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The chromoelectric and chromomagnetic fields, created by a static gluon-quark-antiquark system, are

computed in quenched SU(3) lattice QCD, in a 243 � 48 lattice at � ¼ 6:2 and a ¼ 0:07261ð85Þ fm. We

compute the hybrid Wilson loop with two spatial geometries, one with a U shape and another with an L

shape. The particular cases of the two-gluon glueball and quark-antiquark are also studied, and the

Casimir scaling is investigated in a microscopic perspective. This microscopic study of the color fields is

relevant to understanding the structure of hadrons, in particular, the hybrid excitation of mesons. This also

contributes to understanding confinement with flux tubes and to discriminating between the models of

fundamental versus adjoint confining strings, analogous to type-II and type-I superconductivity.
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I. INTRODUCTION

Here we present the first lattice QCD study of the
chromoelectric and chromomagnetic fields, created by a
static gluon-quark-antiquark system. Although the color
fields have been extensively studied for the quark-
antiquark [1–4] and for three quarks [4–11], for the hybrid
only the static potential has been studied so far [12,13].

The hybrid static potential is also relevant to understand
the nature of confinement and of Casimir scaling, [14],
since with the hybrid potential we can interpolate between
the gluon-gluon interaction and the quark-antiquark inter-
actions which are particular cases of the hybrid static
potential. Note that Casimir scaling is not universal; in
SU(2) in (2þ 1) dimensions, [15,16], there is a clear
evidence that it does not hold, and it is not clear whether
the discrepancy with Bali’s observation of Casimir scaling
is due to the change from ð3þ 1Þd to ð2þ 1Þd or to the
much larger time-extent of the Wilson loops considered.
The first study of the static gluon-gluon interaction was
performed by Michael [17,18], and Bali [14] extended this
study to other SU(3) representations, leading to the
Casimir scaling picture. Bicudo et al. [13] and Cardoso
et al. [12] studied the static gluon-quark-antiquark poten-
tial and showed that when the segments gluon-quark and
gluon-antiquark are perpendicular, the potential V is com-
patible with the confinement realized with a pair of funda-
mental strings, one linking the gluon to the quark and the
other linking the same gluon to the antiquark. For parallel
and superposed segments, however, the total string tension
becomes larger and is in agreement with the Casimir scal-
ing measured by Bali [14]. Bicudo, Cardoso, and Oliveira
established an analogy between the static potential and a
type-II superconductor for the confinement in QCD, illus-
trated in Fig. 1, with repulsion of the fundamental strings

and with the string tension of the first topological excita-
tion of the string (the adjoint string) larger than the double
of the fundamental string tension. In a type-I superconduc-
tor the fundamental strings would be attracted and would
fuse into an adjoint string. With the computation of the flux
tubes we can further understand microscopically the
Casimir scaling. For instance Semay [19] presented a
model for Casimir scaling, based on a shape of flux tubes
independent of the color SU(3) representation, and we can
test it.
In this paper, we investigate the chromoelectric and

chromomagnetic fields, and the resulting Lagrangian and
energy density distributions around a static gluon-quark-
antiquark system in quenched SU(3) lattice QCD. In
Sec. II, we introduce the lattice QCD formulation. We
briefly review the Wilson loop for this system, which was
used in Bicudo et al. [13] and Cardoso et al. [12], and show
how we compute the color fields and the Lagrangian and
energy density distribution. In Sec. III, the numerical re-
sults are shown, including several density plots of the color
flux tubes, and longitudinal plots of the color field profiles.
Finally, we present the conclusion in Sec. IV.
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FIG. 1. String attraction and fusion, and string repulsion, re-
spectively, in type I and II superconductors.
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II. THE WILSON LOOPS AND COLOR FIELDS

In principle, any Wilson loop with a geometry similar to
that represented in Fig. 2(a), describing correctly the quan-
tum numbers of the hybrid, is appropriate, although the
signal to noise ratio may depend on the choice of the
Wilson loop. A correct Wilson loop must include an
SU(3) octet (the gluon), an SU(3) triplet (the quark), and
an SU(3) antitriplet (the antiquark), as well as the connec-
tion between the three links of the gluon, the quark, and the
antiquark.

We construct the gluon-quark-antiquark Wilson loop
from the two-color-octet meson operator,

O ðxÞ ¼ 1

4
½ �qðxÞ�a�1qðxÞ�½ �qðxÞ�a�2qðxÞ� (1)

where �a are the Gellmann SU(3) color matrices, and
where �i are spinor matrices. Using the lattice links to
comply with gauge invariance, the second operator in
Eq. (1) can be made nonlocal to separate the quark and
the antiquark from the gluon,

OðxÞ ¼ 1

4
½ �qðxÞ�a�1qðxÞ�½ �qðx� x1�̂1ÞU�1

ðx� x1�̂1Þ
� � �U�1

ðx� �̂1Þ�a�2U�2
ðxÞ

� � �U�2
ðxþ ðx2 � 1Þ�̂2Þqðxþ x2�̂2Þ�: (2)

The contraction of the quark field operators, assuming that
all quarks are of different nature, gives rise to the gluon
operator,

Wgq �q ¼ 1

16
Tr½Uy

4 ðt� 1; xÞ � � �Uy
4 ð0; xÞ�bU4ð0; xÞ � � �U4ðt� 1; xÞ�a�Tr½U�2

ðt; xÞ � � �U�2
ðt; xþ ðx2 � 1Þ�̂2Þ

�Uy
4 ðt� 1; xþ x2�̂2Þ � � �Uy

4 ð0; xþ x2�̂2ÞUy
�2
ð0; xþ ðx2 � 1Þ�̂2Þ � � �Uy

�2
ð0; xÞ�bUy

�1
ð0; x� �̂1Þ

� � �Uy
�1
ð0; x� x1�̂1ÞU4ð0; x� x1�̂1Þ � � �U4ðt� 1; x� x1�̂1ÞU�1

ðt; x� x1�̂1Þ � � �U�1
ðt; x� �̂1Þ�a�: (3)

Using the Fiertz relation,

X

a

�
�a

2

�

ij

�
�a

2

�

kl
¼ 1

2
�il�jk � 1

6
�ij�kl (4)

we can prove that

Wgq �q ¼ W1W2 � 1

3
W3 (5)

where W1, W2, and W3 are the simple Wilson loops shown
in Fig. 2(b). Importantly for the study of the Casimir
scaling, when r1 ¼ 0, Fig. 3, W1 ¼ 3 and W2 ¼ W3, the
operator reduces to the mesonic Wilson loop and when
� ¼ � and r1 ¼ r2 ¼ r, W2 ¼ Wy

1 and W3 ¼ 3, Wgq �q

reduces to Wgq �qðr; r; tÞ ¼ jWðr; tÞj2 � 1, that is the
Wilson loop in the adjoint representation used to compute
the potential between two static gluons.

In order to improve the signal to noise ratio of the
Wilson loop, the links are replaced by ‘‘fat links,’’

U�ðsÞ ! PSUð3Þ
1

1þ 6w

�
�
U�ðsÞ þ w

X

���

U�ðsÞU�ðsþ �ÞUy
� ðsþ�Þ

�
:

(6)

We use w ¼ 0:2 and iterate this procedure 25 times in the
spatial direction.
We obtain the chromoelectric and chromomagnetic

fields on the lattice, by using,

hE2
i i ¼ hP0ii � hWP0ii

hWi (7)

and,

hB2
i i ¼

hWPjki
hWi � hPjki (8)

FIG. 2. (a) Wilson loop for the gq �q and equivalent position of
the static antiquark, gluon, and quark. (b) Simple Wilson loops
that make the gq �q Wilson loop.
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where the jk indices of the plaquette complement the index
i of the magnetic field, and where the plaquette is given by

P��ðsÞ ¼ 1� 1

3
ReTr½U�ðsÞU�ðsþ�ÞUy

�ðsþ �ÞUy
� ðsÞ�:

(9)

The energy (H ) and Lagrangian (L) densities are given
by

H ¼ 1

2
ðhE2i þ hB2iÞ; (10)

L ¼ 1

2
ðhE2i � hB2iÞ: (11)

Notice that we only apply the smearing technique to the
Wilson loop.

III. RESULTS

Here we present the results of our simulations with 266
SU(3) configurations in a 243 � 48, � ¼ 6:2 lattice, gen-
erated with version 6 of the MILC code [20], via a combi-
nation of Cabbibo-Mariani and overrelaxed updates. The

results are presented in lattice spacing units of a, with a ¼
0:07261ð85Þ fm or a�1 ¼ 2718� 32 MeV.
In this work two geometries for the hybrid system,

gluon-quark-antiquark, are investigated: a U shape and a
L shape geometry, both defined in Fig. 3.
In the U shape geometry, we only change the distance

between quark and antiquark, d ¼ 0, 2, 4, 6, and we fix the
distance between gluon and quark-antiquark at l ¼ 8.
When the quark and the antiquark are superposed, d ¼ 0,
the system corresponds to a two-gluon glueball, Fig. 4.
In the L shape geometry, we fix the distance between the

gluon and quark at r2 ¼ 8, and the distance between the
gluon and antiquark is changed, r1 ¼ 0, 2, 4, 6, 8. When
the gluon and the antiquark are superposed, r1 ¼ 0, the
system is equivalent to a meson. The results for the meson
system are presented in Fig. 5.

A. Flux tube and Casimir scaling

First we discuss the results for the two degenerate cases,
in which the system collapses into a two-body system—the
meson (L geometry with r1 ¼ 0) and the two-gluon glue-
ball (U geometry with d ¼ 0). In the meson case we
confirm the results obtained in previous works (for ex-
ample [2]). Not only in the meson case, but also in general,
we have hE2

ki � hE2
?i � jhB2

?ij � jhB2
kij. We also observe

that hE2i> 0 and hB2i< 0, for all the studied geometries.
Since the absolute value of the chromoelectric field domi-
nates over the absolute value of the chromomagnetic field,
there is a cancellation in energy density, Eq. (10), and an
enhancement in Lagrangian density, Eq. (11).
We measure the quotient between the energy densities of

the meson system and of the glueball system, in the medi-
atrix plane between the two particles (x ¼ 0). The results
are shown in Fig. 6. As can be seen, these results are
consistent with Casimir scaling, with a factor of 9=4 be-
tween the energy density in the glueball and in the meson.

FIG. 4 (color online). Results for the static two-gluon glueball. To make the comparison between the values of different fields easier
we have chosen a common scale for values between 0 and 2:5e� 3, but in each figure the deepest red represents the maximum value of
the represented field. Because of this choice the flux tube, responsible for the string tension, that should appear in the energy density
plot (c) is less visible. The axes and results are in lattice spacing units.

FIG. 3. Gluon-quark-antiquark geometries, U and L shapes.
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This corresponds to the formation of an adjoint string
between the two gluons. The results are compatible with
an identical shape of the two flux tubes, but with a different
density, and in this sense this agrees with the simple picture
for the Casimir scaling of Semay, [19].

The results for the fields in the case of the two-gluon
glueball are given in Fig. 4 and the meson in Fig. 5.

B. L Geometry

The squared field components in the L geometry with
r1 ¼ r2 ¼ 8 are shown in Fig. 7. In this figure, we can see
that hE2

xi is greater in the x axis and hE2
yi is greater in the

y-axis; on the other hand the chromomagnetic field com-

ponents exhibit the reciprocal behavior—jhB2
xij is greater

in the y axis and jhB2
yij is greater in the x axis. This result is

consistent with having two essentially independent funda-
mental strings, since this was the result obtained for one
fundamental string—the longitudinal component is the
dominant one in the chromoelectric field and the transver-
sal component is dominant in the chromomagnetic field.
In Fig. 9(e)–9(h), we show the distribution of the

Lagrangian density, in the L geometry, with r2 ¼ 8, fixed,
and for different r1, where r1 is the distance between
gluon-antiquark and r2 the distance between gluon-quark.
The variation of the Lagrangian density with r1 can also be
seen in Fig. 8(c) and in Fig. 8(d), in the x and y axis
(Fig. 3), which is the antiquark and the quark. Notice that
the result in the y axis is essentially the same, when we
move the antiquark in the x axis, except for the case of
r1 ¼ 0, where the system collapses in a meson. But, even
in this case, the flux tube near the quark is almost the same.
In the y axis, we can see the presence of a flux tube

between the gluon and the quark. As can be seen for r2 ¼
8, the Lagrangian density tends to a constant in the center
of the tube and remains practically unchanged when the
antiquark and the gluon are far apart. This last result is
consistent with the existence of a confining potential
Vgq ! �r between the gluon and the (anti)quark.

Our results indicate that in this geometry the system is
well described by two independent fundamental strings as
was stated in [12,13].

C. U Geometry

We show the results for the chromoelectric and chromo-
magnetic fields in the U geometry at distances l ¼ 8 and
d ¼ 6 in Fig. 10. The results are consistent with the ones
for the L shape geometry. The longitudinal component of
the chromoelectric field is the dominant component. This is
the y component of the chromoelectric, and this is expected

FIG. 5 (color online). Results for the static quark-antiquark system. To make the comparison between the values of different fields
easier we have chosen a common scale for values between 0 and 2:5e� 3, but in each figure the deepest red represents the maximum
value of the represented field. Because of this choice the flux tube, responsible for the string tension, that should appear in the energy
density plot (c) is less visible. The axes and results are in lattice spacing units.
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FIG. 6 (color online). Results for the glueball (d ¼ 0 and l ¼
8, U geometry) energy density over the meson (r1 ¼ 0 and r2 ¼
8, L geometry) energy density for x ¼ 0. The results are con-
sistent with Casimir scaling, were the Casimir invariant �i � �j,

produces a factor of 9=4 (broken line).
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FIG. 7 (color online). Chromoelectric and chromomagnetic components and energy and Lagrangian densities in the L shape
geometry for r1 ¼ 8 and r2 ¼ 8. We use different color scales to have a better view of the flux tube and the top value of the scale is the
maximum value of the field. The axes and results are in lattice spacing units.
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FIG. 8 (color online). Results for the Lagrangian density. The lines were drawn for convenience and therefore do not represent
results from any kind of interpolation. The axes and results are in lattice spacing units.
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FIG. 9 (color online). Results for the Lagrangian density. Figures (a)–(d) are for the U shape geometry and Figs. (e)–(h) are for the L
shape geometry. The top value of the color scale is the maximum value of the field. The axes and results are in lattice spacing units.

FIG. 10 (color online). Chromoelectric and chromomagnetic components and energy and Lagrangian densities in the U shape
geometry for d ¼ 6 and l ¼ 8. We use different color scales to have a better view of the flux tube, and the top value of the scale is the
maximum value of the field. The axes and results are in lattice spacing units.
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since the flux tube is essentially aligned in this direction. In
the same way hB2

xi and hB2
zi are seen to be dominant with

relation to hB2
yi, which is consistent with the fact that the

transversal component of the magnetic is the larger one.
In Fig. 9(a)–9(d) we can see the evolution of the

Lagrangian density, as a function of the the quark-
antiquark distance, d, for fixed l ¼ 8. For d ¼ 0, we are
in the glueball case and we thus have an adjoint string
linking the two gluons. For d ¼ 2we can see the stretching
of the tube in the x direction. For d ¼ 4, corresponding to
y ’ 5, we already see the string splitting in two fundamen-
tal strings. In d ¼ 6, the separation of the two fundamental
strings is clear, they only join at the gluon position. The
transition point between the two regimes—one adjoint
string and two clearly split fundamental ones—occurs
between d ¼ 2 and d ¼ 4, for l ¼ 8. This transition point
occurs for an angle between the two fundamental strings of
0:37� 0:12 rad, and this is relevant for the quark and
gluon constituent models. In Fig. 8(a), we can see the
stretching and partial splitting of the flux tube in the
equatorial plane (y ¼ 4) between the quark and the anti-
quark, and in Fig. 8(b) we see the results for the y axis,
where the gluon is located (at y ¼ 0), as well and the
centroid of the q �q subsystem (at y ¼ 8).

IV. CONCLUSIONS

We present the first study of the chromoelectric and
chromomagnetic fields produced by a static quark-gluon-
antiquark system in a pure gauge SU(3) QCD lattice.

We report the cases of a simple meson and of a two-
gluon glueball, which correspond to two different degen-
erate cases of a hybrid meson system. We verify the
qualitative results for the squared components of the color
fields that were obtained by other authors for the quark-
antiquark system. Namely, we find that the chromoelectric
field is dominant over the chromomagnetic and that the
longitudinal components of the chromoelectric field, as
well as the transversal component of the chromomagnetic,

are dominant over the other components of the respective
fields. We find a similar behavior in the two-gluon system.
We also verify that the results for the two degenerate
systems are related, with the energy density in the glueball
flux tube being compatible with 9=4 times the energy
density in the meson flux tube. This is in agreement with
the Casimir scaling factor between the glueball and the
meson, obtained by Bali [14].
We also study two geometries for the hybrid meson

system. We study an L shaped geometry, with the gluon
on the origin, the quark on the y axis, and the antiquark on
the x axis. In this case we verify the dominance of the
longitudinal component in the chromoelectric field and of
the transversal component in the chromomagnetic field in
the two flux tubes coming from the gluon. We also con-
cluded that these two flux tubes are, mainly, two indepen-
dent fundamental strings, which agrees with the results for
the potential obtained by [12,13]. We also study aU shaped
geometry, which allows us to see the transition between the
two regimes of confinement, with one adjoint and with two
split fundamental strings.
Whether the Casimir scaling is due to a repulsive super-

position of the two fundamental strings or to the actual
existence of an adjoint string, we cannot yet distinguish in
the present study. We conjecture that both of these two
pictures are essentially equivalent in the gluon-gluon sys-
tem. But it appears that for angles between the gluon-quark
and gluon-antiquark segments larger than 0.4 rad, the two
fundamental strings are split. In the future, it will be
interesting to complement the present study of the flux
tubes, with the computation of the static potential for the
U geometry.
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