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In this paper we propose to interpret the large discretization artifacts affecting the neutral pion mass in

maximally twisted lattice QCD simulations as O(a2) effects, whose magnitude is roughly proportional to

the modulus square of the (continuum) matrix element of the pseudoscalar density operator between

vacuum and one-pion state. The numerical size of this quantity is determined by the dynamical

mechanism of spontaneous chiral symmetry breaking and turns out to be substantially larger than its

natural magnitude set by the value of �QCD.

DOI: 10.1103/PhysRevD.81.034509 PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

In recent simulations of maximally twisted lattice QCD
(Mtm-LQCD) [1] with Nf ¼ 2 dynamical light quarks,

numerical results [2,3] on the neutral pseudoscalar meson
mass at different lattice spacings (in the range from 0.10 to
0.065 fm) and quark masses (corresponding to charged
pseudoscalar meson masses ranging from 600 to
300 MeV) show large cutoff effects. The latter appear at
fixed lattice spacing in the form of sizeable deviations from
the expected continuum QCD chiral behavior.

This finding is in striking contrast with the smallness of
cutoff effects observed not only in the mass of the charged
pions (which is related through the Goldstone theorem to
exactly conserved lattice currents [4]), but also in all of
the other hadronic observables so far measured by the
European Twisted Mass (ETM) Collaboration (see
Sec. III and Refs. [3,5–10]). Quite remarkably small lattice
artifacts are found even in matrix elements where the
neutral pion is involved (see Table I below).

In Mtm-LQCD, the additive cutoff effect in the squared
mass of the neutral pion is expected on general grounds
[11] to be of the order a2�4

QCD; whereas, the leading

additive corrections to the squared mass of the charged
pion are [4,12,13] only of order a4�6

QCD and a2�q�
3
QCD

(�q denotes the bare quark mass). The neutral vs charged

pion (squared) mass splitting, �m2
�jMtm

L ¼ m2
�3 jL �

m2
��jL, in the small quark-mass region is then dominated

by O(a2�4
QCD) terms. Numerical data (see Fig. 1 and

Table I) at two different lattice spacings and for charged
pion masses below 500 MeVare indeed consistent with the
expected behavior of �m2

�jMtm
L , but with a large coefficient

in front of the O(a2�4
QCD) correction.

1 For instance, taking

�QCD ¼ 250 MeV, one finds �m2
�jMtm

L ��50a2�4
QCD.

On a more general ground, the question of the numerical
size of the neutral vs charged pion mass splitting is an
important issue to assess the viability of the Mtm-LQCD
approach. This is so mainly because of the established
relation [12,14] between the magnitude of the pion mass
splitting and the strength of the metastabilities detected in
the theory at coarse lattice spacings [15–18].
One may suspect that the size of�m2

�jMtm
L represents the

generic magnitude of the isospin breaking effects inherent
in the twisted form of the action. This is not so, however.
Numerical data in several other observables indicate, in
fact, that in general isospin breaking artifacts are pretty
small, with a relative magnitude in line with their naive
order of magnitude estimate.
The main purpose of this paper is to provide an expla-

nation for this peculiar pattern of isospin breaking effects,
and, in particular, for the fact that only the neutral vs
charged lattice pion mass splitting among all the other
O(a2) effects is large.
Relying on arguments based on the Symanzik analysis

[19,20] of lattice artifacts, we are able to identify the form
of the leading O(a2) corrections that, in Mtm-LQCD, affect
the value of the squared mass of the neutral pseudoscalar
meson. Interestingly, one can give an approximate evalu-
ation of these effects finding that they are proportional to
the modulus square of the continuum matrix element of the
isotriplet pseudoscalar density operator between the vac-
uum and one-pion state. The latter is a dynamically large
number determined by the mechanism of spontaneous
chiral symmetry breaking. This fact, together with the
vanishing of the pion mass in the zero quark mass limit
of continuum QCD, explains the large relative size of the
cutoff effects observed in the neutral pion mass.
Lattice artifacts, of course, also depend on the many

unknown coefficients multiplying the operators occurring
in the Symanzik expansion. However, the numerical evi-
dence provided in this paper (see Sec. III) and in Refs. [3,6]
about the fact that all of the other so far measured observ-

1The issue of the Nf dependence of this coefficient is beyond
the scope of this paper and will be discussed elsewhere.
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ables exhibit only small lattice artifacts should be taken as
a strong indication that the coefficients multiplying the
(quark mass independent) operators of the Symanzik ef-
fective Lagrangian of relevance here (operators of dimen-
sion 5 and 6) are not unnaturally large, at least in the gauge
coupling regime explored up to now in ETMC simulations.
Indeed, if this was not the case, one would have seen large
cutoff effects in some other physical observables besides
the neutral pion mass.

A preliminary version of this investigation was pre-
sented some time ago in [21]. Ideas and a few results along
the line of reasoning developed in this paper have been
already put forward in [12,13,22] and in [23].

Plan of the paper

The plan of the paper is as follows. In Sec. II, we
illustrate the nature and the structure of O(a2) artifacts in
Mtm-LQCD and how they affect charged and neutral pion
masses. In Sec. III, we give numerical evidence that among
the many observables recently measured by the ETM
Collaboration only the pion mass splitting seems to display
large cutoff effects. Conclusions can be found in Sec. IV.
More technical issues are discussed in the Appendices. In
Appendix A, we review the notion and the properties of the
Symanzik expansion for the description of the cutoff ef-
fects of LQCD with Wilson fermions (either maximally
twisted or untwisted) and how, depending on the value of
the twisting angle, its form is affected by the way the
critical mass is determined. In Appendix B, we give the
structure of the Symanzik expansion of the two-point
pseudoscalar correlator from which the formula for the
O(a2) discretization errors affecting the pion masses can
be derived. Finally, in the (long) Appendix C, we give
details on the theoretical analysis and numerical estimate
of the matrix elements controlling the magnitude of certain
cutoff corrections affecting neutral and charged pion
masses.

II. NEUTRAL AND CHARGED PION MASS IN
MTM-LQCD

In this section, we want to describe and compare the
structure of the lattice artifacts affecting the neutral and the
charged pion mass in Mtm-LQCD. The key formulas
yielding the O(a2) corrections to the charged and neutral
squared pion mass are immediately derived by writing
down the leading correction to the pion (rest) energy
induced by the O(a2) terms of the Symanzik expansion.
In Mtm-LQCD, one gets (b ¼ �; 3)

m2
�b jL ¼ m2

� þ a2
�
h�bð~0ÞjLMtm

6 ð0Þj�bð~0Þijcont

� 1

2
h�bð~0Þj

Z
d4xLMtm

5 ðxÞLMtm
5 ð0Þj�bð~0Þijcont

�

þ Oða2m2
�; a

4Þ; (2.1)

where the form of LMtm
5 and LMtm

6 is detailed in

Appendix A. Equation (2.1) complies with elementary
lowest order perturbation theory formulas and Lorentz
covariance. For completeness in Appendix B, we give
another derivation of Eq. (2.1) starting from the
Symanzik expansion of the Fourier transform of the two-
point pseudoscalar correlator (no sum over b),

�b
LðpÞ ¼ a4

X
x

eipxhPbðxÞPbð0ÞijL; (2.2)

where Pb ¼ �c i�5ð�b=2Þc and �b, b ¼ 1, 2, 3, are the
Pauli matrices.
The main conclusions of this paper are derived from the

following two observations concerning the structure of
Eqs. (2.1).
(1) The pion matrix elements

h�bð~0ÞjLMtm
6 ð0Þj�bð~0Þijcont are O(1) for b ¼ 3, but

only O(m2
�) for b ¼ � (see Appendix B), viz.

h��ð~0ÞjLMtm
6 ð0Þj��ð~0Þijcont ¼ Oðm2

�Þ; (2.3)

�� � h�3ð~0ÞjLMtm
6 ð0Þj�3ð~0Þijcont ¼ Oð1Þ: (2.4)

(2) Upon use of the optimal critical mass [4], one can
show (see Appendix C) that the matrix element

�b
55 ¼ � 1

2
h�bð~0Þj

Z
d4xLMtm

5 ðxÞ

�LMtm
5 ð0Þj�bð~0Þijcont (2.5)

is parametrically of O(m2
�) close to the chiral limit

for b ¼ �, and numerically negligible (in modulus)
compared to j��j in the case of b ¼ 3.

The direct consequence of these statements is that close
to the chiral limit, there are no additive O(a2) terms affect-
ing the value of the lattice charged squared pion mass. The
neutral squared pion mass instead receives nonvanishing
corrections at this order. In formulas, one gets

m2
��jL ¼ m2

� þ a2��
55 þ Oða2m2

�; a
4Þ

¼ m2
� þ Oða2m2

�; a
4Þ; (2.6)

m2
�3 jL ¼ m2

� þ a2½�� þ�3
55� þ Oða2m2

�; a
4Þ: (2.7)

One can also show that in �b
55, the numerically dominant

O(m2
�) terms, coming from the insertion of one-pion states

in (2.5), are actually independent of the isospin index b. As
a result, what is left in the difference �3

55 � ��
55 is a tiny

correction, so that for the pion squared mass difference, we
can finally write down the simple formula

�m2
�jMtm

L ¼ m2
�3 jL �m2

��jL ’ a2�� þ Oða2m2
�; a

4Þ;
(2.8)

where the symbol ’ is to remind us that the (negligibly
small) �3

55 � ��
55 correction has been dropped.
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In the rest of the paper, we want to give a proof of the
propositions (1) and (2) above and provide a numerical

estimate of �3;�
55 and ��. In this section, we shall see, in

particular, that for dynamical reasons �� is large compared
to its natural value (��4

QCD), providing in this way an

explanation for the fairly big value of �m2
�jMtm

L measured
in numerical simulations [2,3].

The arguments leading to the Eqs. (2.6) and (2.7) and the
statements above are quite elaborate. To keep the line of
reasoning as straight as possible, we have deferred them to
Appendix B [derivation of Eqs. (2.6) and (2.7)] and

Appendix C (expression and estimate of �3;�
55 ).

A. General computational strategy

For the reader’s convenience, we summarize here the
strategy we followed to numerically estimate the quantities
entering Eqs. (2.6) and (2.7), and the approximations we
had to rely on.

The key quantity we need to evaluate is �� in the chiral
limit. This is done in Sec. II B by first exploiting soft pion
theorems (SPT’s) [24,25] to simplify the structure of the
continuum matrix elements of LMtm

6 we are interested in.

Actual numbers are finally obtained making use of the
vacuum saturation approximation (VSA). In this way,
one obtains a theoretical expectation for the value of the
pion mass splitting �m2

�jMtm
L ¼ m2

�3 jL �m2
��jL at a very

small quark mass, which in Sec. II C is directly compared
with the measured values of �m2

�jMtm
L at pion masses

ranging from 320 to 450 MeV (and with our numerical
estimate of �3

55 ���
55).

The results (2.3) and (2.4) follow from the symmetries of
(the Symanzik effective Lagrangian for) Mtm-LQCD upon
reducing one external pion with the help of SPT’s.
Concerning Eq. (2.5), the derivation of the results on the
m2

� behavior of ��
55 and the evaluation of the magnitude of

�3
55 are rather involved problems because of the nonlocal

nature of the operator
R
d4xLMtm

5 ðxÞLMtm
5 ð0Þ appearing in

the definition of�3;�
55 . A careful analysis of various tadpole

and intermediate state contributions is required, as well as
(approximate) chiral symmetry and/or phenomenological
arguments applied to the matrix elements of the local
operators appearing in individual contributions.

As discussed in Appendix C 1, the dominant contribu-

tions to �3;�
55 are proportional (and related via exactly or

approximately known factors; see Appendix C 2) to the
square of the matrix element �� [Eq. (A16)], which in turn
can be estimated starting from data on certain two-point
lattice correlators, plus standard SPT-based approxima-
tions (Appendix C 3). Given the smallness of �� (as a
result of the optimal critical mass condition enforced in
ETMC
simulations), and consequently of �3

55 � ��
55 compared to

��, the uncertainties on the former quantity coming from
statistical errors and the various approximations
we employed, though entailing a large error (of about
100%), do not harm in any way the conclusions of this
work.

B. Estimating O(a2) lattice artifacts in �m2
�jL

Relying on the results of Appendix C about the numeri-
cal irrelevance of �b

55 [either because parametrically of

O(m2
�), for b ¼ �, or because numerically small, for b ¼

3], we only need to evaluate �� in (the chiral limit of)
continuum QCD in order to estimate the size of the O(a2)
artifacts in (2.7) and (2.8). This can be done under the
assumption that a sufficiently accurate order of magnitude
estimate of this hadronic parameter can be obtained in the
VSA. Quenched LQCD studies support the assumption
that VSA works well for matrix elements of four-fermion
operators between pseudoscalar states [26,27]. It is very
likely that this remains true also in the unquenched theory.
Indications in this sense are actually born out by recent
studies with two or three dynamical flavors [28,29].

1. The theoretical argument

The evaluation of �� [see Eq. (2.4)] requires the estimate
of the matrix elements of the operators in Eq. (A8) (rotated
from the twisted to the physical quark basis) between zero
three-momentum neutral pion states. This is done in two
steps.
(I) By the use of classical SPT’s [24,25], one recognizes

that some operators have O(1) neutral pion matrix
elements, while others vanish proportionally to m2

�.
The latter are those that are invariant under axial-�3

transformations. The former are

1
4ð �c i�5�

3c Þð �c i�5�
3c Þ; 1

4ð �c c Þð �c c Þ;
1
4ð �c �3c Þð �c �3c Þ; 1

4ð �c i�5c Þð �c i�5c Þ;
1
4ð �c����

3c Þð �c����
3c Þ; 1

4ð �c���i�5c Þð �c���i�5c Þ;
1
4ð �c���5�

1c Þð �c���5�
1c Þ; 1

4ð �c���
2c Þð �c���

2c Þ;
1
4ð �c���5�

2c Þð �c���5�
2c Þ; 1

4ð �c���
1c Þð �c���

1c Þ:

(2.9)
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The operators (2.9) are obtained from those of
Eq. (A9) after use of the chiral rotation (A2). We
note that SPT’s relate through the trivial numerical
factor �1 the matrix elements between neutral
single-pion states of the two operators in each
line.2 Not surprisingly, this remark implies that ��
would vanish if we were to deal with an exactly
chiral invariant lattice formulation. In fact, such a
formulation would be described by a Symanzik
effective Lagrangian where the two operators in
each line of the list (2.9), being related by a chiral
transformation, would necessarily appear with
identical coefficients.

(II) In VSA, one can give an estimate of the value of ��
[Eq. (2.4)] as follows. First of all, one has to rewrite
the matrix elements of the operators (2.9) between
zero-momentum neutral pion states in the form that
is obtained reducing external pions by the use of
SPT’s.3 In this way, one checks that only the pion
matrix elements of the two operators in the first line
of the list (2.9) are not vanishing in VSA. Their
actual contribution to �� depends of course on the
magnitude of the Symanzik coefficients (dimen-
sionless functions of the bare gauge coupling) by
which the two operators are multiplied in the ex-
pression of LMtm

6 . In the gauge coupling regime of

interest for large volume simulations of Mtm-
LQCD, these coefficients are expected to be O(1)
quantities, but their value (and sign) is otherwise
unknown. We must thus limit ourselves to an order
of magnitude estimate of j��j for which, relying on
the line of reasoning outlined above, we write

j��j �VSA 2�̂
2

f2�
’ 2Ĝ2

�; (2.10)

where f� ’ 92:4 MeV. The quantities �̂ and Ĝ�

denote the continuum renormalized chiral conden-
sate and the vacuum-to-pion matrix element of the
pseudoscalar density, with

G� ¼ h�jPbj�bð~0Þijcont; Pb ¼ �c
i

2
�5�

bc ;

(2.11)

� ¼ h�j12S0j�ijcont; S0 ¼ �c c : (2.12)

The first relation, as explicitly indicated, comes from a
direct use of SPT’s and vacuum insertion. The second
holds up to O(m2

�) corrections and comes from combining
the Gell-Mann-Oakes-Renner formula [31]

� 2�̂q�̂ ¼ f2�m
2
� þ Oðm4

�Þ (2.13)

with the continuum Ward-Takahashi identity (WTI)

2�̂qĜ� ¼ f�m
2
�: (2.14)

We conclude this subsection by stressing that sign of ��,
which, as we said, depends on the operator coefficients in
LMtm

6 , is not predicted by our arguments and is to be

learned from numerical simulation experience.

2. Numerics about Eq. (2.10)

A numerical evaluation of Ĝ�, or equivalently of

��̂=f�, can be obtained in various ways, i.e. either ex-

ploiting the direct lattice measurement of Ĝ� or by using
(at the physical pion point) the continuum WTI (2.14).

(I) The direct lattice measurements of Ĝ� carried out in
Refs. [2,3,9] at different lattice resolutions give in
the continuum and chiral limit

Ĝ�ðMS; 2 GeVÞ � ð490 MeVÞ2;
½��̂ðMS; 2 GeVÞ�1=3 � 275 MeV (2.15)

with a total error on Ĝ� not larger than 5%. In order
to arrive at these numbers, the renormalization con-
stant of the operator Pb, computed in the regulari-
zation independent momentum scheme [32] and

converted to the MS scheme, was employed in [33].

(II) A second, independent determination of Ĝ� can be
obtained by making reference to only continuum
quantities if Eq. (2.14) and the PDG [34] estimate

�̂qðMS; 2 GeVÞ ¼ ½ðm̂u þ m̂dÞ=2�ðMS; 2 GeVÞ �
3:8 MeV are used. In this way one gets, at the
physical pion mass,

Ĝ �ðMS; 2 GeVÞ � ð470 MeVÞ2: (2.16)

Taking into account the small error in the extrapo-
lation from the chiral point to the physical pion and
the uncertainty on the light quark mass value, we

see that the two estimates of Ĝ� are in very good
agreement with each other.

The conclusion of this analysis is that numerically the
estimate (2.8) of the neutral to charged squared mass shift

2For the reader’s convenience, we recall that SPT’s amount to
the relation if�h	þ �bð~0ÞjOcj
i ¼ h	j½Qb

A;O
c�j
i, where Qb

A
is the axial charge with isospin index b. External states must
carry isospin indices such that the two matrix elements are not
trivially vanishing. We also note the crossing symmetry relation
h	þ �bð~0ÞjOcj
i ¼ h	jOcj
þ �bð~0Þi. For an introduction to
SPT’s and a more detailed discussion (including limitations in
their use if intermediate states with the quantum numbers of
Ocj	i, or Ocj
i happen to be degenerate in energy with the
states j	i or j
i), see e.g. [30], Sec. IV-5, and references therein.

3In doing so, we are enforcing consistency with SPT’s in using
VSA-based estimates of the matrix elements of the operators
(2.9). This step is necessary, because it is not guaranteed that
VSA estimates comply with SPT relations.
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is substantially larger than its natural size, a2�4
QCD, by a

factor [see Eqs. (2.10), (2.15), and (2.16)] of the order of

2Ĝ2
�=�

4
QCD � 25� 30.

C. Numerical results for �m2
�jL

In this section, we wish to summarize the simulation
results for �m2

�jL that have been obtained from Nf ¼ 2

ETMC ensembles at two different lattice resolutions,
a�1 ’ 2:3 GeV and a�1 ’ 2:8 GeV (corresponding to

 ¼ 3:9 and 
 ¼ 4:05, respectively; see Appendix C 3 b
and Table II for details), and compare them with the
number expected on the basis of Eq. (2.10) for �� as well
as with the estimate of �3

55 � ��
55 derived in Appendix C

[see Eq. (C26)].
In Fig. 1, we display the lattice results for

ðr0=aÞ2r20�m2
�jL vs r20m

2
��jL for the six gauge configura-

tion ensembles specified in Table II. The factor of ðr0=aÞ2
in the vertical axis has been inserted4 to be able to combine
together data from 
 ¼ 3:9 and 
 ¼ 4:05, thus giving an
impression of the quality of the scaling behavior of�m2

�jL.
In the same figure, we also report the value of r40�� (empty

square), which from Eqs. (2.10), (2.15), and (2.16) and r0 ’
0:44 fm is computed to be5

r40�� ¼ �ð2:6� 1:3Þ @�q ¼ 0: (2.17)

The error in (2.17) is dominated by the uncertainty inherent
in the theoretical arguments given in Sec. II B 1, particu-
larly the use of VSA [see Eq. (2.10)], which we conserva-
tively estimate to be about 50%. Finally, the empty
diamond symbol in Fig. 1 represents the result of the
estimate (C26) we give of �3

55 � ��
55 expressed in r0 units,

yielding

r40ð�3
55 ���

55Þ ¼ �0:10� 0:06� 0:03; (2.18)

where the first error is essentially statistical and stems from
the evaluation of �� in Eq. (C54), and the second is the
systematic uncertainty reflecting the approximations in-
volved in the way we parametrize (Appendix C 1) and
evaluate (Appendix C 2) the quantity �3

55 ���
55.

We see from Fig. 1 that within statistical errors (mainly
coming from the noisy quark-disconnected diagrams enter-
ing the calculation of m�3), the available data for �m2

�jL
show the expected scaling behavior with the lattice spac-
ing. The quark mass dependence of ðr0=aÞ2r20�m2

�jL turns

out to be of reasonable magnitude and is not inconsistent
with our theoretical estimate (2.17) within the large uncer-
tainty affecting ðd�m2

�=d�̂qÞjL [from the plotted data one

finds ðd�m2
�=d�̂qÞjL � 300� 900 MeV at 
 ¼ 3:9].

The estimated value of r40ð�3
55 � ��

55Þ with its error [see
Eq. (2.18)] is (in modulus) much smaller than the observed
pion (squared) mass splitting, and also about 20 times
smaller than r40j��j. We thus conclude that the dominant

contribution to �m2
�jL comes from the a2�� correction, as

announced.

III. O(a2) ISOSPIN VIOLATING EFFECTS
IN MTM-LQCD

In this section, we want to provide numerical evidence
of the fact that in Mtm-LQCD simulations, O(a2) isospin
breaking effects are negligible in all the physical quantities
measured up to now by the ETM Collaboration, with the
exception of the neutral pion mass.
In Table I, we report the relative difference of pseudo-

scalar meson squared masses and decay constants between
neutral and charged particles for pseudoscalar and vector
mesons, as well as the relative splitting between the masses
of �þ and �þþ baryons. Most of these data already
appeared in the conference contributions of Ref. [3] and
in Ref. [6].
We refer to [7] for a detailed description of the tech-

niques used to compute correlators, extract physical ob-
servables, and perform the necessary error analysis. The
results presented in this paper are based on the configura-
tions generated by the ETM Collaboration using the for-
mulation of lattice QCD at maximal twist (with cSW ¼ 0
[35]) and tree-level Symanzik improved gluon action. We
show data coming from 
 ¼ 3:9 [2] and 
 ¼ 4:05 [3,6]
simulations at two, roughly matched (in physical units)
values of the twisted-mass parameter �q for each 
.

Again, we stress that the computation of the mass and
decay constant of neutral (pseudoscalar and vector) me-
sons involves the evaluation of quark-disconnected dia-
grams, which is the reason for the relatively larger errors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

(r
0
 mπ+)

2

-14

-12

-10

-8

-6

-4

-2

0

2

r 04
∆m

π2   a
-2

β = 4.05

β = 3.90

FIG. 1 (color online). Data for ðr0=aÞ2r20�m2
�jL vs r20m

2
��jL

are compared with the estimate of r40�� (empty square) and

r40ð�3
55 ���

55Þ (empty diamond).

4According to Ref. [3], we use r0=a ¼ 5:22ð2Þ at 
 ¼ 3:9 and
r0=a ¼ 6:61ð3Þ at 
 ¼ 4:05.

5The sign of ��, which appears in Eq. (2.17) has been inferred
from the numerical evidence that m�3 <m�� .
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affecting these quantities. In the case of �-baryon masses
(where no computation of quark-disconnected diagrams is
required), we give results at four values of �q for 
 ¼ 3:9

and 
 ¼ 4:05.
We quote in Table I the relative isospin splitting, Rs,

measured between the observables O and O0, namely

Rs½O� ¼ O�O0

O
; (3.1)

with O (O0) denoting the quantity in the charged (neutral)
sector in the case of meson data and the �þ;0-mass
(�þþ;�-mass) in the case of nucleons. We recall that,
owing to the invariance of the Mtm-LQCD action under
parity and u $ d flavor exchange, �þ and �0 baryons, as
well as �þþ and the ��, are exactly mass degenerate.

It should also be remarked that to calculate Rs½O� in the
cases of the pseudoscalar and vector (isotriplet) meson
decay constants, use has been made of the appropriate
renormalization constants (ZA and ZV

6) which were taken
from Ref. [33]. The expressions of the pseudoscalar and
vector meson decay constants in the physical quark basis
read (no sum over b)

fPSb ¼
1

mPSb
h�j

�
�c�0�5

1

2
�bc

�
R
jPSbi; b ¼ �; 3;

(3.4)

fVb��k ¼ 1

mVb

h�j
�
�c�k

1

2
�bc

�
R
jVb;�i; b ¼ �; 3;

(3.5)

where the suffix R denotes renormalized operators, ��k is

the polarization vector of the V state with third spin com-
ponent �, and k is a spatial Lorentz index.7 Preliminary
results on fVb have appeared in [29].

The striking conclusion which emerges looking at
Table I is that among the many relative splittings reported

there, we observe a large and statistically significant value
of Rs only when pion masses are compared. For all other
observables, the splitting is consistent with zero within the
quoted errors.
Concluding this section, we may observe that the de-

tailed theoretical explanation of why, in quantities other
than the pion mass O(a2), lattice artifacts are small de-
pends on the particular observable one is considering, and a
case by case analysis is necessary. For completeness, let us
briefly illustrate the situation in a few examples. We start
by comparing f�� with f�3 . In this case, the smallness of
Rs½f�� can be understood by noting that the large L6

matrix element represented by a2�� simply plays no role
in the Symanzik description of the cutoff effects in both the
neutral and the charged pion decay constant. This situation
in turn implies that the (unknown) coefficients multiplying
the dimension-6 Symanzik operators of Eq. (A9) [or (2.9)]
are not exceptionally large; otherwise, all L6 matrix ele-
ments would generically have been large. In the case of the
� mass, the fact that Rs½m�� is small can be understood
from the observation that the relevant matrix elements of
L6 are just zero in the VSA. An even different situation

TABLE I. The ratio Rs½O� of Eq. (3.1) for the observables O
indicated in the first column at the simulation parameters speci-
fied in the second and third column (lattice size is about L ¼
2:1 fm). The large statistical error on Rs for mesonic observables
at 
 ¼ 4:05, a�q ¼ 0:0030 is due to limited statistics for the

quark-disconnected contributions to the neutral meson correla-
tors.

Obs. O 
 a�q Rs½O�
mPS 3.90 0.0040 0.185(44)

mPS 3.90 0.0085 0.139(51)

mPS 4.05 0.0030 0.120(110)

mPS 4.05 0.0060 0.120(42)

fPS 3.90 0.0040 0.04(6)

fPS 3.90 0.0085 �0:09ð8Þ
fPS 4.05 0.0030 �0:03ð6Þ
fPS 4.05 0.0060 0.01(5)

mV 3.90 0.0040 0.022(68)

mV 3.90 0.0085 0.021(44)

mV 4.05 0.0030 �0:104ð108Þ
mV 4.05 0.0060 0.003(49)

mVfV 3.90 0.0040 �0:07ð18Þ
mVfV 3.90 0.0085 �0:01ð11Þ
mVfV 4.05 0.0030 �0:31ð29Þ
mVfV 4.05 0.0060 �0:12ð13Þ
m� 3.90 0.0040 0.022(29)

m� 3.90 0.0060 0.001(21)

m� 3.90 0.0085 0.005(19)

m� 3.90 0.0100 0.007(19)

m� 4.05 0.0030 �0:004ð45Þ
m� 4.05 0.0060 0.004(17)

m� 4.05 0.0080 0.000(18)

m� 4.05 0.0120 0.007(16)

6We recall that ZA and ZV are the renormalization constants of
the �-basis bare operators �����5�

b� and �����
b�, respec-

tively. For the reader’s convenience, we also report the renor-
malization rules for the currents in Mtm-LQCD [11,33] in the
physical basis. For the charged (b ¼ �) axial and vector cur-
rents, they read

ð �c���5�
�c ÞR ¼ ZV

�c���5�
�c ;

ð �c���
�c ÞR ¼ ZA

�c���
�c ;

(3.2)

while for their neutral (b ¼ 3) counterparts, one has

ð �c���5�
3c ÞR ¼ ZA

�c���5�
3c ;

ð �c���
3c ÞR ¼ ZV

�c���
3c :

(3.3)

7To be consistent with the H(4) invariance of the meson
correlators, the matrix elements involving charged (b ¼ �) or
neutral (b ¼ 3) mesons are normalized in Eqs. (3.4) and (3.5)
with the corresponding charged or neutral meson mass.
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occurs in the case of mV. Here, the quantity that plays the
role of �� in the case of the pion mass is about 4 times
smaller than the latter (as can be deduced e.g. from the data
published in Refs. [29,36]). This correction leads to just a
few percent effect in R½mV� owing to the comparatively
larger value of mV with respect to m�3 (or m��).

IV. CONCLUDING REMARKS

In this paper, we have proposed a theoretical explanation
for the size of the O(a2) flavor violating cutoff effects
responsible for the large splitting between a neutral (m�3)
and charged (m��) pion mass seen in recent Mtm-LQCD
dynamical simulations [2]. We have identified the origin of
the additive O(a2) cutoff effects appearing in m2

�3 , which

are absent inm2
�� as the latter has discretization errors only

of order a2�q, a
4 and higher. The magnitude of the O(a2)

lattice artifacts in the neutral pion mass is controlled,
in the language of the Symanzik expansion, by the con-

tinuum matrix element h�3ð~0Þj½LMtm
6 ð0Þ � ð1=2Þ�R

d4xLMtm
5 ðxÞLMtm

5 ð0Þ�j�3ð~0Þijcont, which, if Mtm-LQCD

is defined via the optimal critical mass estimate, is numeri-

cally dominated by �� ¼ h�3ð~0ÞjLMtm
6 j�3ð~0Þijcont. In the

vacuum saturation approximation, one gets the theoretical

estimate j��j � 2Ĝ2
� � ð560� 580 MeVÞ4, up to an un-

known multiplicative factor depending on the details of the
lattice action and the number of dynamical quark flavors
(actually one can argue that this coefficient grows linearly
with Nf).

We have shown that numerical simulations of Mtm-
LQCD with Nf ¼ 2 light dynamical quarks yield values

of ðr0=aÞ2r20�m2
�jL with negative sign and a magnitude

that is in line with the above theoretical estimate. We have
also provided evidence that among the many physical
quantities recently measured in numerical simulations,
only the neutral pion mass appears to be affected by large
flavor-breaking discretization errors. Were it ever needed
to reduce the relative lattice artifact on this particular
quantity to, say, a �5% level, while working, for instance,
with a pion mass of about 250 MeV, simulations at lattice
resolutions of about 0.03–0.04 fm would be required, based
on the data and the a2-scaling behavior discussed in this
work.

Finally, we observe that, given the independence from
the twist angle of the structure of the Symanzik effective
action in the limit of vanishing quark mass, the analysis
presented in this paper may have a bearing also on LQCD
simulations employing standard (i.e. untwisted) Wilson
fermions. Indeed, even in this formulation, O(a2) cutoff
effects of the same nature as those observed in Mtm-LQCD
are expected to be present. In particular, a formula com-
pletely analogous to Eq. (2.1) holds true for the squared
pion mass. Typically, these O(a2) cutoff effects are reab-
sorbed in the definition of the current quark mass (which by
construction vanishes simultaneously with the pion mass)

and thus in the corresponding definition of critical mass.
The consequences of this way of proceeding are in princi-
ple detectable in the form of O(a2) cutoff effects in the
masses of all the other hadrons and, more generally, in all
the quantities that have a non-negligibly small dependence
on the quark mass. Actually, in what observables exactly
they will appear depends on the precise way the critical
mass happens to have been determined (see the analysis in
Appendix A).
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APPENDIX A: SYMANZIK EXPANSION AND
CRITICAL MASS IN LQCD WITH WILSON

FERMIONS

We consider Nf ¼ 2 LQCD with quarks regularized as

Wilson fermions. For generic values of the bare (twisted,
�q, and untwisted, m0) mass parameters the lattice action

reads8

SL ¼ SYML þ ��

�
� � ~r� a

2
r	rþ cSW

ia

4
� � Fþm0

þ i�q�5�
3

�
�; (A1)

where ~r� ¼ 1
2 ½r� þr	

��, with r� (r	
�) the forward

(backward) gauge covariant lattice derivative. For the
sake of generality, we have also allowed for the presence
of the clover term. We are especially interested in two
specific regularizations of the Dirac-Wilson action com-
prised in (A1).
The first is the Mtm-LQCD regularization which is

obtained from (A1) by setting �q ¼ Oða0Þ and m0 ¼
Me

cr, where M
e
cr is some estimate of the critical mass. The

physical interpretation of this scheme is most transparent

8We adopt the conventions and notations of Refs. [11,37,38].
In particular, the quark fields in the ‘‘physical’’ and ‘‘twisted’’
basis will be denoted by c , �c and �, ��, respectively.
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in the quark basis resulting from the field transformation

c ¼ expði��5�
3=4Þ�; �c ¼ �� expði��5�

3=4Þ;
(A2)

where the lattice action takes the form

SMtm
L ¼ SYML þ �c

�
� � ~r� i�5�

3

�
�a

2
r	r

þ cSW
ia

4
� � FþMe

cr

�
þ�q

�
c : (A3)

This quark basis is referred to as the physical basis, be-
cause the quark mass term takes the form �q

�c c with �q

real [11].
The second is the (clover) standard Wilson fermion

action, SclL , which is obtained by setting �q ¼ 0 and m0 ¼
mþMe

cr with m an O(a0) quantity. With this choice, the
most appropriate basis for discussing physics is the � basis
itself in which Eq. (A1) was written in the first place.

1. Symanzik expansion of Wilson fermion LQCD

The Symanzik effective Lagrangian associated to the
Wilson action (A1) reads

L Sym ¼ L4 þ 
LSym; (A4)

L 4 ¼ LYM þ ��½ 6Dþmþ i�5�
3�q��; (A5)


LSym ¼ aL5 þ a2L6 þ Oða3Þ; (A6)

where the four-dimensional operator, L4, specifies the
formal target theory in which continuum correlators are
evaluated. The very definition of effective action (all the
necessary logarithmic factors are understood) as a tool to
describe the a dependence of lattice correlators implies
that the mass parameters in L4, if not exactly vanishing,
must be O(a0) quantities. Thus all the lattice artifacts
affecting Me

cr will be described by higher dimensional
operators in 
LSym of the form ak
k�

kþ1
QCD ���, k 
 1,

with 
k dimensionless coefficients, which are functions
of the gauge coupling.

After using the equations of motion entailed by L4, the
O(a) piece of 
LSym reads [4,20]

L 5 ¼ b5;SW ��i� � F�þ 
1�
2
QCD ���þ Oðm;�qÞ: (A7)

The terms multiplied by powers of m and/or �q are not

specified in Eq. (A7) as they are not of relevance for the
topic discussed in this paper. We recall that the coefficients
b5;SW and 
1 vanish if cSW in Eq. (A1) is set to the value

appropriate for Symanzik O(a) improvement.
The O(a2) part of 
LSym has a more complicated ex-

pression, of the type

L6 ¼
X3
i¼1

b6;i�
glue
6;i þ b6;4 ����ðD�Þ3�

þX14
i¼5

b6;i�6;i þ 
2�
3
QCD ���þ Oðm;�qÞ; (A8)

where the first three operators are purely gluonic, the
fourth is a non-Lorentz invariant fermionic bilinear, and
the remaining ones are four-fermion operators, which we
choose to write in the form (equivalence with the list in
[35] can be proved by using Fierz rearrangement)

�6;5 ¼ 1

4
ð ���Þð ���Þ;

�6;6 ¼ 1

4

X
b

ð ���b�Þð ���b�Þ;

�6;7 ¼ 1

4
ð ��i�5�Þð ���5�Þ;

�6;8 ¼ 1

4

X
b

ð ��i�5�
b�Þð ���5�

b�Þ;

�6;9 ¼ 1

4
ð �����Þð �����Þ;

�6;10 ¼ 1

4

X
b

ð �����
b�Þð �����

b�Þ;

�6;11 ¼ 1

4
ð �����5�Þð �����5�Þ;

�6;12 ¼ 1

4

X
b

ð �����5�
b�Þð �����5�

b�Þ;

�6;13 ¼ 1

4
ð ������Þð ������Þ;

�6;14 ¼ 1

4

X
b

ð ������
b�Þð ������

b�Þ:

(A9)

In closing this section, it is important to note that the form
of the Symanzik effective Lagrangian enjoys some inter-
esting degree of universality in the sense that formally, its
zero mass limit (m0 �Me

cr ¼ �q ¼ 0) only depends on

discretization details, like the form of the gauge action,
the specific expression of the lattice derivatives, or the
value of cSW, but not on whether one shall be eventually
dealing with standard or twisted Wilson fermions.
When quark mass terms are switched on, the QCD

vacuum gets polarized driving spontaneous chiral symme-
try breaking. The information about spontaneous chiral
symmetry breaking effects is embodied in the Symanzik
analysis by assigning to the continuum correlators in the
expansion appropriate values consistent with the residual
exact symmetries of the target QCD theory. In this way the
relative ‘‘orientation’’ of the quark mass term with respect
to the explicitly chirally breaking terms of the Symanzik
low energy Lagrangian (describing the effects of the
Wilson term present in the lattice action) becomes crucial
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for determining the size and the order in a of cutoff
artifacts in correlation functions [4,11].

2. Critical mass in Wilson fermion LQCD

Both in the case of standard (�q ¼ 0) and twisted-mass

[�q ¼ Oða0Þ] Wilson fermions, the critical mass is taken

as the value of m0 at which the partially conserved axial
vector current (PCAC) mass vanishes. It is, however, useful
to examine separately the two cases, since the resulting
structure of lattice artifacts affecting these two determina-
tions of the critical mass will be significantly different, as
alluded to at the end of the previous section.

a. Critical mass in twisted-mass LQCD

In twisted-mass LQCD, the condition [which wewrite in
the physical c basis (A2)]

a3
X
~x

hð �c�0�
2c Þð ~x; tÞð �c�5�

1c Þð0ÞijL ¼ 0 (A10)

leads to a determination of the critical mass, which is

‘‘optimal’’ (M
opt
cr ) in the sense that with this choice, all

the leading chirally enhanced cutoff effects [i.e. those of
relative order ða=�qÞ2k, k ¼ 1; 2; . . . with respect to the

dominant term in the a ! 0 limit] are eliminated from
lattice correlators [4].

In the spirit of the Symanzik expansion, the condition
(A10) must be viewed as a relation holding true parametri-
cally for generic values of a (and�q). As a consequence, it

is equivalent to an infinite set of equations, where each
equation results from the vanishing of the coefficient of the
term proportional to ak, k ¼ 0; 1; 2; . . . , in the expansion of
the left-hand side of (A10).9

That the condition (A10) yields an acceptable estimate
of the critical mass can be inferred from the observation
that the first of these equations (the one which corresponds
to the vanishing of the a0 term) is nothing but the contin-
uum relation

Z
d3xhð �c�0�

2c Þð ~x; tÞð �c�5�
1c Þð0Þijcont ¼ 0; (A11)

by which restoration of parity and isospin is enforced in the
lattice theory. This means that, if [the O(a0) term in] m0 is
chosen so as to fulfill Eq. (A10), then we will simulta-
neously have m ¼ 0 in Eq. (A5) and the identification on
the lattice of the operator �c�0�

2c with the time compo-
nent of the vector current, V2

0 . At this point to more clearly

understand the further implications of Eq. (A10), it is
convenient to explicitly write down the first few terms of

its Symanzik expansion for which one gets

0 ¼ �a
Z

d3x
Z

d4yhLMtm
5 ðyÞV2

0 ðxÞP1ð0Þijcont

þ a
Z

d3xh½�1V
2
0 ðxÞP1ð0Þ þ V2

0 ðxÞ�1P
1ð0Þ�ijcont

� a2
Z

d3x
Z

d4yhLMtm
6 ðyÞV2

0 ðxÞP1ð0Þijcont

þ a2
Z

d3xh½�2V
2
0 ðxÞP1ð0Þ þ V2

0 ðxÞ�2P
1ð0Þ�ijcont

þ Oða3Þ: (A12)

Equation (A12) has been written under the assumption that
the O(a0) piece of m0 has been chosen so that condition
(A11) is fulfilled. As a consequence [see Eq. (A7)]LMtm

5 is

a parity-odd and flavor-breaking operator of the form

LMtm
5 ¼ b5;SW �c�5�

3� � Fc � 
1�
2
QCD

�c i�5�
3c

þ Oð�qÞ; (A13)

whileLMtm
6 [see Eq. (A8)] can be split into the sum of two

contributions

LMtm
6 ¼ LP-even

6 � 
2�
3
QCD

�c i�5�
3c þ Oð�qÞ; (A14)

withLP-even
6 a parity-even operator. With the notation �jO

in Eq. (A12), we indicate the operators of dimension dO þ
j that correct to O(aj) the (local) operatorO. Their parity is
equal to ð�1Þj times the parity of O (see the Appendix in
[4]). We explicitly remark that in Eq. (A12), we have
omitted the O(a2) terms with two integrated insertions of
LMtm

5 and the associated contact terms, because they all

vanish by continuum parity. Finally, for the purpose of the
present argument, we have ignored operators having coef-
ficients proportional to �q.

At O(a), the condition implied by Eq. (A12) reduces to
[4]

0 ¼
Z

d3x
Z

d4yh½b5;SW �c�5�
3� � Fc

� 
1�
2
QCD

�c i�5�
3c �ðyÞV2

0 ðxÞP1ð0Þijcont þ Oð�qÞ;
(A15)

since the first term in the second line of Eq. (A12) gives
a vanishing contribution to Eq. (A15) in the chiral limit,
and there are no O(a) operator corrections to P1 (i.e.
�1P

1 ¼ 0).
In the chiral regime, where intermediate pion states

dominate, one recognizes that Eq. (A15) leads to the
condition which determines the O(a) piece of the optimal
critical mass. We recall that with the definition

�� ¼ ��ð�qÞ ¼ h�jX
1

‘¼0

a2‘LMtm
2‘þ5j�3ð~0Þijcont; (A16)

9The practical problems in determining m0 from (A10), which
are related to subtleties associated to the exchange of continuum
(a ! 0) and chiral (�q ! 0) limit and to the possible limitations
of the validity of the Symanzik expansion of the cor-
relator (A10), have been discussed at length in Refs. [4,39]
and will not be repeated here.
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which to leading order in a reads �� ’
h�jLMtm

5 j�3ð~0Þijcont, Eq. (A15) becomes, in the chiral

regime �q � �QCD, the constraint [4]

�� ¼ h�jLMtm
5 j�3ð~0Þijcont þ Oða2Þ ¼ Oð�qÞ þ Oða2Þ;

(A17)

which again should be looked at as an infinite set of
equations, one for each power of a, with the leading one
fixing 
1 in terms of b5;SW.

At O(a2), since by continuum parity invariance one can
derive the equations

Z
d3x

Z
d4yhLP-even

6 ðyÞV2
0 ðxÞP1ð0Þijcont ¼ 0; (A18)

Z
d3xh½�2V

2
0 ðxÞP1ð0Þ þ V2

0 ðxÞ�2P
1ð0Þ�ijcont ¼ 0;

(A19)

while the terms with the insertion of �c i�5�
3c do not

vanish

Z
d3x

Z
d4yh �c i�5�

3c ðyÞV2
0 ðxÞP1ð0Þijcont � 0; (A20)

the condition implied by Eq. (A10) [or Eq. (A12)] yields

2 ¼ 0 in (A14). The important consequence of this argu-
ment is that the estimate of the critical mass provided by
(A10) is not affected by O(a2) corrections.

The above line of reasoning can be generalized to all
orders in a leading to the conclusion that, if the critical
mass is determined in twisted-mass LQCD by means of the
condition (A10) [whose Symanzik expansion takes the
form (A12)], the expansion of the critical mass will only
display O(a2pþ1), p ¼ 0; 1; . . . , lattice corrections, with
coefficients 
2pþ1 determined by constraints analogous to

(A15).

b. Critical mass in standard Wilson fermion LQCD

In the case of standard (clover) Wilson fermions, the
condition for the vanishing of the PCAC mass is (b ¼ 1, 2,
3, no sum over b)

~@0
P
~x

hiAb
0ð ~x; tÞPbð0Þi

2
P
~x

hPbð ~x; tÞPbð0Þi
��������L

� mPCACjL ¼ 0 for �q ¼ 0;

(A21)

which is analogous to Eq. (A10) with the crucial difference
that now �q ¼ 0. The condition (A21) is in practice im-

plemented by looking for the limiting value ofm0 at which

mPCAC ! 0þ. We will call M
eW
cr the estimate of the critical

mass obtained in this way.10

Setting m0 ¼ M
eW
cr in the standard Wilson action corre-

sponds to have the continuum mass inL4 equal to zero. At
the same time, lattice artifacts of order ak, k ¼ 2; 3; . . . in
MeW

cr will be correspondingly described by terms of the
kind ak
eW

k �kþ1
QCD ��� in Lk. The O(a) term is absent, if the

lattice theory is clover improved. For the rest, unlike
what we have shown to happen in twisted-mass LQCD
(see Appendix A 2 a), discretization errors of any order in a
will affect the critical mass determination provided by
Eq. (A21).
As in the case of twisted-mass LQCD, here one must

also look at the conditions coming from the vanishing of
the PCAC mass as equations that fix the values of the
coefficients 
eW

k in terms of the matrix elements of Lk

between one-pion states. For instance, at O(a2) from the
symmetries of the standard Wilson action (and the form of
the associated Symanzik expansion) one cannot conclude
anymore that 


eW
2 vanishes. Rather, the value of this pa-

rameter is fixed through Eq. (A21) by the condition

h�ð~0ÞjL6j�ð~0Þijcont ¼ 0; (A22)

where L6 is the full six-dimensional operator of the
Symanzik effective Lagrangian [given in Eq. (A8)] which,
we recall, also includes the 
eW

2 �3
QCD ��� term. Equa-

tion (A22) follows from the fact that the lattice pion
squared mass and mPCACjL by construction vanish at the
same value of m0. Furthermore, these two quantities are
found to be linearly proportional to a very good approxi-
mation in the region where they are both small, implying
that possible additive cutoff artifacts affectingmPCACjL and
the squared pion mass are also proportional to each other.

APPENDIX B: O(a2) CORRECTIONS TO THE
SQUARED PION MASS

The correlator of interest for extracting the squared pion
mass is the four-dimensional Fourier transform of the two-
point subtracted11 pseudoscalar correlator (no sum over
b ¼ �; 3), which reads

�b
LðpÞ ¼ a4

X
x

eipxhPbðxÞPbð0ÞijL: (B1)

�b
LðpÞ has a pole at p2 ¼ �m2

�b jL with a residue given by

jG�b j2L, where [see Eq. (2.11)]

10This nonperturbative estimate of the critical mass is the one
that is implicitly adopted in the studies of standard (clover)
Wilson LQCD where the renormalized quark mass is defined
as m̂ ¼ ZAZ

�1
P mPCAC.

11Since we are interested in determining the structure of the
cutoff corrections affecting the lattice pion mass, we can always
imagine that contact terms, which do not display the pion pole,
have been subtracted out. In the formulas that follow, the super-
script ‘‘subtracted’’ is thus always understood.
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G�b jL ¼ h�jPbj�bð~0ÞijL: (B2)

To proceed further, we need to write down the Symanzik expansion of �LðpÞ up to order a2 included. This gives

a4
X
x

eipxhPbðxÞPbð0ÞijL ¼
Z

d4xeipxhPbðxÞPbð0Þijcont þ a2
Z

d4xeipxh�1P
bðxÞ�1P

bð0Þijcont

þ a2
Z

d4xeipxh�1P
bðxÞPbð0Þ

Z
d4yLMtm

5 ðyÞijcont þ a2
Z

d4xeipxhPbðxÞ�1P
bð0Þ

�
Z

d4yLMtm
5 ðyÞijcont þ a2

2

Z
d4xeipxhPbðxÞPbð0Þ

Z
d4yLMtm

5 ðyÞ
Z

d4y0LMtm
5 ðy0Þijcont

� a2
Z

d4xeipxh�2P
bðxÞPbð0Þijcont � a2

Z
d4xeipxhPbðxÞ�2P

bð0Þijcont

� a2
Z

d4xeipxhPbðxÞPbð0Þ
Z

d4yLMtm
6 ðyÞijcont þ Oða4Þ: (B3)

The absence of odd powers of the lattice spacing in this
formula is guaranteed by the results of Ref. [11], as we are
working at maximal twist. We will also assume that the
critical mass has been determined in the optimal way
described in Appendix A 2 a, so that by setting m0 ¼
Mopt

cr the condition (A17) holds true. We also recall that
the operators �1P

b and �2P
b are the dimension four and

five terms that are needed to compensate for the O(a) and
O(a2) operator corrections arising from the contact of
LMtm

5 ðyÞ and LMtm
6 ðyÞ, respectively, with the operators

localized at the points x and 0.
Since we are interested in the lattice corrections to the

pion mass, we must look in the right-hand side (r.h.s.) of
Eq. (B3) for the terms which may display the double pion
pole factor12 ðp2 þm2

�Þ�2.
Among the many terms in the r.h.s. of Eq. (B3), only the

fifth and the last display the double pole we are after.
Putting together Eqs. (2.11), (B2), and (B3) and taking
the limit p ! 0 at small m2

� (but always parametrically
larger than a2 [4]), from the ensuing pion pole dominance
we arrive at the formula

jG�3 j2
m2

�3

��������L
¼ jG�j2

m2
�

��������cont

�
�
1� a2

h�3ð~0ÞjLMtm
6&55ð0Þj�3ð~0Þi
m2

�

��������cont

�

þ O

�
a2

m2
�

�
; (B4)

with

LMtm
6&55ð0Þ ¼ LMtm

6 ð0Þ � 1

2

Z
d4xLMtm

5 ðxÞLMtm
5 ð0Þ: (B5)

A simple Taylor series resummation leads precisely to

Eq. (2.1) of the text, which we stress also agrees with the
results derived in �PT [12,13,22,39].
We close the Appendix by noting that the absence of a

contribution from h��ð~0ÞjLMtm
6 ð0Þj��ð~0Þijcont in Eq. (2.6)

is a consequence of the commutation relation13

½Q�
A ;L

Mtm
Sym � ¼ Oð�qÞ ¼ Oðm2

�Þ; (B6)

from which one gets the SPT

h��ð~0ÞjLMtm
6 ð0Þj��ð~0Þijcont

¼ �i

f�
h�j½Q�

A ;L
Mtm
6 ð0Þ�j��ð~0Þijcont þ Oðm2

�Þ
¼ Oðm2

�Þ: (B7)

APPENDIX C: EXPRESSION AND ESTIMATES
OF ��;3

55

In this (long) Appendix, we present arguments showing
that �b

55, b ¼ 3, � [Eq. (2.5)] yield contributions to m2
�b jL

[Eqs. (2.6) and (2.7)], which are parametrically (in the limit
m2

� ! 0) and/or numerically negligible, provided Mtm-
LQCD is defined by settingm0 [see Eq. (A1)] at its optimal
critical value determined by the condition (A10).
In Appendix C 1, we provide the expression of �3

55 and

��
55 [Eq. (2.5)] based on standard field theoretical manipu-

lations, i.e. insertion of intermediate states, or alternatively
Lehmann-Symanzik-Zimmerman representation and re-
duction formulas, and, wherever applicable, SPT’s
[24,25]. In Appendix C 2, we give a numerical estimate
of the magnitude of �3

55 and ��
55 for the typical lattice

volume and pion mass values relevant for the recent ETMC
simulations. The details of our estimate of the key matrix

12For short from now, on we will simply write m2
� (with no

isospin index as in the continuum target theory all three pions are
mass-degenerate) for m2

�jcont.

13In Mtm-LQCD, the flavor symmetry group is the ‘‘oblique’’
SUð2Þob group generated by the charges Qþ

A , Q
�
A , and Q

3
V . These

conserved charges are associated with the (one-point split)
currents reported in Sec. 4.1 of Ref. [11]. In the notation of
that paper we are dealing here with the case r ¼ 1, !r ¼ �=2.
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element �� [Eqs. (A16) and (A17)], which controls the
numerically dominant (in the small m2

� region) contribu-

tions to �3;�
55 , are deferred to Appendix C 3.

1. The theoretical analysis of �3
55 and ��

55

For the purposes of our study, we restrict attention to
Nf ¼ 2 QCD with light u and d quarks yielding light,

weakly interacting pions. In this regime, on general
grounds, one can write in the infinite volume limit the
spectral decomposition of the continuum quantity �3

55

[Eq. (2.5)] in the convenient form14

�3
55 ¼ � ��

m2
�

h�3ð~0ÞjLMtm
5 j�3ð~0Þ�3ð~0Þi

� 4�

16�3

Z 4m�

2m�

dE
kðEÞ

E2 �m2
�

jh�3ð~0Þj

�LMtm
5 jP ðI3¼0Þ

�� ��; Eij2 þ R3
55; (C1)

R3
55 ¼ �X

n

jh�3ð~0ÞjLMtm
5 j�0

nð~0Þij2
m2

�0
n
�m2

�

þ � � � ; (C2)

where we have explicitly separated out from the remainder,
R3
55, the contribution of the semidisconnected one-pion

pole (sometimes referred to as ‘‘tadpole’’ in the following)
and the contribution of the cut over two-pion states below
the inelastic threshold. In order to have more manageable
formulas, we have decided to reduce the initial integrations
over the momenta of the two pions to the integration on the
single center-of-mass energy variable, and we have set

kðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=2Þ2 �m2

�

q
: (C3)

The remainder in Eq. (C2) comprises a sum over one-
particle scalar states with zero isospin,15 as well as con-
tributions from heavier and/or more complicated multi-
particle states which we have simply indicated by ‘‘� � � .’’
Our conventions are such that in Eq. (C1) the single-
particle meson states 	 (	 ¼ �;�0

n; . . . ) are introduced
with the Lorentz covariant normalization (b; b0 ¼ 1, 2, 3
are SU(2) isospin labels)

h	bð ~pÞj	b0 ð ~p0Þi ¼ 2E	ð ~pÞð2�Þ3
b;b0
ð ~p� ~p0Þ;
E	ð ~pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

	

q
: (C4)

The states jP ðI3¼0Þ
�� ��; Ei are two-pion states with total

energy E, zero total three-momentum, and a zero total

isospin third component. In particular, the symbol P ðI3¼0Þ
��

denotes the isospin projector onto the two-pion states with
a vanishing total third component (I3 ¼ 0). Here, we recall
that two possible states contribute which one has to sum
over, namely, the state with two neutral pions and that with
one negatively and one positively charged pion.
Similarly, the expression of the (infinite volume limit)

spectral decomposition of ��
55 [Eq. (2.5)] will read

��
55 ¼ � ��

m2
�

h��ð~0ÞjLMtm
5 j�3ð~0Þ��ð~0Þi

� 4�

16�3

Z 4m�

2m�

dE
kðEÞ

E2 �m2
�

jh��ð~0Þj

�LMtm
5 jP ð�;3Þ

�� ��; Eij2 þ R�
55; (C5)

R�
55 ¼ �X

n

jh��ð~0ÞjLMtm
5 j��

n ð~0Þij2
m2

��
n
�m2

�

þ � � � ; (C6)

with P ð�;3Þ
�� as the isospin projector onto the state of two

pions having third component � and 3.
On general grounds one expects the numerically domi-

nating contributions to �3;�
55 to come from the interaction

of the propagating pion [the initial and final particle in
Eq. (2.5)] with a neutral pion created from the vacuum, i.e.
from first term in the r.h.s. of Eqs. (C1) and (C5). In the
next sections, we will show that this is indeed the case. The
important observation is that in Mtm-LQCD with optimal
critical mass, these dominant tadpole contributions are
O(m2

�) and moreover equal for �3
55 and ��

55 up to (very

small) O(m4
�) terms; hence, they get canceled in the pion

squared mass difference. The estimated leftover correction
coming from the elastic two-pion cut as well as the re-
mainders [Eqs. (C2) and (C6)] will be shown to be tiny.
We now examine in turn the various terms contributing

to�3
55 and �

�
55 and discuss their parametric behavior in the

small-m2
� regime. We shall see, in particular, that for

symmetry reasons the contributions from the various inter-
mediate states to ��

55 tend to be negligible compared to

those contributing to �3
55, with the exception of the tadpole

term and the one coming from the lowest-lying two-pion
intermediate state.

a. Tadpole

The first terms in Eqs. (C1) and (C5) are equal to leading
order in the chiral expansion, as one can show e.g. by
reducing the neutral pion in the ket state, yielding16

14For short in this Appendix, we will drop the subscript jcont
from continuum QCD quantities. Lattice quantities will still be
labeled by the subscript jL.
15Phenomenologically, the lightest of these states should be
identified with the a0ð980Þmeson. It should be kept in mind that,
since in the actual simulation data we will be considering the
lightest ‘‘pion’’ mass is about 300 MeV, the lattice state corre-
sponding to the ‘‘a0ð980Þ’’ particle is expected to have a mass
somewhat above 1 GeV.

16In this Appendix with the symbol�, we denote equality up to

O(a2) corrections, with the ¼SPT equality up to O(m2
�) terms and

with the �SPT equality up to O(a2) and O(m2
�) corrections.
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h�3ð~0ÞjLMtm
5 j�3ð~0Þ�3ð~0Þi ¼SPTh��ð~0ÞjLMtm

5 j�3ð~0Þ��ð~0Þi:
(C7)

An explicit estimate of the tadpole terms can be given on
the basis of the SPT relations

h�3ð~0ÞjLMtm
5 j�3ð~0Þ�3ð~0Þi ¼SPT� 1

f2�
h�jLMtm

5 j�3ð~0Þi

¼ ���

f2�
; (C8)

from which one gets

�3
55jtad ¼ � ��

m2
�

h�3ð~0ÞjLMtm
5 j�3ð~0Þ�3ð~0Þi ¼SPT �2

�

f2�m
2
�

;

��
55jtad ¼ � ��

m2
�

h��ð~0ÞjLMtm
5 j�3ð~0Þ��ð~0Þi ¼SPT �2

�

f2�m
2
�

:

(C9)

We remark that when the untwisted mass,m0, is fixed at its
optimal value, Eq. (A17) holds [4], implying

�2
�

f2�m
2
�

¼ Oðm2
�Þ; (C10)

while in the opposite case one finds that this quantity tends
to increase as we go towards the chiral limit, leaving large
O(a2=m2

�) cutoff effects in the neutral as well as in the
charged lattice pion mass.17

b. Two-pion cut below the inelastic threshold

In a finite three-dimensional volume, V ¼ L3, the inte-
gral over the two-pion cut can be rewritten as a sum over
discrete states through the formal replacement

Z 4m�

2m�

dE
kðEÞ

E2 �m2
�

� � � ! X‘max

‘¼0

1

�VðE‘Þ
kðE‘Þ

E2
‘ �m2

�

� � � ;

(C11)

where ‘max is the number of allowed two-pion levels that
can be hosted in the volume V below the inelastic threshold
(4m�). The relation between the allowed values of ‘ and
the level energies is established combining Eq. (C3) with
the formulas [43,44]

‘�� 
ðkÞ ¼ �ðqÞ; q ¼ kL

2�
; ‘ 
 0; (C12)

where 
ðkÞ denotes the s-wave �� phase shift in the
appropriate isospin channel and �ðqÞ is a known [44]
kinematical function. Finally (see e.g. Ref. [45]),

�VðEÞ ¼ q�0ðqÞ þ k
0ðkÞ
4�k2

E (C13)

is the two-particle state density with 
0ðkÞ ¼ d
ðkÞ=dk and
�0ðqÞ ¼ d�=dq. At the volumes (L ¼ 2:1 and L ¼
2:8 fm) that will be considered in Appendix C 2 and for
the lightest pion mass (m�� � 300 MeV), one has lmax ¼
2.
(i) ‘ ¼ 0—The contribution of the ‘ ¼ 0 term in the

sum (C11) can be computed in an almost model-
independent way observing that the lowest energy
level corresponds to have the two pions at rest with
E0 ¼ 2m�.

18 Making use of the SPT’s (C7) and (C8)
and taking into account the presence of the isospin

projectors P ðI3¼0Þ
�� and P ð�;3Þ

�� in Eqs. (C1) and (C5),
respectively, one finds

�3
55j‘¼0 ¼ � 3h20�

2
�

ðE2
0 �m2

�Þf4�

��������E0¼2m�

; (C14)

��
55j‘¼0 ¼ � 2h20�

2
�

ðE2
0 �m2

�Þf4�

��������E0¼2m�

; (C15)

where

h20 ¼
kðE0Þ

8�2�VðE0Þ
��������E0¼2m�

¼ 1

2m�V
ð1þ Oð1=LÞÞ

(C16)

will be in the following approximated by its infinite
volume limiting value, ð2m�VÞ�1, which we remark
is independent of the expression of the phase shift

ðkÞ appearing in �VðEÞ.
Two observations are in order here. The first is that
the quantities (C14) and (C15) only differ because
different isospin combinations of two-pion inter-
mediate states contribute. The second is that, as in
the tadpole case discussed above, both contributions
are of O(m2

�), if Eq. (C10) holds, i.e. if the critical
mass has been set to its optimal value. If this is not
so, large and unequal, O(a2=m2

�) cutoff effects will
be left out in the neutral, as well as in the charged,
lattice pion mass.

(ii) ‘ 
 1—As we said, given the magnitude of L we
consider, in the energy interval 2m� < E< 4m�

two-pion states with ‘ ¼ 1 and ‘ ¼ 2 will contrib-
ute with terms of the form

�b
55j‘ ¼ � 2h2‘

E2
‘ �m2

�

��������h�bð~0ÞjLMtm
5 jP ð...Þ

����; E‘ij2;

h2‘ ¼
kðE‘Þ

8�2�VðE‘Þ
(C17)

17This result is in agreement with the finding of theoretical
studies [4,13,40] and indirectly confirmed by the observation of
large, positive O(a2) lattice artifacts in the quenched Mtm-
LQCD computations [41,42] of the charged pion mass and the
corresponding decay constant (computed from the WTI relation
f�� ¼ 2�qG�=m

2
�� ).

18Actually, there is a finite size correction proportional to the
(J ¼ 0, I ¼ 0) �� scattering length [43]. To be precise, one gets
E0 ¼ 2m� � 4�a00ðm�VÞ�1ð1þ Oð1=LÞÞ.
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with b equal to 3 or� and P ð...Þ
�� standing for P ðI3¼0Þ

��

or P ð�;3Þ
�� , respectively. Evaluation of �3

55j‘¼1;2 is

possible only at the price of making some reason-
able assumption about the energy behavior of the
pion matrix elements in Eq. (C17). The simplest
thing is to assume that these matrix elements are
constant in energy in the range 2m� < E< 4m�.
The quantities h2‘ in Eq. (C17) can be straightfor-

wardly evaluated in terms of kðE‘Þ and �VðE‘Þ for
the ‘ values of interest, once a reasonable parame-
trization of the phase shift 
ðkÞ (see Appendix C 2)
is inserted in Eq. (C13).

Concerning ��
55j‘¼1;2, the important remark is that these

quantities in the chiral regime are suppressed by a factor of
m4

� with respect to their neutral counterparts�3
55j‘¼1;2. The

result follows from Eq. (C17) by noting the SPT relation
(actually valid for all ‘ > 0)

if�h��ð~0ÞjLMtm
5 jP ð�;3Þ

�� ��; E‘i
¼ h�j½Q�

A ;L
Mtm
5 �jP ð�;3Þ

�� ��;E‘i ¼ Oðm2
�Þ: (C18)

As a consequence, assuming the validity of this SPT for
m� ’ 300� 400 MeV, we shall neglect ��

55j‘¼1;2 with

respect to �3
55j‘¼1;2 in our subsequent numerical estimates.

We also observe that, if LMtm
5 itself is an operator of

Oð�qÞ ¼ Oðm2
�Þ, as it happens in the LO-�PT description

of Mtm-LQCD with optimal critical mass,19 the r.h.s. of
Eq. (C18) is actually an O(m4

�) quantity for states with

E‘ ¼ Oðm�Þ, while h�3ð~0ÞjLMtm
5 jP ðI3¼0Þ

�� ��; E‘i is

O(m2
�). In this situation one thus finds ��

55j‘¼1;2 ¼
Oðm6

�Þ and �3
55j‘¼1;2 ¼ Oðm2

�Þ. The resulting m4
� suppres-

sion factor is in agreement with the general m2
� behavior

[implied by the SPT (C18)] of the charged pion contribu-
tion with respect to the neutral one.

c. The remainder

The remainder comprises the two-pion cut integral from
4m� to 1 and the contribution from all other possible
single and multiparticle intermediate states.

The first important observation is that all the contribu-
tions to R�

55 are of O(m4
�). This result can be derived in

close analogy to Eq. (C18) above, namely, by reducing the
charged pion in the matrix elements [see Eq. (C6)]

h��ð~0ÞjLMtm
5 j	�i, where j	�i is a state with a nonzero

energy in the chiral limit [e.g. the one-particle scalar state
��

n appearing in Eq. (C6)]. One gets, in fact

if�h��ð~0ÞjLMtm
5 j	�i ¼ h�j½Q�

A ;L
Mtm
5 �j	�i ¼ Oðm2

�Þ:
(C19)

A similar result does not hold for R3
55, because the com-

mutator ½Q3
A;L

Mtm
5 � does not vanish in the chiral limit.

Based on Eq. (C19), we shall neglect the term R�
55 with

respect to R3
55 in the numerical estimates below.

In this context it should also be noted that the sum
��

55j‘¼1 þ��
55j‘¼2 þ R�

55, being a negative quantity, yields

a (tiny) positive contribution to the phenomenologically
negative [2,3] squared pion mass splitting. This term [see
Eqs. (2.6) and (2.7)], if included in ��

55, would go in the

direction of increasing the negative contribution of �� that
is necessary in order to reproduce the observed value of
m2

�3 jL �m2
��jL.

Coming back to the evaluation of the remainder terms,
we shall hence limit below our discussion to R3

55. The

latter, we recall, includes, besides terms from one-particle
scalar intermediate states explicitly shown in Eq. (C2), also
a cut contribution of the form

� 4�

16�3

Z 1

4m�

dE
kðEÞ

E2 �m2
�

jh�3ð~0ÞjLMtm
5 jP ðI3¼0Þ

�� ��; Eij2;

as well as negligible contributions from more complicated
(and heavier) multiparticle intermediate states. The cut
contribution above can be estimated by assuming the stan-
dard Källen-Lehmann (large energy) 1=E2 behavior for the
modulus square of theLMtm

5 matrix elements and by setting

the coefficient factor in front to a value that matches the
contribution from the ‘ ¼ 2 two-pion intermediate state.
As for the one-particle scalar state contribution, we make
the plausible assumption that it is of the same (very small,
see Appendix C 2) size as the cut contribution, and simply
double the latter in order to get our numerical estimate of
R3
55.

Terms from multiparticle intermediate states of increas-
ing mass are expected to give tiny and progressively
smaller and smaller contributions, owing to explicit energy
denominators and the asymptotic high-energy behavior of
the matrix elements.

2. Numerical considerations

In this subsection, we want to provide a numerical
estimate of the order of the magnitude of the difference
�3

55 ���
55 relying on the results of the previous subsection

and the numerical evaluation of �� given in Appendix C 3.
We shall see that ��

55, which according to the consid-

erations of Appendix C 1 is an O(m2
�) quantity, takes a

value much smaller than a�2�m2
�jMtm

L . Numerically,�3
55 is

of similar size as ��
55, as the parametrically O(m0

�) con-

tributions from R3
55 are tiny and actually smaller than the

O(m2
�) terms.

These facts imply [see Eqs. (2.6) and (2.7)] that lattice
corrections to the squared charged pion mass are also small

19In LO-�PT, there is only one operator (see e.g. Ref. [13])
with the same quantum numbers asLMtm

5 [Eq. (A13)]. Hence the
condition �� ¼ h�jLMtm

5 j�3ð~0Þi ¼ Oð�qÞ implies that the
unique effective operator representing LMtm

5 at LO of �PT
must itself be proportional to the quark mass. Obviously for
matrix elements involving states with increasing rest-frame
energy E the LO-�PT description progressively looses its
validity.
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and of order a2m2
� (or a4), while the main contribution to

the lattice artifacts of the squared neutral pion mass comes
from ��, as announced in the text (Sec. II). As we already
said, in the difference �3

55 ���
55 the contribution coming

from the tadpole terms exactly cancels.
Using the value (C54) of �� and the estimate h20 ¼

ð2m�VÞ�1, we can provide an explicit numerical evalu-
ation of the three contributions to �3

55 and �
�
55 described in

Appendices C 1 a, C 1 b, and C 1 c. To arrive at this result,
we also need to know the energies of the few lowest ��
levels living in our finite simulation box at the actual value
of the simulated pion masses. In the situation correspond-
ing to the lattice data used for our best estimate of ��, we
have m� ’ 300 MeV and L� 2:1 fm. We checked that
results do not change significantly with the volume by
repeating the same analysis for L� 2:8 fm. In order to

compute k‘ and hence E‘ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2‘ þm2

�

q
from Eq. (C12),

as well as �VðE‘Þ from Eq. (C13), we parametrize the
s-wave �� phase shift in the form (suggested by
LO-�PT [46])


ðkÞ ¼ 2k

E
� 2E

2 �m2
�

32�f20
;

E2

4
¼ k2 þm2

�; (C20)

with f0 ¼ 86 MeV being the chiral limit value of the pion
decay constant (as obtained from recent ETMC studies
[2,3]). The formula (C20) (with m� at its physical value
140 MeV) describes rather well the experimental
��-scattering data for center-of-mass energy E in the
range 2m� to 4m� (see e.g. the phase-shift data compila-
tion in Ref. [46]).

Following the discussion in Appendices C 1 a, C 1 b, and
C 1 c, in terms of the reference scale a�1


¼3:9, whose value is

currently estimated [3] to be about 2.3 GeV, we obtain the
following numerical results:

(i) Tadpole

�3
55jtad ¼ ��

55jtad ¼SPT �2
�

f2�m
2
�

� 0:00050þ0:00032
�0:00024a

�4

¼3:9;

(C21)

where the quoted error reflects the uncertainty on ��

from Eq. (C54).
(ii) Two-pion cut below the inelastic threshold. For the

‘ ¼ 0 term, one obtains

�3
55j‘¼0 ¼ � 3h20�

2
�

3m2
�f

4
�

��ð0:000063þ0:000040
�0:000030Þa�4


¼3:9; (C22)

��
55j‘¼0 ¼ � 2h20�

2
�

3m2
�f

4
�

��ð0:000042þ0:000027
�0:000020Þa�4


¼3:9: (C23)

For the ‘ > 0 levels, one gets smaller and smaller

contributions. A reasonable estimate of their order
of magnitude is �0:000020a�4


¼3:9 and

�0:000015a�4

¼3:9 for �3

55j‘ at ‘ ¼ 1 and ‘ ¼ 2,

respectively, to which we attach a generous 50%–
60% relative uncertainty. We neglect here ��

55j‘¼1;2,

which according to SPTarguments, are significantly
smaller (m4

� suppressed) than their neutral
counterparts.

(iii) Remainder. According to the results of Appendix C
1 c, we can limit consideration to R3

55. Despite the

difficulty of evaluating all the terms contributing
to R3

55, following the procedure discussed in

Appendix C 1 c, we can reasonably estimate it to
be about�0:000080a�4


¼3:9, with, as before, a 50%–

60% relative statistical uncertainty. We thus find
that R3

55 is of the same order of magnitude as

�3
55j‘¼0 or

P
2
‘¼1 �

3
55j‘.

(iv) Total. Putting everything together, we finally get

�3
55 ’ þð0:00032� 0:00019� 0:00008Þa�4


¼3:9;

(C24)

��
55 ’ þð0:00046� 0:00027� 0:00005Þa�4


¼3:9;

(C25)

and

�3
55 � ��

55 ’ �ð0:00014� 0:00008

� 0:00004Þa�4

¼3:9: (C26)

The two ‘‘errors’’ quoted in the equations above
reflect the uncertainty (dominantly of statistical
nature) on the value of �� from Appendix C 3
and the systematic indetermination inherent to the
assumptions we made above about the energy be-
havior of the matrix elements ofLMtm

5 , respectively.

For the sake of comparison, here we only recall that (as
one can infer from Fig. 1 and the value r0=aj
¼3:9 ’ 5:2) at

m� ’ 300 MeV direct lattice measurements yield
a2
¼3:9�m

2
�jMtm

L;
¼3:9 ’ �0:0067ð20Þ, i.e. a number much

bigger than a4
¼3:9�
3
55, or a

4

¼3:9�

�
55. Comparisons of this

kind are performed and discussed more thoroughly in
Sec. II C.

3. Estimating �� from lattice two-point correlators

We describe in this section the analysis, based on the
Symanzik expansion, by which we arrive at a numerical
estimate of the crucial continuum quantity �� [Eqs. (A16)
and (A17)] that has been employed in Appendix C 1 to
parametrize the various terms contributing to ��

55 and �
3
55.

Since in this numerical analysis wewill be exploitingNf ¼
2 Mtm-LQCD data at sufficiently small m� ’ m��jL
around 300 MeV, we feel safe to use SPT’s to relate among
themselves some of the (continuum QCD) matrix elements
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that appear in the Symanzik description of lattice quanti-
ties. The SPTapproximation is correct up to O(m2

�) relative
corrections, whose relevance is checked by going to heav-
ier quark masses up to m��jL � 450 MeV. By extending
the analysis from data at lattice resolution a�1 ¼ 2:3 GeV
(
 ¼ 3:90) to those at a�1 ¼ 2:9 GeV (
 ¼ 4:05) and
comparing (at the lowest-lying pion mass) results at box
linear size L� 2:1 fm with those at L� 2:8 fm, we have
checked that within our (large) statistical errors, the nu-
merical estimates relevant for this paper display no signifi-
cant discretization and/or finite size effects.

The key correlator we consider is20

CL
PSðtÞ ¼

X
~x

1

2
hP3ð ~x; tÞS0ð0ÞijL � L3 1

2
hP3ð0ÞihS0ð0ÞijL;

t > 0; (C27)

which in the continuum limit is an O(a) quantity because it
violates parity (and isospin) invariance. The Symanzik
expansion of its renormalized counterpart reads

�ZS0ZPC
L
PSðtÞ ¼ a

�Z
d~xP̂3ð ~x; tÞ

Z
d4yLMtm

5 ðyÞ 1
2
Ŝ0ð0Þ

�
þ Oða3Þ

¼ aĜ�

��

m2
�

h�3j 1
2
Ŝ0j�3i e

�m�t

2m�

þ aĜ�h�3jLMtm
5 j�effih�effj 12 Ŝ

0j�i 1

m2
�eff

�m2
�

�
e�m�t

2m�

� e�m�eff
t

2m�eff

�

þ a
��

m2
�

h�3jP̂3j�effih�effj 12 Ŝ
0j�i e

�m�eff
t

2m�eff

þ Oða3Þ; (C28)

where P̂3 and Ŝ0 denote the renormalized operators P3 and
S0, respectively, and G� was defined in Eq. (2.11). The
symbol j�effi represents the lightest (isosinglet) scalar
state that can be created from the vacuum by the operator
S0. For the quark mass values and in the t range of interest
for the present analysis of CL

PSðtÞ (because of the unfav-
ourable signal-to-noise ratio inherent in the evaluation of
the quark-disconnected piece of the correlator), we are in
fact sensitive within errors only to the neutral pion and
j�effi intermediate states. In a finite box and for sufficiently
small quark masses, the symbol j�effih�effj in the r.h.s. of
Eq. (C28) is to be interpreted as

j�effih�effj ¼ h20
X3
b¼1

j�b�b;m�eff
ih�b�b;m�eff

j;

m�eff
’ 2m�: (C29)

In the following, we shall write simply j�i for j�effi.
The three terms in the r.h.s. of Eq. (C28) come from the

three different possible time orderings of the inserted
operators. We have only retained the pole contributions
from the two lightest states and the associated partially
disconnected terms that must go along with them in order
to comply with Lorentz invariance. Since in Mtm-LQCD
with optimal critical mass all the leading terms (linear in a)
in Eq. (C28) are of the same order in m�, we have ignored
here the O(a) lattice corrections to the operators S0 and P3,
because they would give contributions to the Symanzik

expansion suppressed by an extra (relative) factor m2
�
21

and are numerically small for the considered range of
quark mass and t values.
With the help of Eqs. (C8) and (C29) as well as the SPT

relations

h�3j 1
2
Ŝ0j�3i ¼SPT 1

f�
Ĝ�; (C30)

h�3jP̂3j�i ¼SPT� 1

f�
h�j 1

2
Ŝ0j�i; (C31)

the Symanzik expansion (C28) can be rewritten in the
simpler form

ZPZS0C
L
PSðtÞ ¼SPT�a

e�m�t

2m�

Ĝ2
���

f�m
2
�

�
1� 3h20

f2�

m2
�

m2
� �m2

�

�

þ a
e�m�t

2m�

Ĝ2
���

f�m
2
�

3h20
f2�

�
1� m2

�

m2
� �m2

�

�

þ Oða3Þ; (C32)

where, as we shall see below, all the quantities, but �� and
the negligible O(a3) terms, can be directly evaluated from
lattice data. Solving, in fact, the resulting equations yields
an estimate of for �� for each given quark mass �q and

lattice resolution a.

20We recall that all the correlators we shall be dealing with are
‘‘connected’’ in the strict sense of Quantum Field Theory, though
some contribution only through gluon exchanges.

21This is seen by noting that �1S
0 / a�qP

3, while �1P
3

comprises a term proportional to a�qS
0 and another one pro-

portional to F��F��. This last term has O(�q) matrix elements
between states involving only the vacuum and one or two neutral
pions, as one can check by means of SPT’s.
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a. Evaluating ��

Several two-point Green functions in the neutral pseu-
doscalar channel (where also quark-disconnected diagrams
contribute) have been evaluated, among which

CL
PPðtÞ ¼ a3

X
~x

hP3ðxÞP3ð0ÞijL � L3hP3ð0ÞijLhP3ð0ÞijL;

(C33)

CL
SSðtÞ ¼ a3

X
~x

1

4
hS0ðxÞS0ð0ÞijL � L3 1

4
hS0ð0ÞijLhS0ð0ÞijL;

(C34)

and

CL
PSðtÞ ¼ a3

X
~x

1

2
hP3ðxÞS0ð0ÞijL � L3 1

2
hP3ð0ÞijLhS0ð0ÞijL;

(C35)

CL
SPðtÞ ¼ a3

X
~x

1

2
hS0ðxÞP3ð0ÞijL � L3 1

2
hS0ð0ÞijLhP3ð0ÞijL;

(C36)

It should be noted that in connected correlators, the mixing
of the bare operators P3 and S0 with the identity does not
contribute.

All lattice correlators are simultaneously fitted to simple
two-state ansatz of the form

CL
PSðtÞ ¼ c5c1

expð�m�3 jLtÞ
2m�3 jL þ d5d1

expð�m�jLtÞ
2m�jL ;

(C37)

CL
PPðtÞ ¼ c5c5

expð�m�3 jLtÞ
2m�3 jL þ d5d5

expð�m�jLtÞ
2m�jL ;

(C38)

CL
SSðtÞ ¼ c1c1

expð�m�3 jLtÞ
2m�3 jL þ d1d1

expð�m�jLtÞ
2m�jL :

(C39)

Comparing the fit ansatz for the correlators CL
PS;SS;PP with

the corresponding Symanzik expansions written to the
leading order in a and in the form where only the neutral
pion and/or the lightest scalar state contributions are re-
tained (consistently with the numerical fact that within
statistical errors only the contribution of these two states
is visible), one obtains the following identifications:

c5 � h�jP3j�3ð~0Þi; d1 � h�j 1
2
S0j�i; (C40)

as well as

ZS0ZPc1c5 �SPT � a
Ĝ2

���

f�m
2
�

�
1� 3h20

f2�

m2
�

m2
� �m2

�

�
: (C41)

A similar equation between ZS0ZPd1d5 and the coefficient
of the e�m�t=ð2m�Þ term in the r.h.s. of Eq. (C32) can be
obtained. This relation is, however, of minor interest given
the substantial statistical error we have on the fitted coef-
ficient d5. Finally, the relevant dimensionless ratios ZP=ZS0

and 3h20=f
2
� entering Eq. (C41) can be estimated via the

formulas

ZP

ZS0
�

��������
c5

G��jL
��������;

h20
f2�

�SPT 1
3

�
d1

G��jL
�
2
; (C42)

where

G��jL ¼ h�jP�j��ð~0ÞijL; (C43)

P� ¼ ðP1 � iP2Þ= ffiffiffi
2

p
: (C44)

The second of the Eqs. in (C42) is a consequence of the
SPT (C30) and the relation

ZPd1 �SPT
ffiffiffi
3

p
h0h�3ð~0Þj 1

2
Ŝ0j�3ð~0Þi; (C45)

which in turn follows from the identification of � as a two-
pion state [see Eq. (C29)]. It should also be recalled that

both the renormalized operators Ŝ0 and P̂� are related to
their bare (subtracted) counterparts through the renormal-
ization constant ZP, which would then cancel in the ratio
d1=G��jL if we were to write it in terms of renormalized
quantities.
Combining together the relations (C40)–(C42), one ar-

rives at an explicit formula for ��, namely

a�� �SPT � c1
f��m2

��

G��

�
1� d21

3G2
��

3m2
��

m2
� �m2

��

��1
��������L

;

(C46)

where the charged pion sector O(a0) quantities m��jL,
G��jL and

f��jL � 2�qðG��m�2
��ÞjL (C47)

can be evaluated much more accurately (at level of 1% or
better) than the corresponding neutral sector quantities,
m�jL, d1 and c1 (we recall that c1 vanishes linearly in a
as a ! 0). From the analysis of the neutral pseudoscalar
channel correlators specified in Eqs. (C33) to (C36), we
can extract m�jL that, within statistical errors (ranging
from 10% to 20% depending on statistics) turns out to be
equal to 2m��jL at all the values of �q and at the two

different lattice resolutions we consider (see Table II be-
low). Using the relation (C47) and settingm�jL ¼ 2m��jL,
Eq. (C46) takes the simple form

a�� �SPT � c12�q

�
1� d21

3G��j2L
��1

; (C48)

or alternatively,
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a�� �SPT � c12�q

�
1� h20

f��j2L
��1

: (C49)

The latter expression of �� is exploited to obtain the
numerical estimates presented below.

b. Numerical results

We report in Table II in lattice units the results for the
quantities entering Eqs. (C46)–(C49). These numbers are
obtained from the analysis of the correlators (C33)–(C36),
as well as their charged pseudoscalar meson analogs, eval-
uated on the gauge configurations taken from the Nf ¼ 2

ETMC ensembles with the following bare parameters:


 ¼ 3:9ða ’ 0:09 fmÞ; L=a ¼ 24: a�q ¼ 0:0040; 0:0064; 0:0085; (C50)


 ¼ 3:9ða ’ 0:09 fmÞ; L=a ¼ 32: a�q ¼ 0:0040; (C51)


 ¼ 4:05ða ’ 0:07 fmÞ; L=a ¼ 32: a�q ¼ 0:0030; 0:0060: (C52)

The values of a�q above are known [3,5] to correspond to
quark mass values (in the MS scheme at a scale of 2 GeV)
in the range from 20 to 40 MeV. At 
 ¼ 3:9 and a�q ¼
0:0040, data at two different volumes allow us to check that
our estimates of �� are not significantly affected by finite
size effects. The results at the two 
 values can be com-
pared by expressing quantities in units of r0 (extrapolated
to zero quark mass limit) with the help of the estimates
[3,7])

r0=aj
¼3:9 ¼ 5:22ð2Þ; r0=aj
¼4:05 ¼ 6:61ð3Þ: (C53)

In order to ease such a comparison, for the case of c1,
which is a dimension two and O(a) quantity, we also quote

the value of c1r
3
0a

�1, the latter being by construction a
dimensionless and O(a0) quantity.22 For the key quantity
��, we quote for the same reasons r40��. In Table II, we
also give for each ensemble the number of measurements
(# meas.) of the neutral pseudoscalar meson channel
correlators.
Inspection of Table II shows that the most accurate

results are obtained for 
 ¼ 3:9, a�q ¼ 0:0040, where

the number of measurements of neutral pseudoscalar me-
son channel correlators is the largest, and we also have data

TABLE II. Quantities entering Eqs. (C46)–(C49). The labels for the parameter sets have self-explanatory names and the
corresponding columns follow the same order as the list of parameter sets in Eqs. (C50)–(C52). The statistical errors come from a
standard bootstrap analysis on blocked data, so as to properly take into account autocorrelation of consecutive measurements.

ð
; a�qÞjL=a ð3:9; :0040Þj24 ð3:9; :0064Þj24 ð3:9; :0085Þj24 ð3:9; :0040Þj32
# meas. 880 240 248 184

am��jL 0.1359(7) 0.1694(4) 0.1940(5) 0.1338(3)

a2G��jL
ffiffiffi
2

p
0.1501(25) 0.1581(16) 0.1643(15) 0.1484(11)

am�3 jL 0.103(4) 0.134(10) 0.163(8) 0.107(7)

am�jL 0.234(25) 0.391(46) 0.449(47) 0.284(47)

a2c1
ffiffiffi
2

p �0:021ð4Þ �0:018ð6Þ �0:011ð6Þ �0:019ð5Þ
a2d1

ffiffiffi
2

p �0:12ð2Þ �0:22ð5Þ �0:25ð6Þ �0:15ð3Þ
c1r

3
0a

�1
ffiffiffi
2

p �3:0ð6Þ �2:6ð9Þ �1:6ð9Þ �2:7ð7Þ
��r

4
0 0.10(2) 0.14(5) 0.10(4) 0.08(2)

ð
; a�qÞjL=a ð4:05; :0030Þj32 ð4:05; :0060Þj32
# meas. 192 188

am��jL 0.1038(6) 0.1432(6)

a2G��jL
ffiffiffi
2

p
0.0898(18) 0.0972(12)

am�3 jL 0.090(6) 0.125(6)

am�jL 0.231(37) 0.232(55)

a2c1
ffiffiffi
2

p �0:014ð3Þ �0:010ð6Þ
a2d1

ffiffiffi
2

p �0:10ð2Þ �0:09ð3Þ
c1r

3
0a

�1
ffiffiffi
2

p �4:0ð9Þ �2:9ð1:7Þ
��r

4
0 0.13(2) 0.16(9)

22The statistical error on c1r
3
0a

�1 is completely dominated by
that on a2c1.
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on two different physical volumes. From the results at 
 ¼
3:9, a�q ¼ 0:0040 and using Eq. (C49), we obtain our best

�� estimate, namely

�� �SPT0:00014ð4Þa�4

¼3:9 , r40�� �SPT0:10ð3Þ; (C54)

from which Eqs. (C21)–(C26) follow. One checks in
Table II that this result remains stable within statistical
errors at increasing values of the quark mass.

If we were to use for �� the expression (C48), instead of
Eq. (C49), results consistent with Eq. (C54) would be
obtained, though with a larger statistical errors due to the

fact that d1=ð
ffiffiffi
3

p
G��ÞjL is a quantity of order one with a

sizeable uncertainty from d1, the effect of which is

enhanced in the factor ð1� d2
1

3G�� j2LÞ
�1. For instance, at


 ¼ 3:9, a�q ¼ 0:0040 and L=a ¼ 24 (the statistically

most precise data set), we would get �� ¼
0:00015ð5Þa�4


¼3:9.

Results about the various quantities entering
Eqs. (C46)–(C49) are also shown in Table II, as a check
of their quark mass dependence and scaling with a. For
instance, in the case of c1, we find by inspection that the
values of c1r

3
0a

�1 display within errors good scaling and

no visible quark mass dependence. This last property is
consistent with the use of SPT’s we made in order to arrive
at Eq. (C48). The situation for d1 is similar, but with
somewhat increasing statistical uncertainties at higher
quark masses. The statistically very precise matrix element
G��jL, shows instead a mild quark mass dependence, as its
value is seen to change by not more than 10% in the quark
mass range we have considered.
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