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We present a high-statistics calculation of nucleon electromagnetic form factors in Nf ¼ 2þ 1 lattice

QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and

statistical errors. Our calculations use 323 � 64 lattices with lattice spacing a ¼ 0:084 fm for pion masses

of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000

measurements to calculate nucleon electric and magnetic form factors up to Q2 � 1:05 GeV2. Results are

shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea

quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius rv1 , Pauli radius r
v
2

and anomalous magnetic moment �v. We also determine connected contributions to the corresponding

isoscalar observables. We extrapolate these observables to the physical pion mass using two different

formulations of two-flavor chiral effective field theory at one loop: the heavy baryon small scale expansion

and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to

the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is

discussed.
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I. INTRODUCTION

Electromagnetic form factors characterize fundamental
aspects of the structure of protons and neutrons. In par-
ticular, they specify the spatial distribution of charge and
magnetization. For nonrelativistic systems the electric and
magnetic form factors would just be Fourier transforms of
the charge and current densities. At each Q2, the Sachs
form factors GEðQ2Þ and GMðQ2Þ may be regarded as
three-dimensional Fourier transforms of charge and mag-
netization densities defined in the corresponding Breit
frame. A probabilistic interpretation of the Dirac and
Pauli form factors F1ðQ2Þ and F2ðQ2Þ can be obtained
from a two-dimensional Fourier transformation to impact
parameter space in the infinite momentum frame [1,2]. At
high momentum transfer, the elastic form factor specifies
the amplitude for a single quark in the nucleon to absorb a
very large momentum kick and share it with the other
constituents in such a way that the nucleon remains in its
ground state instead of being excited. It thus describes the
onset of scaling and the scale at which quark counting rules
become applicable, which is an unresolved theoretical
question in nonperturbative QCD. The combination of
precision experimental measurements and crisp theoretical
interpretation renders elastic nucleon form factors particu-

larly significant. Given the constantly improving experi-
mental measurements of form factors and their funda-
mental significance, it is an important challenge for lattice
QCD to calculate them accurately from first principles.
The nucleon Dirac and Pauli form factors, F1ðQ2Þ and

F2ðQ2Þ, respectively, are defined as follows for each quark
flavor (f):

hP0; S0jV�
ðfÞjP; Si ¼ �UðP0; S0Þ

�
��FðfÞ

1 ðQ2Þ

þ i��� q�
2MN

FðfÞ
2 ðQ2Þ

�
UðP; SÞ;

V
�
ðfÞ ¼ �c ðfÞ��c ðfÞ; (1)

where P, P0 are the initial and final nucleon momenta; S, S0
are the corresponding spin vectors; the momentum transfer
is q ¼ P0 � P withQ2 ¼ �q2 � 0; andMN is the nucleon
mass. The Sachs form factors GEðQ2Þ and GMðQ2Þ are
defined by

GEðQ2Þ ¼ F1ðQ2Þ � Q2

ð2MNÞ2
F2ðQ2Þ; (2)

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: (3)
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Finally, it is useful to define isoscalar and isovector form
factors as the sum and difference of proton and neutron
form factors as follows:

Fv
1;2ðQ2Þ ¼ Fp

1;2ðQ2Þ � Fn
1;2ðQ2Þ ¼ Fu

1;2ðQ2Þ � Fd
1;2ðQ2Þ

� Fu�d
1;2 ðQ2Þ; (4)

Fs
1;2ðQ2Þ ¼ Fp

1;2ðQ2Þ þ Fn
1;2ðQ2Þ

¼ 1

3
ðFu

1;2ðQ2Þ þ Fd
1;2ðQ2ÞÞ � 1

3
Fuþd
1;2 ðQ2Þ; (5)

where Fp;n
i are the form factors of the electromagnetic

current in a proton and a neutron, respectively:

V
�
em;p ¼ 2

3
�u��u� 1

3
�d��d;

V
�
em;n ¼ � 1

3
�u��uþ 2

3
�d��d:

(6)

Although proton and neutron form factors contain both
connected diagrams, calculated in this work, and discon-
nected diagrams, which are currently omitted, the discon-
nected diagrams do not contribute to the isovector form
factors Fv

i . Hence, we will devote particular attention in
this work to the isovector form factors.

Precise experimental measurements of the set of all four
nucleon form factors remains challenging, and the field is
marked both by significant recent developments and open
questions. Although the most straightforward measure-
ment is F1ðQ2Þ for the proton, the slope at very small
values of Q2 remains controversial. Phenomenological
fits to experimental form factors [3,4] appear to be incon-
sistent with analyses based on dispersion theory [5–7],
with phenomenological fits yielding larger Dirac radii.
Hence, a new generation of precision measurements of
form factors at low momentum transfer is currently being
undertaken at Mainz [8]. Spin polarization experiments [9–
13] yielded results for F2ðQ2Þ significantly different from
traditional measurements based on Rosenbluth separation,
and there is a consensus that two-photon exchange pro-
cesses contribute much more strongly to the backward
cross section used in Rosenbluth separation than to polar-
ization transfer [4]. However, there are not yet precise
theoretical calculations of two-photon exchange that fully
resolve the discrepancy between the two experimental
methods, and hence experiments using positron scattering,
for which the relative contribution of the two-photon term
changes sign, are being prepared [14,15]. Neutron form
factors are more uncertain than proton form factors be-
cause of the need to know the nuclear wave function to go
from experimental scattering results from deuterium or
3He to a statement about the neutron form factor. Over
the years, nuclear models and theoretical calculations have
been refined, but it is still a challenge to provide a definitive
estimate of the uncertainty in the claimed neutron form
factors extracted from nuclear targets. Given the level of

precision to which we aspire in lattice calculations, system-
atic uncertainties in isovector and isoscalar form factors
are not necessarily negligible. In the future when lattice
calculations reliably include precise calculations of dis-
connected contributions, it may well be that lattice calcu-
lations play a role in guiding the resolution of some of
these experimental questions.
Electromagnetic form factors have now been calculated

in lattice QCD using a variety of actions. Quenched calcu-
lations of form factors have used both Wilson [16,17] and
domain wall [18] fermion actions, and additional quenched
calculations have addressed magnetic moments and root-
mean-squared (rms) radii [19,20]. Dynamical calculations
with two flavors have used Wilson [17], clover improved
Wilson [21], twisted-mass [22,23] and domain wall [24]
actions. Extensive 2þ 1 flavor calculations have been
performed with a mixed action, which combines domain
wall valence quarks and improved staggered sea quarks
[25–27], using the same methodology as in the present
work, and comparisons will be made to assess the consis-
tency of the full domain wall and mixed-action results.
Dynamical domain wall results with 2þ 1 flavors on
coarse lattices with a ¼ 0:114 fm have recently been re-
ported [26,28,29], and initial results from the present work
on fine lattices with a ¼ 0:084 fm were presented in
Ref. [30].
The goal of this work is to achieve a new level of

precision in calculating form factors from first principles
in lattice QCD. Hence, we have done everything feasible
within the constraints of our computational resources to
reduce both statistical and systematic errors. Since this
involves a number of new developments, we describe our
methodology, innovations, and tests in detail. Because
the signal to noise for baryon observables degrades with

increasing Euclidean time t as e�ðMn�3=2m�Þt, we have
obtained high statistics using from 3688 to 7064 measure-
ments of operators at a given mass by performing 8 mea-
surements per lattice and have verified their statistical
independence. The source-sink separation distance is a
crucial issue, since an excessively large distance degrades
the statistical accuracy whereas too small a distance in-
troduces systematic errors from the contributions of ex-
cited states. We present a quantitative analysis of the
contributions of excited states, and using this analysis,
provide compelling numerical evidence that with our
choice, which has been questioned in the literature [29],
excited state contributions are negligible in our present
work. Our overdetermined analysis of form factors pro-
vides a general framework for optimizing the precision of
our lattice calculations by combining measurements of as
many distinct nucleon matrix elements involving the form
factors at the same Q2 value as practical. We also describe
how we choose which contributions to include, and treat
error correlations. We compare domain wall calculations
on fine lattices at three masses with a calculation on a
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coarse lattice at one mass, and present evidence that the
Oða2Þ corrections are indeed small. We also compare our
results with mixed-action results, showing essential con-
sistency between mixed and domain wall actions and
emphasizing the small size of finite-volume corrections
to calculations on a 2.5 fm lattice at m� ¼ 350 MeV that
have been calculated to high precision with the mixed
action. We perform chiral extrapolations of the Dirac and
Pauli isovector(v) and isoscalar(s) mean squared radii,
ðrv;s1 Þ2 and ðrv;s2 Þ2, respectively, and of the anomalous mag-
netic moments �v;s. We use two different formulations of

SUð2Þ chiral effective field theory: the heavy baryon small
scale expansion (SSE) which includes explicit �ð1232Þ
degrees of freedom [31] and covariant baryon chiral per-
turbation theory (BChPT) without an explicit �ð1232Þ in
the IR-scheme [32,33], which represents a variant of in-
frared regularization [34].1 We explore the degree to which
the relevant low-energy constants can be determined in the
range of masses we consider and the variation of the
extrapolated results in both schemes. We conclude that
with the new level of precision we achieve, it is necessary
to extend the lattice calculations to substantially lower
masses to make contact with the regime of applicability
of chiral effective theory and possibly reach agreement
with experiment.

The remainder of this paper is organized as follows. In
Sec. II, we present a detailed description of our methodol-
ogy, including setting the scale, computation of nucleon
matrix elements and coherent sink technique, optimization
of sources, treatment of error correlations and constraints
in the overdetermined analysis, and a check of the inde-
pendence of multiple measurements per configuration.
Section III presents the results of our lattice calculations
for isovector form factors, including phenomenological fits
to the momentum transfer dependence and determination
of the Dirac radius ðrv1 Þ2, the Pauli radius ðrv2 Þ2, and the
anomalous magnetic moment �v. Comparisons are made
with domain wall calculations on a coarse lattice and with
mixed-action calculations using valence domain wall va-
lence quarks and improved staggered sea quarks. We also
present the chirally extrapolated values of ðrv1 Þ2, ðrv2 Þ2, and
�v to the physical pion mass using the SSE and covariant
chiral effective field theories and compare them with ex-
periment. Corresponding results for isoscalar form factors
are presented in Sec. IV. Systematic errors are discussed in
Sec. V, results are compared with other work in Sec. VI,
and conclusions and opportunities for further understand-
ing of nucleon form factors are discussed in Sec. VII.
Selected numerical results are tabulated in Appendix A
and the optimized sources are described in Appendix B.

II. LATTICE METHODOLOGY

A. Dynamical domain wall ensembles

In our calculations, we analyze gauge configurations
generated by the RBC and UKQCD Collaborations [37]
with the Iwasaki gauge action and Nf ¼ 2þ 1 flavors of

dynamical domain wall fermions. The gauge configuration
ensembles are summarized in Table I. We obtain the rele-
vant physical results from three fine lattice ensembles with
lattice spacing a ¼ 0:084 fm. We use one coarse lattice
ensemble with known lattice spacing a ¼ 0:114 fm [37] to
set the scale on the fine lattices and control the systematic
errors due to discretization.
In our analysis, we use only a unitary fermion action,

where the sea and valence fermion actions and masses are
exactly the same. The extent of the fifth dimension is
chosen to be Ls ¼ 16, which keeps the residual mass
mres smaller than the bare quark masses for all ensembles.
In order to maximize the signal to noise ratio and sup-

press excited state contamination, we carefully optimize
the quark propagator sources. We use Wuppertal smearing
[38,39] of quark sources combined with APE smearing
[40] of the source gauge fields to reach the maximum
overlap of the lattice nucleon operators with the nucleon
ground state and reduce its fluctuation. The details of
optimization and the source parameters we use are given
in Appendix B.
To increase statistics, we perform eight measurements of

nucleon correlation functions on each gauge configuration.
To do so, we compute four forward quark propagators and
construct nucleon and antinucleon correlators advancing in
the positive and negative time directions, respectively. The
data for antinucleons are transformed according to the
reflection symmetry and combined with the data for nucle-
ons into a single data set. We save computing time by using
the ‘‘coherent’’ backward propagator technique, in which
we compute only a sum of four backward propagators for
four separate sequential sources with the same hadron type,
flavor, and sink momentum. To check for possible system-
atic effects, we recalculate the nucleon three-point func-
tions using independent backward propagators and larger
source-sink separation on a subset of our lightest pion
ensemble, and the extracted form factors (see Fig. 18)
show no significant deviation from the method we use.
Since lattice data may be autocorrelated, we block all the
measurements on the two consecutive gauge configura-
tions, and also check that the measurements we get are
indeed independent by increasing the block size to include
eight consecutive configurations (see Fig. 2).

B. Pion mass, decay constant, and setting
the fine lattice scale

So far, the scale has been set only for the coarse lattice
ensembles [37]. In order to set the scale for the fine lattice
ensembles, we compare the lattice values for the pion

1For recent work on chiral extrapolations of nucleon magnetic
form factors and octet-baryon charge radii in heavy baryon
ChPT with finite range regularization, we refer the reader to
Refs. [35,36].
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decay constant (aF�) on coarse and fine lattices at the same
value of the dimensionless ratio ðm�=F�Þ2 ignoring pos-
sible finite lattice spacing effects in the pion decay constant
F�.

First, we compute the pion mass, the pion decay con-
stant, and the local axial current renormalization constant2

from fits to the pseudoscalar density and axial current
correlators using the PCAC relation [42]:

hA0ðt; ~p¼ 0Þ~J5ð0Þi ¼ ðe�m�t � e�m�ðLt�tÞÞ� F2
�m

2
�

2ðml þm0
resÞ

�Z�1
A Z�1

sm ; (7)

hJ5qðt; ~p ¼ 0Þ~J5ð0Þi ¼ ðe�m�t þ e�m�ðLt�tÞÞ

� F2
�m

3
�

4ðml þm0
resÞ2

�m0
resZ

�1
sm ; (8)

hJ5ðt; ~p ¼ 0Þ~J5ð0Þi ¼ ðe�m�t þ e�m�ðLt�tÞÞ

� F2
�m

3
�

4ðml þm0
resÞ2

� Z�1
sm ; (9)

h~J5ðt; ~p ¼ 0Þ~J5ð0Þi ¼ ðe�m�t þ e�m�ðLt�tÞÞ

� F2
�m

3
�

4ðml þm0
resÞ2

� Z�2
sm ; (10)

where A0 is the local axial charge, J5q is the fifth dimension

midpoint pseudoscalar density, J5 (~J5) is the (smeared)
pseudoscalar density, and m0

res is the domain wall residual
mass at a given quark mass as measured by the ratio
hJ5qðtÞ~J5ð0Þi=h~J5ðtÞ~J5ð0Þi in Ref [42]. The pion decay con-
stant F� convention is such that

F
phys
� ¼ 92:4� 0:3 MeV: (11)

We choose the range of t to be [12:52] to exclude
any excited state contaminations. We define the smearing

renormalization constant Zsm from the plateau
hJ5ðtÞ~J5ð0Þi=h~J5ðtÞ~J5ð0Þi and the local axial current renor-
malization constant ZA from the ratio of hA0ðtþ
1=2Þ~J5ð0Þi and hA0ðtÞ~J5ð0Þi appropriately averaged to sup-
press OðaÞ effects due to a=2 displacement of the con-
served axial current A0ðtþ 1=2Þ [42]. The results for
am�, aF�, and am0

res are shown in Table I. The error
bars reflect both the statistical error and the systematic
error due to different fitting ranges.
Second, we fit m� and F� at three values of the light

quark mass using Oðp4Þ SUð2Þ chiral perturbation theory
[43,44]

a2m2
� ¼ a2�

�
1þ 2a2�

ðaFÞ2 l
r
3ða�1Þ þ a2�

32�2ðaFÞ2 logða2�Þ
�
;

(12)

aF� ¼ aF

�
1þ a2�

ðaFÞ2 l
r
4ða�1Þ � a2�

16�2ðaFÞ2 logða2�Þ
�
;

(13)

where a2� ¼ 2ðaBÞ � aðml þm0
resÞ, lr3;4ða�1Þ are the next-

to-leading-order (NLO) low-energy constants (LECs) at
the scale � ¼ a�1, and the fit variables are (aF), (aB),
and lr3;4. However, the fit is not satisfactory in terms of �2:

for 2 degrees of freedom, we get �2 � 7, with its proba-
bility to be this or higher being & 3%. This is the first of
many indications that chiral perturbation theory, at the
order we can use, is not accurate in the range of masses
we are considering. Hence, the LEC’s are not precisely
determined although, as noted below, we obtain an ade-
quate interpolation to set the scale.
The NLO LECs lr3;4 from our fit can be converted to the

scale-independent parameters �l3;4 [43]. At the physical

pion mass we obtain

�l 3 ¼ 3:08ð11Þ; �l4 ¼ 4:24ð4Þ: (14)

Our results for �l3 and �l4 are in excellent agreement with the
calculations done with the coarse lattice spacing [37] by
the RBC and UKQCD Collaborations who obtained �l3 ¼
3:13ð33Þ and �l4 ¼ 4:43ð14Þ, implying that the discretiza-
tion errors may be small. Our result for �l3 is also in
agreement with the crude estimate �l3 ¼ 2:9� 2:4 [43],

TABLE I. Gauge configuration ensembles used for our analysis, with one coarse and three fine lattice spacings. These configurations
were generated by the RBC and UKQCD [37] Collaborations. The coarse lattice spacing was determined in [37], and the fine lattice
spacing is determined in Sec. II B. Measurement count (# meas.) includes a factor of 8 for each gauge configuration. Note that for m�,
F�, m

0
res the measurement count is the number of configurations multiplied by 4 instead of 8. T is the source-sink separation in lattice

units.

L3
s � Lt a [fm] T # meas. aml=amh am0

res � 103 am� m� [MeV] aF� F� [MeV] aMN MN [MeV]

243 � 64 0.114 9 3208 0:005=0:04 3.15(1) 0.1901(3) 329(5) 0.061 00(11) 105.5(1.7) 0.657(4) 1136(20)

323 � 64 0.084 12 4928 0:004=0:03 0.665(3) 0.1268(3) 297(5) 0.044 00(15) 102.9(1.8) 0.474(4) 1109(21)

323 � 64 0.084 12 7064 0:006=0:03 0.663(2) 0.1519(3) 355(6) 0.045 71(09) 107.0(1.8) 0.501(2) 1172(21)

323 � 64 0.084 12 4224 0:008=0:03 0.668(3) 0.1724(3) 403(7) 0.047 55(18) 111.3(2.0) 0.522(2) 1221(21)

2In this paper, we assume that the renormalization constant
ZA of the (partially) conserved domain wall axial currentA� is
equal to its Ls ! 1 value of one, and note that the finite Ls

deviation has been estimated in [37,41] to give jZA � 1j & 1%.
The values of F� that we compute are, in fact, F�=ZA.
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and with the lattice determination �l3 ¼ 3:0ð5Þð1Þ [45] using
Nf ¼ 2 dynamical Wilson fermions. However, it disagrees

with �l3 ¼ 3:42ð8Þð10Þ (the errors are statistical and system-
atic due to residual lattice artifacts) from the ETM
Collaboration [46]. This discrepancy could arise from the
difference between Nf ¼ 2 and Nf ¼ 3 flavors of dynami-

cal fermions. Furthermore, our result for �l4 agrees with the
value �l4 ¼ 4:3� 0:9 obtained by Gasser and Leutwyler
[43]. This estimate has been sharpened in [47]: �l4 ¼ 4:4�
0:2, which agrees with the value �l4 ¼ 4:4� 0:3 obtained
by Bijnens et al. [48]. The ETM Collaboration result [46]
is �l4 ¼ 4:59ð4Þð2Þ, which again disagrees with ours, pre-
sumably for the same reason.

The resulting interpolated functional dependence of
(aF�) on ðm�=F�Þ2 is shown in Fig. 1. To determine the
lattice spacing on the fine ensembles, we compare the
dimensionless quantity (aF�) on the coarse and fine en-
sembles at the same value of ðm�=F�Þ2 ¼ ðm�=F�Þ2jcoarse.
Since we do not have a fine ensemble with ðm�=F�Þ2 value
corresponding exactly to the coarse ensemble, we take the
interpolated value from the functional dependence on
Fig. 1. To check for systematic effects, we also interpolate
(aF�) linearly in ðm�=F�Þ2 between the two lightest pion
masses, and this method gives a consistent result (see
Fig. 1). We also compare the coarse and fine lattice results
for the nucleon mass (aMN) in the same way:

ðaF�Þjfine
ðaF�Þjcoarse

¼ 0:735ð2Þ; ðaMNÞjfine
ðaMNÞjcoarse ¼ 0:742ð5Þ:

(15)

Although these ratios are barely consistent within errors,
their discrepancy is irrelevant to the fine scale determina-
tion as long as the fractional error in the coarse lattice scale
acoarse ¼ 0:1141ð18Þ fm dominates. We obtain the value
for the fine lattice scale

afine ¼ 0:0840ð14Þ fm; a�1
fine ¼ 2:34ð4Þ GeV: (16)

C. Extraction of nucleon matrix elements

In order to calculate nucleon matrix elements, we com-
pute the three-point polarized nucleon correlators involv-
ing the vector current, along with the two-point correlators
[25]:

C2ptðt; PÞ ¼
X
~x

e�i ~P� ~xX
�	

ð�polÞ�	hN	ð ~x; tÞ �N�ð0; 0Þi; (17)

CV�

3ptð
; T;P;P0Þ ¼ X
~x; ~y

e�i ~P0� ~xþið ~P0� ~PÞ� ~yX
�	

ð�polÞ�	

�hN	ð ~x; TÞV�ð ~y; 
Þ �N�ð0; 0Þi; (18)

where N	, �N� are the lattice nucleon operators;

h�jN�ðxÞjP;�i ¼
ffiffiffiffiffiffiffiffiffiffi
ZðPÞp

Uð�Þ
� ðPÞe�iPx, with ZðPÞ parame-

terizing the overlap with the nucleon ground state;

ð�polÞ�	 ¼ 1þ�4

2
1�i�3�5

2 is the spin and parity projection

matrix3; and Va� ¼ �q��taq is the vector current operator,
where ta denotes an isospin generator. In the transfer
matrix formalism, these correlators take the form

C2ptðt; PÞ ¼ ZðPÞe�Et

2E
Tr½�polðiP6 þMNÞ�

þ excited states; (19)

CV�

3ptð
; T;P; P0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðP0Þ � ZðPÞp

e�E0ðT�
Þ�E


2E0 � 2E
� Tr½�polðiP6 0 þMNÞ
� ��ðP0; PÞðiP6 þMNÞ�
þ excited states; (20)

where E and E0 are the ground state energies of the initial
and final nucleon states and ��ðP0; PÞ is the electromag-
netic vertex function defined below in Eq. (24). Excited
state contributions have generally similar forms with dif-
ferent Z-factors, vertices, and higher energies Eexc > E.
The systematic effects related to them will be discussed in
Sec. VA.
In order to extract the combinations of matrix elements

hP0; S0jV�jP; Si ¼ �UðP0; S0Þ��ðP0; PÞUðP; SÞ, we combine
the lattice nucleon correlators (19) and (20) into the usual
ratio of three- and two-point correlation functions, which
we find useful to write in a convenient and illuminating
new form as follows. First, we define two ratios, a normal-
ization ratio, RN , and an asymmetry ratio, RA,

 0.043

 0.0435

 0.044

 0.0445

 0.045

 0.0455

 0.046

 0.0465

 0.047

 0.0475

 0.048

 8  9  10  11  12  13  14

aF
π

(mπ/Fπ)2

fine
coarse, interp.

FIG. 1 (color online). One-loop SUð2Þ ChPT interpolation of
the fine lattice values of F� and m�. The point with abscissa
9:71 ¼ ðm�=F�Þ2coarse was obtained by interpolating (aF�) line-
arly in ðm�=F�Þ2.

3In this subsection, we use Euclidean �-matrices, ð��Þy ¼
��, f��; ��g ¼ 2���.

NUCLEON ELECTROMAGNETIC FORM FACTORS FROM . . . PHYSICAL REVIEW D 81, 034507 (2010)

034507-5



RN � CV�

3ptð
; T;P; P0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðT; PÞC2ptðT; P0Þ

q ; (21)

RA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðT � 
; PÞC2ptð
; P0Þ
C2ptðT � 
; P0ÞC2ptð
; PÞ

vuut : (22)

The physical matrix element is then given by the product

RV� � RNRA

¼ CV�

3ptð
; T;P; P0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðT; PÞC2ptðT; P0Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðT � 
; PÞC2ptð
; P0Þ
C2ptðT � 
; P0ÞC2ptð
; PÞ

vuut ���!fT;
;T�
g!1
P
S;S0

ð �UðP; SÞ�polUðP0; S0ÞÞ � hP0; S0jV�jP; Siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþMNÞ � 2E0ðE0 þMNÞ

p : (23)

The normalization ratio RN has the property that all the
lattice-dependent overlap factors Z for the ground state
cancel out, which motivates its name, and yields the full
result in the case of forward matrix elements P ¼ P0. The
asymmetry ratio RA compensates the asymmetric exponen-
tial 
 dependence of the three-point correlator, which
motivates its name. In the absence of excited states, it
would be equal to exp½�ðE0 � EÞð
� T=2Þ� and in the
forward case, P0 ¼ P, this ratio is trivial and equal to one.
In the general case, P0 � P, this ratio is still identically one
in the center of the plateau, 
 ¼ T=2, and possesses the
following symmetry around the plateau center: RAðT �

Þ ¼ 1=RAð
Þ.

The limits fT; 
; T � 
g ! 1 should be taken to get rid
of the excited state contamination. In practice, this requires
adopting a value of source-sink separation T large enough
so that the excited state contributions to Eq. (23) are
negligible compared to the other sources of errors and
taking into account only points close to the center of
plateaus. We will explicitly explore the contributions of
excited states to RV�

in Sec. V, where the decomposition
into the product RNRA will prove extremely useful.

In order to obtain the most precise information on the
form factors, we constrain the in- and out- lattice nucleon
momenta to have components 0, �1. We list these mo-
mentum values in Table II. Higher momentum components
are subject to stronger finite lattice spacing effects, i.e.,
discretization errors and dispersion relation deviations
from the continuum expression. There is also an indication
(see Sec. VA) that such states have larger excited state
contaminations.

D. Overdetermined analysis of form factors

In Minkowski space, the nucleon electromagnetic vertex
��ðP0; PÞ in Eq. (20) is parameterized with two form
factors:

��ðP0; PÞ ¼ F1ðQ2Þ�� þ F2ðQ2Þ i�
��q�

2MN

;

q ¼ P0 � P; Q2 ¼ �q2:

(24)

Transforming the above expression to Euclidean space and
substituting it into Eq. (20) and then Eq. (23) and neglect-
ing the excited states, we obtain an overdetermined system
of equations for the form factors F1;2ðQ2Þ at each fixed

value of Q2:

A�iFiðQ2Þ ¼ R
V�
� ; � ¼ 1; 2; . . . (25)

where we use a summation convention over i ¼ 1, 2 and �
is a composite index specifying the current component and
the initial and final momenta of a given matrix element (for
fixed Q2), which will be discussed below. The right-hand
side of Eq. (25) is evaluated using Eq. (23) with computed
lattice correlators.
We find the solution of the overdetermined system from

a linear fit, which minimizes the functional

F ¼ X
�	

ðA�iFi � R�ÞC�1
�	ðA	jFj � R	Þ; (26)

whereC�	 is the covariance matrix of R� averages, C�	 ¼
1

N�1 ðhhR�R	ii � hhR�iihhR	iiÞ, with the double brackets

TABLE II. Momentum combinations used to extract the form
factors (only one representative of in/out momenta is given).
Approximate Q2 values are given for the lightest MN ¼
1109 MeV.

# houtjini Q2 [GeV2]

1 h0; 0; 0j0; 0; 0i, h�1; 0; 0j � 1; 0; 0i 0.0

2 h0; 0; 0j1; 0; 0i, h�1; 0; 0j0; 0; 0i 0.203

3 h�1; 0; 0j � 1; 0; 1i 0.204

4 h0; 0; 0j1; 1; 0i 0.391

5 h�1; 0; 0j � 1; 1; 1i 0.395

6 h�1; 0; 0j0; 0; 1i 0.422

7 h0; 0; 0j1; 1; 1i 0.568

8 h�1; 0; 0j0; 1; 1i 0.626

9 h�1; 0; 0j1; 0; 0i 0.844

10 h�1; 0; 0j1; 1; 0i 1.048
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denoting an ensemble average. Using the covariance ma-
trix is crucial as long as the correlation functions prove to
be correlated.

Since the covariance matrix may be ill determined, it can
introduce uncontrollable errors into the extracted form
factors. In general, a covariance matrix is notoriously
difficult to reliably estimate in a statistical analysis. To
make sure the linear fitting gives a correct result, we repeat
the analysis with only the diagonal elements of the covari-
ance matrix C��, which is equivalent to an uncorrelated
linear fit. The comparison of these two schemes is pre-
sented in Fig. 2. We find that the form factors from an
uncorrelated fit are consistent with the correlated fit results.

The overdetermined system (25) contains a subclass of
equations which have an exactly zero left-hand side: A�i ¼
0, i ¼ 1, 2. The measured lattice value of a right-hand side
R� is not required to be zero, and may be correlated with
other matrix elements. In an uncorrelated fit, such equa-
tions decouple and do not contribute to the solution. In
contrast, the outcome of a correlated fit depends on such
values, thus potentially better utilizing the input from
lattice calculations. In addition, by fitting the equations
with a vanishing left-hand side, we check the symmetries
of the electromagnetic vertex (24), statistically. Figure 2
also shows the agreement of the full overdetermined sys-
tem solution and the system without zero left-hand side
equations, confirming the consistency of our analysis.

The dimension of the overdetermined system may grow
large, especially when many momentum combinations are
included. For example, the most precise point for Q2 > 0
corresponds to the matrix element h0; 0; 0jV�ð0Þj1; 0; 0i.
All V� components, together with spatial rotations and
reflections give 48 equations, only 16 of which are non-

zero. It is useful to combine all the nucleon matrix ele-
ments for fixed Q2 into equivalence classes based on
spatial (rotational and reflection) symmetry. We adopted
the following heuristic equivalence criteria4 for three-point
functions:
(i) The momenta of the in- and out-states must be

equivalent under the spatial symmetry.
(ii) The corresponding coefficients A�i in Eq. (25) must

be equal up to an overall sign.
(iii) The component of the current operator must be

temporal or spatial and real or imaginary for both
matrix elements being compared.

Blocking the measurements in each equivalence class is
advantageous for two reasons. First, this reduces the di-
mension of the system of equations (25) and the covariance
matrix we need to estimate, and we note that blocking
strongly correlated values improves the covariance matrix
condition number. Second, as long as for the equivalent
three-point functions we need spatially equivalent two-
point functions to build the ratio in Eq. (23), we can block
the two-point functions separately before computing the
ratio. This improves the method in Eq. (23) by reducing the
fluctuations of the two-point functions in the denominator.
To extract the final set of the form factors, we perform a

correlated fit to the reduced (i.e., the system with no
equations whose left-hand side is zero) overdetermined
system with blocked equivalent equations.
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FIG. 2 (color online). Comparison of the nucleon Dirac (a) and Pauli (b) form factors extracted from the full overdetermined system
(full), only nonzero equations (nonzero), uncorrelated fit (uncorr), and averaged equivalence classes (avg-equiv) for m� ¼ 297 MeV.
Increased binning of data (eight successive configurations [bin ¼ 64] instead of two [bin ¼ 16]) shows no increase in estimation of
statistical errors. Each form factor value is divided by the central value of the dipole fit. Table II lists the momentum combinations
corresponding to each index on the horizontal axis.

4We have not classified the matrix elements according to the
hypercubic lattice symmetry but instead use relations derived in
the continuum. Thus these criteria may be thought of as numeri-
cal means to improve the condition number of the linear system
we need to solve.
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III. ISOVECTOR FORM FACTORS

In experiments, the proton and neutron electromagnetic
form factors [see Eq. (6)] are measured separately, and the
isovector form factors (4) can be calculated by taking their
difference. In lattice calculations, the Wick contractions of
the quark fields in Eq. (6) with nucleon operators indicate
that disconnected quark loops in the current insertion
would be needed to calculate the proton and neutron
form factors separately. The calculation of the discon-
nected quark loops is numerically demanding and has not
been included in current calculations. However, the dis-
connected loop contributions cancel (in the isospin limit)
in the contraction of the difference of the proton and
neutron electromagnetic currents in Eq. (6), which gives
the matrix elements needed for the isovector form factors.
We focus our discussion on the isovector form factors in
this section.

After presenting our lattice results for the isovector
Dirac and Pauli form factors and the rms radii, we will
compare chiral extrapolations using the SSE formulation
and covariant baryon chiral perturbation theory.5

Corresponding results for the connected contributions to
the isoscalar form factors will be presented in Sec. IV.

A. Vector current renormalization

The isovector Dirac form factor at zero momentum
transfer, Fu�d

1 ð0Þ, gives the difference of the electric

charges for the proton and neutron, which is 1. Since we
can measure Fu�d

1 ð0Þ very accurately on the lattice, we use
it to obtain the vector current renormalization constant, ZV ,
by setting

ZVF
u�d
1 ð0Þ ¼ 1: (27)

Since domain wall fermions have good chiral symmetry, in
the chiral limit the vector current renormalization, ZV , and
the axial vector current renormalization, ZA, are expected
to be the same up to Oða2Þ corrections. ZA is measured by
taking the ratio of the point-split five-dimensional con-
served axial current to the local four-dimensional current
(see Sec. II B and [42]). We show the results of ZV and ZA

in Table III. Naive linear extrapolations in m2
� to the chiral

limit show that ZV and ZA are consistent within errors, as is
clearly shown in Fig. 3.

In the following analysis, we renormalize the form
factors by ZV as measured on the corresponding ensemble.
That is, we use a mass-dependent renormalization condi-
tion. The mass dependence of the renormalization con-
stants is very mild and consistent with the theoretically
expected form ZVðg0Þð1þ bvamqÞ [50]. The renormalized

results for F1 and F2 with all the different flavor combi-

nations are tabulated in Tables XIII, XIV, and XV in
Appendix A.

B. Q2 dependence

As will be discussed in the following section, ChPT
describes the Q2 dependence of the form factors for values
of Q2 much less than the chiral symmetry breaking scale
(typically of the order of the nucleon mass). Lacking a
model-independent functional form applicable in the
large-Q2 region, we study the Q2 dependence using the
phenomenological dipole or tripole formula. The Dirac
form factor is fixed to 1 at Q2 ¼ 0 under our renormaliza-
tion scheme, and we use the following one-parameter
dipole or tripole formula to describe the Q2 dependence:

F1ðQ2Þ ¼ 1

ð1þ Q2

MD
2Þ2

ðone-parameter dipoleÞ; (28)

F1ðQ2Þ ¼ 1

ð1þ Q2

MT
2Þ3

ðone-parameter tripoleÞ: (29)

The Pauli form factor at Q2 ¼ 0, F2ð0Þ, cannot be mea-

TABLE III. Vector and axialvector current renormalization
constants. The chiral limit values are obtained by linear extrap-
olations to m2

� ¼ 0.

m� [MeV] ZV ZA

297 0.7468(39) 0.745 025(24)

355 0.7479(22) 0.745 207(18)

403 0.7513(17) 0.745 317(20)

chiral limit 0.7397(74) 0.744 700(55)

0 0.05 0.1 0.15 0.2

mπ
2
 [GeV

2
]

0.73

0.735

0.74

0.745

0.75

0.755

Z
A

Z
V

FIG. 3 (color online). Comparison of the vector and axial
vector current renormalization constants. In the chiral limit,
these two renormalization constants agree within errors. The
errors on all the ZA points given in Table III are too small to
appear on the figure.

5For an analysis of nucleon electromagnetic form factors in
BChPT with standard infrared regularization, we refer to [49].
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sured on the lattice directly. We thus fit the data using the
two-parameter dipole or tripole formula,

F2ðQ2Þ ¼ F2ð0Þ
ð1þ Q2

MD
2Þ2

ðtwo-parameter dipoleÞ; (30)

F2ðQ2Þ ¼ F2ð0Þ
ð1þ Q2

MT
2Þ3

ðtwo-parameter tripoleÞ: (31)

We are interested in mean squared Dirac and Pauli radii,
which are defined by the slope of the form factors at small
Q2:

F1;2ðQ2Þ ¼ F1;2ð0Þ
�
1� 1

6
ðr1;2Þ2Q2 þOðQ4Þ

�
; (32)

and are related to the pole masses by

ðrÞ2 ¼ 12

MD
2
; (33)

for the dipole fits, and

ðrÞ2 ¼ 18

ðMTÞ2
; (34)

for the tripole fits.
Note that results at differentQ2 from the same ensemble

may be highly correlated [26], therefore we perform corre-
lated least-�2 fits to the data. We investigate the extent to
which the dipole and tripole Ansätze describe our data and
the stability of the fits by varying the maximum Q2 values
included in the fits.

In Table XVI we show the fit results for Fu�d
1 ðQ2Þ using

the one-parameter dipole and tripole formulas in Eqs. (28)
and (29). Comparing the �2=dof for the dipole and tripole
fits, we see that the dipole fits are slightly preferred when
larger Q2 values are included in the fits. However, the
Dirac radii determined from both the dipole and tripole
fits agree within errors. In general, the dipole form de-
scribes the data reasonably well throughout the whole Q2

range for all but one ensemble, the m� ¼ 355 MeV en-
semble, where, when Q2 cutoff is larger than 0:3 GeV2,
�2=dof becomes very large. This may be due to the fact
that this ensemble has the most statistics, and we start to
see the deviation from the phenomenological dipole for-
mula. For the other two ensembles, we can see the general
trend that when large Q2 points are included in the fits, the
�2=dof becomes slightly worse, while the fit parameters do
not depend significantly on the choice of the Q2 cutoff,
indicating that the dipole fits are stable.

We do the same comparison for Fu�d
2 ðQ2Þ as shown in

Table XVII. Judging from the �2=dof values, we do not see

significant differences between the dipole and tripole fits.
Since the Pauli form factor is not constrained at Q2 ¼ 0,
including larger Q2 in the fits does not seem to affect the
quality of the fits significantly. The fit parametersF2ð0Þ and
MD;T prove not to be affected as well.

As an example, we show the dipole fit curves with a Q2

cutoff at 0.5, 0.7, and 1:1 GeV2 for the m� ¼ 297 MeV
ensemble in the top panel of Fig. 4. To show the quality of
the fits more clearly, we plot the ratios of the form factor
data to the dipole fit with the Q2 cutoff at 0:5 GeV2 in the
bottom three panels of Fig. 4. The error bands reflect the
jackknife errors in the dipole fit parameters. We see that
although the data included in the fits can be described
reasonably well by the dipole formula with discrepancies
that are generally within 2 to 3 standard deviations, the
clear systematic tendency indicates that the dipole Ansatz
is not a good description of the data over the whole
momentum transfer region. In particular, for Fu�d

1 , the

precisely measured points in the region of 0:2 GeV2 are
systematically lower than the dipole fit, whereas at high
Q2, the lattice data are systematically higher. For Fu�d

2 , the

high Q2 lattice data are systematically lower than the
dipole fit. This is consistent with the empirical fits to the
experimental data in Refs. [3,4], where the phenomeno-
logical corrections to the dipole form are negative in the
region of 0:2 GeV2 and positive at about 0:4 GeV2. For
comparison, we also plot the dipole fits with Q2 cutoffs at
0:7 GeV2 (dashed line) and 1:1 GeV2 (dotted line) relative
to the 0:5 GeV2 dipole fit (solid line). The differences
between different Q2 cutoffs are small, indicating that the
fits are stable.
It is worth noting that the Dirac and Pauli radii, rv1 and

rv2 , and the anomalous magnetic moment, �v, are defined in

theQ2 ¼ 0 limit. We thus restrict the fits to the smallestQ2

points possible to extract these quantities while still in-
cluding enough data points to constrain the fits. For uni-
formity we choose to determine these quantities from the
one-parameter dipole fits for Fu�d

1 , and the two-parameter

dipole fits for Fu�d
2 , with a Q2 cutoff at 0:5 GeV2.

We also perform dipole fits to GEðQ2Þ and GMðQ2Þ to
see how well the dipole Ansatz describes the data. We find
that the dipole fits to Gu�d

E and Gu�d
M are qualitatively

similar to Fu�d
1 and Fu�d

2 . However, it appears that the

fits are even more stable over the whole range of Q2 than
Dirac and Pauli form factors. This is indicated by little
change in the ratio plots in Fig. 5 with different Q2 cutoffs.
Figure 6 shows a comparison of the lattice results forGE

at three different pion masses from the fine ensembles and
one pion mass from the coarse ensemble with a phenome-
nological fit to the experimental data using the parameteri-
zation in Ref. [51] (with no indication of the experimental
errors). The solid curves are dipole fits to the form factor
results with the Q2 cutoff at 0:5 GeV2. As the pion mass
decreases, the slope of the form factors at the small mo-
mentum transfer monotonically increases. The results from
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FIG. 4 (color online). The top panel shows the lattice results for Fu�d
1;2 ðQ2Þ at m� ¼ 297 MeV along with the dipole fits with three

different Q2 cutoffs. The bottom left three panels show the ratios of the lattice results for Fu�d
1 to the dipole fits using Eq. (28), and the

bottom right three panels show the ratios of the lattice results for Fu�d
2 to the dipole fits using Eq. (30). Only the solid data points are

included in the fits with cutoff 0:5 GeV2, and the grey bands show the errors for these fits. The dashed and dotted lines show the ratios
of dipole fits at cutoffs 0:7 GeV2 and 1:1 GeV2 relative to the fit at 0:5 GeV2.
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FIG. 5 (color online). The top panel shows the lattice results for Gu�d
E;M ðQ2Þ at m� ¼ 297 MeV along with the dipole fits with three

different Q2 cutoffs. The bottom left three panels show the ratios of the lattice results for Gu�d
E to the dipole fits using Eq. (28), and the

bottom right three panels show the ratios of the lattice results for Gu�d
M to the dipole fits using Eq. (30). Only the solid data points are

included in the fits with cutoff 0:5 GeV2, and the grey bands show the errors for these fits. The dashed and dotted lines show the ratios
of dipole fits at cutoffs 0:7 GeV2 and 1:1 GeV2 relative to the fit at 0:5 GeV2.
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the coarse ensemble at m� ¼ 330 MeV is nicely sur-
rounded by the results from the fine ensembles at m� ¼
297 and m� ¼ 355 MeV, indicating that the effect of the
finite lattice spacing error should be small.

C. Chiral extrapolations

1. Chiral extrapolations using Oð�3Þ small scale
expansion

To compare the lattice results for the nucleon form
factors at finite momentum transfer with the experimental

results, we need to do extrapolations for both the m� and
Q2 dependence using baryon chiral perturbation theory.
This combined dependence has been worked out both in
SSE at leading one-loop accuracy and in BChPT up to
next-to-next-to-leading-order (NNLO). In particular, the
Oð�3Þ expression for the isovector Dirac form factor
Fu�d
1 ðQ2; m�Þ has been derived in Ref. [44] and is given by

Fu�d
1 ðQ2; m�Þ ¼ 1þ 1

ð4�F�Þ2
�
�Q2

�
68

81
c2A � 2

3
g2A � 2BðrÞ

10 ð
Þ
�
�Q2

�
40

27
c2A �

5

3
g2A �

1

3

�
log

�
m�




�

þ
Z 1

0
dx

�
16

3
�2c2A þm2

�

�
3g2A þ 1� 8

3
c2A

�
þQ2xð1� xÞ

�
5g2A þ 1� 40

9
c2A

��
log

�
~m2

m2
�

�

þ
Z 1

0
dx

�
� 32

9
c2AQ

2xð1� xÞ� logRð ~mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ~m2

p
�

�
Z 1

0
dx

32

3
c2A�½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

�

q
logRðm�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ~m2

p
logRð ~mÞ�

�
; (35)

where

RðmÞ ¼ �

m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m2
� 1

s
; (36)

~m 2 ¼ m2
� þQ2xð1� xÞ: (37)

In the above expressions, F� denotes the pion decay con-
stant in the SUð2Þ chiral limit with the convention in

Eq. (11). Here gA is the nucleon axial charge in the
SUð2Þ chiral limit, cA is the leading-order pion-nucleon-�
coupling,6 and � denotes the �ð1232Þ-nucleon mass split-
ting in the SUð2Þ chiral limit. For more details on the
effective Lagrangians and the definitions of the low-energy
constants, we refer the reader to [44].
To the same order, the expression for the isovector Pauli

form factor, Fu�d
2 , is also derived in [44] and is given as

Fu�d
2 ðQ2; m�Þ ¼ �vðm�Þ � g2A

4�MN

ð4�F�Þ2
Z 1

0
dx½

ffiffiffiffiffiffi
~m2

p
�m�� þ 32c2AMN�

9ð4�F�Þ2
Z 1

0
dx

�
1

2
log

�
~m2

4�2

�
� log

�
m�

2�

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ~m2

p

�
logRð ~mÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

�

p
�

logRðm�Þ
�
; (38)
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Phenomenology FIG. 6 (color online). Lattice results for Gu�d
E at three pion

masses from the fine ensembles and one pion mass from the
coarse ensemble, compared with a phenomenological fit to the
experimental data as parameterized in Ref. [51]. The solid curves
are the dipole fits to the form factor results with a cutoff at Q2 ¼
0:5 GeV2.

6The coupling cA corresponds to _g�N� in the notation of Ref. [31].
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where, to Oð�3Þ,

�vðm�Þ ¼ �0
v � g2Am�MN

4�F2
�

þ 2c2A�MN

9�2F2
�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

�

�2

s
log½Rðm�Þ� þ log

�
m�

2�

��
þOðm2

�Þ: (39)

In order to capture the most prominent Oðm2
�Þ corrections, Hemmert and Weise [52] proposed a modification of the

standard SSE power counting to promote the leading term of the magnetic N ! � transition into the first order N�
effective Lagrangian. This leads to the following expression for �vðm�Þ:

�vðm�Þ ¼ �0
v � g2Am�MN

4�F2
�

þ 2c2A�MN

9�2F2
�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

�

�2

s
log½Rðm�Þ� þ log

�
m�

2�

��
� 8Er

1ð
ÞMNm
2
� þ 4cAcVgAMNm

2
�

9�2F2
�

� log

�
2�




�
þ 4cAcVgAMNm

3
�

27�F2
��

� 8cAcVgA�
2MN

27�2F2
�

��
1�m2

�

�2

�
3=2

log½Rðm�Þ� þ
�
1� 3m2

�

2�2

�
log

�
m�

2�

��
; (40)

where cV is the leading magnetic photon-nucleon-� cou-
pling in the chiral limit and �0

v denotes the anomalous
magnetic moment in the SUð2Þ chiral limit. We will use
this expression in our analysis.

Our results for the form factor F2 are given in terms of a
quark mass-dependent ‘‘magneton’’ [see Eq. (24)], which
is not accounted for in SSE at the order at which we are
working. Therefore, in order to compare Eq. (40) with our
lattice data, we follow Refs. [16,17] and define �norm

measured relative to the physical magneton:

�norm ¼ Mphys
N

Mlat
N

�lat ¼ Mphys
N

Mlat
N

F2ð0Þ: (41)

We then identifyMN in the SSE expressions as the physical
nucleon mass. In the following comparisons of our results
with chiral perturbation theories, the normalized magnetic
moment �norm

v will be used throughout, and we drop the
superscript ‘‘norm’’ unless there is an ambiguity.

ChPT describes the Q2 dependence of the form factors
for values ofQ2 much less than the chiral symmetry break-
ing scale (typically of the order of the nucleon mass) and
Q2 counts as a small quantity, of the order of m2

�. In fact,
we have attempted simultaneous fits to both them� andQ2

dependences of Fu�d
1 using the SSE formula in Eq. (35),

and found that the fits fail to describe data even with Q2 	
0:4 GeV2 (�2=dof � 10). This is consistent with the find-
ings of Ref. [44], where the applicability of theOð�3Þ SSE
results for the isovector nucleon form factors at physical
pion mass was found to be limited to Q2 < 0:2 GeV2.
Lacking a model-independent functional form applicable
in the large-Q2 region, we resort to studying the pion-mass
dependence of the mean squared Dirac radius, ðrv1 Þ2, Pauli
radius, ðrv2 Þ2, and the anomalous magnetic moment, �v, as

obtained from the dipole fits discussed in Sec. III B. We
tabulate these values in Table IV.
The Oð�3Þ SSE formulas for ðrv1 Þ2 and ðrv2 Þ2 can be

derived from Eqs. (35) and (38), respectively, and are given
by

ðrv1 Þ2 ¼ � 1

ð4�F�Þ2
�
1þ 7g2A þ ð10g2A þ 2Þ log

�
m�




��

� 12BðrÞ
10 ð
Þ

ð4�F�Þ2
þ c2A

54�2F2
�

�
26þ 30 log

�
m�




�

þ 30
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
�

p log

�
�

m�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m2
�

� 1

s ��
þOðm�Þ;

(42)

�vðm�Þ � ðrv2 Þ2 ¼
g2AMN

8�F2
�m�

þ c2AMN

9�2F2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

�

p
� log

�
�

m�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m2
�

� 1

s �
þOðm0

�Þ: (43)

TABLE IV. Results for the isovector Dirac and Pauli radii
and anomalous magnetic moment from dipole fits with Q2 	
0:5 GeV2.

m�

[MeV]

ðrv1 Þ2
[fm2]

ðrv2 Þ2
[fm2]

�norm
v � ðrv2 Þ2
[fm2] �norm

v

297 0.305(8) 0.382(33) 0.938(117) 2.447(99)

355 0.281(5) 0.372(18) 0.938(66) 2.518(57)

403 0.272(5) 0.379(16) 0.954(58) 2.508(51)

330 0.290(9) 0.445(26) 1.230(105) 2.758(84)
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Together with the expression for the anomalous mag-
netic moment in Eq. (40), these formulas involve six low-
energy constants: F�, �, cA, gA, �

0
v, and cV , as well as two

counterterms: Br
10ð
Þ and Er

1ð
Þ. Ideally we would like to

determine all these constants from simultaneous fits to
lattice results. However, this is not feasible with the limited
number of measured observables and pion masses in the
present calculation, and we thus fix some of the low-energy
constants using their phenomenological values. We de-
scribe our choices for these values below.

In Ref. [53], Colangelo and Dürr analyze numerically
the NNLO expression for the pion-mass dependence of F�

[48]. They use available information from phenomenology
to fix all low-energy constants but the chiral limit value of
F�, use the physical value (11) and obtain

F�jchiral limit ¼ ð86:2� 0:5Þ MeV: (44)

In the absence of reliable chiral extrapolations of both
nucleon and �ð1232Þ masses (see the discussion in
Ref. [54]),7 we identify the �-nucleon mass splitting in
the chiral limit with its value at the physical m�. The
position of the �ð1232Þ resonance pole in the total
center-of-mass energy plane has been determined from
magnetic dipole and electric quadrupole amplitudes of
pion photoproduction. According to the Particle Data
Group average [56], the �-pole position leads to M� ¼
ð1210� 1Þ MeV and �� ¼ ð100� 2Þ MeV. If one instead
defines the �ð1232Þ mass and width by looking at the 90

�N phase shift in the spin-3=2 isospin-3=2 channel, the
PDG averages give M� ¼ ð1232� 1Þ MeV and �� ¼
ð118� 2Þ MeV. With MN ¼ 939 MeV, one obtains, re-
spectively,

� ¼ ð271� 1Þ MeV; (45)

or

� ¼ ð293� 1Þ MeV: (46)

The �ð1232Þ decays strongly to a nucleon and a pion
with almost 100% branching fraction. From the PDG
values of masses and widths [56] and from

��!N� ¼ c2A
12�F2

�M�

ðE2
� �m2

�Þ3=2ðM� þMN � E�Þ;
(47)

where

E� ¼ M2
� �M2

N þm2
�

2M�

; (48)

one obtains, respectively,8

jcAj ¼ 1:50 . . . 1:55 if � ¼ ð100� 2Þ MeV and

� ¼ ð271� 1Þ MeV;
(52)

jcAj ¼ 1:43 . . . 1:47 if � ¼ ð118� 2Þ MeV

and � ¼ ð293� 1Þ MeV:
(53)

Chiral extrapolations of different sets of lattice results
[57–60] based on SSE at leading one-loop accuracy lead to
a chiral limit value for gA of about 1.2. From the relativistic
tree-level analysis of the process of pion photoproduction
at threshold �p ! �0p, one obtains [61,62] (for cA ¼ 1:5)

cV ¼ ð�2:5� 0:4Þ GeV�1: (54)

As specified above, at the order Oð�3Þ, all the couplings
in Eqs. (35)–(43) are meant to be taken in the chiral limit.
Replacing them with the corresponding quantities at the
physical point amounts to the inclusion of higher-order
effects. As long as the deviation between the values in
the chiral limit and at the physical point is small, one
expects such a replacement to yield little effect. To test
this statement, in some cases we have performed the chiral
fits using both the physical values and the chiral limit
values for the low-energy constants and found no signifi-
cant differences. In the following we will only present
results obtained using the chiral limit values as inputs,
which are summarized in Table V.
Among the low-energy constants discussed above, cA

and cV are the two least known. In addition, we have little
knowledge of the counterterms, Br

10ð
Þ and Er
1ð
Þ, as well

as the anomalous magnetic moment in the chiral limit, �0
v,

from phenomenology. Lattice calculations in the chiral

8Calculating the strong decay width of �ð1232Þ to leading
order in (nonrelativistic) SSE kinematics, one obtains

��!N� ¼ c2A
6�F2

�

ð�2 �m2
�Þ3=2: (49)

We note that this expression corresponds to the leading term in a
1=MN expansion of the result given in Eq. (47), which utilizes
the full covariant kinematics. Using the ranges of masses and
decay widths mentioned above, this expression yields the lower
values

jcAj ¼ 1:11 . . . 1:14 if � ¼ ð100� 2Þ MeV and

� ¼ ð271� 1Þ MeV;
(50)

jcAj ¼ 1:04 . . . 1:07 if � ¼ ð118� 2Þ MeV and

� ¼ ð293� 1Þ MeV:
(51)

Furthermore, SUð4Þ spin-flavor quark symmetry gives cA ¼
3gA=ð2

ffiffiffi
2

p Þ ¼ 1:34.

7For an analysis of the quark-mass dependence of nucleon and
delta masses in the covariant SSE at order �4 we refer to [55].
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regime have the potential to constrain these parameters to
unprecedented accuracy. Our attempt here is to check the
consistency of our data with the predictions of chiral
effective field theories, to estimate the range of applicabil-
ity of the ChPT formulas, and to determine these low-
energy constants when the formulas are applicable. To
disentangle the investigation of the applicability of the
ChPT formula from the possible discretization effects,
we only include the results from the three fine ensembles
in the chiral extrapolations discussed below. However, we
want to point out that including the coarse results in the
extrapolations does not change the central values of the fit
parameters significantly, nor does it reduce the errors on
the parameters since it only adds an additional interpolat-
ing point and does not provide a much stronger constraint
on the parameters.

Since cA appears in the formulas for ðrv1 Þ2, ðrv2 Þ2, and �v,

a simultaneous fit to all these three quantities would give a
better constraint for the value of cA. However, we have
only three data points for each of these quantities, and �v

alone has four parameters, three of which [cV , E
r
1ð
Þ, and

�0
v] are not constrained by any other quantity. Thus the

quark-mass dependence of �v cannot be used to constrain
cA. Therefore we choose to fit simultaneously9 only ðrv1 Þ2
and �v � ðrv2 Þ2 to determine cA and Br

10ð
Þ, and then use the
resulting cA as an input for the fit to �v. This way the three
free parameters in �v are exactly specified by the three data
points.

We present the resulting �2=dof and fit parameters
normalized at scale 
 ¼ 600 MeV in the first row of
Table VI and plot the fit curves as the solid lines in
Fig. 7. As indicated by a �2=dof of 17, the simultaneous
fit to ðrv1 Þ2 and �v � ðrv2 Þ2 does not describe the data. The

problem is that our results for ðrv1 Þ2 and �v � ðrv2 Þ2 favor

different values for cA. In fact, an independent fit to ðrv1 Þ2
yields cA ¼ 1:98ð7Þ, while an independent fit to �v � ðrv2 Þ2
gives cA ¼ 1:39ð10Þ. The tension between these two quan-

tities results in the large �2=dof in the simultaneous fit,
indicating that the formulas given in Eqs. (42) and (43) do
not describe our data consistently. As we can see from
Fig. 7(b), the solid fit curve lies systematically higher than
the data points, which then motivates us to add the Oðm0

�Þ
correction to the leading one-loop result of Eq. (43) (the so-
called ‘‘core’’ contribution in Ref. [16]) to �v � ðrv2 Þ2, such
that

�vðm�Þ � ðrv2 Þ2 ¼
g2AMN

8�F2
�m�

þ c2AMN

9�2F2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

�

p
� log

�
�

m�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m2
�

� 1

s �
þ 24MNC:

(55)

With this modification, the simultaneous fit to ðrv1 Þ2 and
�v � ðrv2 Þ2, now using Eqs. (42) and (55), appears to de-
scribe the average value of the data much better, but still
not the pion-mass dependence. We show the results in the
second row of Table VI, and the fit curves (dashed lines) in
Fig. 7. The fit describes ðrv1 Þ2 very well, but cA turns out to
be larger than the range discussed earlier, which, not
surprisingly, gives rise to a smaller extrapolated value for
ðrv1 Þ2 than the experiments. Our new DWF data extend the
trend of the weak pion-mass dependence in ðrv2 Þ2 observed
in Refs. [16,17] now down into the range of pion masses
�300 MeV. The appearance of such a ‘‘plateaulike’’ be-
havior down to such light pion masses, which was also
observed in Ref. [29], is surprising. The leading one-loop
SSE formulas (43) and (55) for this radius cannot accom-
modate such a behavior, with or without the inclusion of
the higher-order core term.
Using cA determined from the above fits either with or

without the constant term in Eq. (43) to ðrv1 Þ2 and �v �
ðrv2 Þ2, we fit �v to Eq. (40) with three unknown parameters,
�0
v, cV , and Er

1ð
Þ. The results are shown in Table VI. The
value for cV from our fit turns out to have a different sign
from that determined in [61,62] mentioned earlier. This is
not surprising given that we only have three data points,
which have little or no pion-mass dependence. We do not
have the freedom to check the consistency of the fit, and we
do not expect to obtain a reliable estimation for cV , which,
judging from Eq. (40), is very sensitive to the curvature of
the data.
To compare chiral extrapolations with experiment, we

have also plotted selected experimental data in Fig. 7. As
noted in the introduction, there are still unresolved experi-
mental questions, and we have indicated the range of
possible values of ðrv1 Þ2 that can be extracted from present
experiments by showing two extreme results from the
literature. The highest value is from PDG 2008 [56] and
the lowest value is from a dispersion analysis including
meson continuum contributions [7]. We note that none of
the chiral fits simultaneously yields a good fit to the lattice

TABLE V. Input values for the low-energy constants in the fits.

gA F� [GeV] � [GeV]

1.2 0.0862 0.293

9We note however, that in Ref. [16] it was already observed
that the leading one-loop SSE formula for ðrv1 Þ2 [Eq. (42)] is
dominated by the leading chiral logarithm and dropped below
the level of the lattice data available at that time for values of the
pion mass as low as m� < 200 MeV. This prompted the authors
of Ref. [16] to exclude the isovector Dirac radius from the
simultaneous fit. Likewise, the authors of Ref. [17] obtained
huge, unrealistic values for the isovector Dirac radius when
trying to enforce a fit of the logarithm-dominated behavior
onto their data. Given these two negative precedents, we con-
sider our ‘‘fit’’ to the isovector Dirac radius data to be of
exploratory nature, testing the limits of applicability of the
leading one-loop SSE results given in Eq. (42).
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data while also agreeing with experiment within statistical
errors.

To see how strongly the lattice results deviate from the
SSE formulas, we also try to determine some of the low-
energy constants using experimental results at the physical
pion mass. We use the values in Table V as input, and also
set cA ¼ 1:5 and cV ¼ �2:5 GeV�1. Now for ðrv1 Þ2, we
have only the counterterm Br

10 to determine. Constraining

the curve to go through the higher experimental value of
ðrv1 Þ2 ¼ 0:637 fm2 gives Br

10ð
 ¼ 600 MeVÞ ¼ 1:085, re-
sulting in the solid curve shown in Fig. 8(a). For compari-

son, we also plot the dashed curve that is fixed to go
through the lower experimental value ðrv1 Þ2. The curve rises
much more rapidly than the lattice data as the pion mass
decreases. From the slope of the leading one-loop SSE
curve near the physical point and the weak pion-mass
dependence displayed by our data we estimate that the
applicability of Eq. (42) for ðrv1 Þ2 may be much less than

300 MeV.
Without the constant term in Eq. (55), �v � ðrv2 Þ2 does not

have any free parameters, which yields the solid curve in
Fig. 8(b). The curve undershoots the physical point by

TABLE VI. Fit parameters from the fits to the isovector Dirac radius ðrv1 Þ2, Pauli radius ðrv2 Þ2 and the anomalous magnetic moment
�v. Details of the fit procedures are described in the text. We have set the scale to 
 ¼ 600 MeV.

�2=dof cA cV [GeV�1] �0
v Br

10ð
Þ Er
1ð
Þ [GeV�3] C [GeV�3]

No constant term 17.0(4.0) 1.54(6) 8.7(5.8) 4.13(95) 1.20(17) �4:67ð42Þ
With constant term 3.8(2.2) 1.97(7) 7.5(4.5) 4.32(95) 2.58(25) �5:58ð42Þ �0:51ð7Þ
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FIG. 7 (color online). Chiral extrapolations for the isovector Dirac radius ðrv1 Þ2 (a), Pauli radius �v � ðrv2 Þ2 (b), and the anomalous
magnetic moment �v (c) using the Oð�3Þ SSE formula with (solid curves) or without (dashed curves) the constant term in Eq. (55). In
both cases, ðrv1 Þ2 and �v � ðrv2 Þ2 are fit simultaneously, while �v is fit separately with cA determined from the simultaneous fit.
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about 5%, which may be well accounted for by the un-
certainties in the chosen values of the low-energy con-
stants. Including the higher-order term C of Eq. (55) can
of course shift the curve up to exactly reproduce the
product of physical Pauli radius and anomalous magnetic
moment. However, the departure of the quark-mass depen-
dent curve from the lattice data displayed in Fig. 8(b)
indicates that the leading one-loop SSE formula for �v �
ðrv2 Þ2 of Eqs. (43) and (55) should only be trusted for pion
masses much less than the currently available 300 MeV.
Judging from the steep slopes displayed by both the curves
for the Dirac and Pauli radii as opposed to the almost mass-
independent nature of the lattice data, it is conceivable that
the leading one-loop SSE formulas may only be applicable

at pion masses well below 300 MeV, as already suggested
in Ref. [16].
The anomalous magnetic moment still has two free

parameters, Er
1 and �0

v. In addition to the physical point,
we need another data point to determine both parameters.
We choose to use our m� ¼ 355 MeV result in the deter-
mination, since this point is the most accurately calculated
and its relatively large pion mass makes it less susceptible
to finite-volume effects. The resulting curve (the solid line)
is given in Fig. 8(c). For comparison, we also show the
curve using the leading-order SSE formula in Eq. (39) (the
dashed line). In this case, only the experimental point is
included to determine �0

v. We can see that the dashed line
deviates greatly from the lattice data. This is not surprising,
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FIG. 8 (color online). SSE chiral fits to the isovector Dirac radius ðrv1 Þ2 (a), Pauli radius �v � ðrv2 Þ2 (b), and the anomalous magnetic
moment �v (c) constrained to go through the physical points using the input in Table V as well as cA ¼ 1:5 and cV ¼ �2:5 GeV�1.
The mixed-action results at m� ¼ 355 MeV are shifted slightly to the right for clarity. In (a) the solid curve is constrained to go
through the physical result given in PDG 2008, and the dashed curve is constrained to go through the result given in Ref. [7]. In (b) the
curve is drawn using the input low-energy constants according to Eq. (43). In (c) the solid curve is constrained to go through the
physical point as well as our DWF result at m� ¼ 355 MeV using Eq. (40), while the dashed curve is constrained to go through the
physical point using Eq. (39).
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as the dominating contribution to �v is the term linear in

m�, the coefficient of which is determined by
g2
A
MN

4�F2
�
. This is

clearly not the case in our data. Regarding the limit of
applicability of Eq. (40) [which includes the dominant
next-to-leading one-loop corrections to the strict Oð�3Þ
SSE result of Eq. (39)], the plot in Fig. 8(c) does not
give us a clear indication up to which pion mass the
formula can be quantitatively employed. Furthermore, we
observe that the ‘‘normalized’’ anomalous magnetic mo-
ments display a flat pion-mass dependence around 2.5
nuclear magnetons. The new dynamical DWF data extend
this ‘‘plateau’’ of the normalized magnetic moments—
which was already observed at much larger pion masses
in the quenched simulation of Ref. [16]—now into the
region of pion masses as low as 300 MeV. Surprisingly,
we can find no indication of a rise in the magnetic moment
at these low pion masses, although the onset of such a rise
had been anticipated for pion masses around 300 MeV in
the fit results of Ref. [16] (see Fig. 11).

Overall, these curves show much stronger curvatures
than our lattice results. Even with pion masses as light as
300 MeV, the Oð�3Þ SSE formulas do not seem to be
consistent with our data. There are several possible explan-
ations for the inconsistencies. One is that the pion masses
in our simulations are still too heavy for the SSE formula at
this order to be applicable, and the higher-order contribu-
tions may not be negligible in this range. The other possi-
bility is that our results still suffer from uncontrolled
systematic errors, such as finite-volume effects, especially
at the light pion masses. This will be discussed later in
Sec. V. We want to point out that our limited number of
data points is not sufficient to constrain the chiral fits,
which clearly demonstrates the need for calculations at

lighter pion masses. Thus we do not regard our results in
Table VI as conclusive. Rather, we take it as an indication
of the difficulty of chirally extrapolating currently avail-
able lattice data.
Also plotted in Fig. 8 are our domain wall results at

m� ¼ 330 MeV at a coarser lattice spacing [37] (a �
0:114 fm), as well as our updated mixed-action calcula-
tions [27] at a lattice spacing of about 0.124 fm. These
results are roughly consistent with the fine domain wall
results, indicating that the discretization errors may be
small.

2. Chiral extrapolations using covariant baryon chiral
perturbation theory

In this section we apply a different formulation of SUð2Þ
chiral effective field theory in the baryon sector, without
explicit �ð1232Þ degrees of freedom: covariant BChPT as
introduced in Ref. [63] with a modified version of infrared
regularization (IR-scheme). For details about the formal-
ism and differences from the standard infrared regulariza-
tion introduced by Becher and Leutwyler [34], we refer the
reader to Refs. [32,33,64]. The expressions for the m�

dependence of the mean squared isovector Dirac and
Pauli radii and the isovector anomalous magnetic moment
have been derived in [33] up to order p4, i.e. at the next-to-
leading one-loop accuracy and are collected below.10

For the isovector mean squared Dirac radius, the expres-
sion is given as

ðrv1 Þ2 ¼ Bc1 þ ½ðrv1 Þ2�ð3Þ þ ½ðrv1 Þ2�ð4Þ þOðm2
�Þ; (56)

where

Bc1 ¼ �12dr6ð
Þ; (57)

½ðrv1 Þ2�ð3Þ ¼ � 1

16�2F2
�M

4

�
7g2AM

4 þ 2ð5g2A þ 1ÞM4 log
m�



þM4 � 15g2Am

2
�M

2 þ g2Am
2
�ð15m2

� � 44M2Þ logm�

M

�

þ g2Am�

16�2F2
�M

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 �m2

�

p ½15m4
� � 74m2

�M
2 þ 70M4� arccos

�
m�

2M

�
; (58)

½ðrv1 Þ2�ð4Þ ¼ � 3c6g
2
Am

2
�

16�2F2
�M

4
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

0 �m2
�

q �
m�ðm2

� � 3M2
0Þ arccos

�
m�

2M0

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

0 �m2
�

q �
M2

0 þ ðM2
0 �m2

�Þ logm�

M0

��
:

(59)

The terms contributing up to and including OðpiÞ are denoted by the superscript (i). Without any loss of generality, the
regularization scale 
 is set equal toM0, the nucleon mass in the chiral limit. The low-energy constants d6 and c6 appear,
respectively, in the third- and second-order �N effective Lagrangian. The mass function M must be identified with M0 if
one truncates the previous expression atOðp3Þ, whereas at order p4, according to Ref. [33],M should be replaced by [32]

10In Ref. [33] the form factor slopes �v
1 and �v

2 are used, which are related to our notation for rv1 and rv2 by �v
1 ¼ 1

6 ðrv1 Þ2 and
�v
2 ¼ 1

6�v � ðrv2 Þ2.
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MNðm�Þ ¼ M0 � 4c1m
2
� þ 3g2Am

3
�

32�2F2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� m2

�

M2
0

r �
�4þm2

�

M2
0

þ 4c1
m4

�

M3
0

�
arccos

�
m�

2M0

�

� 3m4
�

128�2F2
�

��
6g2A
M0

� c2

�
þ 4

�
g2A
M0

� 8c1 þ c2 þ 4c3

�
log

�
m�




��
þ 4er1ð
Þm4

� � 3c1g
2
Am

6
�

8�2F2
�M

2
0

log

�
m�

M0

�
; (60)

where c1, c2, and c3 are second-order low-energy constants and er1ð
Þ denotes an effective coupling consisting of a
combination of fourth order low-energy constants. In our current analysis, we always include terms up toOðp4Þ, henceM
in all the BChPT expressions presented here should be identified with MNðm�Þ.

The pion-mass dependence of the isovector Pauli radius is given by

�vðm�Þ � ðrv2 Þ2 ¼
MN

M0

ðBc2 þ ½�v � ðrv2 Þ2�ð3Þ þ ½�v � ðrv2 Þ2�ð4ÞÞ þOðm�Þ; (61)

where11

Bc2 ¼ 24M0e
r
74ð
Þ; (62)

½�v � ðrv2 Þ2�ð3Þ ¼
g2AM0

16�2F2
�M

5ðm2
� � 4M2Þ

�
�124M6 þ 105m2

�M
4 � 18m4
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þ 6ð3m6
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; (63)

½�v � ðrv2 Þ2�ð4Þ ¼ � g2Ac6m
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: (64)

For the isovector anomalous magnetic moment, the Oðp4Þ BChPT expression is

�v ¼ MN

M0

½c6 � 16M0m
2
�e

r
106ð
Þ þ ��ð3Þ

v þ ��ð4Þ
v � þOðm3

�Þ; (65)

where

��ð3Þ
v ¼ g2Am

2
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8�2F2
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�
ð3m2

� � 7M2Þ logm�
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(66)
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: (67)

11We note that C in Eq. (55) is equivalent to er74ð
Þ.
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Note that MN

M0
c6 is equivalent to �

0
v in Eq. (40), whereMN is

the physical nucleon mass and M0 is the nucleon mass in
the chiral limit.

In our chiral extrapolations, we treat gA, F�, c2, c3, and
c4 as input parameters. The available information about the
chiral limit values of gA and F� have been discussed in the
previous section. We set the second-order couplings con-
sistently with Refs. [65–67].12 We summarize these values
in Table VII.

We determine M0, c1, and er1ð
Þ appearing in MNðm�Þ
by fitting the nucleon masses from the three fine DWF
ensembles to Eq. (60). The fit values are tabulated in
Table VIII and the resulting fit curve is shown in Fig. 9.
The fit (denoted as ‘‘Lattice only’’ in the table) is in
excellent agreement with the physical nucleon mass, but
the small number of data points included in the fit gives
substantial statistical errors. To better constrain the value of
M0, which is needed in the subsequent fits, we also fit
the data with the experimental point as a constraint (de-
noted as ‘‘Latticeþ Exp’’). The results are again shown in
Table VIII. The two fits give consistent results, and we will
use central values ofM0, c1 and e

r
1ð
Þ determined from the

‘‘Latticeþ Exp’’ fit subsequently.
For comparison, we also plot the coarse (a ¼ 0:114 fm)

domain wall result at m� � 330 MeV, as well as the
mixed-action results [54] at a ¼ 0:124 fm in Fig. 9. We
see that these results are qualitatively very consistent,
indicating the discretization errors are small.

We determine the remaining four low-energy constants,
c6, d

r
6ð
Þ, er74ð
Þ, and er106ð
Þ, from a simultaneous fit to

ðrv1 Þ2, �v � ðrv2 Þ2, and �v using Oðp4Þ BChPT expressions
presented previously, with the results shown in Table IX.
The large �2=dof value indicates that the Oðp4Þ BChPT
does not describe our data either. We compare the chiral

extrapolations using both the BChPT formula and the
Oð�3Þ SSE formula in Fig. 10. The solid curves with error
bands are the results of the BChPT simultaneous fit, and
the dashed curves are the SSE fits using Eqs. (42), (43), and
(40) as described in Sec. III C 1. It appears that both the
SSE and BChPT expressions are not compatible with our
data, but since many of the low-energy constants in BChPT
are fixed from phenomenology or the nucleon mass, the fit
is better constrained than that using the Oð�3Þ SSE ex-
pressions. This is especially important for �v, for which the
SSE expression involves more parameters than currently
available lattice data. Nevertheless, both formulations fail
to describe our data at this mass range.

IV. ISOSCALAR FORM FACTORS

Since we have not calculated the disconnected contribu-
tions to the three-point functions for the form factors, in
this section we give results for the isoscalar form factors as
defined in Eq. (5) from the connected diagrams only. The
renormalized results (using the renormalization factors
discussed in Sec. III A) in terms of the quark flavor content
Fuþd
1;2 ðQ2Þ ¼ Fu

1;2ðQ2Þ þ Fd
1;2ðQ2Þ � 3Fs

1;2ðQ2Þ are pre-

sented in Tables XIII, XIV, and XV. First, we study the
Q2 dependence of both the isoscalar Dirac and Pauli form

TABLE VII. Input values for the covariant baryon chiral fits.

gA F� [GeV] c2 [GeV�1] c3 [GeV�1] c4 [GeV�1]

1.2 0.0862 3.2 �3:4 3.5

TABLE VIII. Low-energy constants determined from the fit to
the pion-mass dependence of the nucleon mass using the Oðp4Þ
BChPT expression. Only the domain wall results on the fine
lattices are included in the ‘‘Lattice only’’ fit, and in the
‘‘Latticeþ Exp’’ fit we impose that the curve goes through the
physical point.

Fit

M0

[GeV]

c1
[GeV�1]

er1 (
 ¼ 1 GeV)
[GeV�3]

Lattice only 0.883(79) �1:01ð26Þ 1.1(1.3)

Latticeþ Exp 0.8726(29) �1:049ð40Þ 0.90(32)

0 0.2 0.4 0.6 0.8
mπ [GeV]

0.8

1

1.2

1.4

1.6

M
N

 [
G

eV
]

DWF Results, a = 0.084 fm
DWF Results, a = 0.114 fm
Mixed-Action Results, a = 0.124 fm
Experiment

FIG. 9 (color online). Chiral extrapolation for the nucleon
mass using the Oðp4Þ BChPT formula in Eq. (60). The solid
line is the fit to only the fine domain wall data (solid circles). The
square is the coarse domain wall result, and the diamonds are the
mixed-action results from Ref. [54].

TABLE IX. Fit parameters for the simultaneous fit to ðrv1 Þ2,
�v � ðrv2 Þ2, and �v using theOðp4Þ covariant baryon formula. We

have set 
 ¼ M0.

�2=dof c6

dr6ð
Þ
[GeV�2]

er74ð
Þ
[GeV�3]

er106ð
Þ
[GeV�3]

7.3(2.4) 4.290(46) 0.839(7) 1.350(45) �0:132ð37Þ

12For a discussion about the value of c3, see [68,69].
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factors using phenomenological models, and then discuss
briefly the chiral extrapolations of the results.

A. Q2 dependence

Unlike the isovector Dirac form factor,Fuþd
1 ð0Þ is not set

to the known value of 3. Thus we perform dipole fits to
Fuþd
1 ðQ2Þ separately to each ensemble using the formula in

Eq. (30). Similar to the isovector case (see Sec. III B), the
dipole Ansatz describes the data reasonably well at small
Q2 values, typically below 0:6 GeV2. As large Q2 values
are included in the fit, the fit quality becomes worse, but the
fit parameters do not change significantly. Furthermore, the
fitted values of Fuþd

1 ð0Þ are very consistent with the ex-

pected value of 3.
To demonstrate the quality of the fits, in Fig. 11 we show

the dipole fits to all theQ2 values. One can see that the data
are reasonably well described by the fit curves. Also plot-
ted is the phenomenological fit to experimental data using

the parameterization in Ref. [51], although we note that no
error estimate is provided and the empirical analysis in-
volves many potential systematic errors discussed in the
introduction. To determine the isoscalar mean squared
Dirac radii, we follow the same reasoning as in Sec. III B
and obtain them from the dipole fits with a cut at Q2 	
0:5 GeV2. The results are shown in Table X.
In experiments, the isoscalar Pauli form factor shows a

notable bump at Q2 � 0:4 GeV2 (solid curve in Fig. 12),
although again there are no error estimates. Our data are
too noisy to distinguish this feature at this moment. In fact,
the results, shown in Fig. 12, are rather flat. We show the
constant fits to each ensemble separately, and find that the
constants are consistent with zero within 2 standard devia-
tions. The error band corresponds to the constant fit to the
m� ¼ 297 MeV data.
If we restrict the fits to only the small Q2 region

( 	 0:5 GeV2), we are able to perform linear fits to the
data and obtain both �s � ðrs2Þ2 (from the slope) and �s
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FIG. 10 (color online). Simultaneous fit to the isovector Dirac radius ðrv1 Þ2 (a), Pauli radius �v � ðrv2 Þ2 (b), and the anomalous
magnetic moment �v (c) using the covariant baryon formula (solid lines). The dashed lines show the SSE formula fits without the
constant term for �v � ðrv2 Þ2.
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(from the intercept), the results of which are also shown in
Table X.13

B. Chiral extrapolations

1. Chiral extrapolations using Oð�3Þ small scale
expansion

As is well known in ChPT (e.g. see the discussion in
[44]), chiral dynamics in the isoscalar form factors of the
nucleon starts at the 3-pion cut, i.e. at two-loop level,
corresponding to Oð�5Þ in the power-counting of SSE.
Hence, although the Oð�3Þ SSE expressions for the pion-
mass and momentum transfer dependence of the isoscalar
Dirac and Pauli form factors have also been derived in [44]
and given as

Fs
1ðQ2Þ ¼ 1þ ~B1

Q2

ð4�F�Þ2
; Fs

2ðQ2Þ ¼ �s;

they cannot be utilized for chiral extrapolations. Therefore,
in this section, we simply extrapolate linearly in m2

� the
mean squared Dirac radius to the physical point. This is
shown in Fig. 13(a), where we can see that the linear
extrapolation gives a result at the physical pion mass which
is much lower than the empirical value. Similarly, we
perform a linear extrapolation for �s � ðrs2Þ2, which is

shown in Fig. 13(b).
For �s beyond order �

3, additional terms arise including
a term linear in the quark mass. Following Ref. [52], we
write

�s ¼ �0
s � 8E2MNm

2
�; (68)

where �0
s and E2 are two unknown LECs. This linear

dependence describes our data well, as is shown in
Fig. 13(c).

2. Chiral extrapolations in covariant baryon chiral
perturbation theory

The BChPT formulas up toOðp4Þ for ðrs1Þ2, ðrs2Þ2, and �s

have also been derived in [33,64]. We collect them here for
completeness. We note, however, that the next-to-leading
one-loop BChPT results for the isoscalar form factors of
the nucleon as presented in this section—just as in the case
of the leading one-loop SSE-analysis discussed in the
previous section—do not contain their dominant chiral
dynamics arising from the 3-pion cut. Such effects would
only become visible at the two-loop level, i.e. starting at
Oðp5Þ in BChPT. The results presented here are therefore
to be interpreted with care, as several important contribu-
tions with potentially large impact on the chiral extrapola-
tion functions are not included at this order. For the
isoscalar mean squared Dirac radius, the BChPT expres-
sion is given by

ðrs1Þ2 ¼ Bs
c1 þ ½ðrs1Þ2�ð3Þ þ ½ðrs1Þ2�ð4Þ; (69)

TABLE X. Results for the isoscalar Dirac and Pauli mean
squared radii and the anomalous magnetic moment. A dipole
fit with aQ2 cutoff at 0:5 GeV2 is used to determine ðrs1Þ2. Linear
fits to Fs

2 with Q2 	 0:5 GeV2 are used to determine �s � ðrs2Þ2
and �s. The results shown below have been normalized to the
physical nuclear magneton.

m�

[MeV] �2=dof
ðrs1Þ2
[fm2] �2=dof

�norm
s � ðrs2Þ2
[fm2] �norm

s

297 0.12(35) 0.428(5) 3.3(2.1) �0:021ð21Þ �0:038ð37Þ
355 0.97(98) 0.403(3) 1.4(1.4) �0:015ð11Þ �0:030ð22Þ
403 1.7(1.3) 0.385(3) 2.2(1.7) �0:003ð11Þ 0.011(21)
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Phenomenology

FIG. 11 (color online). The isoscalar Dirac form factor,
Fuþd
1 ðQ2Þ, with dipole fits. The thick solid (red) curve is a

phenomenological fit to experimental data [51].

0 0.2 0.4 0.6 0.8 1

Q
2
 [GeV

2
]

-0.4

-0.2

0

0.2

0.4

F
2u+

d (Q
2 )

mπ = 297 MeV

mπ = 355 MeV

mπ = 403 MeV

Phenomenology

FIG. 12 (color online). The isoscalar Pauli form factor,
Fuþd
2 ðQ2Þ, with constant fits. Only the error band for the fit to

the m� ¼ 297 MeV ensemble is shown. The thick solid (red)
curve is a phenomenological fit to experimental data [51].

13Like in the isovector case, the anomalous magnetic moment
quoted here is normalized to the physical nuclear magneton
according to Eq. (41).
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where

Bs
c1 ¼ �24d7; (70)

½ðrs1Þ2�ð3Þ ¼
3g2Am
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;
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��
: (71)

Here, again, when the expression is truncated at Oðp3Þ, M should be identified with M0, while at Oðp4Þ, it should be
replaced by MNðm�Þ in Eq. (60). Similarly, for �s � ðrs2Þ2, we have
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FIG. 13 (color online). The linear extrapolations for the isoscalar Dirac radius ðrs1Þ2 (a), Pauli radius �sðrs2Þ2 (b), and the anomalous
magnetic moment �s (c). In (a), (b) the stars indicate the phenomenological values obtained in Ref. [6]. In (c) the star indicates the
experimental value [56].
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�s � ðrs2Þ2 ¼
MN

M0

ðBs
c2 þ ½�s � ðrs2Þ2�ð3Þ þ ½�s � ðrs2Þ2�ð4ÞÞ; (72)

with

Bs
c2 ¼ 48M0e54; (73)
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3g2Am
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� � 40M2m2
� þ 60M4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 �m2
�

p arccos

�
m�

2M

�

� 2

�
10M4 � 3m2

�M
2 þ ð4M2 �m2

�Þð2M2 � 3m2
�Þ logm�

M

��
; (74)

½�s � ðrs2Þ2�ð4Þ ¼
3�0

sg
2
Am

2
�

16�2F2
�M

4
0ðm2

� � 4M2
0Þ
�
�m�ð4m4

� � 27M2
0m

2
� þ 42M4

0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

0 �m2
�

q arccos

�
m�

2M0

�

þ 14M4
0 � 4m2

�M
2
0 þ ðm2

� � 4M2
0Þð4m2

� � 3M2
0Þ log

m�

M0

�
: (75)

The BChPT expression for the isoscalar anomalous magnetic moment is written as

�s ¼ MN

M0

½�0
s � 16M0m

2
�e

r
105ð
Þ þ ��ð3Þ

s þ ��ð4Þ
s �; (76)

where

��ð3Þ
s ¼ � 3g2Am

2
�M0

8�2F2
�M

3

�
m�ðm2

� � 3M2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 �m2

�

p arccos

�
m�

2M

�
þM2 þ ðM2 �m2

�Þ logm�

M

�
; (77)

��ð4Þ
s ¼ 3g2Am

2
�

32�2F2
�M

2
0

�
4M2

0 þ �0
sð3m2

� � 4M2
0Þ log

m�

M0

� �0
s

m�ð3m2
� � 8M2

0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

0 �m2
�

q arccos

�
m�

2M0

��
: (78)

As in the isovector case, we use the values in Table VII
as input in the extrapolations, leaving �0

s , d7, e54 and
er105ð
Þ as free parameters. Since ðrs1Þ2, �s � ðrs2Þ2, and �s

all contain the low-energy constant �0
s , naively we should

perform a simultaneous fit to all three quantities, as we
have done for the isovector case. However, as stated earlier,
the dominant chiral dynamics for the isoscalar quantities
only appears at Oðp5Þ. We do not expect these Oðp3Þ
expressions to describe our data. In fact, the simultaneous
fit to these three quantities gives a �2=dof of about 9 (see
Table XI), showing the difficulty in fitting these quantities
consistently. Looking closely at each quantity separately,

we find that independent fits to ðrs1Þ2, �s � ðrs2Þ2 and �s lead
to an inconsistency in the estimation of the common pa-
rameter �0

s , as shown in Table XII. For demonstrative
purposes, we compare the resulting fit curves from the
simultaneous fit and the independent fits in Fig. 14, from
which we see that the independent fits provide reasonable
extrapolations for the data, while the simultaneous fit
misses the data points badly, indicating inconsistencies of
the BChPT expressions at this order. We also note that the

TABLE XI. Fit parameters from the simultaneous fit to ðrs1Þ2,
�s � ðrs2Þ2 and �s using Eqs. (69), (72), and (76).

�2=dof �0
s

d7
[GeV�2]

e54
[GeV�3]

er105ð
 ¼ M0Þ
[GeV�3]

8.5(2.6) �0:172ð23Þ �0:458ð24Þ �0:0159ð41Þ 0.598(26)

TABLE XII. Fit parameters from independent fits to ðrs1Þ2, �s �
ðrs2Þ2 and �s using Eqs. (69), (72), and (76).

�2=dof �0
s d7 [GeV�2]

ðrs1Þ2 0.2(9) 2.67(44) �0:581ð19Þ
�2=dof �0

s e54 [GeV�3]

�s � ðrs2Þ2 0.08(55) 1.6(2.0) �0:055ð44Þ
�2=dof �0

s er105ð
 ¼ M0Þ [GeV�3]

�s 0.4(1.3) �0:247ð53Þ 0.506(63)
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extrapolated value for ðrs1Þ2 at the physical pion mass is
about 20% lower than the phenomenological value. These
observations lead us to conclude that the BChPT expres-
sions atOðp3Þ are not applicable in the pion-mass range of
our calculation. Of course, since we have not included the
disconnected diagrams in our calculations, there are un-
controlled systematic errors which may also affect the
pion-mass dependence. Further investigations are required
to draw definitive conclusions for these isoscalar
quantities.

V. SYSTEMATIC ERRORS

A. Effect of the excited states

The correlation functions may have systematic bias due
to the excited and/or unphysical oscillating states
[24,28,70]. To control it, we solve the overdetermined

system separately for each location of the operator and
examine the plateau for the form factors. Examples are
shown in Fig. 15. Because of the tuning of the quark
sources, the contaminations from states other than the
ground state are suppressed and do not contribute to the
matrix element plateaus close to their centers.
To put quantitative bounds on possible bias, we study the

excited states in the nucleon correlators. The nucleon two-
point correlation functions have very precise information
on the presence of the nonground state contamination. For
example, with our current statistics the parameters of a fit
with three states are well constrained:

C2ptðt;PÞ ¼ Z0ðPÞe�E0t þ Z1ðPÞe�E1t

þ ð�1ÞtZoscðPÞe�Eosct; Z0;1 > 0; (79)

where Z0, Z1, and Zosc denote the overlap of the nucleon
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FIG. 14 (color online). Oðp4Þ BChPT fits to the isoscalar Dirac radius ðrs1Þ2 (a), Pauli radius �sðrs2Þ2 (b), and the anomalous magnetic
moment �s (c). The solid lines are fits to the three quantities separately with the resulting fit parameters summarized in Table XII. The
dashed lines are simultaneous fits with the parameters summarized in Table XI.
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interpolating field with the ground, the first excited and the
unphysical oscillating states, respectively. Having esti-
mated the energy gap �E10ðPÞ ¼ E1ðPÞ � E0ðPÞ and the
magnitude of the contamination Z1ðPÞ=Z0ðPÞ, one can put
bounds on the excited state contribution to the matrix
elements computed from the two- and three-point lattice
nucleon correlators.

The ratio formula (23) for physical matrix elements has
two factors: RV� � RNRA. Excited states can potentially
contribute to either one. First, we study the asymmetry
ratio, RA, defined in Eq. (22). As was pointed out above,
this factor compensates the asymmetric 
 dependence in
RN , and in the absence of excited states it would be equal to
exp½�ðE0 � EÞð
� T=2Þ�. Although this factor involves
different two-point functions, their excited state contribu-

tions appear to cancel each other to a large extent, as shown
in Fig. 16. Figure 16(a) shows the ratio of RA to the
exponential result in the absence of excited states

RAð
Þ
e�ðE0�EÞð
�T=2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðT�
;PÞC2ptð
;P0Þ
C2ptðT�
;P0ÞC2ptð
;PÞ

r
e�ðE0�EÞð
�T=2Þ ; (80)

where (E0 � E) in the denominator is determined by the
best fit to RA in the range 3 	 
 	 6. The fact that this ratio
is unity to within 1% over a plateau from 3 	 
 	 9
indicates that excited state contributions are negligible.
Furthermore, Fig. 16(b) shows the effective ground state
energy difference
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FIG. 15 (color online). Nucleon isovector Dirac (a) and Pauli (b) form factor plateaus for the lightest m� ¼ 297 MeV ensemble.
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FIG. 16 (color online). Panel (a) shows the ratio Að
Þ in Eq. (80). Panel (b) shows the effective energy difference (81) in lattice units
and the fit values of E0 � E used in panel (a). The degree to which the contaminations to all ~P0 � ~0 two-point correlators are canceled

by the contamination to the ~P ¼ ~0 correlator is remarkable.
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�EeffðtÞ ¼ log

�
C2ptðt; P0Þ

C2ptðtþ 1; P0Þ
	

C2ptðt; PÞ
C2ptðtþ 1; PÞ

�
; (81)

which in the absence of any excited state contaminants,
would simply be �EeffðtÞ ¼ ðE0 � EÞ. For comparison, the
values of E0 � E determined above are plotted on the same

graph, and agree nicely in the fiducial range 2 	 
 	 10.
Thus, we neglect small contaminations from this factor.
Second, we estimate the contribution to RN defined in

Eq. (21) assuming only one excited state and no oscillating
term14:

C3ptð
; TÞ � C3ptð
; TÞj0
�
1þ

ffiffiffiffiffiffi
Z1

Z0

s
O001

O000
e��E
 þ

ffiffiffiffiffiffi
Z0
1

Z0
0

s
O100

O000
e��E0ðT�
Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
Z0
1Z1

Z0
0Z0

s
O101

O000
e��E0ðT�
Þ��E


�
;

C3ptð
; TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðTÞC0

2ptðTÞ
q �

�
C3ptð
; TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ptðTÞC0
2ptðTÞ

q �
0
�

�
1þO001

O000
�R10ð
Þ þO100

O000
�R0

10ðT � 
Þ þO101

O000
�R10ð
Þ�R0

10ðT � 
Þ

� 1

2
ð�R11 þ �R0

11Þ
�
; (82)

where

�Rð0Þ
10ð
Þ ¼

ffiffiffiffiffiffiffi
Zð0Þ
1

Zð0Þ
0

vuut e��Eð0Þ
;

�Rð0Þ
11 ¼

Zð0Þ
1

Zð0Þ
0

e��Eð0ÞT ¼ ½�Rð0Þ
10ðT=2Þ�2;

(83)

and we have expanded to leading order assuming that
�Rð0Þ

11 � 1. The value of the suppression factor �Rð0Þ
10ð
Þ is

shown in Fig. 17. Its values are estimated from the fit
parameters Z0;1, E1;0 in Eq. (79), and the errors are com-
puted using the jackknife procedure. Note that �Rð0Þ

10ð
Þ
falls off steeply with 
. As a result, its contribution can

be easily detected and removed by fitting the plateau with

ROð
Þ � C0 þ C1e
��E
 þ C0

1e
��E0ðT�
Þ: (84)

From Fig. 17 one may estimate the last two terms in the
contamination formula (82), suppressed by �Rð0Þ

11 and
�R10ð
Þ�R0

10ðT � 
Þ. If one further assumes that the ex-
cited state matrix elements are at most of the same order as
the ground state elements,

O101
O000

& 1, the effect of the last
two terms in Eq. (82) is well below 1%. It is also worth
noting that higher momentum matrix elements with ~p ¼
ð0; 0; 2Þ would contain substantially larger contamination,
as compared to lower momenta. Such matrix elements are
excluded from our analysis.
Finally, we compare the form factors extracted using the

plateau average with those from fitting the 
 dependence to
Eq. (84). Because of the uncertainty in the two-point
correlator fitting parameters, we perform fits for a range
of mass gaps �MN ¼ 0:4, 0.6 and 0.8, which bracket the
fitted values from different fitting ranges and fitting with or
without the oscillating term in Eq. (79). The energy gaps

�E for the ~P � 0 states are computed using the continuum
dispersion formula. The result is statistically independent
of the mass gap value used (see Fig. 18) and is stable when
fitting inside the region 2 	 
 	 10. The complete consis-
tency between conventional plateau averages and results
for which excited state contaminants are explicitly in-
cluded in the analysis and separated from the physical
ground state contribution clearly indicates the absence of
systematic errors from excited state contaminants in our
present results.
In addition, we have also compared results with two

different source-sink separations, T ¼ 12 and T ¼ 14. If
the coherent sink technique were ever to introduce addi-
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FIG. 17 (color online). Suppression factor for the excited state
contributions �R10ð
Þ (83), as estimated from fitting the two-
point function. Note that the actual matrix element O10 is not
included in the plotted value, which therefore shows only the
relative fall-off of the exponential tail contamination. Note also
that the factor for the p ¼ ð0; 0; 2Þ state is substantially larger
than for the other states shown.

14We neglect the contribution of oscillating states because they
decay even faster than excited states.
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tional noise into the calculation, one would expect it to be
worse for the larger T, for which the first adjacent un-
wanted sink is closer. Hence, in the case of T ¼ 14, we
have used independent sinks to check that this is not a
problem. One of the typical plateaus comparing T ¼ 12
and T ¼ 14 separations is plotted in Fig. 19 and shows
agreement within statistics. Separations 12 and 14 are also
compared in Fig. 18, where we show each of the form
factors computed on a subset of the amq ¼ 0:004 ensemble

using independent backward propagators and the larger
source-sink separation T ¼ 14. The agreement of results

that use two different separations and techniques directly
indicates that our method does not suffer from the system-
atic effects due to excited states or the coherent propagator
technique.

B. Finite-volume dependence

Ideally, we would like to control systematic errors aris-
ing from volume dependence using an effective field the-
ory that describes the dependence of the observables of
interest as a function of spatial volume and pion mass, and
a set of calculations of the lattice observables with a
specified action for a range of volumes at pion masses
for which the effective field theory is applicable.
Verifying that the effective theory fits the measured volume
dependence with low-energy constants that are consistent
with other lattice and phenomenological constraints would
then assure solid theoretical and computational control of
finite-volume effects. To date, this program has not been
carried out completely for form factors with any lattice
action, and finite-volume effects have been a convenient
excuse for any disagreements with experiment. Hence, it is
useful to examine the available data for domain wall
fermions and to assess what quantitative evidence there is
for or against significant finite-volume corrections.
To examine volume dependence carefully, it is important

to only compare lattice calculations at different volumes
that use precisely the same action and computational meth-
odology. In this context, we believe it can be seriously
misleading to argue on the basis of plots containing a
variety of calculations with different actions, analysis tech-
niques, renormalization schemes, etc. However, due to the
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FIG. 18 (color online). Comparison of the isovector Dirac (a) and Pauli (b) form factors extracted from plateau averages and from
fitting plateaus with formula (84) for the ensemble with the lightest pion mass m� ¼ 297 MeV. The result is stable with variation of
the mass gap �MN , which means that the contamination is small. All but the last group of points use source-sink separation T ¼ 12.
The last group, calculated for 330 gauge configurations, uses the larger separation T ¼ 14 and independent backward propagators.
Each form factor value is divided by the central value of the dipole fit. Table II lists the momentum combinations corresponding to each
index on the horizontal axis.
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high computational cost of domain wall fermions, the only
high precision calculations of nucleon observables with
two large volumes for light quarks that we are aware of
are the mixed-action calculations for 355 MeV pion mass
in volumes of spatial extent 2.5 fm and 3.5 fm, correspond-
ing to m�L ¼ 4:4 and 6.2, respectively [26,27]. Thus, we
will base our arguments on these results.

In order to make a consistent comparison, we calculate
the form factor slopes at zero momentum transfer by taking
the most accurate results at the smallest momentum trans-
fer values ( 2�L , 0, 0), (0, 0, 0) on each lattice and using the

one-parameter dipole formula (28) to determine the slope
at the origin. Comparing the results for rv1 and quadrati-
cally combining the errors for the two independent calcu-
lations, we find that the fractional difference between rv1 at
3.5 fm and 2.5 fm is ð3:7� 2:6Þ% at m� ¼ 355 MeV.15

Further evidence suggesting finite-volume corrections
to radii are small is the fact that in Ref. [29], even decreas-
ing the lattice size to 1.8 fm yields small changes in rv1 and
rv2 . At the same time, it cannot be excluded with the present
data that rapidly growing finite-size effects below m� ¼
355 MeV are affecting the pion-mass dependence of rv1 in
our calculations. This will have to be resolved in the future.

VI. COMPARISON WITH PREVIOUS
CALCULATIONS

We briefly compare our results and conclusions with
those of previous calculations. We start with the isovector
Dirac and Pauli radii, rv1 and rv2 . Previous calculations
using Wilson fermions had reached pion masses of about
400 MeV. Both the quenched [16,17] and Nf ¼ 2 un-

quenched results [17] showed a mild pion-mass depen-
dence for rv1 and rv2 . A recent calculation on Nf ¼ 2þ 1

domain wall fermion configurations at a ¼ 0:114 fm ex-
tended the range of pion masses down to 330 MeV [29].
These results show that the very mild upward trend of rv1
and rv2 extends down to that pion mass. Summary plots
comparing results for Wilson fermions with zero and two
flavors and domain wall fermions for zero, two, and 2þ 1
flavors are given in Figs. 14 and 19 of Ref. [29]. For the
case of rv1 , which has smaller statistical errors, for each
action, the data tend to lie on straight lines with compa-
rable small slope and some scatter in normalization, with
perhaps a hint that the Nf ¼ 2 calculations, performed on

box sizes 1.9 fm, lie somewhat low. The rv2 data also appear
to lie on straight lines with similar small slope, albeit with
larger scatter. Our results for rv1 and r

v
2 , which extend down

to m� ¼ 300 MeV, also show a small pion-mass depen-

dence, and are consistent within statistical errors with the
2þ 1 flavor domain wall results on a ¼ 0:114 fm lattices.
We conclude that this flat behavior, surprising as it is from
the chiral effective theory point of view, is genuine. The
one-loop SSE formulas of Sec. III C 1 cannot accommo-
date this ‘‘flat’’ pion-mass dependence in the radii down to
such low values of the pion mass �300 MeV, with or
without the inclusion of a higher-order core term. Indeed,
the curves shown in Figs. 8(a) and 8(b) indicate that the
SSE calculation would have favored an upward trend in the
extracted isovector radii which should have become visible
in the pion-mass range studied in this work, consistent with
the expectations drawn in Ref. [16]. The only explanation
for this behavior available at the moment is that the leading
one-loop SSE calculation is only valid for pion masses
<300 MeV.
As for the anomalous magnetic moment �v, our results

are in very good agreement with those obtained with Nf ¼
2 dynamical Wilson fermions in [21], with recent Nf ¼ 2

twisted-mass results [23] and with the recent Nf ¼ 2þ 1

domain wall calculation [29]. We remark that our Fig. 8
displays the normalized anomalous magnetic moment
�norm, while Fig. 17 of Ref. [29] shows the magnetic mo-
ment normalized by the quark-mass dependent nucleon
mass, �lat. The difference between the two figures16 re-
flects the m� dependence of the nucleon mass, which is
quite strong (see Fig. 9). All in all, for �v too, the calcu-
lated pion-mass dependence is rather mild, and results at
lower pion masses will have to bend upwards rather
sharply if they are to agree with the experimental value.

VII. SUMMARYAND CONCLUSIONS

We have presented lattice calculations of nucleon form
factors with Nf ¼ 2þ 1 flavors of dynamical domain wall

fermions on fine 323 � 64 lattices with a ¼ 0:084 fm at
pion masses of 297, 355, and 403 MeV that achieve a new
level of precision in both statistical and systematic errors.
Statistical errors have been reduced by using from 3600 to
7064 measurements of operators at a given mass by per-
forming 8 measurements per lattice and verifying their
statistical independence. Statistical errors and error corre-
lations have been carefully analyzed in our overdetermined
analysis, which combines as many stochastically distinct
measurements of the same physical form factors as
practical.
Because of the high level of statistical precision, we

have carefully investigated and controlled potential
sources of systematic error. We have ruled out systematic
errors arising from the source-sink separation in two differ-
ent ways. First, we have derived analytic expressions for
the contamination by excited states, and, using lattice data
from two-point correlation functions, have shown quanti-

15We note that as discussed in Ref. [27], dipole fits of all the
form factor data out to some fixed cutoff yield discrepancies in
the dipole fits between the two volumes that increase as the
cutoff increases, but this comparison focusses on other features
of the form factor besides the radius that we seek to chirally
extrapolate.

16The numerical difference between the lattice data and the
experimental value is smaller in the case of �lat.
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tatively that the coefficients of excited state admixtures in
these expressions yield negligible contributions to the ob-
servables of interest. In addition, we compared explicit
calculations with source-sink separations T ¼ 12 and T ¼
14 and have shown that results from the two source-sink
separations are indeed statistically consistent, as expected
from the excited state analysis. We have verified that even
in the worst case—the lightest pion mass and maximum
source-sink separation—results calculated using the time-
saving coherent sink technique are consistent with results
calculated with conventional independent sinks. By com-
parison with companion calculations on a coarse lattice
with a ¼ 0:114 fm, we have verified that lattice spacing
errors are small. Finally, we argue that finite-volume cor-
rections to the present calculations in a volume of spatial
extent 2.5 fm are small, since the fractional change in rv1 in
the recent mixed-action calculations with two volumes is
3:7� 2:6%, and our present results are consistent with that
calculation.

The high precision of the calculated form factors is
shown in Figs. 4 and 5, where, in order to see the discrep-
ancies with dipole fits, we plotted the ratio of the lattice
calculations to the best dipole fits on an expanded scale.
This precise data enabled us to extract the Dirac radius, rv1 ,
Pauli radius rv2 , and anomalous magnetic moment �v with

much smaller errors than in earlier calculations and to
study chiral extrapolations to correspondingly higher pre-
cision. In contrast to earlier studies in which the lattice
error bars were sufficiently large that the data appeared to
be consistent with chiral perturbation theory, in this work
we have shown that the m� dependence of the lattice
results for ðrv1 Þ2, ðrv2 Þ2, and �v at the three masses 297,

355, and 403 MeV cannot be simultaneously fit by either
Oð�3Þ SSE or NNLO BChPT. The data points for ðrv1 Þ2 rise
too slowly with decreasing m� and the data for ðrv2 Þ2 are

too flat to be fit by either the SSE or BChPT curves that rise
smoothly with decreasingm� to approach the experimental
results. Since there happen to be three free parameters in
SSE to fit the 3 measured values of �v, the SSE can
actually fit the anomalous magnetic moment, but BChPT,
which is physically constrained to rise with decreasingm�,
is also seriously in conflict with the lattice measurements
of �v at the accessible masses. Similarly, wewere unable to
simultaneously fit the isoscalar quantities ðrs1;2Þ2 and �s,

which, to this order of ChPT, have fewer parameters.
With the present data at these three pion masses, we see

three possible explanations for the discrepancy with chiral
perturbation theory. One possibility is an outright error
somewhere in the lattice calculations. However, by virtue
of meticulous checks, key calculations with independent
codes, and the qualitative similarity of our results to those
of other groups [17,21,23,28,29], we believe this is un-
likely. A second possibility is that finite-volume effects are
significantly larger than the estimates we obtained from
our 355 MeV mixed-action studies for spatial sizes 2.5 fm

and 3.5 fm. This possibility clearly warrants further study
of chiral perturbation theory for off-forward matrix ele-
ments in a finite-volume and careful high-statistics studies
in a series of volumes. The third possibility is that chiral
perturbation theory at the present order is not applicable for
this range of m�. Indeed, significant problems have pre-
viously been encountered in describing them� dependence
of baryon masses, and one observes, for example, that the
highly linear dependence of the nucleon mass on m� seen
in a variety of lattice calculations with different actions can
only arise from an apparently unnatural cancellation of
analytic and nonanalytic terms in chiral perturbation the-
ory [54]. This possibility clearly warrants lattice calcula-
tions at a series of lower values of m� all the way down to
the physical pion mass.
The last two possibilities each raise very interesting and

important questions in hadron structure. Given the high
computational cost of chiral fermions relative to improved
Wilson fermions and the fact that there are no crucial
operator mixing problems in form factors necessitating
exact chiral symmetry on the lattice, it appears that the
most expeditious means of understanding the volume de-
pendence and behavior down to the physical pion mass will
be with an appropriate form of an improved isotropic
Wilson action. Such calculations are clearly essential for
further progress in understanding the fundamental struc-
ture of the nucleon.
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APPENDIX A: FORM FACTOR TABLES

We collect the results for the nucleon Dirac and Pauli form factors for individual flavors and flavor combinations for the
three fine lattice spacing ensembles in Tables XIII, XIV, and XV. The dipole and tripole fit parameters of the isovector
Dirac and Pauli form factors are collected in Tables XVI and XVII, respectively.

TABLE XIII. Renormalized results for the Dirac and Pauli form factors from the aml ¼ 0:004 ensemble with m� � 297 MeV.

ðaQÞ2 Q2 [GeV2] Fu
1 Fd

1 Fuþd
1 Fu�d

1 Fu
2 Fd

2 Fuþd
2 Fu�d

2

0.000 000 0.000 2.004(5) 1.004(3) 3.008(7) 1.000(5)

0.037 025 0.203 1.457(7) 0.683(4) 2.140(9) 0.774(7) 1.050(46) �1:092ð27Þ �0:042ð59Þ 2.142(46)

0.037 235 0.204 1.462(13) 0.681(8) 2.142(17) 0.781(13) 0.956(106) �1:056ð60Þ �0:100ð139Þ 2.013(102)

0.071 421 0.392 1.132(9) 0.497(5) 1.629(12) 0.635(8) 0.853(35) �0:822ð23Þ 0.031(50) 1.675(32)

0.072 155 0.396 1.130(21) 0.491(12) 1.621(29) 0.639(19) 0.995(104) �0:693ð55Þ 0.302(127) 1.688(108)

0.077 106 0.423 1.089(11) 0.470(6) 1.560(15) 0.619(10) 0.745(42) �0:806ð26Þ �0:061ð54Þ 1.550(43)

0.103 678 0.569 0.912(13) 0.376(7) 1.288(18) 0.536(11) 0.685(44) �0:647ð26Þ 0.038(61) 1.332(39)

0.114 341 0.627 0.870(13) 0.350(7) 1.219(17) 0.520(12) 0.634(41) �0:601ð26Þ 0.034(54) 1.235(43)

0.154 213 0.846 0.696(15) 0.256(8) 0.951(20) 0.440(13) 0.479(36) �0:463ð23Þ 0.016(49) 0.943(36)

0.191 447 1.050 0.591(13) 0.204(7) 0.795(17) 0.387(11) 0.408(25) �0:388ð16Þ 0.020(34) 0.796(25)

TABLE XIV. Renormalized results for Dirac and Pauli form factors from the aml ¼ 0:006 ensemble with m� � 355 MeV.

ðaQÞ2 Q2 [GeV2] Fu
1 Fd

1 Fuþd
1 Fu�d

1 Fu
2 Fd

2 Fuþd
2 Fu�d

2

0.000 000 0.000 2.000(3) 1.000(2) 2.999(4) 1.000(3)

0.037 176 0.204 1.478(4) 0.691(2) 2.169(6) 0.788(4) 1.132(31) �1:192 17ð Þ �0:061 40ð Þ 2.324(30)

0.037 348 0.205 1.471(8) 0.691(4) 2.162(10) 0.779(8) 1.226(71) �1:130 38ð Þ 0.096(93) 2.356(66)

0.071 948 0.395 1.162(6) 0.509(3) 1.671(8) 0.653(5) 0.909(25) �0:923 15ð Þ �0:014 34ð Þ 1.832(24)

0.072 559 0.398 1.155(12) 0.503(7) 1.659(17) 0.652(11) 0.866(62) �0:875 33ð Þ �0:009 79ð Þ 1.741(59)

0.077 106 0.423 1.134(8) 0.491(4) 1.625(10) 0.643(7) 0.878(28) �0:870 16ð Þ 0.008(36) 1.748(28)

0.104 730 0.574 0.946(9) 0.389(5) 1.336(12) 0.557(7) 0.745(28) �0:727 17ð Þ 0.018(37) 1.472(27)

0.114 455 0.628 0.904(9) 0.365(4) 1.269(11) 0.540(8) 0.693(29) �0:656 16ð Þ 0.036(37) 1.349(28)

0.154 213 0.846 0.736(10) 0.285(5) 1.021(14) 0.452(9) 0.560(25) �0:505 15ð Þ 0.056(33) 1.065(25)

0.191 561 1.051 0.619(9) 0.225(4) 0.844(11) 0.393(7) 0.476(17) �0:407 11ð Þ 0.070(23) 0.883(17)

TABLE XV. Renormalized results for Dirac and Pauli form factors from the aml ¼ 0:008 ensemble with m� � 403 MeV.

ðaQÞ2 Q2 [GeV2] Fu
1 Fd

1 Fuþd
1 Fu�d

1 Fu
2 Fd

2 Fuþd
2 Fu�d

2

0.000 000 0.000 2.006(3) 1.006(1) 3.012(3) 1.000(2)

0.037 277 0.204 1.502(4) 0.706(2) 2.208(5) 0.796(4) 1.210(32) �1:193 19ð Þ 0.016(43) 2.403(31)

0.037 427 0.205 1.499(8) 0.706(4) 2.204(11) 0.793(7) 1.342(65) �1:131 39ð Þ 0.211(85) 2.473(65)

0.072 306 0.397 1.180(6) 0.521(4) 1.702(8) 0.659(5) 0.965(26) �0:926 17ð Þ 0.038(36) 1.891(26)

0.072 839 0.400 1.168(12) 0.519(6) 1.687(16) 0.649(10) 0.985(60) �0:922 36ð Þ 0.063(80) 1.908(59)

0.077 106 0.423 1.160(8) 0.508(4) 1.667(11) 0.652(7) 0.918(29) �0:861 19ð Þ 0.058(39) 1.779(29)

0.105 450 0.578 0.965(8) 0.401(5) 1.366(11) 0.564(7) 0.783(29) �0:749 18ð Þ 0.035(39) 1.532(28)

0.114 533 0.628 0.924(8) 0.381(5) 1.305(11) 0.543(8) 0.710(27) �0:669 18ð Þ 0.041(38) 1.379(26)

0.154 213 0.846 0.771(11) 0.302(6) 1.073(14) 0.469(9) 0.567(24) �0:539 16ð Þ 0.028(33) 1.106(24)

0.191 639 1.051 0.633(9) 0.234(5) 0.867(12) 0.399(8) 0.459(17) �0:442 12ð Þ 0.017(24) 0.901(17)
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APPENDIX B: SMEARED NUCLEON SOURCES
FOR DOMAIN WALL FERMIONS

Since careful optimization of the interpolating field for
the nucleon source is crucial for the high precision calcu-
lations described in this work, in this appendix we describe
in detail our optimization procedure and record the optimal
parameters in two commonly used conventions.

We have two objectives in constructing sources for
propagators that will be optimal for calculating hadronic
matrix elements. The first is to maximize the overlap
between the interpolating field acting on the QCD vacuum
and the hadronic ground state. The second is to minimize
fluctuations arising from the source itself. Let �N denote an
interpolating field with the quantum numbers of the had-

ron, j�i ¼ C�1=2 �Nj�i denote the normalized state ob-
tained by its action on the vacuum, and jni denote the
nth eigenstate of the hadron (projected to zero momentum
in the present discussion). Then, maximizing jh0j�ij2
minimizes the contributions of excited states to the mea-
surement of the hadronic matrix element of an operator O

hNðt3ÞOðt2ÞNðt1Þi ¼ C
X
n;m

h�jnihnjOjmi

� hmj�ie�Enðt3�t2Þ�Emðt2�t1Þ; (B1)

and hence enables one to reduce the source-sink separation
while controlling contamination from excited states as
discussed in Sec. VA.
The first objective is met by using smeared propagators

and treating the rms radius of the smearing as a variational
parameter. Although similar effects can be accomplished
with gauge fixed sources, we use gauge invariant sources of
the Wuppertal [38,39], or equivalently, Gaussian form by
smearing a delta function source over the three spatial
dimensions of the source time slice.
Wuppertal smearing of a point source at the origin of

time slice t is defined in the MIT USQCD software as

c ðx; tÞ ¼
�
1þ �

X3
i¼1

½Uðx; iÞ�xþî;y þUyðx� î; iÞ�x�î;y�
�
N

� �y;0; (B2)

TABLE XVI. Comparison of fit Ansätze to the isovector Dirac form factors Fu�d
1 for all three

ensembles with different Q2 cutoffs.

aml ¼ 0:004
Dipole Tripole

Q2 cutoff [GeV2] �2=dof M�2
D [GeV�2] �2=dof M�2

T [GeV�2]

0.3 0.2(6) 0.670(22) 0.2(6) 0.436(14)

0.4 0.3(6) 0.659(19) 0.8(9) 0.424(12)

0.5 0.5(6) 0.653(17) 1.0(9) 0.418(11)

0.6 0.4(5) 0.652(17) 1.0(8) 0.417(11)

0.7 0.5(5) 0.649(17) 1.2(8) 0.414(11)

0.9 0.9(7) 0.638(16) 1.9(1.0) 0.404(10)

1.1 1.4(8) 0.632(16) 3.0(1.1) 0.398(10)

aml ¼ 0:006
Dipole Tripole

Q2 cutoff [GeV2] �2=dof M�2
D [GeV�2] �2=dof M�2

T [GeV�2]

0.3 0.5(1.0) 0.625(13) 0.5(1.0) 0.407(8)

0.4 1.8(1.3) 0.610(12) 3.3(1.8) 0.393(7)

0.5 2.8(1.5) 0.602(11) 4.8(1.9) 0.386(7)

0.6 2.3(1.2) 0.602(11) 4.2(1.7) 0.386(7)

0.7 2.1(1.1) 0.601(11) 3.8(1.5) 0.385(7)

0.9 2.0(1.0) 0.597(11) 4.1(1.4) 0.379(7)

1.1 2.0(9) 0.595(11) 4.8(1.5) 0.375(7)

aml ¼ 0:008
Dipole Tripole

Q2 cutoff [GeV2] �2=dof M�2
D [GeV�2] �2=dof M�2

T [GeV�2]

0.3 0.09(42) 0.592(13) 0.09(42) 0.386(8)

0.4 0.3(5) 0.588(12) 1.0(1.0) 0.380(7)

0.5 0.9(9) 0.582(11) 1.9(1.2) 0.374(7)

0.6 1.0(8) 0.579(11) 2.2(1.2) 0.371(7)

0.7 0.9(7) 0.579(11) 2.0(1.1) 0.370(7)

0.9 1.1(7) 0.575(10) 2.7(1.2) 0.366(6)

1.1 1.0(7) 0.575(10) 2.7(1.1) 0.365(6)
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and Gaussian smearing is defined in CHROMA software as

c ðx; tÞ ¼
�
1� �2r2

4N

�
N
c ðx; tÞ

¼
�
1� 3�2

2N

�
N
�
1þ �2=4N

1� 3�2=2N

�X3
i¼1

½Uðx; iÞ�xþî;y þUyðx� î; iÞ�x�î;y�
�
N
�y;0:

(B3)

The CHROMA and MIT parameters are related by

� ¼ �2=4N

1� 3�2=2N
; (B4)

�2 ¼ 2N�

3�þ 1=2
: (B5)

Note that there is an instability for �< 0, since the sign
of the source generated in Eq. (B2) is then ð�1Þxþyþz, and
the resulting spatially oscillating source has an extremely
poor overlap with the physical ground state. In terms of the
Gaussian parameters, the instability arises for N < 3�2=2.

Because the smeared sources contain link variables U,
the statistical fluctuations in correlation functions using
these sources are larger than those arising from point
sources. To attain our second objective of minimizing the

fluctuations arising from the source itself, it is highly
advantageous to perform APE smearing of the gauge links
[40] used in generating the source on the time slice of the
source. In each iteration of APE smearing, each link is
replaced by a linear combination of itself and the sum of
staples within that time slice, and projected back onto
SUð3Þ as follows,

UðNþ1Þ
x;i ¼ ProjSUð3Þ

�
UN

x;i þ 	
X3
j�i

UN
x;jU

N
xþj;iU

Ny
xþi;j

�
; (B6)

and the APE smearing is repeated N times. An alternative
notation is

UðNþ1Þ
x;i ¼ ProjSUð3Þ

�
AUN

x;i þ
X3
j�i

UN
x;jU

N
xþj;iU

Ny
xþi;j

�
; (B7)

so that

A ¼ 1=	: (B8)

A convenient measure of the smearing of the source
c ðx; tÞ in Eq. (B2) is the rms radius

rrms ¼ hr2ið1=2Þ ¼
�R

d3xj ~xj2c 
ð ~x; tÞc ð ~x; tÞR
d3xc 
ð ~x; tÞc ð ~x; tÞ

�
1=2

; (B9)

and Fig. 2 of Ref. [71] shows how rrms depends on the
parameters N and �. As one expects from the fact that

TABLE XVII. Comparison of fit Ansätze to the isovector Pauli form factors Fu�d
2 for all three

ensembles with different Q2 cutoffs.

aml ¼ 0:004
Dipole Tripole

Q2 cutoff [GeV2] �2=dof F2ð0Þ M�2
D [GeV�2] �2=dof F2ð0Þ M�2

T [GeV�2]

0.5 1.2(1.3) 2.89(12) 0.820(70) 1.2(1.3) 2.85(11) 0.505(40)

0.6 1.1(1.1) 2.92(11) 0.846(63) 1.0(1.0) 2.87(10) 0.516(36)

0.7 0.9(8) 2.93(11) 0.847(60) 0.8(8) 2.87(10) 0.513(33)

0.9 0.9(8) 2.98(9) 0.888(46) 0.7(7) 2.89(8) 0.526(15)

1.1 0.8(7) 2.97(9) 0.881(41) 0.9(7) 2.85(8) 0.509(21)

aml ¼ 0:006
Dipole Tripole

Q2 cut [GeV2] �2=dof F2ð0Þ M�2
D [GeV�2] �2=dof F2ð0Þ M�2

T [GeV�2]

0.5 1.7(1.5) 3.14(7) 0.797(39) 1.6(1.5) 3.10(7) 0.492(22)

0.6 1.4(1.2) 3.16(7) 0.810(35) 1.2(1.1) 3.10(6) 0.495(20)

0.7 1.5(1.1) 3.18(7) 0.825(33) 1.1(1.0) 3.12(6) 0.501(19)

0.9 1.4(1.0) 3.22(6) 0.851(26) 1.0(8) 3.13(5) 0.505(14)

1.1 1.3(9) 3.24(5) 0.861(22) 1.0(7) 3.11(5) 0.499(12)

aml ¼ 0:008
Dipole Tripole

Q2 cut [GeV2] �2=dof F2ð0Þ M�2
D [GeV�2] �2=dof F2ð0Þ M�2

T [GeV�2]

0.5 2.2(1.7) 3.26(7) 0.813(34) 2.1(1.7) 3.21(6) 0.501(19)

0.6 1.6(1.3) 3.26(6) 0.813(33) 1.7(1.3) 3.20(6) 0.497(19)

0.7 2.5(1.4) 3.29(6) 0.841(31) 2.1(1.3) 3.22(6) 0.511(17)

0.9 2.1(1.2) 3.31(5) 0.851(22) 1.8(1.1) 3.22(5) 0.506(12)

1.1 2.0(1.1) 3.32(5) 0.862(20) 1.6(1.0) 3.21(5) 0.502(10)
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smearing is a random walk governed by the gauge fields,

the rms radius is approximately proportional to
ffiffiffiffi
N

p
. Since

the size of the source is nearly independent of � for �> 3,
at which point the constant term in Eq. (B2) becomes
negligible relative to the hopping term, in all our calcula-
tions, we use � ¼ 3, which provides the maximum rrms for
a given number of smearing steps N.

It is simplest to think about optimization criteria for
Wilson fermions, for which one can construct a transfer
matrix and correct propagators such that the two-point
correlation function has quarks and antiquarks properly
normal ordered at zero time separation [72]. In this case,
the source may be optimized straightforwardly by max-
imizing the overlap between the normalized state created

by the action of the source j�ðrÞi ¼ C�1=2 �NðrÞj�i, where
the source �NðrÞ has rms radius r, and the normalized ground
state of the nucleon j0i. Denoting the momentum projected
normalized eigenstates of the nucleon by jni and their
energies by En, the momentum projected two-point corre-
lation function may be expanded:

CðrÞðtÞ ¼
Z

d3xhNðrÞðx; tÞ �NðrÞð0; 0Þi

¼ C
X
n

jh�ðrÞjnij2e�Ent; (B10)

where C is an unknown normalization constant. Since one
can directly measure the correlation function at zero time
separation

AðrÞ ¼ CðrÞð0Þ ¼ C
X
n

jh�ðrÞjnij2; (B11)

and reliably fit the large t behavior of the correlation
function to extract the ground state contribution

BðrÞ ¼ Cjh�ðrÞj0ij2; (B12)

the probability that the source contains the nucleon ground
state is given by

P ðrÞ ¼ BðrÞ

AðrÞ ¼ jh�ðrÞj0ij2: (B13)

Using this criterion, Bratt [73] has recently shown that
optimizing the source size with 4-component nucleon
sources yields a maximum overlap of 35%, projecting
onto the upper two components (in the Bjorken-Drell con-
vention for which these components yield the nonrelativ-
istic limit) increases the overlap to 50%, and APE smearing
of the gauge links in the source further increases the over-
lap to 80%.

For domain wall fermions, which do not have a local
transfer matrix, we consider the following generalization
of Eqs. (B11)–(B13), which compares the ratio of the
correlation function and extrapolated ground state contri-
bution at time t instead of time 0:

AðrÞðtÞ ¼ CðrÞðtÞ; (B14)

BðrÞðtÞ ¼ Cjh�ðrÞj0ij2e�E0t; (B15)

P ðrÞðtÞ ¼ BðrÞðtÞ
AðrÞðtÞ : (B16)

This ratio, P ðrÞðtÞ, ranges from the overlap P ðrÞ at t ¼ 0 to
1 in the limit t ! 1. We expect that for small t, it is still a
good measure of the presence of excited state components
in the source and should have a maximum close to the

maximum in P ðrÞ. This expectation is borne out in the case
of Wilson fermions, and we note that this criterion gets
even better as the lattice spacing decreases. Since we are

only interested in the dependence of P ðrÞðtÞ on the rms
radius r and the absolute normalization for t � 0 has no
physical significance, it suffices to calculate the following
ratio for large t0:

CðrÞðt0Þ
CðrÞðtÞ ���!t0!1 Cjh�ðrÞj0ij2e�E0t0

CðrÞðtÞ ¼ P ðrÞðtÞeE0ðt0�tÞ: (B17)

For each value of t, it is convenient to normalize the curve
such that its maximum value is unity. Hence, defining the
rms radius at the maximum as r
, our final criterion for
optimizing the smearing is the ratio

RðrÞðtÞ ¼ CðrÞðt0Þ=CðrÞðtÞ
Cðr
Þðt0Þ=Cðr
ÞðtÞ : (B18)

Equation (B18) has the computational advantages that all
oscillating terms in the time dependence of the correlation
functions cancel out of the ratios and that jackknife or
bootstrap analysis enables accurate measurements on small
ensembles.

We now show the results of optimizing the ratio RðrÞðtÞ
on a coarse 243 � 64 domain wall lattice with a ¼
0:114 fm, m� ¼ 420 MeV, ms ¼ 0:04, and mu ¼ 0:01,
using 32 configurations and on a fine 323 � 64 domain
wall lattice with a ¼ 0:084 fm, m� ¼ 297 MeV, ms ¼
0:03, and mu ¼ 0:004 using 33 configurations. We in-
cluded both APE smearing, with 	 ¼ 0:3509, and
Wuppertal smearing with � ¼ 3. Because APE smearing
smooths the links, the rms radius obtained from a given
number of Wuppertal steps changes with the number of
APE steps, becoming slightly larger as the number of APE
smears increases. Figure 20 shows the rms radius calcu-
lated as a function of both the number of APE and
Wuppertal steps for both lattice spacings.
Since fluctuations in the normalization of the source

directly contribute to the overall fluctuations in correlation
functions, it is desirable to use APE smearing to smooth the
spatial links used in generating the source and thereby
diminish the fluctuations. A simple measure of these fluc-

tuations is the relative fluctuation �O
O ¼ hðO�hOiÞ2ið1=2Þ

hOi , where

O is the rms radius defined in Eq. (B9). Figure 21 shows
the dramatic effect that APE smearing has in reducing
these fluctuations for both lattice spacings. Since the in-
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FIG. 21 (color online). The source variance �O=O as a function of the rms radius and number of APE smears N for the coarse (a)
and fine (b) lattices. The curves projected in the horizontal plane show the numbers of smearing steps required for the specific values of
source variance shown in the key.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7

C
2(

N
,t)

/C
2(

N
1,

t)

sqrt(<r2>)

t=1
t=2
t=3
t=4

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8  9

C
2(

N
* ,t)

/C
2(

N
,t)

sqrt(<r2>)

t=1
t=2

(b)

FIG. 22 (color online). Panel (a) shows the ratio RðrÞðtÞ for t ¼ 1, 2, 3, and 4 as a function of r on the coarse lattice. The solid curves
are splines passing through the mean values to guide the eye. This graph provides a robust determination of the optimal rms radius
r ¼ 4:0 lattice units, corresponding to N ¼ 40Wuppertal smearing steps. Panel (b) shows the analogous ratio RðrÞðtÞ for t ¼ 1 and 2 as
a function of r on the fine lattice.
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FIG. 20 (color online). The rms radius of a gauge invariant smeared source as a function of the coefficient � and number of smearing
steps N defined in Eq. (B2) for the coarse (a) and fine (b) lattices. The curves projected in the horizontal plane show the numbers of
smearing steps required for the specific values of rms radii shown in the key.
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cremental benefit of successive smearing becomes small
beyond 25 smearing steps, we have chosen to use 25 steps
throughout. Note that for the largest number of Wuppertal
steps, this reduces the noise by a factor of more than 5 in
each case.

Figure 22 shows the primary result of the calculation for

both lattice spacings. For the coarse lattice, the ratio RðrÞðtÞ
is calculated at six values of the number of Wuppertal
steps, N ¼ 10, 20, 30, 50, 70, 100, corresponding to rms
radii, r ¼ 2:07, 2.89, 3.51, 4.46, 5.19, and 6.06 lattice units,
respectively. We chose r
 ¼ 4:46 fm and calculated boot-
strap error bars using 32 configurations. Instead of normal-
izing at a single value of t0 as in Eq. (B18), the errors in the
ratios in Fig. 22 were further reduced by normalizing to an
exponential fit to each correlation function in the region
t ¼ ½6–12�. These results are completely consistent with
those of a single t0, but display the shape of the maxima
more precisely. Note that for all four values t ¼ 1, 2, 3, and

4, the curves are accurately determined and the ratio RðrÞðtÞ
has a maximum at approximately the same point, r ¼ 4:0,
corresponding to N ¼ 40. Thus, we believe our optimiza-
tion criterion is robust and statistically accurate for domain
wall fermions.

For the fine lattices, the ratio RðrÞðtÞ is calculated at 5
values of the number of Wuppertal steps, N ¼ 30, 50, 70,

100, and 150, corresponding to rms radii r ¼ 3:76, 4.77,
5.56, 6.51, and 7.77 lattice units, respectively. We chose
r
 ¼ 5:56, normalized by exponential fits to each correla-
tion function in the region t ¼ ½6:12�, calculated jackknife
error bars, and only included t ¼ 1 and 2 to avoid making
the graph confusing due to the larger error bars. The
maximum occurs at approximately r ¼ 6:0 lattice units,
corresponding to 84 Wuppertal smearing steps. This result
appears reasonable, since assuming a constant rms radius
in physical units would imply that the rms radius on the
coarser lattice of 4.0 lattice units would scale to 4:0�
0:114=0:084 ¼ 5:4 lattice units on the present lattice, and
the pion mass on the finer lattice is somewhat lighter.
We summarize the final parameters for optimal sources

used in this work in Table XVIII, where the parameters are
defined in Eqs. (B3)–(B8).
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