01;2Þ scalar contribution, start with
the down-type squark squared-mass matrix:

M2
~d
¼ M2

d þ
m2

�Q
þ�ð1=2Þ;ð1=3Þ 0 b�Q a�kDvu ��kDvd

0 m2
�D
þ �0;ð1=3Þ a�hDvd ��hDvu b�D

bQ ahDvd ���hDvu m2
Q þ ��ð1=2Þ;�ð1=3Þ 0

akDvu ���kDvd bD 0 m2
D þ �0;�ð1=3Þ

0
BBBB@

1
CCCCA; (A50)

where the supersymmetric part (also equal to the fermion squared-mass matrix) is

M2
d ¼ MdM

y
d 0

0 My
dMd

 !
: (A51)

Also, the up-type squark squared-mass matrix is given by
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M2
~u ¼ M2

Q þm2
�Q
þ��ð1=2Þ;�ð2=3Þ �b�Q
�bQ M2

Q þm2
Q þ�ð1=2Þ;ð2=3Þ

 !
: (A52)

Now define unitary scalar mixing matrices U and V by

UM2
~d
Uy ¼ diagðm2

~b01
; m2

~b02
; m2

~b03
; m2

~b04
Þ;

VM2
~uV

y ¼ diagðm2
~t0
1
; m2

~t0
2
Þ:

(A53)

Then the scalar contributions to the vector boson self-
energies are

���� ¼ Nc

16
2
g2s2W

�
e2d
X4
i¼1

Fð~b0i; ~b0iÞ þ e2u
X2
i¼1

Fð~t0i;~t0iÞ
�
;

(A54)

��Z� ¼ Nc

16
2
gsW

�
�ed

X4
i¼1

gZ~b0�i ~b0i
Fð~b0i; ~b0iÞ

� eu
X2
i¼1

gZ~t0�i ~t0i
Fð~t0i;~t0iÞ

�
; (A55)

��ZZ ¼ Nc

16
2

�X4
i;j¼1

jgZ~b0�i ~b0j
j2Fð~b0i; ~b0jÞ

þ X2
i;j¼1

jgZ~t0�i ~t0j j
2Fð~t0i;~t0jÞ

�
; (A56)

��WW ¼ Nc

16
2

X2
i¼1

X4
j¼1

jgW
~t0�i ~b0j

j2Fð~t0i; ~b0jÞ; (A57)

where the vector boson couplings with the new squarks are

gZ~b0�i ~b0j
¼ g

cW

�
1

2
ðU�

i1Uj1 þU�
i3Uj3Þ þ eds

2
W�ij

�
;

gZ~t0�i ~t0j
¼ g

cW

�
� 1

2
þ eus

2
W

�
�ij;

(A58)

gW
~t0�i ~b0j

¼ gðV�
i1Uj1 � V�

i2Uj3Þ=
ffiffiffi
2

p
: (A59)

APPENDIX B: FORMULAS FOR DECAY WIDTHS
OF NEW QUARKS AND LEPTONS

This appendix gives formulas for the decay widths of the
lightest of the new quarks and leptons to standard model
states. These decays are assumed to be mediated by
Yukawa couplings that provide small mass mixings that
can be treated as perturbations compared to the other
entries in the mass matrices. In the following, �ðx; y; zÞ ¼
x2 þ y2 þ z2 � 2xy� 2xz� 2yz.

1. Decays of b0 in the LND model

In the LND model, the lightest quark b0 can decay to
standard model states because of the mixing Yukawa pa-
rameter �D in Eq. (5.1). In terms of the mass matrixMd in
Eq. (5.2), define unitary mixing matrices L and R by

L�MdR
y ¼ diagðmb;mb0 Þ: (B1)

The relevant couplings of b0 to standard model particles are

gW
b0ty ¼ gL�

22=
ffiffiffi
2

p
; gZ

b0by ¼ � g

2cW
L�
22L12; (B2)

yh
0

b0 �b ¼ � sinð	ÞðybR12 þ �DR11ÞL22=
ffiffiffi
2

p
; (B3)

yh
0

�b0b ¼ � sinð	ÞðybR22 þ �DR21ÞL12=
ffiffiffi
2

p
: (B4)

It follows that the decay widths of b0 are

�ðb0 ! WtÞ ¼ mb0

32

jgW

b0ty j2�1=2ð1; rW; rtÞ
� ð1þ rt � 2rW þ ð1� rtÞ2=rWÞ; (B5)

�ðb0 ! ZbÞ ¼ mb0

32

jgZ

b0by j2ð1� rZÞ2ð2þ 1=rZÞ; (B6)

�ðb0 ! h0bÞ ¼ mb0

32

ðjyh0

b0 �bj2 þ jyh0�b0bj2Þð1� rh0Þ2; (B7)

where mb is neglected for kinematic purposes and ri ¼
m2

i =m
2
b0 for i ¼ Z, W, h0.

2. Decays of �0
1 in the LND model

Consider the decays of �0
1, the lighter new neutral lepton

in the LND model, brought about by the superpotential
mixing terms �N and �E in Eq. (5.1). Define unitary mixing
matrices Lð3� 3Þ and Rð2� 2Þ in terms of the neutral
lepton mass matrix in Eq. (5.3) by

R�MT
�L

y ¼ 0 m�0
1

0
0 0 m�0

2

 !
(B8)

where we are neglecting the tau neutrino mass. Also define
unitary matrices L0 and R0 in terms of the charged lepton
mass matrix in Eq. (5.4) by

L0�MeR
0y ¼ diagðm�;m�0 Þ: (B9)

Then the relevant couplings of �0
1 to standard model par-

ticles are

gW
�0
1
�y ¼ gðL�

21L
0
11 þ L�

23L
0
12Þ=

ffiffiffi
2

p

gW
��0
1
��y ¼ gR�

11R
0
11=

ffiffiffi
2

p (B10)
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gZ
�0
1
�y ¼ g

2cW
ðL�

21L11 þ L�
23L13Þ (B11)

yh
0

��0
1
� ¼ cos	ffiffiffi

2
p ð�NL13 þ kNL11ÞR12 � sin	ffiffiffi

2
p hNL12R11:

(B12)

It follows that the decay widths of �0
1 are

�ð�0
1 ! W�Þ ¼ m�0

1

32

ð1� rWÞ2ð2þ 1=rWÞ

� ðjgW
�0
1
�y j2 þ jgW

��0
1
��y j2Þ; (B13)

�ð�0
1 ! Z��Þ ¼

m�0
1

32

ð1� rZÞ2ð2þ 1=rZÞjgZ�0

1�
y j2; (B14)

�ð�0
1 ! h0��Þ ¼

m�0
1

32

ð1� rh0Þ2jyh0��0

1
�j2; (B15)

where m� and m��
are neglected for kinematic purposes

and ri ¼ m2
i =m

2
�0
1
for i ¼ Z, W, h0.

3. Decays of t01 in the QUE model

Consider the decays of t01, the lightest new quark in the
QUE model, brought about by the superpotential mixing
terms in Eq. (5.5). Define unitary mixing matrices L, R, L0,
R0 in terms of the mass matrices in Eq. (5.6) by

L�MuR
y ¼ diagðmt;mt01 ; mt02Þ;

L0�MdR
0y ¼ diagðmb;mb0 Þ:

(B16)

Then the relevant couplings of t01 to standard model parti-
cles are

gW
t0
1
by ¼ gðL�

21L
0
11 þ L�

23L
0
12Þ=

ffiffiffi
2

p
;

gW�t0
1
�by ¼ gR�

21R
0
11=

ffiffiffi
2

p
;

(B17)

gZ
t0
1
ty ¼ g

2cW
ðL�

21L11 þ L�
23L13Þ;

gZ�t0
1
�ty ¼ � g

2cW
R�
21R11;

(B18)

yh
0

t01 �t
¼ cos	ffiffiffi

2
p ð�UL23R12 þ �0UL21R13 þ kUL21R12

þ ytL23R13Þ � sin	ffiffiffi
2

p hUL22R11; (B19)

yh
0

�t0
1
t ¼

cos	ffiffiffi
2

p ð�UL13R22 þ �0UL11R23 þ kUL11R22

þ ytL13R23Þ � sin	ffiffiffi
2

p hUL12R21: (B20)

It follows that the decay widths of t01 are

�ðt01 ! WbÞ ¼ mt0
1

32

ð1� rWÞ2ð2þ 1=rWÞ

� ðjgW
t0
1
by j2 þ jgW�t0

1
�by j2Þ; (B21)

�ðt01 ! ZtÞ ¼ mt0
1

32

�1=2ð1; rZ; rtÞ

� ½ð1þ rt � 2rZ þð1� rtÞ2=rZÞ
� ðjgZ

t01t
y j2 þjgZ�t01 �ty j

2Þþ 12
ffiffiffiffi
rt

p
ReðgZ

t01t
yg

Z
�t01 �t

yÞ�;
(B22)

�ðt01 ! h0tÞ ¼ mt0
1

32

�1=2ð1; rh0 ; rtÞ

� ½ð1þ rt � rh0Þðjyh0t0
1
�tj2 þ jyh0�t0

1
tj2Þ

þ 4
ffiffiffiffi
rt

p
Reðyh0�t01ty

h0

t01 �t
Þ�; (B23)

where the bottom quark is treated as massless for purposes
of kinematics and ri ¼ m2

i =m
2
t0
1
for i ¼ t, Z, W, h0.

4. Decays of b01 in the QDEE model

Consider the decays of b01, the lightest new quark in the
QDEE model, brought about by the superpotential mixing
terms in Eq. (5.9). Define unitary mixing matrices R, L, R0,
L0 in terms of the mass matrices in Eq. (5.10) by

R�MdL
y ¼ diagðmb;mb0

1
; mb0

2
Þ;

R0�MuL
0y ¼ diagðmt;mt0 Þ:

(B24)

Then the relevant couplings of b01 to standard model par-
ticles are

gW
b0
1
ty ¼ gðL�

21L
0
11 þ L�

23L
0
12Þ=

ffiffiffi
2

p
;

gW�b0
1
�ty ¼ gR�

21R
0
11=

ffiffiffi
2

p
;

(B25)

gZ
b0
1
by ¼ � g

2cW
ðL�

21L11 þ L�
23L13Þ;

gZ�b01 �b
y ¼ g

2cW
R�
21R11;

(B26)

yh
0

b01 �b
¼ � sin	ffiffiffi

2
p ð�DL23R12 þ �0DL21R13 þ hDL21R12

þ ybL23R13Þ þ cos	ffiffiffi
2

p kDL22R11; (B27)

yh
0

�b0
1
b
¼ � sin	ffiffiffi

2
p ð�DL13R22 þ �0DL11R23 þ hDL11R22

þ ybL13R23Þ þ cos	ffiffiffi
2

p kDL12R21: (B28)

It follows that the decay widths of b01 are
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�ðb01 ! WtÞ ¼ mb0
1

32

�1=2ð1; rW; rtÞ

� ½ð1þ rt � 2rW þ ð1� rtÞ2=rWÞ
� ðjgW

b0
1
ty j2 þ jgW�b0

1
�ty j2Þ

þ 12
ffiffiffiffi
rt

p
ReðgW

b01t
yg

W
�b01 �t

yÞ�; (B29)

�ðb01 ! ZbÞ ¼ mb0
1

32

ð1� rZÞ2ð2þ 1=rZÞ

ðjgZ
b0
1
by j2 þ jgZ�b0

1
�by j2Þ; (B30)

�ðb01 ! h0bÞ ¼ mb0
1

32

ð1� rh0Þ2ðjyh0b0

1
�b
j2 þ jyh0�b0

1
b
j2Þ; (B31)

where the bottom quark is treated as massless for purposes
of kinematics and ri ¼ m2

i =m
2
b01

for i ¼ t, Z, W, h0.

5. Decays of �0 in the QUE and QDEE models

Consider the decays of �0 in the QUE model, brought
about by the superpotential mixing term �E in Eq. (5.7). In
terms of the mass matrix Eq. (5.8), define unitary mixing
matrices L and R by

L�MeR
y ¼ diagðm�;m�0 Þ: (B32)

Then the relevant couplings of �0 to standard model parti-
cles are

gW
�0�y ¼ gL�

22=
ffiffiffi
2

p
; gZ

�0�y ¼ � g

2cW
L�
22L12; (B33)

yh
0

�0 �� ¼ � sinð	ÞL22ðy�R12 þ �ER11Þ=
ffiffiffi
2

p
; (B34)

yh
0

��0� ¼ � sinð	ÞL12ðy�R22 þ �ER21Þ=
ffiffiffi
2

p
: (B35)

It follows that the decay widths of �0 are

�ð�0 ! W�Þ ¼ m�0

32

ð1� rWÞ2ð2þ 1=rWÞjgW�0�y j2; (B36)

�ð�0 ! Z�Þ ¼ m�0

32

ð1� rZÞ2ð2þ 1=rZÞjgZ�0�y j2; (B37)

�ð�0 ! h0�Þ ¼ m�0

32

ð1� rh0Þ2ðjyh0�0 ��j2 þ jyh0��0�j2Þ; (B38)

where ri ¼ m2
i =m

2
�0 for i ¼ Z, W, h0, and m� is neglected

for kinematic purposes. In the QDEE model, the same
calculation holds, provided that ME is replaced by ME1

corresponding to the lighter mass eigenstate m�0 .
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