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We study the effects of fermiophobic scalar/pseudoscalar oblique corrections on bound state energy

levels in muonic atoms. To make the treatment sufficiently general, while including ordinary scalar and

axionlike pseudoscalar fields as special cases, we consider unparticle scalar/pseudoscalar operators with

couplings predominantly to photons. We derive the relevant vacuum polarization functions and comment

on the functional forms of the unparticle Uehling potentials for various scaling dimensions in the point

nucleus and finite nucleus approximations. It is estimated that for an infrared fixed point near the scale of

electroweak-symmetry breaking, in the low TeV range, and natural values for the model parameters, the

energy shifts in the low-lying muonic-lead transitions are typically of the order of a few times 0.1 eV to a

few times 0.01 eV. The energy level structures of the unparticle Uehling shifts are inferred using general

methods for the scalar and pseudoscalar cases and it is shown that the two cases contribute to the energy

shifts with the same sign. It is shown that this conclusion is not changed even when scale invariance is

broken and is in fact relatively insensitive to the scale at which it is broken. It is pointed out nevertheless

that the estimated magnitude of the unparticle Uehling shift (based on some natural values for the model

parameters) is a factor of 1000–10000 below the discrepancy in QED/nuclear theory and precision

muonic-lead spectroscopy from about two decades ago. We briefly comment on scenarios where the

unparticle induced energy shift, if it exists, may be experimentally measurable. One possibility in this

direction is if the UV sector, from which the unparticle sector arises, has a large number of fermions.

Comments are also made on the possibility of further studying muonic atoms, as a probe for beyond-

standard-model physics, in the context of forthcoming experiments, such as those probing lepton flavor

violation through coherent muon-electron conversions. For completeness we explore some of the

astrophysical and cosmological consequences of a fermiophobic scalar/pseudoscalar unparticle sector.

In the fermiophobic context we also estimate a minimum value for the conformal invariance breaking

scale.
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I. INTRODUCTION

Recently there has been much interest in the possibility
of a scale-invariant hidden sector that couples to the stan-
dard model (SM) [1,2]. The operators in such a theory have
been referred to as ‘‘unparticles’’ to emphasize their gen-
erally nonintegral scaling dimensions. In addition to an
n-body phase space resembling that of a nonintegral num-
ber of massless particles, the correlation functions of the
unparticle operators have interesting nontrivial phases [1].
The above properties make this sector distinct from other
beyond-SM extensions.

A model with the above properties was proposed by
Banks and Zaks (BZ) [2]. Their theory was a vectorlike
SUð3Þ gauge theory with Nf fermions in the fundamental

representation. It was found that for a particular range of
Nf, the � function at lowest order is negative [�1ðNfÞ< 0]

while the contribution to the � function at the next order is
positive [�2ðNfÞ> 0] in

�ðgÞ ’ �1ðNfÞ g3

16�2
þ �2ðNfÞ g5

ð16�2Þ2 þ � � � :

This would mean that as the theory flows to lower energies
the small coupling constant g would grow until it hits an
infrared fixed point where

�ðg�Þ ’ 0:

The theory is scale invariant below this scale and the
description in terms of the Banks-Zaks fields at high en-
ergies is replaced by one in terms of composite particles of
a strongly coupled scale-invariant theory. These composite
particles may be identified with the unparticles [1]. We are
interested in exploring the case of a scale-invariant fermio-
phobic unparticle sector that couples only with the mass-
less SM gauge bosons, specifically with a substantial
coupling only to the photon. As we shall see a fermiopho-
bic sector might be able to avoid certain constraints com-
pared to a fermiophilic sector. Also, independent of
considerations in our study there is great interest in a
fermiophobic scalar sector in the context of electroweak-
symmetry breaking and the Higgs mechanism [3]. Our
main focus will be on a fermiophobic sector that couples
predominantly to photons and the effects of the induced
oblique corrections on atomic energy levels in muonic
atoms.*madhav@uchicago.edu
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If one assumes that the scale-invariant unparticle sector
is also conformally invariant, then the scaling dimensions
(j) of the gauge invariant primary unparticle operators are
tightly constrained by requirements of conformal invari-
ance. For an operator in the ðl1; l2Þ Lorentz spin represen-
tation, the constraints are [4–6]

j � l1 þ l2 þ 2� �l1�l2;0:

These bounds translate to

jU � 1; jUf
� 3=2; jUV

� 3;

for the scalar, fermion, and vector unparticle operators,
respectively. These conditions are referred to as Mack’s
unitarity criteria [4]. We will impose these constraints on
the unparticle operators we work with in the present study.
Although it is technically possible for a quantum field
theory to be scale invariant but not conformally invariant,
examples are rare [7].

The unparticle operators in the limit of exact scale
invariance may be considered as a sum over resonances
having a continuous mass distribution with no mass gap
[8]. The Källén-Lehmann spectral density of the unparticle
operator takes the form [1]

�ðs2Þ / ðs2Þj�2:

This implies that for j � 2 the theory becomes very UV
sensitive and may cause singular behavior [9]. This sug-
gests that we only consider operators with j < 2. This is in
conflict with the requirements of Mack’s unitarity for
primary, vector unparticle operators which require j � 3
[9]. Usually in any unparticle model with couplings to SM
fields there must also be additional contact terms between
SM operators as first pointed out in [6]. They are generated
when we integrate out the ultraheavy UV fields (BZ fields,
for example). Without some fine-tuning these terms gen-
erally dominate over the SM-unparticle couplings and
render unparticle phenomenology to be of lesser interest.
In the case of scalar/pseudoscalar unparticles where the
Mack’s unitarity constraint is j � 1 and the scaling dimen-
sion may be very close to unity, these contact interactions
may nevertheless be of lesser importance [6].

Apart from simplicity the arguments above will be our
motivation for considering scalar/pseudoscalar unparticles
(U) in our study. In the subsequent analysis we will useU
to label a generic scalar/pseudoscalar unparticle, O for an

unparticle scalar and ~O for an unparticle pseudoscalar.
Also, we label an ordinary scalar by �, pseudoscalar by
~�, and a generic scalar/pseudoscalar operator by �. The
energy scale of the infrared fixed point (where the theory
becomes scale invariant) is usually denoted by�U and that
at which scale invariance is broken by the parameter�. We
will assume that the unparticle scale is in the low TeV
range near the scale of electroweak-symmetry breaking,
i.e., �U � v. Specifically we will interpret this to mean
�U 2 ½�246 GeV;Oð1Þ TeV�. There are stringent con-

straints on

p �p ! hf ! ��þ X;

where hf is a fermiophobic Higgs, from the CDF and D0

Collaborations at the Tevatron [10]. In our case the cou-
pling of the fermiophobic scalar/pseudoscalar sector to the
fermions and the heavy gauge bosons ðZ0; W�Þ are as-
sumed to be very small or close to zero. Also, the coupling
to the SUð3Þc colored massless gluons is assumed to be
much smaller than the coupling to the photon. In this case
the interaction scale may be in the �U � v range we
consider above, in the low TeV regime, and still be con-
sistent with the collider constraints [11]. Wewill estimate a
lower bound for the scale of � in the fermiophobic un-
particle case later in Sec. III.
Based on all the above arguments we will therefore

consider unparticle scalars and pseudoscalars coupling to
photons with an interaction scale �U � v and satisfying

1 	 jU < 2: (1)

Now if one considers two representative fermiophobic
and fermiophilic effective interaction terms of the form

��j
� UF��F

��; �1�j
c U�

V
�����;

it may be argued based on scaling arguments and dimen-
sional analysis [12] that in general

�c >��:

This seems to imply, for the relevant values of j, that the
coupling to the gauge bosons may lead to larger effects
than the corresponding fermiophilic case [12]. Although
the true niche for probing such effects may be in high
energy colliders (see, for example, [9,11–17], and refer-
ences therein), especially when the interaction scale is
much higher thanOð1Þ TeV, it is still interesting to explore
the effects of a fermiophobic coupling in low-energy ex-
periments. In the fermiophilic case for instance one can put
interesting bounds on the unparticle sector from atomic
parity violation [18].
We are specifically interested in fermiophobic unparticle

contributions to muonic-atom transitions. Although in this
case, unlike atomic parity violation in the fermiophilic case
[18], no symmetry is violated there could be atomic sys-
tems or regions in parameter space where the effect may be
measurable. Also, if the fermiophobic unparticle sector is
such that it has substantial couplings only to photons and
no other gauge bosons, the muonic-atom transitions can
play a unique role in constraining it.
We chose to study fermiophobic unparticle contributions

to muonic-lead transitions. It will be seen in this specific
case that for natural values of the model parameters the
estimated unparticle induced energy shifts in low-lying
muonic-lead atomic transitions may be of the order of a
few 0.1–0.01 eV which is comparable to the bound state
QED corrections from light-by-light scattering and the
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fourth-order Lamb shift to higher orbital angular momen-
tum transitions, respectively. We will comment on cases
where this value may be enhanced or measurable, for
instance, when there is a very large fermion multiplicity
in the UV sector.

Another point is that since oblique corrections may
potentially involve new ‘‘heavy’’ particles running in the
loops we may expect them to be a probe for unparticles
within a wide range of � values. We will discuss this
aspect, in the context of the unparticle Uehling energy
shifts, in more detail in Sec. III. There is also the motiva-
tion that many of the constraints on the couplings of an
unparticle to SM fields [19] are more relaxed in the case of
a fermiophobic sector. We will discuss the case of broken
scale invariance and the requirements for evading astro-
physical and cosmological constraints later in our study.

The scalar/pseudoscalar unparticle propagator in the
limit of exact scale invariance is [1]

Z
d4xeiqxh0jTðOUðxÞOUð0ÞÞj0i

¼ iAj

2 sinðj�Þ ½�ðq2 þ i	Þ�j�2; (2)

where

Aj ¼ 16�5=2�ðjþ 1=2Þ
ð2�Þ2j�ðj� 1Þ�ð2jÞ

with j being the scaling dimension of the unparticle op-
erator. Note that since j is in general a noninteger there is a

nontrivial phase eið2�jÞ� associated with the unparticle
propagator. Also note that in the limit of j ! 1þ there is
no singular behavior and we recover the ordinary scalar/
pseudoscalar propagator. The propagator coefficient
Aj=ð2 sinj�Þ has unit magnitude at j ¼ 1 and diverges

very close to j ¼ 2 where the theory is very UV sensitive.
In the rest of the region its magnitude is below 1.

The case of broken scale invariance may be parame-
trized by introducing an effective mass gap � in the
spectral decomposition leading to the scalar/pseudoscalar
unparticle propagator [15,16]

Z
d4xeiqxh0jTðOUðxÞOUð0ÞÞj0i

¼ iAj

2 sinðj�Þ ½�ðq2 ��2 þ i	Þ�j�2: (3)

� may be thought of as the scale at which conformal
invariance is effectively broken.

Let the fermiophobic unparticle fields be gauge singlets
under the SM gauge group. Then the coupling of the scalar
unparticle to two photons may be incorporated [1] by a
term in the effective low-energy action

S eff
S ¼

Z
d4x

c

4�j
�

OF�
F
�
 þ � � � : (4)

Here . . . denotes terms that are suppressed by higher
powers of the relevant energy scale and which have been
ignored. �� is a scale relevant to the ��O� � coupling

derived from the fundamental unparticle scale �U. The
coefficient c is assumed to be anOð1Þ constant factor. Note
that when the unparticle sector is being generated from a
UV theory (such as the BZ theory) the coefficient of the
above operator goes like [1]

�Oð1Þ
�
�U

MUV

�
dUV

and is in general not of Oð1Þ. Here MUV is the scale of the
UV physics and dUV is the dimension of the UV operator
coupling to F�
F

�
. But if one assumes, for example, that

the scalar unparticle operators Oi are being generated by

the confinement (h ��i�ii ! Oi) of fermions (�i) from the
UV sector (in this case dUV ¼ 3), conservatively, the ‘‘ef-
fective’’ coefficient

c ’ XNf

i¼1

ci � NfOð1Þ
�
�U

MUV

�
dUV

could naturally be of Oð1Þ. The reason is that theoretically
the number of fermionsNf in the UV theory is permitted to

be large and is constrained only by the requirement of
conformal invariance at g�. For example,

33

2
* Nf *

306

38

in the BZ theory [2] and in a recent technicolor inspired
SUðNTÞ � SUðNUÞ model by Sannino and Zwicky [20]

11

�� þ 2
NT * Nf *

11

�� þ 2
NU þ 2;

where the critical anomalous dimension satisfies the uni-
tarity bound �� 	 2. Thus we will interpret the effective
interaction in Eq. (4) as modeling the effects of various

possible unparticle scalar operators (O 
 PNf

i¼1 Oi), in a

semirealistic model, and take the coefficient c�Oð1Þ
without loss of generality. But it is nevertheless important
to keep in mind that apart from notions of naturalness,
nothing excludes a larger value for the coupling, for in-
stance, if there is very large fermion multiplicity (i.e. very
large Nf) in the hidden sector. QCD-like models with a

possibly large number of colors (NC) and fermion flavors
(Nf) is not uncommon, for example, in many string-

inspired models [21].
Similarly the coupling of a pseudoscalar unparticle to

two photons may be modeled by

S eff
PS ¼

Z
d4x

b

4~�j
�

~OF�
 ~F�
 þ � � � ; (5)

where

~F �
 ¼ 1
2	���
F

��:
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~�� is a scale relevant to the �� ~O� � coupling and the

constant b is assumed to be ofOð1Þ. All the assumptions in
the scalar case again hold here. The above may be com-
pared to the chiral anomaly induced �� �0 � � Wess-
Zumino-Witten coupling

S ��� ¼
Z

d4x
�Nce

2

48�2f�
�0F�


~F�
 (6)

leading to

�� ���!q�!0 � ie2

4�2f�
	����k

�l�;

valid in the soft pion limit (here Nc is the number of
‘‘colors,’’ k� and l� are the four-momenta of the two

photons) and the �� � �� ~� vertex (here ~� is a pseudo-
scalar meson like �0, � or �0)

�� ���!Q2!�1 � ie2
�
2f�
Q2

�
	�
��p


	�q�

proposed in [22] for Q2 ¼ �q2 ! �1 and recently con-
sidered in [23] in the context of meson-photon transition
form factors in the charmonium energy range. In the above
expression q� is the four-momentum of the off-shell pho-
ton ��, p
 is the four-momentum of the pseudoscalar

meson ~�, 	� is the polarization vector of the outgoing
on-shell photon �, and f� ’ 93 MeV is the pion constant.

The corrections to muonic-atom transitions due to pho-
ton vacuum polarization are induced by diagrams like
those in Fig. 1. It is our aim to estimate the magnitude of
such contributions to low-lying muonic-atom levels. We
mention, as an aside, that processes such as those in Fig. 1
for the case of low-energy QCD [whereUðkÞ is now again
a pseudoscalar meson like �0 or �] contribute, for in-
stance, to muon (g� 2). Using chiral perturbation theory
based on Eq. (6) and ! vector-meson dominance, in the
relevant range

ffiffiffi
s

p
< 0:6 GeV, a diagram such as that in

Fig. 1 for the �0 is expected to contribute [24]

a�ð�0�;
ffiffiffi
s

p
< 0:6 GeVÞ ¼ ð0:13� 0:01Þ � 10�10:

A similar contribution from the fermiophobic unparticle

sector, for typical model parameter values, is expected to
be very small and within experimental limits, since the
QED kernelKðsÞ [25] has a steep cutoff aroundOð1Þ GeV.
Let us now proceed to calculate the vacuum polarization

functions and estimate the induced effective Uehling po-
tentials for various cases.

II. OBLIQUE CORRECTIONS AND THE
UNPARTICLE UEHLING POTENTIAL

We are primarily interested in possible oblique correc-
tions to the photon propagator due to scalar/pseudoscalar
unparticles as shown in Fig. 1. If they exist we expect such
vacuum polarizations to modify the photon propagator
over the usual SM corrections. These scalar/pseudoscalar
oblique corrections can show up potentially as very tiny
energy shifts in muonic-atom energy levels or in the
anomalous magnetic moment of the muon. As we have
mentioned previously our main focus will be on possible
corrections to the atomic transitions in muonic atoms. We
will first consider the case of perfect scale invariance � !
0. The case when � � 0 will be discussed in Sec. III after
we have determined a minimum value for � in the fermio-
phobic case as dictated by astrophysical and cosmological
constraints.
Using the Feynman rule for Eq. (4) (see, for example,

[26]), the scalar unparticle contribution to the photon
polarization tensor is

i�
�

O ¼ � c2Aj

2�2j
� sinðj�Þ

Z d4k

ð2�Þ4
½q � ðqþ kÞg�� � q�ðqþ kÞ��½q � ðqþ kÞg
� � q�ðqþ kÞ
�

½ðqþ kÞ2 þ i	�½�ðk2 ��2Þ þ i	�2�j
:

This simplifies to the expression

i��

O ¼ i�Oðq2; �2; jÞðq2g�
 � q�q
Þ (7)

with

i�Oðq2; �2; jÞ ¼ � c2Aje
ið2�jÞ��ð3� jÞ

2�2j
� sinðj�Þ�ð2� jÞ

Z
dxdy�ðxþ y� 1Þy1�j

Z d4l

ð2�Þ4
q2ðx� 1Þ2 þ ðl2=2Þ

½l2 � �ðq2; �2Þ þ i	�3�j
; (8)

FIG. 1. Photon vacuum polarization by an unparticle scalar or
pseudoscalar with an arbitrary scaling dimension j. The vertices
are shown with blobs to indicate that they are effective couplings
coming from an effective low-energy action of the form (4) or
(5).
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where

�ðq2; �2Þ ¼ xðx� 1Þq2 þ y�2:

We note that Eq. (7) has the expected gauge invariant
structure and satisfies the Ward identities.

For the pseudoscalar unparticle case the polarization
tensor is

i��

~O

¼ � b2Aj

2~�2j
� sinðj�Þ

Z d4k

ð2�Þ4

� ½	���	���
q�ðqþ kÞq�ðqþ kÞ��
½ðqþ kÞ2 þ i	�½�ðk2 ��2Þ þ i	�2�j

:

This may be simplified to give

i��

~O

¼ i�~Oðq2; �2; jÞðq2g�
 � q�q
Þ; (9)

where

i�~Oðq2; �2; jÞ ¼ þ b2Aje
ið2�jÞ��ð3� jÞ

2~�2j
� sinðj�Þ�ð2� jÞ

�
Z

dxdy�ðxþ y� 1Þy1�j

�
Z d4l

ð2�Þ4
ðl2=2Þ

½l2 � ~�ðq2; �2Þ þ i	�3�j
;

(10)

and again

~�ðq2; �2Þ ¼ xðx� 1Þq2 þ y ~�2:

Regularizing the momentum integral in Eq. (8) using
dimensional continuation yields

�Oðq2; �2; jÞ ¼ � c2Aj

32�2�2j
� sinðj�Þ

Z
dxdy�ðxþ y� 1Þ

� y1�j

�
�ðq2; �2Þ
jðj� 1Þ �j�1ðq2; �2Þ

þ q2ðx� 1Þ2 �
j�1ðq2; �2Þ
ðj� 1Þ

�
: (11)

For the pseudoscalar case, again regularizing via dimen-
sional continuation

�~Oðq2; �2; jÞ ¼ þ b2Aj

32�2 ~�2j
� sinðj�Þ

Z
dxdy�ðxþ y� 1Þ

� y1�j

�~�ðq2; �2Þ
jðj� 1Þ

~�j�1ðq2; �2Þ
�
: (12)

We will address the j ! 1þ limit of the expressions in
Eqs. (11) and (12) later.

The unparticle polarization functions may be renormal-
ized as

�̂Oðq2; �2; jÞ ¼ �Oðq2; �2; jÞ ��Oð0; �2; jÞ;
�̂~Oðq2; �2; jÞ ¼ �~Oðq2; �2; jÞ ��~Oð0; �2; jÞ;

(13)

so that as q ! 0 the residue of the photon propagator tends
to unity.
Note that the nontrivial unparticle propagator phase

eið2�jÞ� does not make an appearance in Eqs. (11) and
(12). It is found from explicit calculation that the phase
is removed during the evaluation of the Euclidean loop
integrals. Therefore the unparticle vacuum polarization
tensor does not have a complex phase from the propagator

contribution and any imaginary part that �̂Uðq2; �2; jÞ
picks up subsequently, if at all, should come from the
kinematic region that q2 occupies.
We may likewise calculate the polarization functions for

ordinary scalars (�) and pseudoscalars ( ~�) with a two-
photon coupling. The ordinary pseudoscalar in this case
may be compared to an axionlike particle (a) coupling to
photons

S a�� ¼
Z

d4x
ga�
4fa

aF�

~F�
;

where the scale fa and the pseudoscalar mass ma are
independent of each other. Substituting j ¼ 1 in Eqs. (8)
and (10) and integrating over the loop momenta using

dimensional regularization we get after an MS subtraction

��ðq2; m2
�Þ ¼

a2

16�2�2
�

Z
dxdy�ðxþ y� 1Þ

�
�
�0ðq2; m2

�Þ log
�0ðq2; m2

�Þ
M2

þ q2ðx� 1Þ2 log�
0ðq2; m2

�Þ
M2

�
;

�~�ðq2; m2
~�
Þ ¼ � ~a2

16�2 ~�2
�

Z
dxdy�ðxþ y� 1Þ

�
�
�00ðq2; m2

~�
Þ log

�00ðq2; m2
~�
Þ

M2

�
:

(14)

Here

�0ðq2; m2
�Þ ¼ xðx� 1Þq2 þ ym2

�;

�00ðq2; m2
~�
Þ ¼ xðx� 1Þq2 þ ym2

~�
;

and we have used the fact, from Eq. (2), that

Aj

2 sinðj�Þ ���!
j!1þ � 1; eið2�jÞ� ���!j!1þ � 1:

M is an arbitrary subtraction scale. It must be mentioned
that this dependence on M will be removed when we
explicitly introduce other higher-order interactions in the
effective Lagrangian. A natural choice is to take M ’
ð��;�~�Þ � v, the energy scale of the relevant interaction.
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The choice would also ensure that in the m� ! 0 limit we
can retain to good approximation, as far as numerical
computations are concerned, just the lowest order terms
in the effective Lagrangian. This is because with this
choice, for the range of q we are interested in (specifically
q & m��), we have q2 logðq2=M2Þ � q2. For instance, in

the analogous case in QCD chiral perturbation theory a
choice of M ’ �QCD � 1 GeV is appropriate and one can

keep to lowest order only the so-called chiral logarithm
term to estimate some of the low-energy QCD effects (see,
for example, [27], and references cited therein). With this
tacitly assumed we proceed to analyze the functional forms
of the Uehling potentials in the cases of interest.

If one is interested in bound states, the modified elec-
tromagnetic four-potential A0

�, due to the vacuum polar-

izations, is given by

A0
�ðxÞ ¼

Z d4q

ð2�Þ4 e
�iq�x½1� �̂ðq2Þ��1Gphoton

�
 ðq2ÞJ 

sourceðqÞ

’
Z d4q

ð2�Þ4 e
�iq�x½1þ �̂ðq2Þ�Að0Þ

� ðqÞ; (15)

where iGphoton
�
 ðq2Þ is the photon propagator, J 


sourceðqÞ is
the source four-current in momentum space, and Að0Þ

� ðqÞ is
the four-vector potential without any vacuum polarization

corrections. As is well known 1� �̂ðq2Þ acts like a di-
electric constant for vacuum

1� �̂ðq2Þ � 	ð!Þ
	0

:

Thus, the imaginary part of the polarization tensor corre-
sponds to the vacuum becoming absorptive. In general,

�̂ðq2Þ ¼ �̂SMðq2Þ þ �̂Uðq2; �2; jÞ þ �̂otherðq2Þ:
In our analysis we are interested in the corrections solely
due to the unparticle contribution�Uðq2; �2; jÞ. We noted
previously that the nontrivial unparticle propagator phase

eið2�jÞ� is effectively canceled during the evaluation of the
loop integrals. From Eqs. (11), (12), and (14), we observe
that for

xðx� 1Þq2 þ y�2 < 0 � Im½�Uðq2; �2; jÞ� � 0;

xðx� 1Þq2 þ ym2
� < 0 � Im½��ðq2; m2

�; jÞ� � 0;

and there is a branch cut starting at q2 ¼ �2 and q2 ¼ m2
�

in analogy with eþ � e� vacuum polarization in QED. We
will approximate an atomic nucleus of charge Z initially as
a static, point source. For a static source of the electromag-
netic field the momentum transfer is spacelike (q2 < 0) and

the polarization tensor �̂Uð� ~q2; �2; jÞ is real which
would imply that there is no absorption in vacuum under
these circumstances.

Approximating an atomic nucleus of charge Z as a static,
point source the electromagnetic 4-current may be calcu-
lated in momentum space to be

J 

sourceðqÞ ’ �Ze�
0�ðq0Þ:

In our convention the charge e is intrinsically negative.
Then the expression for the modified potential becomes

A
0point
0 ð ~rÞ ’ �Ze

Z d3 ~q

ð2�Þ3 e
i ~q� ~r½1

þ �̂ð� ~q2; �2; jÞ�Gphoton
00 ð� ~q2Þ: (16)

The�Uðq2; �2; jÞ contributes to a Uehling potential (in
a way similar to eþ � e� vacuum polarization in QED)
and gives

Vpoint
U ðr; jÞ ’ �Ze

Z d3 ~q

ð2�Þ3 e
i ~q�~r�̂Uð� ~q2; �2; jÞ

�Gphoton
00 ð� ~q2Þ: (17)

This is the correction to the electromagnetic potential due
to fermiophobic, scalar/pseudoscalar unparticle vacuum
polarizations.
By simple dimensional analysis of our expressions in

Eqs. (11) and (12), using Eq. (17), we may expect the
unparticle corrections to the electromagnetic potential in
the limit � ! 0 to be of a functional form

Vpoint
U ðr; jÞ � 1

r2jþ1
(18)

for j � 1. From Eq. (14) for the ordinary scalar/pseudo-
scalar case, in the limitm� ! 0, we infer similarly that the
potential may go dimensionally as 1=r3. This seems to
suggest that, due to the generally nonintegral values of
the scaling dimension j, the fermiophobic unparticle in-
duced potential may have rich functional dependences. We
will have more to say on this issue when we discuss the
j ! 1 limit for unparticle operators in the context of
atomic energy shifts.
We can compare this fermiophobic scenario (where the

correction to the potential is through photon vacuum polar-
izations) to the case of direct unparticle scalar exchange
between charged/uncharged fermions (such a coupling
could be generated radiatively at a higher order from
fermiophobic couplings in the case of the charged parti-
cles) as shown in Fig. 2. In the direct-exchange case
(fermiophilic)

U
point
U ðr; jÞ �

Z d3 ~q

ð2�Þ4 e
i ~q� ~rðq2Þj�2:

Therefore in this scenario we expect the correction to the
potential to go like

Upoint
U ðr; jÞ � 1

r2j�1
: (19)

Of course in the case of broken scale invariance the
direct exchange will be Yukawa suppressed (by the scale
breaking parameter �) leading to a finite range for the
force. We are merely interested in the behavior of the
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direct-exchange potential as a comparison to the vacuum
polarization case. As discussed in Sec. I we will require
1 	 j < 2 to be consistent with the Mack’s unitarity con-
dition and the requirement of UV insensitivity. This imme-
diately implies that for the fermiophobic case under the
point nucleus approximation the potential is always more
singular than 1=r2. This has some implications. We will
look more closely at the sign of the unparticle Uehling
corrections later, but for now let us assume that as r ! 0
the potential energy is negative. Consider an 	 ball, near
r ¼ 0, of radius r	. Then from the uncertainty principle the
mean energy at r	 is

hEi � "2

mr2	
� 2

r2jþ1
	

;

where 2 is a positive constant that is determined from
some explicit computation. We have ð2jþ 1Þ> 2 8 j � 1
and this implies that for arbitrarily small r	, the mean
energy hEi is arbitrarily negative for a negative potential
energy. Therefore the particle must fall to r ¼ 0 signifying
an instability (see, for example, [29]). This may also be
reasoned semiclassically from the criterion that the nega-
tive potential energy must be less singular than the cen-
trifugal term, lðlþ 1Þ=r2 in the Hamiltonian, to have a
stable bound state. Note that for a positive potential energy
(2 < 0) this constraint does not apply. Also note that if we
had not assumed the scale-invariant unparticle sector to be
also conformally invariant, then j � 1 is no longer neces-
sary; nevertheless for a negative potential energy the sce-
nario is still problematic for 8 j > 1=2. In this case even
for j ¼ 1=2 we have to require the condition

2 <
"2

8m

to get a stable bound state as is familiar from quantum
mechanics [29].

Thus it seems, at least preliminarily, that the correction
to the electromagnetic potential in the direct-exchange

case is in general less singular than the fermiophobic
case for any given value of the scaling dimension (j) under
the point nucleus approximation. These expectations are
modified to a large extent by some physical considerations.
The first obvious modification comes from the fact that
near r ¼ 0 the finite size of the atomic nucleus becomes
important and we would have to calculate the correction to
the electromagnetic potential with an appropriate nuclear
density profile. This would soften the singular nature of the
potential near r ¼ 0. One may consider the expression in
Eq. (18) as being roughly valid far away from the atomic
nucleus in which case it may be approximated by a point
source.
More importantly one needs to be careful in the evalu-

ation to get consistent energy shifts as j ! 1þ. From
Eqs. (11) and (12) we see that the j ! 1þ limit is not
continuous. It seems to imply that if one calculates a
potential and an energy shift using the quoted unparticle
polarization functions, the energy shift increases without
bound as one approaches j ¼ 1. This does not seem physi-
cally sensible. In the j ! 1þ limit, maintaining continuity
throughout, one must expect to recover the ordinary scalar

(�) and pseudoscalar ( ~�) situations. This feature seems to
be peculiar to the unparticle vacuum polarization diagram
we are considering and is related to the fact that the
momentum integrals diverge as �2j, where � is some
momentum cutoff, and are only quadratically divergent
when j ¼ 1. In a similar calculation for the fermiophilic
vector unparticle contributing to muon (g� 2) (where the
photon in the loop is now replaced with a vector unparticle)
the relevant momentum integral, for � ! 0, is [13]

m2
��

�2j�2
c

Z d4l

ð2�Þ4
1

½l2 � �Vðq2; m2
��Þ þ i	�4�j

�m2
���j�2

V ðq2; m2
��Þ

16�2�2j�2
c

:

m�� is the muon mass and �c is the interaction scale for

the fermiophilic coupling. The limit j ! 1þ is now con-
tinuous and one obtains

m2
���j�2

V ðq2; m2
��Þ

�2j�2
c

���!j!1þ m2
��

16�2�Vðq2; m2
��Þ

as expected for an ordinary vector particle in the loop (like
the photon).
So to make the expressions (11) and (12) consistent with

the j ! 1þ limit and maintain continuity we will consider

�j�1ðq2; �2Þ
j� 1

!8 jðM2Þj�1 log

�
�ðq2; �2Þ

M2

�
; (20)

where a term that would lead to an infinite energy shift in
the j ! 1þ limit has been subtracted out. Here M is again
an arbitrary scale. As we mentioned previously for the
ordinary scalar/pseudoscalar case a natural and appropriate

FIG. 2. Direct scalar/pseudoscalar unparticle exchange in a
fermiophilic scenario where the unparticles have substantial
fermion couplings. These possibilities are heavily constrained,
especially when � ! 0, by searches for a 5th force, atomic
parity violation, and other experiments [18,19,28].
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choice is to take M��U, the scale of the infrared fixed
point, where the theory becomes scale invariant and the
description is in terms of unparticles. The crude prescrip-
tion in Eq. (20) is the one that we will follow in the present
study to estimate unparticle Uehling shifts for values of j
away from 1 and make the correspondence with the j ¼ 1
case. Note that for j ¼ 1 the prescription gives the ordinary
scalar/pseudoscalar expression. We will be interested
mostly in the case when j is close to 1 where, as we shall
see in the next section, the unparticle induced atomic
energy shifts have their maximum values. Also, as men-
tioned in Sec. I, very close to j ¼ 1 the SM-SM contact
terms are relatively less important numerically compared
to the case when j is very far from unity [6]. We may
therefore be optimistic that the above prescription will
certainly capture the essential features of the unparticle
Uehling shifts in the interesting region near j ¼ 1.

In the � ! 0 limit we may factor out the q dependent
terms in Eqs. (11) and (12). Performing the integration over
the Feynman variables we may show that the polarization
functions for the scalar and pseudoscalar unparticles are
exactly equal 8 j:

�Oð� ~q2; 0; jÞ ¼ �~Oð� ~q2; 0; jÞ
assuming b ¼ c and �� ¼ ~��. For the ordinary scalar/

pseudoscalar cases this equality may be understood readily
in terms of the optical theorem. One consequence of our
approximation in Eq. (20) is that this relation is no longer
exact when j is sufficiently far from unity. We will there-
fore retain both the scalar and pseudoscalar expressions in
all our analyses.

Let us now perform the analysis incorporating the finite
extent of the nucleus. Assuming a static situation we have

�A0ð ~rÞ ¼
Z d3 ~q

ð2�Þ3 e
i ~q� ~r�̂Uð� ~q2; �2; jÞGphoton

0� ð� ~q2Þ
� J �

sourceð ~qÞ:
Let

J 0
sourceð ~rÞ ¼ �ð ~rÞ ¼ �ZefðrÞ;

where fðrÞ is a suitable function, which we assume to be
spherically symmetric for simplicity, describing the nu-
clear charge density profile. It must be suitably normalized
such that

Z
d3 ~rfðrÞ ¼ 1:

With this choice one may now perform the integration over
the angular variables to obtain

�A0ð ~rÞ ¼ VUðrÞ

’ �Ze
Z dj ~qj

2�2

sinðj ~qjrÞ
ðj ~qjrÞ �̂Uð� ~q2; �2; jÞ~fðj ~qjÞ;

(21)

where

~fðj ~qjÞ ¼
Z

d3 ~rei ~q� ~rfðrÞ: (22)

We will choose a simple Gaussian nuclear charge den-
sity profile

fðrÞ ¼ f0e
�r2=ð2�Þ (23)

with

f0 ¼ 1

ð2��Þ3=2

to give the correct normalization. Note that at r ¼ ffiffiffiffiffiffi
2�

p
the

nuclear charge density is 1=e times its value at the origin.
The Gaussian nuclear profile may be considered to be an
approximation to a more realistic two-parameter Fermi
distribution. Usually the Gaussian density profile is con-
sidered more appropriate for light nuclei [30]. In the next
section we will see that we are interested in studying
muonic lead, which is not a light nucleus. Nevertheless
even with the simplistic choice of a Gaussian profile we
may expect the analysis to capture all the main features of
the finite lead nucleus. With this ansatz, for the nuclear
profile, we expect any deviation from the actual case to be
of Oð1Þ and hence comparable to our ignorance about the
factors c, b in the effective Lagrangian. The main reason
for choosing a Gaussian profile is to simplify the subse-
quent analysis. The choice would also help us glean sim-
pler analytic results which otherwise would have been
more intractable and subject to numerical methods solely.
As previously mentioned for now we will assume exact

scale invariance and set � ! 0. We will comment on this
aspect later in Sec. III and will incorporate a nonzero � at
that time. It will be seen that the main conclusions are not
drastically changed for the case of broken scale invariance.
Defining the dimensionless variable z ¼ j ~qjrwe may write
Eq. (21) for the two cases, using Eqs. (11) and (12), as

VOðr; jÞ ¼
Zec2Aj

64�4�2j
� sinðj�Þ

Z 1

0
dxdy�ðxþ y� 1Þy1�jð1� xÞ½ð1þ jÞx� j� ðM

2Þj�1

jr3

�
Z 1

0
dzz sinze��z2=ð2r2Þ

�
logðxð1� xÞÞ þ log

z2

M2r2

�
; (24)
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V ~Oðr; jÞ ¼ � Zeb2Aj

64�4 ~�2j
� sinðj�Þ

Z 1

0
dxdy�ðxþ y� 1Þ½xð1� xÞy1�j� ðM

2Þj�1

jr3

�
Z 1

0
dzz sinze��z2=ð2r2Þ

�
logðxð1� xÞÞ þ log

z2

M2r2

�
: (25)

One may now perform the integration over the dimensionless parameter z and the Feynman variables. The result may
be expressed in terms of the exponential function and the generalized hypergeometric function Fp

q ½ða1; . . . ; apÞ;
ðb1; . . . ; bqÞ;w� in a compact form

VOðr; jÞ ¼ � Zec2

64�4

�
B1ðjÞ e

�r2=2�

�3=2
þ B2ðjÞ r

2e�r2=2�

�5=2
F2
2½ð1; 1Þ; ð2; 5=2Þ; r2=ð2�Þ�

�
;

V ~Oðr; jÞ ¼ � Zeb2

64�4

�
~B1ðjÞ e

�r2=2�

�3=2
þ ~B2ðjÞ r

2e�r2=2�

�5=2
F2
2½ð1; 1Þ; ð2; 5=2Þ; r2=ð2�Þ�

�
:

(26)

B1ðjÞ, B2ðjÞ, ~B1ðjÞ, and ~B2ðjÞ are functions of the scaling dimension j and are given by

B1ðjÞ ¼ �
ffiffiffiffi
�

p
AjðM2Þj�1ffiffiffi
2

p
�2j

� sinj�

�
2þ jðj� 2Þð2j� 7Þ � ðj� 4Þðj� 3Þð1þ jðj� 3ÞÞH½3� j�

jðj� 4Þ2ðj� 3Þ2

�
�

j2 � 3jþ 1

jðj� 4Þðj� 3Þ
�
logð2M2�e�E�2Þ

�
;

B2ðjÞ ¼ �
ffiffiffiffi
�

p
AjðM2Þj�1

3
ffiffiffi
2

p
�2j

� sinj�

� �j2 þ 3j� 1

jðj� 4Þðj� 3Þ
�
;

(27)

~B1ðjÞ ¼ �
ffiffiffiffi
�

p
AjðM2Þj�1ffiffiffi
2

p
~�2j
� sinj�

��5þ jð5� jÞ þ ðj� 4Þðj� 3ÞH½4� j�
jðj� 4Þ2ðj� 3Þ2 þ

�
1

jðj� 4Þðj� 3Þ
�
logð2M2�e�E�2Þ

�
;

~B2ðjÞ ¼ �
ffiffiffiffi
�

p
AjðM2Þj�1

3
ffiffiffi
2

p
~�2j
� sinj�

�
1

jðj� 4Þðj� 3Þ
�
;

(28)

where �E is the Euler-Mascheroni constant and H½n� is the
nth harmonic number given by

P
n
k¼1ð1=kÞ for integral

values of n and by the Euler integral representation

H ½n� ¼
Z 1

0
dx

1� xn

1� x

for n =2 þZ. Note that
ffiffiffi
�

p
has dimensions of length and

hence the above expressions for the potentials have the
expected dimensions.

The functional forms of the potential energies in the
pseudoscalar unparticle case, eV ~Oðr; jÞ, for two different

values of the scaling dimension j are shown in Fig. 3. The
profile indicates that for the pseudoscalar unparticle the
potential energy is negative. It is seen that the singular
nature of the unparticle Uehling correction, near r ¼ 0, has
been eliminated by taking into account the finite size of the
nucleus. We will explore in more detail the sign of the
unparticle potential energies shortly.

The unparticle Uehling potential would cause a small
energy shift in the atomic energy levels. The energy level
structure in a bound system may be deduced (without
explicitly calculating all the energies) by studying the

FIG. 3. Potential energies in muonic lead for the pseudoscalar
unparticle case based on Eq. (25), assuming perfect scale invari-
ance � ! 0, for j ¼ 1:01 (dashed line) and 1.15 (short-dashed
line). We have taken b ’ Oð1Þ, � ’ 4 fm2 (to model the case of a
�� � Pb20882 nucleus) and adopted a reference value for the

interaction scale ~�� � 246 GeV. Note that the potential goes

to zero very rapidly away from r ¼ 0 and has a constant value at
the origin implying that there is no singular behavior.
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relevant potential [31]. We will apply some of these meth-

ods to study the level structure of the energy shifts (�EU)
due to unparticle Uehling potentials (24) and (25).

A general result [32] is that for a potential VðrÞ depend-
ing on

er2VðrÞ � e

r2
d

dr

�
r2
dVðrÞ
dr

�
⪌ 0;

the energy levels are ordered as

Eðn; lÞ ⪌ Eðn; lþ 1Þ:
Here n is the principal quantum number and l is the angular
momentum quantum number. Note that for the simple
Coulomb potential r2VðrÞ ¼ 0 for nonzero r and gives
the familiar result that energy levels depend only on the
principal quantum number n. For the unparticle Uehling
potentials being considered we see that the situation may
be complicated somewhat by the fact that for the finite
nucleus the Laplacian of the potential energy may change
sign. Thus strictly speaking we must consider if

her2VUðr; j; �2Þin;lþ1 ⪌ 0: (29)

Here the averaging h� � �in;lþ1 is over the relevant (n, lþ 1)

wave function [32]. Depending on the sign of the above
expression we would have a relation between the unpar-
ticle induced energy shifts

�EUðn; l; j; �2Þ ⪌ �EUðn; lþ 1; j; �2Þ:
Let us proceed to study the Laplacian of the potentials in

Eqs. (24) and (25). As mentioned before we will consider
the case of � ’ 0 presently and concentrate on the low-
lying states, i.e. states near r ¼ 0. It is noted, from
Eqs. (27) and (28), that for both the scalar and pseudoscalar
unparticle potentials

B1ðjÞ; B2ðjÞ> 0; ~B1ðjÞ; ~B2ðjÞ> 0

for 8 j 2 ½1; 2Þ. It is also seen that

B1ðjÞ � B2ðjÞ; ~B1ðjÞ � ~B2ðjÞ:
Thus we infer that both pseudoscalar and scalar unparticle
Uehling potential energies are negative 8 j 2 ½1; 2Þ. This
reaffirms the indications from Fig. 3. It also means, as
indicated by the B1ðjÞ and ~B1ðjÞ coefficients, that the first
term in the unparticle Uehling potential dominates over the
second term. The Laplacians of the Uehling potentials in
Eq. (26) are given by

er2VOðr; j; 0Þ ¼ �Ze2c2

64�4

�
B1ðjÞ e

�ðr2=2�Þ

�7=2
ðr2 � 3�Þ þ B2ðjÞ e

�ðr2=2�Þ

r�9=2

�
12r�2 � 3er

2=2�
ffiffiffiffiffiffiffi
2�

p
�5=2Erf

�
rffiffiffiffiffiffi
2�

p
�

þ r3ðr2 � 3�ÞF2
2½f1; 1g; ð2; 5=2Þ; r2=ð2�Þ�

��
;

er2V ~Oðr; j; 0Þ ¼ �Ze2b2

64�4

�
~B1ðjÞ e

�ðr2=2�Þ

�7=2
ðr2 � 3�Þ þ ~B2ðjÞ e

�ðr2=2�Þ

r�9=2

�
12r�2 � 3er

2=2�
ffiffiffiffiffiffiffi
2�

p
�5=2Erf

�
rffiffiffiffiffiffi
2�

p
�

þ r3ðr2 � 3�ÞF2
2½f1; 1g; ð2; 5=2Þ; r2=ð2�Þ�

��
;

(30)

where Erf½z� is the error function defined as

Erf ½z� ¼ 2ffiffiffiffi
�

p
Z z

0
dte�t2 :

The Laplacians of the unparticle Uehling potentials corre-
spond to vacuum charge densities created by the unpar-
ticles

�VP
O ðr; jÞ ¼ �	0r2VOðr; j; 0Þ;

�VP
~O
ðr; jÞ ¼ �	0r2V ~Oðr; j; 0Þ:

Since the potentials in Eq. (26) fall off faster than 1=r (as
r ! 1) the net, unparticle induced, vacuum charge van-
ishes trivially

QVP
U ¼

Z
d3r�VP

U ðr; jÞ ¼
Z

d3r½�	0r2VUðr; j; 0Þ�

¼ �	0 lim
R!1

I
R
d ~� � ~rVUðr; j; 0Þ ¼ 0

as we should expect.
Now from our analytical expressions it is observed, as

mentioned above, that for typical values of the scaling
dimension j and radial coordinate r, the first term in the
unparticle Uehling potential dominates. It is seen from
Eq. (30) that the first term changes sign at r ¼ ffiffiffiffiffiffi

3�
p

.
Thus we may suspect that the sign of the Laplacian for
the complete Uehling potential would also be dominated
by the sign of the first term. Therefore we have for both the
potentials

er2VOðr; j; 0Þ _ 0 8 r +
ffiffiffiffiffiffi
3�

p
;

er2V ~Oðr; j; 0Þ _ 0 8 r +
ffiffiffiffiffiffi
3�

p
:

(31)
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These expectations are confirmed by explicit numerical
computations where it is found that the Laplacian of the
unparticle Uehling potential indeed changes sign at

ffiffiffiffiffiffi
3�

p
.

We are interested in the low-lying atomic states which
will have relatively large energy shifts due to the unparticle
Uehling corrections. The higher angular momentum
(p; d; . . . ) wave functions are spread out from the origin.
Specifically, it is seen that they are mainly nonzero for r >ffiffiffiffiffiffi
3�

p
for semirealistic values of � that will model an atomic

nucleus (for example, � ’ 4 fm2 for the lead nucleus).
From Eq. (29) we therefore note that due to this, the sign
of hr2VUðr; j; �2Þin;lþ1 will be dominated by the sign of

the Laplacian in the region r >
ffiffiffiffiffiffi
3�

p
. Thus for the unpar-

ticle scalar and pseudoscalar Uehling potentials

her2VOðr; j; �2Þin;lþ1 < 0;

her2V ~Oðr; j; �2Þin;lþ1 < 0:
(32)

This implies that in the case of perfect scale invariance we
have

�EOðn; l; j; 0Þ< �EOðn; lþ 1; j; 0Þ;
�E

~Oðn; l; j; 0Þ< �E
~Oðn; lþ 1; j; 0Þ:

(33)

This would mean that if wewere looking specifically at l ¼
0, 1, and 2 states near r ¼ 0, the unparticle Uehling cor-
rections would be ordered as

�EO
n;sðjÞ< �EO

n;pðjÞ< �EO
n;dðjÞ;

�E
~O
n;sðjÞ< �E

~O
n;pðjÞ< �EO

n;dðjÞ:
We will explore the level structure of the unparticle
Uehling shifts in the next section and confirm explicitly
the general results above.

III. MUONIC ATOMS AND ENERGY SHIFTS

Muonic atoms are created when muons are stopped in
matter [33]. The muon initially undergoes scattering and
as it loses energy it may be captured by one of the atoms in
a higher orbital. From here it cascades down, via
various processes, to the innermost orbits where it persists
until decay. The whole cascade process is expected to
occur within �10�9–10�12 s and the muon spends
�10�7–10�6 s in the inner orbits until decay. During
cascade and its time in the innermost orbits we may probe
the energy levels of the system (see [34] and references
therein, for instance).

Muonic atoms are especially suited for probing the
effects of oblique corrections to the photon propagator
[33,34]. In the QED induced hydrogenic Lamb shift [35]
the 2s1=2 state is found to lie above the 2p1=2 state by

�Etotal
Lamb ¼ E2s1=2 � E2p1=2

’ 1058 MHz;

which corresponds to about 4:4� 10�6 eV. The QED
vacuum polarization contribution to the Lamb shift [36]

on the other hand is found to be

�EVP
Lamb ¼ E2s1=2 � E2p1=2

’ �27:1 MHz:

For later comparison to the unparticle case we note that the
above eþ � e� vacuum polarization contribution is about
1� 10�7 eV. Thus in ordinary atoms the vacuum polar-
ization effects (oblique corrections) contribute less signifi-
cantly than the other QED corrections. Things are
dramatically different in the case of muonic atoms owing
to the much higher mass of the muon compared to the
electron. Now, the energy shift due to vacuum polarization
may be related to the Uehling correction �Vð~rÞ as

�EVP
nl ¼

Z
d3r��

nlð~rÞe�Vð ~rÞ�nlð ~rÞ: (34)

We are specifically interested in the low-lying atomic
states, and the S and P states are particularly attractive
since the modification to the potential, as we saw previ-
ously, mostly occurs near r ¼ 0 and falls off sharply as one
goes away from the center. Taking the wave function
�nlð~rÞ, to lowest order, to be the Schrödinger wave func-
tion we note that near r ¼ 0

j�e�
nl j2 �m3

e� :

Thus we expect that in muonic atoms, where an electron in
the inner orbital is replaced by a muon, the energy shift due
to oblique corrections would be enhanced as

�E��
nl ’

�
m��

me�

�
3
�Ee�

nl :

Putting the masses in, ðm��=me�Þ3 ’ 107. This is a huge

enhancement to the vacuum polarization contribution. In
fact, it is found that in muonic hydrogen the 2s1=2 state lies
below the 2p1=2 level with QED vacuum polarization

contributing about 206 meV compared to about 0.6 meV
from other QED corrections [34]. Another way to under-
stand this enhancement is by looking at the wave function
profiles in muonic atoms and noting that the wave function
penetrates into the nucleus much more than in the electron
case. In all our numerical computations we use the hydro-
genic Schrödinger wave functions to lowest order, with
me� replaced everywhere with m�� and taking the appro-

priate value for the atomic number Z. One must in principle
use the bound state solutions to the Dirac equation but for
the purposes of our estimations the Schrödinger wave
functions are sufficient. One aspect that we would like to
point out though is that the bound state solutions to the
Dirac equation are more localized near r ¼ 0 compared to
the Schrödinger wave functions and hence will in general
yield a slightly higher estimate for the corrections to the
energy levels. Any error that comes from this simplifica-
tion will be at most an Oð1Þ factor and similar to our
ignorance regarding the coefficients in the Lagrangian or
the interaction scales. Thus all calculated energy shifts in
our study must be interpreted as accurate only up to
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undetermined Oð1Þ factors to accommodate our ignorance
of the interaction scales, coefficients, and other approxi-
mations we have made.

The typical binding energy of an atom with atomic
number Z goes as

Ebound � Z2:

But from Eq. (34) we see that

�EVP
nl � Z4;

since

j�nlj2 � Z3; �Vð ~rÞ � Z:

Based on the above expressions we expect

�EVP
nl

Ebound

� Z2:

This motivates the reason for choosing a high Z system
while probing for the existence of tiny unparticle induced
energy shifts.

Based on the above considerations two very favorable
systems for probing unparticle vacuum polarization in-
duced energy shifts are muonic mercury (�� � Hg20080 )

and muonic lead (�� � Pb20882 ). We will choose as our

reference system muonic lead. With ZPb ¼ 82 and APb ¼
208, some of the relevant scales in the muonic-lead system
are

m�� ’ 0:1 GeV; ���
Compton ’ 12 fm;

r�
�

Bohr ’ 3 fm; rPbnucleus 
 R0A
1=3
Pb ’ 7 fm;

where R0 ’ 1:2 fm. From these crude estimates we see that
the muonic Bohr radius in lead is much smaller than the
extent of the lead nucleus or the muonic Compton wave-
length and hence the muonic wave function will penetrate

into the nucleus to a large extent compared to electronic
wave functions. This results in an enhancement of the
Uehling energy shift as we argued previously. It also
implies that finite nuclear effects would be much more
important in the low-lying states of muonic atoms, espe-
cially the muonic-lead system we are considering [37,38].
Another point to note is that for lead, with Z ¼ 82, the

parameter �Z used in perturbative QED calculations is no
longer small. This makes the QED calculations more com-
plicated and leads to larger theoretical uncertainties.
Table I shows some of the QED corrections to the low-
lying states of muonic lead. The interested reader is re-
ferred to theoretical details in [34] and references therein.
Similarly the various finite nuclear effects can be quan-

tified to a large extent in muonic Pb20882 (see [37–39], for

example). In Table II we give the current estimates of
nuclear polarization (NP) effects in �� � Pb20882 for three

different models of transition densities as quoted in [39].
It was noted in the past that there is a discrepancy in the

�2p and �3p NP calculations with results from muonic-
lead spectroscopy [40,41]. This discrepancy seems to have
been partially tackled in the work of A. Haga et al. [39] and
the current discrepancy for �2p is in the ballpark of about
50 eV as shown in Table III.
Historically the spectroscopic information from low-

lying muonic-lead transitions was used to constrain pa-
rameters in the theoretical nuclear calculations. In Table IV
the results of precision measurements on some of the low-
lying transitions in muonic lead are shown. It is noted that
the experimental uncertainties are typically of the order of
a few tens of eV.
As suggested by Fig. 3 the states 1S and 2S are most

affected by the unparticle Uehling potential. A transition
from 1S to 2S is nevertheless forbidden due to the electric
dipole selection rule �l ¼ �1. That leaves the possibility
of a transition to an l ¼ 1 state that might still be sensitive

TABLE I. QED corrections, in eV, for the low-lying states in �� � Pb20882 (see [34,39] and references therein).

QED corrections 1s1=2 2s1=2 2p1=2 2p3=2 3p1=2 3p3=2 3d3=2 3d5=2

Electronic Uehling and Källén-Sabry �67 864 �19 537 �32 648 �30 082 �10 871 �10 334 �10 605 �9941
Electronic Wichman-Kroll 492 244 348 335 160 160 186 180

Muonic Uehling corrections �248 �43 �45 �34 �14 �11 �1 �1
Leading self-energy corrections 3220 696 348 649 149 224 �44 51

Higher-order self-energy corrections 153 25 65 58 21 20 8 6

Electron screening �5 �25 �13 �13 �52 �54 �37 �39
Recoil correction �382 �87 �111 �95 �30 �26 �15 �14

TABLE II. Estimates of the NP effects (eV) in �� � Pb20882 taken from [39]. The gauge dependences are shown in brackets.

Nuclear polarization corrections 1s1=2 2s1=2 2p1=2 2p3=2 3p1=2 3p3=2 3d3=2 3d5=2

TGT model �2727ð4Þ �463ð1Þ �1357ð7Þ �1425ð9Þ �561ð4Þ �749ð1Þ �226ð0Þ �43ð0Þ
RIN model �3599ð10Þ �611ð4Þ �1590ð10Þ �1656ð10Þ �690ð3Þ �914ð1Þ �239ð0Þ �42ð0Þ
JS model �5721ð28Þ �930ð8Þ �2178ð13Þ �2214ð7Þ �929ð3Þ �1179ð2Þ �280ð0Þ �38ð0Þ
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to the unparticle Uehling effect. We will consider, as the
prototypical low-lying muonic transition, excitations be-
tween 1S and 2P. Based on a direct fit to muonic-lead
transition energy data (including higher level transitions),
keeping the variables in the Fermi distribution as free
parameters, one may obtain an estimate for the discrepancy
between theory and experiment in the 1S� 2P transition
in �� � Pb20882 [41] as

�EExp½1s1=2 � 2p1=2� � �ECalc=Fit½1s1=2 � 2p1=2�
’ 227 eV;

�EExp½1s1=2 � 2p3=2� � �ECalc=Fit½1s1=2 � 2p3=2�
’ �89 eV:

(35)

This estimate is a very conservative one based on a direct
fit [41] with a very poor �2=d:o:f ¼ 187. We will take the
above estimate as a crude measure of the discrepancy
between measurement and calculation. It should be noted
also that the NP values used in Eq. (35) are obtained
keeping the variables in the Fermi distribution as free
parameters and are therefore not completely theoretical.

We will see shortly that, for typical values of the model
parameters, this makes the identification of any possible
unparticle Uehling corrections in �� � Pb20882 extremely

difficult since the magnitude of any such correction will be
found to be well below the NP uncertainties. This would
imply that any unparticle Uehling correction if present may
not probably be unambiguously seen due to the data-fitting
procedure required to extract information for the theoreti-

cal nuclear calculation in �� � Pb20882 , unless we can ob-

tain such information independently.
There are two scenarios where these conclusions could

get modified. The first, as we commented on earlier in
Sec. I, is if the UV sector has a very large fermion multi-
plicity (large Nf) which increases the total contribution

from the fermiophobic unparticle sector. The second is
muonic atoms with intermediate Z which may be more
amenable to nuclear polarization calculations.
We now proceed to analyze the 1S� 2P level correc-

tions in various cases of interest.
Let us first consider the case of ordinary scalars (�) and

pseudoscalars ( ~�). The relevant corrections to the electro-
magnetic potential are obtained from expressions in
Eq. (14). In this case we find that the energy shift due to
scalar oblique corrections is

�E�
nl ¼

Z
d3rj���

nl ð~rÞj2e�V�ð ~rÞ

¼ � ZPbe
2a2

16�2�2
�

Z
d3rj���

nl ð~rÞj2

�
Z d3 ~q

ð2�Þ3 e
i ~q� ~rð ~q2Þ�1 ~fð ~qÞ

�
Z 1

0
dxf�0ðq2; m2

�Þ � ~q2ðx� 1Þ2g log�
0ðq2; m2

�Þ
M2

;

(36)

where

�0ðq2; m2
�Þ ¼ xðx� 1Þq2 þ ð1� xÞm2

�

and m� is the mass of the scalar as before.

For the pseudoscalar case similarly

�E
~�
nl ¼ þ ZPbe

2~a2

16�2�2
~�

Z
d3rj���

nl ð ~rÞj2

�
Z d3 ~q

ð2�Þ3 e
i ~q�~rð ~q2Þ�1 ~fð ~qÞ

�
Z 1

0
dx�00ðq2; m2

~�
Þ log

�00ðq2; m2
~�
Þ

M2
(37)

and

�00ðq2; m2
�Þ ¼ xðx� 1Þq2 þ ð1� xÞm2

~�
:

m ~� denotes the mass of the pseudoscalar. Let us consider

the case when m� ¼ 0 and m ~� ¼ 0. With this choice the

above expressions may be evaluated numerically to calcu-
late the energy shift in the muonic-lead 1S� 2P transition.
We take a, ~a ’ 2 and adopt the reference value �� �
246 GeV with a renormalization scale M ’ ��. With
these parameters the magnitude of the energy shift in the
1S� 2P transition for m� ¼ 0 is estimated to be

TABLE III. Comparison of �p splittings (keV) in �� � Pb20882

[39] based on the QED results in Table I and NP calculations in
Table II.

�� � Pb20882 level TGT RIN JS Exp.

2p3=2 � 2p1=2 184.858 184.846 184.829 184.788(27)

3p3=2 � 3p1=2 47.231 47.208 47.225 47.197(45)

TABLE IV. Precision measurements on some of the low-lying
�� � Pb20882 transitions [40,41].

Muonic transition Energya (keV) Energyb (keV)

2p3=2 $ 1s1=2 5962.770(420) 5962.854(90)

2p1=2 $ 1s1=2 5777.910(400) 5778.058(100)

3d3=2 $ 2p1=2 2642.110(60) 2642.332(30)

3d5=2 $ 2p3=2 2500.330(60) 2500.590(60)

3d3=2 $ 2p3=2 2457.200(200) 2457.569(70)

3p3=2 $ 2s1=2 1507.480(260) 1507.754(70)

3p1=2 $ 2s1=2 � � � 1460.558(32)

2s1=2 $ 2p1=2 1215.430(260) 1215.330(30)

2s1=2 $ 2p3=2 1030.440(170) 1030.543(27)

aD. Kessler et al. (1975).
bP. Bergam et al. (1988).
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�E�
2p�1s ¼ j�E�

2p � �E�
1sj ’ j�E ~�

2p � �E
~�
1sj

’ 0:140 eV�Oð0:1Þ eV: (38)

It is found that the correction to the transition, from the SM
value, is positive for both scalars and pseudoscalars. The
above estimate may be enhanced due to a large multiplicity
in the UV fermion sector and is not uncommon in many
string-inspired QCD-like models [21] as we commented
earlier.

Let us consider the same calculation for an unparticle
scalar/pseudoscalar of scaling dimension j. We parame-
trize j as a deviation from the ordinary scalar/pseudoscalar
case by putting

j ¼ 1þ �:

As argued in Sec. I we require 0 	 �< 1. Then the energy
shifts due to the scalar and pseudoscalar unparticle oblique
corrections are, respectively,

�EO
nlðjÞ ¼

ZPbe
2c2Aj

2�2j
� sinðj�Þ

Z
d3rj���

nl ð~rÞj2

�
Z d3 ~q

ð2�Þ3 e
i ~q�~rð ~q2Þ�1 ~fð ~qÞ

�
Z

dxdy�ðxþ y� 1Þy1�j ðM2Þj�1

ð4�Þ2

�
�
� ~q2ðx� 1Þ2 log�ðq2; �2Þ=M2 þ �ðq2; �2Þ

� log�ðq2; �2Þ=M2

ð1þ �Þ
�
; (39)

�E
~O
nlðjÞ ¼ � ZPbe

2b2Aj

2~�2j
� sinðj�Þ

Z
d3rj���

nl ð ~rÞj2

Z d3 ~q

ð2�Þ3 e
i ~q�~rð ~q2Þ�1 ~fð ~qÞ

�
Z

dxdy�ðxþ y� 1Þy1�j ðM2Þj�1

ð4�Þ2

�
�
~�ðq2; �2Þ log

~�ðq2; �2Þ=M2

ð1þ �Þ
�
; (40)

where �ðq2; �2Þ and ~�ðq2; �2Þ are as defined earlier in
Sec. II.

The energy shift in the 1S� 2P transition in muonic
lead may now be calculated as

�EO
2p�1s ¼ �EO

2p � �EO
1s; �E

~O
2p�1s ¼ �E

~O
2p � �E

~O
1s;

using Eqs. (39) and (40) with the nuclear profile of
Eq. (23). The results of the numerical computation, for
� ! 0, are shown in Fig. 4. We observe from the plot that
the energy shift due to pseudoscalar unparticle vacuum
polarization is generally smaller in magnitude than the
corresponding scalar case assuming other parameters are

identical. This is probably an artifact of our approximation
in Eq. (20) as we commented previously. As one ap-
proaches j ! 1þ though the energy shifts due to scalar
and pseudoscalar cases start to approach the same value of

�EU
2p�1s ’ 0:14 eV as expected. Note also that in the j !

1þ limit the ordinary scalar/pseudoscalar case is recovered
in a continuous manner.
Therefore, it may be claimed that for � ! 0 the typical

shift in the 1S� 2P muonic-lead transition due to the
unparticle Uehling potential is in the Oð0:1Þ eV range
with reasonable assumptions about the parameters in the
theory. This energy shift, if it exists, is similar in magnitude
to QED corrections from the virtual Delbrück effect (light-
by-light scattering), to higher angular momentum transi-
tions, in �� � Pb20882 [34]. For example, the virtual

Delbrück effect contributes

�EDelb
6h�5g ’ 0:4 eV

in �� � Pb20882 . The unparticle induced energy shift may

also be compared to the vacuum polarization contribution
in the hydrogenic Lamb shift which is in the 10�7 eV range
(ordinary hydrogen) or eV range (muonic hydrogen). From
Eq. (35) we see nevertheless that the discrepancy between
measurement and theory of the 2p1=2 � 1s1=2 and 2p3=2 �
1s1=2 muonic-lead transitions is in the range of many eV

[40,41]. This means that the estimated energy shift is about
102–103 times smaller than the discrepancies quoted in
Eq. (35). We will analyze a more realistic scenario with
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FIG. 4 (color online). Estimates on the magnitude of the
energy shift j�EU

2p � �EU
1s j due to possible scalar/pseudoscalar

unparticle vacuum polarizations. We have taken � ’ 0, b ¼ c�
Oð1Þ and ��,

~�� � 246 GeV as the reference value at the

renormalization scale M ’ �U ’ ��,
~��. As we have men-

tioned previously the quoted values for the Uehling shifts should
be interpreted as being accurate only up to Oð1Þ factors to
accommodate suitable ranges for the interaction scales and other
approximations. It is clear from the plot that the Uehling shifts
from Eqs. (39) and (40) can under very general scenarios be in
the ballpark of a few times 0.1 eV.
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� � 0 later and will note then that the main features are
not drastically modified from the simplistic � ! 0 case.

It is also seen from the plot that the energy shift is very
nearly linear, with respect to the scaling dimension j, for
values of j close to 1. In fact it may be verified analytically
from Eqs. (36), (37), (39), and (40) that for j ¼ 1þ � with
�  1 we may expand

�E�
nl � �EU

nl ðjÞ � C1�þ C2�
2 þ C3�

3 þ � � � ;
where dimensionful factors have been omitted and Cn are
numerical coefficients. This implies that very close to j ¼
1 we have to leading order

�E�
nl � �EU

nl ðjÞ / �

as suggested by the plot and Eq. (20). The above expres-
sion indicates that close to j ¼ 1 the additional energy shift
in the 1S� 2P transition compared to the ordinary scalar/
pseudoscalar case comes from the fractional scaling di-
mension part (�) of the unparticle. This seems very sat-
isfactory in the sense that any correction to the ordinary
scalar/pseudoscalar case is just proportional to the ‘‘un-
scalarness’’ of the unparticle. This seems to be in the spirit
of deconstruction [8] and is similar to the observation in
[42]

�UðjÞ ¼ ð2� jÞ��ðj ! 1Þ
for the unparticle production cross section when the un-
particle sector is gauged under the SM.

One also observes from Fig. 4 the onset of singular
behavior as j ! 2 as discussed in Sec. I. As pointed out
this is a pathology arising from the fact that close to j ¼ 2
the model becomes more and more UV sensitive. One may
try to mitigate this singular behavior near j ¼ 2 by adding
local contact terms [6].

Concerning the sign of the unparticle energy shifts it is
inferred that there are no differences between the scalar
and pseudoscalar unparticles. It found from our expres-
sions in (39) and (40) that the scalar as well as the pseu-
doscalar unparticle corrections to the 1S� 2P transitions
are positive

�Etotal
2p�1s ’ �ESM

2p�1s þ j�EO
2p�1sj;

�E0total
2p�1s ’ �ESM

2p�1s þ j�E ~O
2p�1sj:

(41)

In the present case, for � ! 0, from Eqs. (32) and (33),
we would expect the level structure of the Uehling shifts to
be ordered as

�EU
2s�1s < �EU

2p�1s;

�EU
3s�1s < �EU

3p�1s < �EU
3d�1s:

These expectations from Eqs. (32) and (33) are confirmed
by numerical calculations. The variations between the l ¼
0, 1, and 2 states are generally found to be of the order of a

few 0.01 meV for n ¼ 3 and of the order of a few meV for
n ¼ 2.
Let us now turn our attention to the case of broken scale

invariance where � � 0. Even in the case of a fermiopho-
bic unparticle an effective interaction term with Higgs
fields of the form

�2�j
h UH 2

is expected to be present. Here H stands for a generic
Higgs field. As pointed out in the literature this interaction
term is unique [15,43] in the sense that it is a superrenor-
malizable term (since 1 	 j < 2 from Mack’s unitarity).
Even if one starts with a near zero coupling of this term, at
a high energy, it will be generated through renormalization
group flow and will break the conformal invariance of the
unparticle sector, at a scale �, when the Higgs develops a
vacuum expectation value. Thus there is a very strong
theoretical reason to expect scale invariance, in the fermio-
phobic unparticle sector, to be broken at some scale after
electroweak-symmetry breaking.
Moreover, from the observational viewpoint, it is ex-

pected that there should be very stringent constraints on
massless/light scalar degrees of freedom from cosmology
and astrophysics. For a scalar/pseudoscalar unparticle cou-
pling to two photons with � ! 0 (i.e. perfect scale invari-
ance) there are very strong bounds on the couplings from
supernovae cooling [19,44,45], for example. Also, in the
case of perfect scale invariance, there are very tight bounds
on the couplings from big-bang nucleosynthesis (BBN)
[45,46]. These constraints effectively render any collider
or low-energy experiments ineffective in probing the un-
particle sector.
We would therefore like to estimate a lower bound on

the scale invariance breaking effective mass (�), for the
fermiophobic unparticle, that would let us evade some of
these constraints. So, assuming � � 0, let us first look at
the typical Primakoff process with a fermiophobic unpar-
ticle that could potentially contribute to supernovae (SN)
cooling

�ðk1Þ þ �ðk2Þ !��0
OðpÞ:

Here O is a fermiophobic scalar unparticle and one of the
photons is sometimes assumed to be off shell. We are only
interested in estimating a lower bound for the scale break-
ing parameter � that would not violate supernovae con-
straints. Thus for simplicity we assume that the photons are
transverse and ignore any plasmon effects (where the
photon gets a longitudinal polarization in the plasma).
Using

jh0jOUð0ÞjPij2�ðP2Þ ¼ Aj�ðP0Þ�ðP2 ��2ÞðP2 ��2Þj�2

and the Feynman rule from Eq. (4) we may compute the
invariant amplitude to get
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jM��0ð�þ � ! OÞj2 ¼ c2Aj

4�2j
�

�ðp0Þ�ðs��2Þ

� s2ðs��2Þj�2;

where s ¼ ðk1 þ k2Þ2 ¼ p2 and � is the Heaviside func-
tion. From the above amplitude we may estimate the un-
particle Primakoff cross section to be

���0ð�þ � ! OÞ ’ c2Aj

8�2j
�

sðs��2Þj�2:

Using the above expression, the emissivity may be calcu-
lated from

_	 ��0ð�þ � ! OÞ ’ hn1�n2����0ð�þ � ! UÞvrelECMi
�SN

and gives

_	��0ð�þ � ! OÞ ’ 1

�SN

Z d3 ~k1
ð2�Þ3

2

eE1=kTSN � 1

Z d3 ~k2
ð2�Þ3

� 2

eE2=kTSN � 1

sðE1 þ E2Þ
2E1E2

c2Aj

8�2j
�

� sðs��2Þj�2; (42)

where �SN is the average supernovae core density and TSN

is the mean core temperature in the supernovae. We define
in the usual way the dimensionless variables x1 ¼
E1=kTSN and x2 ¼ E2=kTSN to write the emissivity as

_	��0ð�þ � ! OÞ ’ c2AjT
2jþ5
SN

16�4�2j
� �SN

Z 1

0
dx1

�
Z 1

�2=4T2
SN
x1

dx2
x1x2ðx1 þ x2Þ2jþ1

ðex1 � 1Þðex2 � 1Þ

�
�
1� �2

T2
SNðx1 þ x2Þ2

�
j�2

: (43)

In the limit of perfect scale invariance, � ! 0, we recover
from the above the expressions in [19,44]. Equation (43)
may be compared with the fermiophilic case of a vector
unparticle (UV), with � � 0, coupling to fermions. In this
case a process such as 

 ! UV in the supernovae core
can lead to cooling and the emissivity is given by [16]

_	��0ð
þ 
 ! UVÞ ’
g2
AjT

2jþ3
SN

16�4�2j�2
c �SN

Z 1

0
dx1

�
Z 1

�2
V=4T

2
SNx1

dx2
ð4x1x2Þjðx1 þ x2Þ
ðex1 þ 1Þðex2 þ 1Þ

�
�
1� �2

V

4T2
SNx1x2

�
j�2

:

Note that the power law dependence of TSN on the scaling
dimension j is very different, between the fermiophobic
and fermiophilic cases, even if one assumes that the other

parameters � ’ �V , �� ’ �c and Oð1Þ coefficients c ’
g
. But we shall see below that the bound on the scale
breaking parameter comes out to be of the same order of
magnitude in both the cases due to the dominance of the
Boltzmann suppression factor.
To be consistent with supernovae models and constraints

from SN1987A we require [47]

_	 SN & 1015 J=kg s:

Equation (43) may be integrated and expressed in a com-
pact form in the limit of � � TSN with the Boltzmann
suppression term factored out. An explicit numerical com-
putation with the standard values

TSN ’ 30 MeV; �SN ’ 1018 kg=m3;

and the above emissivity criterion gives

� * 1:25 GeV: (44)

This lower bound for the effective mass, of a fermiophobic
scalar/pseudoscalar unparticle coupling only to photons, is
found to be very close to the result in the fermiophilic case

þ 
 ! UV , where it was found that [16]

�V * 1 GeV:

Based on the bound in Eq. (44) we may take a minimal
value for the effective unparticle mass to be � ’ 2 GeV.
This choice already leads to an emissivity well below the
allowed limit. A crude upper bound on the scale breaking
parameter is given by the requirement that�  �U. Since
we have adopted the prejudice that the unparticle scale is
probably close to the electroweak-symmetry breaking
scale this implies that in our model we are assuming � 
Oð1Þ TeV.
Let us now turn our attention to some of the constraints

from cosmology. For the fermiophobic unparticle sector
not to interfere with BBN, we must require that the un-
particles stay decoupled during that epoch [45]. In the case
of a fermiophobic unparticle with � ! 0 the condition
�SM!O <H (during the radiation dominated era), by sim-
ple dimensional analysis, becomes

���O � c2

�2j
�

T2jþ1 <

�
T2

1018 GeV

�
:

This implies that in the range j 2 ½1; 2Þwe are considering,
the rate ���O redshifts faster than the Hubble parameter

(H). It is required that the fermiophobic unparticles de-
couple before BBN and not get reheated during SM phase
transitions to satisfy �U  �SM. This may be achieved by
requiring that decoupling happen before the QCD phase
transition at an energy T * 1 GeV [45]. Note that a fer-
miophobic unparticle sector, coupling to photons, does not
generally recouple after BBN with SM fields because ���O

redshifts faster than the Hubble parameter. This may again
be contrasted with the fermiophilic case of a vector un-
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particle coupling to fermions through the effective operator

gf

�j�1
c

�c��cO�
V ;

where recoupling is possible when 1 	 j 	 3=2 [45].
When scale invariance is broken (� � 0), since �O �

nEQh�jvji, the relevant processes are Boltzmann sup-

pressed by factors of e��=T when �> T. Thus the BBN
constraints can be evaded as long as� is above�QCD [16].

We must point out that we have tacitly assumed that the
fermiophobic unparticles can decay into SM fields [48]
when� is sufficiently nonzero and are therefore not stable.
There has been some discussion in the literature on this
particular issue [8,46,48]. All the arguments above suggest
that while calculating the Uehling shifts with � � 0 we
must also consider the possibility that � is higher than the
minimal value of 2 GeV. Thus without loss of generality we
will consider a range

2 GeV & �  MZ ’ 91 GeV

for both the scalar and pseudoscalar unparticles such that
there is still a substantial conformal window ð�;�U�. The
above choice would also ensure that any modification to
the gauge kinetic term (���1) near the scale � is within
experimental limits [12] and that the effects due to SM
Higgs-unparticle mixing, if present, are suppressed [16].
We will demonstrate in a short while that the actual energy
shifts are relatively insensitive to small shifts in the �
parameter.

The pseudoscalar unparticle potential energies for two
choices of the scale breaking parameter � are shown in
Fig. 5. This figure is to be compared with that in the case of
perfect scale invariance illustrated in Fig. 3. It is noted that
the potential in the � � 0 case has been suppressed by
Oð1Þ factors compared to the � ! 0 case. The general

features of the unparticle Uehling potential nevertheless
remain unchanged between the � ! 0 and � � 0
scenarios.
Let us now calculate the energy shifts in the muonic-lead

transitions when � � 0. Consider the pseudoscalar unpar-
ticle with scale invariance broken. We may rewrite Eq. (40)
again by defining the dimensionless variable z ¼ j ~qjr. The
expression becomes after simplification

�E
~O
nlðjÞ ¼ � ZPbe

2b2Aj�
2

64�4 ~�2j
� sinðj�Þ

Z
d3rj���

nl ð ~rÞj2

�
Z 1

0
dxð1� xÞ2�j ðM2Þj�1

jr

Z 1

0
dz

sinz

z

� e��z2=ð2r2Þ
��

1þ xz2

�2r2

�
log

�
1þ xz2

�2r2

�

þ xz2

�2r2
log

�ð1� xÞ�2

M2

��
; (45)

where we have made an oversubtraction at q ¼ 0 to get a
consistent q ! 0 limit. From the above expression we
expect that for any fixed value of the radial coordinate
(r) the dominant contribution to the z integral should come
from the region of integration with

z2 &
2r2

�
(46)

or its vicinity. For the muonic-lead system we are primarily
interested in, a suitable value of the nuclear charge density
parameter � , in Eq. (23), was found to be � ’ 4 fm2. We
found that a minimal value of � satisfying astrophysical
constraints is � ’ 2 GeV � 10:14 fm�1. From these ob-
servations we note therefore that for a fixed value of r

FIG. 5. The unparticle Uehling potential energies for the pseudoscalar case with the same parameters as Fig. 3 except assuming � is
2 GeV (left panel) and 10 GeV (right panel). The j ¼ 1:01 (dashed lines) and 1.15 (short-dashed lines) potential energies are again
illustrated as functions of r. Note that the magnitude of the potential at any specific value of r has been reduced in both cases compared
to the case of perfect scale invariance � ! 0.
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xz2 &
2r2

�
 �2r2:

This means that in the relevant region of the parameter
space we may expand the logarithm in Eq. (45) as

log

�
1þ xz2

�2r2

�
’ xz2

�2r2
� 1

2

�
xz2

�2r2

�
2 þ � � �

to get an integral that is separable in x and z variables. Note
that this approximation becomes more and more accurate
as we raise the value of �. The variable separable integral
may now be evaluated analytically or numerically to cal-
culate the expression in Eq. (45). The calculated energy
shifts to the 1S� 2P transition for various values of the
scaling dimension j and � are shown in the left panel of
Fig. 6. It is noted that compared to the � ! 0 case the
energy shifts are smaller, assuming all other parameters
remain the same, by Oð1Þ factors. Thus we find that
incorporating broken scale invariance with a nonzero value
of � does not seem to alter the energy shifts drastically
from their� ! 0 values and the changes are only by whole
number factors. Once again, maintaining continuity, the
ordinary pseudoscalar case is recovered as j approaches 1
due to Eq. (20). If � is very large and the corresponding
energy shifts very small, then the finite contributions from
the higher-order counterterms in the effective Lagrangian
may become important and the numerical approximation
we adopt, of keeping only the lowest order terms from (4)
and (5), may break down.

In the scalar unparticle case the expression for the
energy shift becomes

�EO
nlðjÞ ¼

ZPbe
2c2Aj�

2

64�4�2j
� sinðj�Þ

Z
d3rj���

nl ð ~rÞj2

�
Z 1

0
dxð1� xÞ2�j ðM2Þj�1

jr

�
Z 1

0
dz

sinz

z
e��z2=ð2r2Þ

�
��

1þ ðð1þ jÞx� jÞ z2

�2r2

�
log

�
1þ xz2

�2r2

�

þ ðð1þ jÞx� jÞ z2

�2r2
log

�ð1� xÞ�2

M2

��
(47)

after an oversubtraction at q ¼ 0. In the relevant region
where xz2 & 2r2=�  �2r2 we may again simplify the
integral and compute it to obtain the energy shifts. The
calculated values are shown in Fig. 6, right panel, for
various values of the � parameter. The limit of j ! 1þ,
as before, corresponds to the ordinary scalar case. Again,
the correction from the scalar unparticle vacuum polariza-
tion is found to be larger in magnitude than the correspond-
ing pseudoscalar unparticle case. But this may, as before,
be an artifact of our approximation in Eq. (20). The cor-
rections are both positive as in the � ! 0 case.
Once again we observe that the variation of the scalar

unparticle Uehling shift with � is only by Oð1Þ factors.
This implies that the energy shift is relatively insensitive to
changes of the scale breaking parameter, across a wide
range, in both the scalar and pseudoscalar cases. More
specifically the Uehling shifts are relatively unchanged
even for� � m�� ’ 0:1 GeV. In this sense the unparticle
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FIG. 6 (color online). Magnitude estimates of the energy shift in the 1S� 2P muonic-lead transition due to pseudoscalar (left panel)
and scalar (right panel) unparticle vacuum polarizations. The plots are for� ’ 2, 6, and 10 GeV. With these choices of� there is still a
substantial conformal window between� and�U. The other parameters are taken to be the same as in Fig. 4. Note that the energy shift
is lower in both cases compared to the � ! 0 case, but not drastically. In fact it is observed that the energy shifts are relatively
substantial even for � � m�� ’ 0:1 GeV compared to � ! 0. We will explore the reasons for this insensitivity to � shortly. In

general it is observed that as we increase the effective mass the energy shift decreases. As before the energy shifts should be interpreted
as accurate only up to undetermined Oð1Þ factors.
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oblique correction is sensitive to a wide range of � values
within our approximations. Let us try to understand this a
little better.

Let us look at the expression

Z 1

0
dz

sinz

z
e��z2=ð2r2Þ

�
�2

r
log

�
1þ xz2

�2r2

�

þ xz2

r3
log

�
ð1� xÞ

�
�2

M2
þ xz2

M2r2

���

from Eq. (45) for the pseudoscalar unparticle that we have
rewritten to include all the dependences on �. The first
term in the above expression tends to zero in the � ! 0
limit and is absent in the case of perfect scale invariance.
Even in the� � 0 limit we note that since xz2 & 2r2=� 
�2r2 in the relevant region the first term is relatively sup-
pressed. Thus the correction from the first term when � �
0 is small, even though the corresponding term in the case
of � ! 0 is completely absent. Now let us look at the
second term in the above expression, specifically the
�2=M2 factor inside the logarithm. Again that factor inside
the logarithm is obviously absent when � ! 0. Since we
have adopted the ansatz that the unparticle scale is in the
vicinity of the electroweak scale we have up toOð1Þ factors
M ’ �U � v. Thus at the level of our approximation for
typical values of allowed � we have �2=M2  1. This
again implies that the correction in the � � 0 case, with
respect to the� ! 0 case, from the second term is not very
drastic.

For the scalar unparticle case the arguments proceed
exactly as above for the relevant expression

Z 1

0
dz

sinz

z
e��z2=ð2r2Þ

�
�2

r
log

�
1þ xz2

�2r2

�

þ ðð1þ jÞx� jÞz2
r3

log

�
ð1� xÞ

�
�2

M2
þ xz2

M2r2

���
;

and once again we conclude that the corrections to the
� ! 0 case from the additional factors are not very large.
Thus the relative stability of the Uehling energy shifts to
variations in the scale breaking parameter�may be traced

to the momentum cutoff imposed by e��z2=ð2r2Þ leading to
the observation in Eq. (46) and the fact that � & M ’
�U � v for typical values.

The typical values for the Uehling energy shift in Fig. 6
are in the range Oð0:1Þ–Oð0:01Þ eV. The Oð0:1Þ eV as we
commented previously is comparable to the contribution
from light-by-light scattering in QED. One may get a feel
for the lower value Oð0:01Þ eV in the range by noting that
it is of the same order of magnitude as the corrections from
the QED fourth-order Lamb shift, to higher angular mo-
mentum states in �� � Pb20882 [34]. For higher angular

momentum states the muon’s anomalous magnetic mo-
ment induces an additional spin-orbit interaction in the
muonic atom and this contributes to an energy shift. For

instance in the �� � Pb20882 5g� 4f transition the leading

contribution to the fourth-order Lamb shift at order�2ðZ�Þ
was estimated to be [34]

�E4�LS
5g�4f ’ 0:025 eV:

The values of the Uehling shifts in Fig. 6 may again be
compared to the uncertainties in the precision measure-
ments of 2p1=2 � 1s1=2 and 2p3=2 � 1s1=2 transitions in

Table IVand the discrepancy between theory and measure-
ment for these transitions in Eq. (35). It is noted that for
typical values of the model parameters (j,��, c, and�) the

Uehling shift is again about a factor of 103–104 below the
values in (35).
We may also calculate the Uehling shifts for the low-

lying l ¼ 1 and l ¼ 2 states with respect to 1S. It is
observed that for � � 0 the unparticle scalar and pseudo-
scalar corrections again follow a hierarchy

�EU
2s�1s < �EU

2p�1s;

�EU
3s�1s < �EU

3p�1s <�EU
3d�1s;

consistent with our expectations in Eq. (33), for the case of
perfect scale invariance, and also with our computations
for the � ! 0 case before. We conclude that the choice of
� � 0 does not change the level structure of the Uehling
shifts. Moreover the variations are generally of the same
order of magnitude as in the � ! 0 case. For example,
assuming � ’ 2 GeV and �U � v, the variations between
the l ¼ 0 and 1 states for n ¼ 2 are again of the order of a
few meV and for n ¼ 3 of the order of a few 0.01 meV.
A speculation is that one may do precision spectroscopy

of the low-lying atomic states in parallel with proposed
efforts to observe coherent muon-electron conversion in
muonic atoms (see [49] and references therein). The rele-
vant process in coherent muon-electron conversion is

�� þ N ! e� þ N;

where N is a nucleon. It is believed that probes of resonant
muon-electron conversion near a nucleus may be able to
achieve a higher sensitivity to lepton-flavor violation
(LFV) compared to direct conversions [50]

�� ! e� þ �:

This opens the possibility that one may also perform
precision spectroscopy on low-lying muonic-atom states in
these forthcoming experiments and reduce some of the
discrepancies in Eq. (35). But reducing the discrepancy
to a level of Oð0:01Þ eV looks very improbable to us.
Since muon conversion is a coherent process one might

expect that the probability of muon conversion in an atom
XA
Z would go like �Z2 (or �A2). So when normalized to

the muon-capture cross section we have heuristically
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R�e ¼ �½�� þ ðA; ZÞ ! e� þ ðA; ZÞ�
�½�� þ ðA; ZÞ ! 
� þ ðA; Z� 1Þ� �

Z2

Z

 Z;

while for the Uehling shift we are interested in, as we noted
previously, the dependence on the atomic number Z goes
like

�EVP
nl

Ebound

� Z2:

It is not clear that the muonic-lead system, with Z ¼ 82,
that we are considering is suitable for the LFV measure-
ments since it has been shown through detailed calcula-
tions [51] that for coherent muon-electron conversion the
most ideal range is Z 2 ½30; 60�. Thus it would be inter-
esting, as we have previously mentioned, to explore the
possibility of measuring the scalar/pseudoscalar Uehling
shifts in other atomic systems, with an intermediate Z
value, where the energy shifts may still be substantial while
the system is also of interest to coherent muon-electron
conversion experiments. It would also be interesting to
estimate the unparticle vacuum polarization effects in
muonic atoms where high-precision LASER spectroscopy
might be possible [52]. We hope that this work will be a
modest pointer in this direction.

It is of course an open possibility that if for some

reason the interaction energy scales ð��; ~��Þ are too large

[ � Oð1Þ TeV] or the coefficients ðb; cÞ in Eqs. (4) and (5)
are very small the energy shifts will be even more sup-
pressed and the unparticle Uehling shift, even if it exists,
will be nearly impossible to detect. Even under optimistic
assumptions about the model parameters it is possible that
the theoretical difficulties in calculating the required
higher-order QED/nuclear effects in muonic atoms may
be insurmountable or that obtaining precision spectra of
the low-lying states is very difficult. In such a scenario the
only hope would be to look for fermiophobic unparticles in
very high energy colliders or other systems that are more
sensitive to fermiophobic unparticles.

IV. SUMMARY

In this work we tried to study some of the probable
effects of a fermiophobic scalar/pseudoscalar sector on
bound state energy levels, specifically low-lying muonic-
atom levels, as a consequence of oblique corrections to the
photon propagator.

Considering the scalar and pseudoscalar fields to be
unparticle operators, without loss of generality, we exam-
ined the functional forms of the vacuum polarization func-
tions and the induced Uehling potentials. Some interesting
theoretical observations were made on the singular nature
of the unparticle induced Uehling potential and the behav-
ior of the energy shifts in the limit of the scaling dimension
approaching unity.

It was estimated that for an unparticle scale near the
scale of electroweak-symmetry breaking, in the low TeV

range, the energy shifts in the low-lying muonic-lead tran-
sitions could typically be of the order of a few 0.1 eV to a
few 0.01 eV for some natural values of the model parame-
ters. It was also pointed out that these magnitudes are
comparable to bound state QED corrections, to the higher
orbital angular momentum transitions in muonic lead, from
the virtual Delbrück effect (light-by-light scattering) and
the fourth-order Lamb shift [at order �2ðZ�Þ], respec-
tively. These conclusions are relatively unchanged even
when one incorporates a breaking of the scale invariance
by introducing an effective unparticle mass �.
But the current discrepancy between muonic-lead spec-

troscopy and theory, especially nuclear theory, makes an
interpretation of the unparticle Uehling shift, if it really
exists, extremely challenging. A conservative estimate is
that such an interpretation would require an improvement
in the discrepancy between theory and experiment, from
about 20 years back, by a factor of 1000–10 000. The
recent, partial resolution of the long-standing discrepancy
in the �2p and �3p NP calculations with results from
muonic-lead spectroscopy [40,41] by Haga and co-workers
[39] is a promising step in this direction.
We also mentioned that in cases where the UV sector has

a very large fermion multiplicity, the above contribution
may be greatly enhanced, but appealing to arguments of
naturalness we do not think this is very plausible. But many
interesting models being considered today (for example,
string-inspired QCD-like models [21]) allow for the pos-
sibility of a large fermionic sector and this perhaps be-
seeches us not to discard the possibility of fermiophobic
unparticle oblique corrections prematurely.
The other interesting direction is to consider

intermediate-Zmuonic atoms where the nuclear uncertain-
ties may be much better controlled while at the same time
have sufficient fermiophobic unparticle contributions to
muonic-atom transitions, by virtue of the �EVPnl=Ebound �
Z2 enhancement. This is left for future work.
In the context of the present study, of a possible fermio-

phobic unparticle scalar/pseudoscalar sector, we also
briefly considered constraints from astrophysics and cos-
mology and put bounds on the fermiophobic unparticle
effective masses. Finally we speculated on improving
muonic-lead spectroscopy and theory in the context of
forthcoming experiments that will study coherent muon-
electron conversion.

ACKNOWLEDGMENTS

I would like to thank Jonathan L. Rosner for many useful
suggestions during the present study and a careful reading
of the manuscript. I would also like to thank D. Erkal,
S. Farkas, D. McKeen, J. Galloway, D. Krohn, and
P. Draper for discussions. The author also acknowledges
interesting comments from the referee. This work was
supported in part by the United States Department of
Energy under Grant No. DE-FG02-90ER40560.

ARUN M. THALAPILLIL PHYSICAL REVIEW D 81, 035001 (2010)

035001-20



[1] H. Georgi, Phys. Rev. Lett. 98, 221601 (2007); Phys. Lett.
B 650, 275 (2007).

[2] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[3] H. E. Haber, G. L. Kane, and T. Sterling, Nucl. Phys.

B161, 493 (1979); J. F. Gunion, R. Vega, and J. Wudka,
Phys. Rev. D 42, 1673 (1990); J. L. Basdevant, E. L.
Berger, D. Dicus, C. Kao, and S. Willenbrock, Phys.
Lett. B 313, 402 (1993); V. Barger, N.G. Deshpande,
J. L. Hewett, and T. G. Rizzo, arXiv:hep-ph/9211234; P.
Bamert and Z. Kunszt, Phys. Lett. B 306, 335 (1993);
A. G. Akeroyd, Phys. Lett. B 368, 89 (1996); M.C.
Gonzalez-Garcia, S.M. Lietti, and S. F. Novaes, Phys.
Rev. D 57, 7045 (1998); A. Barroso, L. Brucher, and R.
Santos, Phys. Rev. D 60, 035005 (1999); L. Brucher and
R. Santos, Eur. Phys. J. C 12, 87 (2000); B. Dobrescu,
Phys. Rev. D 63, 015004 (2000); B. Dobrescu, G.
Landsberg, and K. Matchev, FERMILAB Report
No. FERMILAB-PUB-99/324-T; L. Hall and C. Kolda,
Phys. Lett. B 459, 213 (1999); H. Cheng, B.A. Dobrescu,
and C. T. Hill, Nucl. Phys. B589, 249 (2000).

[4] G. Mack, Commun. Math. Phys. 55, 1 (1977).
[5] Y. Nakayama, Phys. Rev. D 76, 105009 (2007).
[6] B. Grinstein, K.A. Intriligator, and I. Z. Rothstein, Phys.

Lett. B 662, 367 (2008).
[7] D. J. Gross and J. Wess, Phys. Rev. D 2, 753 (1970); J.

Polchinski, Nucl. Phys. B303, 226 (1988).
[8] M.A. Stephanov, Phys. Rev. D 76, 035008 (2007).
[9] A. Rajaraman, AIP Conf. Proc. 1078, 63 (2009).
[10] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.

101, 051801 (2008); T. Aaltonen et al. (CDF Col-
laboration), Phys. Rev. Lett. 99, 171801 (2007).

[11] J. L. Feng, A. Rajaraman, and H. Tu, Phys. Rev. D 77,
075007 (2008).

[12] M. Bander, J. L. Feng, A. Rajaraman, and Y. Shirman,
Phys. Rev. D 76, 115002 (2007).

[13] K. Cheung, W.Y. Keung, and T. C. Yuan, Phys. Rev. Lett.
99, 051803 (2007).

[14] M. Luo and G. Zhu, Phys. Lett. B 659, 341 (2008).
[15] P. J. Fox, A. Rajaraman, and Y. Shirman, Phys. Rev. D 76,

075004 (2007).
[16] V. Barger, Y. Gao, W.Y. Keung, D. Marfatia, and V.N.

Senoguz, Phys. Lett. B 661, 276 (2008).
[17] K. Cheung, W.Y. Keung, and T. C. Yuan, AIP Conf. Proc.

1078, 156 (2009).
[18] G. Bhattacharyya, D. Choudhury, and D.K. Ghosh, Phys.

Lett. B 655, 261 (2007).
[19] A. Freitas and D. Wyler, J. High Energy Phys. 12 (2007)

033.
[20] F. Sannino and R. Zwicky, Phys. Rev. D 79, 015016

(2009).
[21] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843

(2005).
[22] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157

(1980); S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24,
1808 (1981).

[23] J. L. Rosner, Phys. Rev. D 79, 097301 (2009).
[24] K. Hagiwara, A. D. Martin, D. Nomura, and T. Teubner,

Phys. Rev. D 69, 093003 (2004).

[25] S. J. Brodsky and E. De Rafael, Phys. Rev. 168, 1620
(1968).

[26] K. Cheung, W.Y. Keung, and T. C. Yuan, Phys. Rev. D 76,
055003 (2007).

[27] A. V. Manohar, arXiv:hep-ph/9508245.
[28] Y. Liao and J. Y. Liu, Phys. Rev. Lett. 99, 191804 (2007).
[29] L. D. Landau and E.M. Lifshitz, Quantum Mechanics

(Butterworth-Heinemann, Oxford, 2005).
[30] V. Hnizdo, J. Phys. A 21, 3629 (1988).
[31] C. Quigg and J. L. Rosner, Phys. Rep. 56, 167 (1979); H.

Grosse and A. Martin, Phys. Rep. 60, 341 (1980).
[32] H. Grosse and A. Martin, Phys. Lett. 134B, 368 (1984).
[33] J. A. Wheeler, Rev. Mod. Phys. 21, 133 (1949).
[34] E. Borie and G.A. Rinker, Rev. Mod. Phys. 54, 67

(1982).
[35] W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev. 72, 241

(1947).
[36] H. A. Bethe, Phys. Rev. 72, 339 (1947); R. Karplus,

A. Klein, and J. Schwinger, Phys. Rev. 86, 288 (1952);
M. Baranger, H.A. Bethe, and R. P. Feynman, Phys. Rev.
92, 482 (1953).

[37] M. y. Chen, Phys. Rev. C 1, 1167 (1970).
[38] H. F. Skardhamar, Nucl. Phys. A151, 154 (1970).
[39] A. Haga, Y. Horikawa, and H. Toki, Phys. Rev. C 75,

044315 (2007).
[40] D. Kessler, H. Mes, A. C. Thompson, H. L. Anderson,

M. S. Dixit, C. K. Hargrove, and R. J. McKee, Phys. Rev.
C 11, 1719 (1975).

[41] P. Bergem, G. Piller, A. Rueetschi, L. A. Schaller, L.
Schellenberg, and H. Schneuwly, Phys. Rev. C 37, 2821
(1988).

[42] G. Cacciapaglia, G. Marandella, and J. Terning, J. High
Energy Phys. 01 (2008) 070.

[43] M. J. Strassler and K.M. Zurek, Phys. Lett. B 651, 374
(2007); B. Patt and F. Wilczek, arXiv:hep-ph/0605188.

[44] P. K. Das, Phys. Rev. D 76, 123012 (2007).
[45] H. Davoudiasl, Phys. Rev. Lett. 99, 141301 (2007).
[46] J. McDonald, arXiv:0805.1888.
[47] G. G. Raffelt, Phys. Rep. 198, 1 (1990).
[48] A. Rajaraman, Phys. Lett. B 671, 411 (2009).
[49] A. Czarnecki, W. J. Marciano, and K. Melnikov, AIP Conf.

Proc. 435, 409 (1998); A. de Gouvea, AIP Conf. Proc.
721, 275 (2004); W. J. Marciano, T. Mori, and J.M. Roney,
Annu. Rev. Nucl. Part. Sci. 58, 315 (2008).

[50] C. Ankenbrandt et al., arXiv:physics/0611124; R.M.
Carey et al., FERMILAB Reports No. FERMILAB-TM-
2396-AD-E-TD and FERMILAB-APC, 2007; M.
Tomizawa, M. Aoki, and I. Itahashi, in Proceedings of
the 11th European Particle Accelerator Conference
(EPAC 08), Magazzini del Cotone, Genoa, Italy, 2008
(2008), pp. MOPC128; Y. Kuno, Nucl. Phys. B, Proc.
Suppl. 168, 353 (2007).

[51] R. Kitano, M. Koike, and Y. Okada, Phys. Rev. D 66,
096002 (2002); 76, 059902(E) (2007).

[52] D. Kawall, V.W. Hughes, W. Liu, M.G. Boshier, K.
Jungmann, and G. zu Putlitz, AIP Conf. Proc. 435, 486
(1998).

BOUND STATES AND FERMIOPHOBIC UNPARTICLE . . . PHYSICAL REVIEW D 81, 035001 (2010)

035001-21


