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Using the nonperturbative renormalization technique, we calculate the renormalization factors for

quark bilinear operators made of overlap fermions on the lattice. The background gauge field is generated

by the JLQCD and TWQCD Collaborations, including dynamical effects of two or 2þ 1 flavors of light

quarks on a 163 � 32 or 163 � 48 lattice at lattice spacing around 0.1 fm. By reducing the quark mass

close to the chiral limit, where the finite volume system enters the so-called � regime, the unwanted effect

of spontaneous chiral symmetry breaking on the renormalization factors is suppressed. On the lattices in

the conventional p regime, this effect is precisely subtracted by separately calculating the contributions

from the chiral condensate.
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I. INTRODUCTION

For lattice calculations of operator matrix elements in-
cluding those of the electroweak effective Hamiltonian, the
operator matching is a necessary step to absorb the differ-
ence of the renormalization scheme from the conventional

continuum one, such as the MS scheme. This is necessary
for most composite operators except for those protected by
some symmetry, e.g. the conserved vector current, since
the operators are defined with a given lattice action and are,
in general, divergent in the continuum limit. This operator
matching can be done perturbatively and has been done
often at the one-loop level, which induces a potential
source of large systematic error. Given that the strong
coupling constant �s is in the range 0.2–0.3, a typical
size of the two-loop correction is 4%–10%. A nonpertur-
bative technique to calculate this operator matching is
therefore highly desirable to achieve a precise calculation
of physical quantities.

The nonperturbative renormalization (NPR) method
uses the RI/MOM scheme [1] in an intermediate step.
This scheme is defined for the amputated Green’s function
in the Landau gauge with an off-shell momentum, which is
spacelike. Since the matching between the RI/MOM and

the MS schemes is known to two-loop order in many
important operators, the method provides a better matching
scheme as a whole, though not all the steps are nonpertur-
bative. Moreover, since the perturbative series is, in gen-
eral, more convergent in the continuum schemes, the

remaining uncertainty can be made small, down to a level
of a few percent.
Since the method still requires perturbative expansion,

the renormalization condition has to be applied in the
region where nonperturbative effects are sufficiently small.
On the other hand, one has to avoid large discretization
effects that may arise when the renormalization scale is too
high. Therefore, the renormalization scale � must satisfy
the condition �QCD � � � �=a, where �QCD stands for

the QCD scale and a is the lattice spacing. This region is
often called the NPR window.
The nonperturbative effect may be enhanced when spon-

taneous chiral symmetry breaking (SCSB) occurs and (al-
most) massless pions arise [1]. The reason is that the pion-
pole contribution in the pseudoscalar channel diverges
towards the massless limit and makes it difficult to find
the NPR window. With the Wilson-type fermions, the
problem is severer because the error starts at OðaÞ, and
thus the possible window is narrower in the high momen-
tum regime. Even with the on-shellOðaÞ-improved Wilson
fermion, the problem remains since the off-shell amplitude
is considered in NPR. With the chirally symmetric lattice
actions, such as the domain-wall and overlap fermion
formulations, the problem becomes more tractable because
the OðaÞ error is absent even in off-shell amplitudes.
So far, there have been a number of works that calculate

the nonperturbative renormalization factors with the RI/
MOM scheme for the domain-wall [2,3] and for the
quenched overlap fermions [4–6].
In this work, we study the nonperturbative renormaliza-

tion factors with the RI/MOM scheme for the quark
bilinear operators in unquenched QCD with overlap fermi-
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ons. Our motivation is twofold. The first is to provide the
renormalization factors corresponding to the two-flavor [7]
and 2þ 1-flavor [8,9] gauge configurations generated in
the large-scale dynamical overlap project by the JLQCD
and TWQCD Collaborations, including the quark mass
renormalization factor Zm that has already been used in a
series of publications [10–16]. The second is to study the
pion-pole contribution appearing in the NPR calculation in
detail and demonstrate a method to control the pion-pole
effect in a reliable manner.

Since the low-lying eigenmodes of the Dirac operator
are expected to dominate the pion-pole contribution, it is
possible to trace their effect as a function of quark mass by
explicitly constructing the relevant piece from the low-
mode eigenvalues. To be explicit, the pion-pole contribu-
tion of the form h �qqi=p2 in the operator product expansion
contains the chiral condensate h �qqi, which is finite in the
vacuum of spontaneously broken chiral symmetry. On the
lattice of finite volume V, it quickly vanishes as the quark
mass becomes smaller than �1=�V, where � is the chiral
condensate in the infinite volume limit. We identify this
term by explicitly comparing the lattice data of the (in-
verse) quark propagator with the condensate h �qqi con-
structed from the eigenvalues. Thus, this unnecessary
term for NPR can be identified and subtracted. This means
that the pion-pole contribution is no longer a problem for
the NPR calculation. Clearly, this is possible only when the
chiral symmetry is preserved on the lattice. Otherwise, the
chiral condensate has a bad cubic divergence even in the
massless limit; hence the identification of its physical
contribution is not feasible.

This paper is organized as follows. We describe the
profile of the gauge configurations used in this work in
Sec. II. In Sec. III, we discuss the NPR method and its
relation to spontaneous chiral symmetry breaking and
present our analysis. Results of the calculation are given
in Sec. III D, where we summarize all results of the renor-
malization factor available from simple bilinear operators,
namely, those for the quark mass, the scalar current, the
tensor operator, and the quark field. (The vector and axial-
vector currents are treated independently.) Our conclusion
is given in Sec. IV.

II. GAUGE CONFIGURATIONS

In order to make this paper self-contained, we briefly
describe the generation of the gauge configurations used in
this work. We refer to [7–9] for more complete description.

We use the overlap fermion formulation [17,18] on the
lattice for both sea and valence quarks. The massless
overlap-Dirac operator is defined as

Dovð0Þ ¼ m0ð1þ �5 � sgn½HWð�m0Þ�Þ; (2.1)

where HWð�m0Þ � �5DWð�m0Þ is the Hermitian Wilson-
Dirac operator with a large negative mass �m0. The mas-
sive operator with a bare massm is constructed from this as

DovðmÞ ¼
�
1� m

2m0

�
Dovð0Þ þm: (2.2)

We use the hybrid Monte Carlo (HMC) algorithm [19] to
incorporate the fermionic determinant det½DovðmseaÞ� (for
each flavor) in the path integral.
Since the overlap-Dirac operator contains the sign func-

tion, the corresponding determinant changes discontinu-
ously on the border of the global topological charge of the
gauge field configuration, which makes the simulation
time-consuming. In order to avoid touching the border,
where the sign of the lowest eigenvalue of HW changes,
we introduce two extra flavors of heavy Wilson fermions
such that they produce a factor

det

�
H2

Wð�m0Þ
H2

Wð�m0Þ þ�2

�
(2.3)

in the Boltzmann weight. Associated (twisted-mass) bo-
sons are also introduced with a twisted-mass �. They play
a role to minimize the change of the effective gauge
coupling induced by those extra fermions. Throughout
this paper, we choose m0 ¼ 1:60 and � ¼ 0:20 in lattice
units. In [20], the Iwasaki gauge action [21] was found to
be a good choice for the efficient minimization. As a result,
the topological charge Q of the generated gauge configu-
rations is fixed to its initial value [20]. In this work, we
choose Q ¼ 0. Although the correct sampling of the �
vacuum of QCD is spoiled due to the fixed topology, the
difference is suppressed for large four-volume V, and it is
indeed possible to reconstruct the �-vacuum physics from
those evaluated by the path integral in a fixed topology
[22]. In any case, such finite volume effects are irrelevant
for the calculation of the renormalization constants con-
sidered in this work, as we mainly use the high momentum
regime.
In Table I, we list the parameter set for each gauge

ensemble on which we calculate the renormalization fac-
tors in this work. We performed two-flavor (Nf ¼ 2) and

2þ 1-flavor (Nf ¼ 2þ 1) runs. One of the simulations,

‘‘NF2�,’’ is in the so-called � regime of chiral perturbation
theory, which corresponds to a very small sea quark mass
so that the pion’s Compton wavelength is longer than the
lattice extent. The sea quark mass msea ¼ 0:002 roughly
corresponds to 3 MeV in physical units. Other runs atNf ¼
2, ‘‘NF2p,’’ are in the conventional p regime, where we
take six values of msea. The 2þ 1-flavor runs are per-
formed at two different values of the strange quark mass,
ms ¼ 0:080 (‘‘NF3p-a’’) and 0.100 (‘‘NF3p-b’’), so that
we can interpolate (or extrapolate) the data to the physical
strange quark mass afterwards. For each ms, we take five
values of sea quark mass corresponding to the up and down
quarks mud.
We employ the Iwasaki gauge action for the gauge part

of the lattice formulation. The parameter � in the action
controls the lattice spacing a; we determine the value of the
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lattice spacing from the Sommer scale r0 by taking r0 ¼
0:49 fm as an input after extrapolating the lattice data to
the chiral limit msea ¼ 0 or mud ¼ 0 at a fixed �. The
spatial lattice size is 163, and the temporal size is 32 and 48
for the two-flavor and the 2þ 1-flavor runs, respectively.

The valence quark propagator on each ensemble is com-
puted using the multishift solver at various valence quark
masses. For each ensemble in the p regime, we take the
same set of masses for the valence quarks as that for the sea
quarks listed in Table I. For NF2�, we take seven values of
the valence quark mass: mq ¼ 0:002, 0.025, 0.015, 0.035,

0.050, 0.070, and 0.100.
On each gauge configuration fixed to the Landau gauge,

we compute the quark propagator SovðxjxsrcÞ �
½DovðmqÞ�1�x;xsrc , where the location of the source xsrc is

typically fixed at the origin. To calculate the renormaliza-
tion factors, we work in the (four-dimensional) momentum
space,

SovðplattÞ ¼
X
x

e�iplatt�xSovðxjxsrcÞ: (2.4)

To avoid possible large discretization errors, we restrict the
lattice momentum platt such that none of its elements,
p
�
latt ¼ 2�n�=L�, exceeds unity. The number of lattice

momenta satisfying this condition are listed in Table I.
Some of them are degenerate in their magnitude ðplattÞ2;
the number of available data points in ðplattÞ2 are also listed
in parentheses. On a 163 � 32 lattice, for instance, we have
1375 different four-momenta from the condition �2 �
ni � 2 (i ¼ 1, 2, 3) and �5 � n4 � 5, and there are 30
different values of ðplattÞ2. When analyzing the lattice data,
we first average over different four-momenta giving an
identical ðplattÞ2. This way, we obtain the maximal number
of data points as a function of momentum, with a compa-

rable quality of signal to those obtained by the momentum
source method.

III. RI/MOM RENORMALIZATION ON THE
LATTICE

A. Renormalization condition and the
axial-Ward-Takahashi identity

We consider flavor nonsinglet bilinear operators of the
form �q�q0 with � ¼ ��, ���5, I, �5, and ����, which we

call V, A, S, P, and T, respectively. In the following, we
may omit the prime in q0 that indicates that the quark flavor
is different from q, but the flavor nonsinglet operator is
always assumed.
With the exact chiral symmetry of the overlap fermion,

these operators are multiplicatively renormalized as

ð �q�qÞRð�Þ ¼ Z�ð�aÞð �q�qÞ0; (3.1)

where superscripts R and 0 represent the renormalized and
bare operators, respectively. For divergent operators S, P,
and T, the renormalized operator may have a dependence
on the renormalization scale �. The multiplicative renor-
malization factor Z�ð�aÞ then depends on the scale�, too.
For the vector and axial-vector currents, the renormaliza-
tion scale dependence is absent because of the current
conservation. In the following notation, we may drop the
dependence on �, as it is implicitly assumed. The quark

field q is renormalized as qR ¼ Z1=2
q ð�aÞq0.

In the RI/MOM scheme [1], the renormalization condi-
tion is imposed on the amputated Green’s function
��ðpÞ ¼ 1

12 Tr½hSðpÞi�1G�ðpÞhSðpÞi�1�� to satisfy

�R
�ðpÞ ¼ Z�1

q ð�ÞZ��
0
�ðpÞ ¼ 1 (3.2)

at a spacelike off-shell momentum p2 ¼ �2 in the

TABLE I. Parameter set for each gauge ensemble NF2�, NF2p, NF3p-a, and NF3p-b. The number of trajectories are common for all
sea quark masses in each ensemble.

Ensemble NF2� NF2p NF3p-a NF3p-b

Nf 2 2 2þ 1
� 2.35 2.30 2.30

a�1 (GeV) 1.776(38) 1.667(17) 1.833(12)

Lattice size 163 � 32 163 � 32 163 � 48
msea (mud) 0.002 0.015, 0.025, 0.035,

0.050, 0.070, 0.100

0.015, 0.025, 0.035,

0.050, 0.080

0.015, 0.025, 0.035,

0.050, 0.100

ms 1 1 0.080 0.100

mq 0.002, 0.015, 0.025,

0.035, 0.050, 0.070, 0.100

0.015, 0.025, 0.035,

0.050, 0.070, 0.100

0.015, 0.025, 0.035,

0.050, 0.080

0.015, 0.025, 0.035,

0.050, 0.100

Number of trajectories 2000 10 000 2500 2500

Number of step traj. (NPR) 10 100 10

Number of step traj. (WTI) See text 20 5

Number of low modes 50� 2 50� 2 80� 2
Number of platt (p

2
latt) 1375 (30) 1375 (30) 1875 (53)

Relevant papers [10–12] [13,15,23] [16]
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chiral limit. Here, the Green’s function G�ðpÞ ¼
hqðpÞj �q�q0j �q0ðpÞi is amputated by the vacuum expectation
value of the quark propagator hSðpÞi and projected with an
appropriate gamma matrix �. (The ‘‘Tr’’ denotes the trace
over the color and spinor indices.) The RI/MOM scheme is
defined for the momentum configuration where the incom-
ing and outgoing quark momenta are the same p. Since the
definition involves the external quark field, which is not
gauge invariant, the renormalization condition depends on
the gauge. In the RI/MOM scheme, the Landau gauge is
chosen.

In the RI/MOM scheme, the wave function renormal-
ization Zq is fixed by imposing the condition

1

12i
Tr

�
@hSRðpÞi�1

@p6
�
¼ Z�1

q

1

12i
Tr

�
@hSðpÞi�1

@p6
�
¼ 1

(3.3)

at p2 ¼ �2 in the chiral limit. Numerically, though, this is
not straightforward since it involves a numerical derivative
in terms of p�. Instead, we obtain Zq using (3.2) for the

axial-vector vertex function �AðpÞ with an input of ZA

obtained through the axial-Ward-Takahashi identity

ZWTI
A �4hA4ðxÞOð0Þi ¼ 2mqhPðxÞOð0Þi; (3.4)

where A4 and P are the axial-vector current in the time
direction and the pseudoscalar density, respectively. �4

denotes the symmetrized difference. This relation must
be satisfied as long as the position x of the operator is
not too close to the origin, where some interpolating field
O is set. It should be noted that ZA obtained in this way is
taken to be ZV as well, due to the exact chiral symmetry on
the lattice. Once ZA is fixed from this relation, the wave
function renormalization is determined as ZR

q ð�Þ ¼
ZWTI
A �AðpÞ at p2 ¼ �2.
In practice, we use a pseudoscalar density with a

smeared operator for O and sum over spatial lattice
sites. Then, we fit a ratio 2mq

P
~xhPð ~x; tÞOð0Þi=

�t

P
~xhA4ð ~x; tÞOð0Þi with time slices t 	 t0, which is large

enough to obtain a constant ZWTI
A . For NF2�, setting mq ¼

msea ¼ 0:002 and t0 ¼ 4, we obtain

ZWTI
A ¼ 1:3511ð12Þ: (3.5)

In other ensembles, ZWTI
A is obtained for each sea quark

mass with the valence quark mass equal to the sea (up and
down) quark mass. Results with t0 ¼ 7 for all ensembles
are summarized in Table II, where the second to last row
lists the values extrapolated to the chiral limit. In the chiral
extrapolation, we assume linear plus quadratic dependence
on mq. Since the local axial-vector current we use on the

lattice is not a conserved current at finite lattice spacings,
the Ward-Takahashi identity (3.4) may be slightly violated.
To be explicit, a discretization effect of the form a2mq@�P

is possible as an additive correction to A�, which leads to

the linear dependence on mq. Including possible quadratic

quark mass dependence, we use

ZWTI
A ðmqÞ ¼ ZWTI

A ð0Þ þ C1mq þ C2m
2
q (3.6)

by setting the valence quark mass as mq ¼ msea for NF2p

and as mq ¼ mud for the combined data of NF3p-a and

NF3p-b. In Fig. 1, we plot the data and the fit cures for each
case. For the case ofNf ¼ 2þ 1, we assume independence

of ZA on ms, which appears only as a sea quark. This
assumption is indeed supported by the lattice data at two
different ms.
The vertex function ��ðpÞ is calculated on the lattice at

many different momentum values platt, as listed in Table I.
With the overlap fermion, we compute the vertex functions
as

��ðplattÞ ¼ 1

12
Tr½hŜovðplattÞi�1hŜovðplattÞ��5Ŝ

y
ovðplattÞ�5i

� h�5Ŝ
y
ovðplattÞ�5i�1��; (3.7)

where the quark propagator is effectively given as

Ŝ ovðpÞ ¼ 2m0

2m0 �mq

�
SovðpÞ � e�ip�xsrc

2m0

�
: (3.8)

This modification of the quark propagator from SovðpÞ, the

TABLE II. Summary of the results of ZWTI
A as a function of msea ormud for NF2p, NF3p-a, and

NF3p-b. The last two rows show the results of the extrapolation to the chiral limit as described in
the text.

NF2p NF3p-a NF3p-b

msea ZWTI
A mud ZWTI

A mud ZWTI
A

0.015 1.378 67(61) 0.015 1.389 34(49) 0.015 1.389 68(47)

0.025 1.377 03(45) 0.025 1.387 09(40) 0.025 1.387 00(36)

0.035 1.374 12(40) 0.035 1.384 31(32) 0.035 1.384 08(32)

0.050 1.370 32(33) 0.050 1.380 31(27) 0.050 1.380 19(31)

0.070 1.364 41(31) 0.080 1.371 96(21) 0.100 1.366 58(26)

0.100 1.354 36(29)

0.00 1.382 22(82) ‘‘Chiral limit’’: 1.393 60(48)

(	2=dof ¼ 0.43 0.16)
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FIG. 2 (color online). Vertex functions �latt
A ðplattÞ (circles) and �latt

V ðplattÞ (squares) at mq ¼ 0:002 for NF2� (upper-left panel), and
those in the limit of a massless valence quark (mq ¼ 0) with the sea quark mass fixed at mseaðmudÞ ¼ 0:015 for NF2p (upper-right

panel), NF3p-a (lower-left panel), and NF3p-b (lower-right panel).
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FIG. 1 (color online). Chiral extrapolation of ZWTI
A for NF2p (left panel) and NF3p-a and NF3p-b (right panel).
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inverse of the overlap operatorDovðmqÞ, is made in order to

incorporate the quark field rotation q ! ð1� Dovð0Þ
2m0

Þq, �q !
�q, which is necessary to remove the OðaÞ effects from off-

shell quantities. In (3.7), we note that �5Ŝ
y
ovðplattÞ�5 cannot

be simply replaced by ŜovðplattÞ since the left-hand side of
(2.4) still depends on the source point xsrc.

B. Vector and axial-vector vertex functions

Results for the vector and axial-vector vertex functions
are shown in Fig. 2 as a function of p2

latt � ð�aÞ2. In the

figure, panels from NF2p, NF3p-a, and NF3p-b show the
data from the lightest msea or mud. The chiral symmetry
implies that these two functions become identical in the
massless limit unless the symmetry is spontaneously bro-

ken. With exact chiral symmetry of the overlap fermion,
this should be the case even at finite lattice spacings. The
result in the � regime (NF2�, upper-left panel) clearly
shows this behavior, which is consistent with the absence
of spontaneous symmetry breaking on a finite volume
lattice.
The other three panels, that are obtained in the p regime,

show the splitting between the vector and the axial-vector
channels. The numerical data in these plots are naively
extrapolated to the chiral limit of the valence quarks by
assuming a linear dependence on mq, but the qualitative

picture remains unchanged for each valence quark mass.
This inconsistency among the vector and axial-vector

currents may be explained as an effect of spontaneously
broken chiral symmetry. Even on a finite volume lattice,
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FIG. 3 (color online). Quark field renormalization factor Zq as a function of p2
latt. For NF2p, NF3p-a, and NF3p-b, data at

mseaðmudÞ ¼ 0:015 are plotted as an example. Results in the RI/MOM scheme are shown by circles, while those in RGI are plotted by
squares.
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spontaneous symmetry breaking induces a nonzero value
of the chiral condensate �h �qqi � � as long as the quark
mass is much larger than a typical scale 1=�V. An operator
product expansion (OPE) analysis [3] suggests that there
are contributions of the form �2

QCD=p
2 and m�QCD=p

2 to

the difference �AðpÞ ��VðpÞ. These contributions are
induced when the momentum assignment for the three-
point function gives vanishing momentum transfer at the

vertex. Namely, when the incoming and outgoing momenta
are identical as in the RI/MOM-scheme momentum setup,
which is called the ‘‘exceptional momenta,’’ the higher
dimensional terms in OPE like ð �qqÞ2=p6 (with some
gamma matrices inserted in the numerator) may lead to a
much larger contribution of the form hð �qqÞ2i=ð�4

QCDp
2Þ,

which remains in the chiral limit in contrast to the lower
order contributions m2=p2 or mh �qqi=p4 [3]. This problem
can be avoided by choosing other momentum configura-
tions, such as the RI/sMOM scheme considered in [24].
We do not go into the details of this problem. But, since

the effect becomes statistically significant only below
p2
latt � 1:0–1:5 for the vector and axial-vector channels,

we simply use the region that is not largely affected by
this effect in the following analysis.
The quark field renormalization factor Zqð�Þ can be

obtained from �AðpÞ by multiplying the axial-current re-
normalization constant ZWTI

A as determined from the Ward-

Takahashi identity. The results are shown in Fig. 3 by filled
circles as a function of p2

latt. The different panels represent

the data from the ensembles NF2�, NF2p, NF3p-a, and
NF3p-b, respectively. By multiplying the matching factor

1=wRI=MOM
q ðqÞ at the four-loop level as defined in the

Appendix, we may define the renormalization group in-
variant (RGI) quantity, which is also scheme independent.
Our numerical results, plotted by squares in Fig. 3, clearly
show the expected scale independence. Since we expect
discretization effects proportional to a2p2

latt, we fit the

lattice data above ðplattÞ2 ¼ 1:0 by a linear function and
obtain the result for ZRGI

q from an intercept at p2
latt ¼ 0. The

lattice data below a2p2
latt ’ 1:0 are largely affected by the

effect of spontaneously broken chiral symmetry and devi-
ate from the linear behavior as expected.
The results for ZRGI

q are listed in Table III. Also listed are

the results converted to the MS scheme at � ¼ 2 GeV

using the four-loop level matching constant wMS
q ð�Þ de-

fined in the Appendix.

TABLE III. Numerical results for the quark wave function
renormalization factor Zq. The values in the RGI definition

ZRGI
q and those defined in the MS scheme at � ¼ 2 GeV,

ZMS
q ð2 GeVÞ are listed for each sea quark mass.

mseaðmudÞ ZRGI
q ZMS

q ð2 GeVÞ
NF2�, 0.002 1.4170(47) 1.4799(50)

NF2p 0.015 1.4540(54) 1.5186(56)

0.025 1.4503(51) 1.5147(53)

0.035 1.4479(53) 1.5122(56)

0.050 1.4486(49) 1.5129(51)

0.070 1.4442(51) 1.5083(54)

0.100 1.4500(59) 1.5143(62)

0.000 1.4526(30) 1.5170(31)

(	2=dof 0.33 0.33)

NF3p-a 0.015 1.4575(30) 1.5279(31)

0.025 1.4641(38) 1.5348(40)

0.035 1.4660(51) 1.5368(54)

0.050 1.4528(27) 1.5230(29)

0.080 1.4590(37) 1.5294(39)

NF3p-b 0.015 1.4565(40) 1.5269(42)

0.025 1.4585(32) 1.5290(34)

0.035 1.4555(28) 1.5258(29)

0.050 1.4467(30) 1.5166(31)

0.100 1.4578(55) 1.5283(57)

‘‘Chiral limit’’: 1.4592(29) 1.5296(31)

(	2=dof 2.20 2.20)
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FIG. 4 (color online). Chiral extrapolation of ZMS
q ð2 GeVÞ on the NF2p (left panel), NF3p-a (right panel, filled symbols), and NF3p-

b (right panel, open symbols) lattices.

NONPERTURBATIVE RENORMALIZATION OF BILINEAR . . . PHYSICAL REVIEW D 81, 034502 (2010)

034502-7



So far, the results are given at each sea quark mass after
taking the chiral limit of valence quarks. The chiral limit of
sea quarks can be taken by assuming that the sea quark

mass dependence has the form Zð1þ 2cð2Þm2
seaÞ (for NF2p)

or Zð1þ cð3Þð2m2
ud þm2

sÞÞ (for NF3p-a and NF3p-b). The

coefficients cð2Þ and cð3Þ are numerical constants depending
on the number of flavors. The linear term in msea (or in
mud) should not remain for the quantities irrelevant to
chiral symmetry breaking. Figure 4 shows the chiral ex-

trapolation of ZMS
q ð2 GeVÞ for both NF2p and NF3p-a/

NF3p-b. We do not observe any significant sea quark
mass dependence. The chiral extrapolation should there-
fore be very stable. The results are listed in Table III.

C. Scalar and pseudoscalar vertex functions

In Fig. 5, the momentum dependence of the scalar vertex
function �latt

S ðplattÞ (filled symbols) and the pseudoscalar

vertex function �latt
P ðplattÞ (open symbols) is shown for

each ensemble. For the data in the � regime (circles in
the upper-left panel), we observe an excellent agreement
between �SðpÞ (filled symbols) and �PðpÞ (open sym-
bols), which is expected from the exact chiral symmetry
of the overlap fermion. On the other hand, once the valence
quark mass mq is out of the � regime (the data at mq ¼
0:015, 0.025, and 0.035 are plotted by squares, diamonds,
and triangles, respectively), we find large disagreement
between �SðpÞ and �PðpÞ.
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FIG. 5 (color online). Vertex functions �latt
S ðplattÞ (filled symbols) and �latt

P ðplattÞ (open symbols). The data are shown for NF2�
(upper-left panel), NF2p (upper-right panel), NF3p-a (lower-left panel), and NF3p-b (lower-right panel) as functions of p2

latt. In each

panel, data atmq ¼ 0:015, 0.025, and 0.035 are shown by squares, diamonds, and triangles, respectively. ForNF2�, data atmq ¼ 0:002

are shown as well by circles. For NF2p, NF3p-a, and NF3p-b, data at the lightest sea quark mseaðmudÞ ¼ 0:015 are plotted as an
example.
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This observation again indicates the effect of spontane-
ous chiral symmetry breaking. From the OPE analysis one
expects that this effect is more significant than in �VðpÞ
and�AðpÞ, because the violation is enhanced by an inverse
quark mass as discussed below. One has to subtract this
effect in order to extract the renormalization constants
because its matching is based on the continuum perturba-
tion theory that does not contain nonperturbative effects.

We consider the quark mass dependence of �SðpÞ and
�PðpÞ using OPE along the lines of the analysis in [2].
Using the vector and axial-vector Ward-Takahashi identi-
ties, one may obtain relations between the vertex functions
and the inverse quark propagators as [25]

�SðpÞ ¼ 1

12

@TrhSðpÞi�1

@mq

; (3.9)

�PðpÞ ¼ 1

12

TrhSðpÞi�1

mq

: (3.10)

On the lattice we use the improved overlap quark propa-

gator ŜovðpÞ in place of SðpÞ. From OPE the inverse quark
propagator TrhSðpÞi�1 may be written as [26]

1

12
TrhSðpÞi�1 ¼ C � h �qqi

p2
þ ZqZmmq þ � � � (3.11)

in the large p2 regime. The effect of chiral symmetry
breaking is picked up through the chiral condensate h �qqi,
and C is a perturbatively calculable constant. At the one-
loop level, C ¼ 4��s=3. As in the case of the vector and
axial-vector vertex functions, the effects from higher di-
mensional operators, such as hð �qqÞ2i, may also exist. They
are usually suppressed by additional powers of 1=p2, but
due to the lack of momentum injection, the suppression
may not work in the case of the inverse quark propagator or
in the case of the vertex functions at zero momentum
transfer. We therefore leave C as an unknown constant
instead of using the perturbatively known value.

Then, using the relations (3.9) and (3.10), we may evalu-
ate the effect of the chiral condensate on the vertex func-
tions as

�SðpÞ ¼ C

p2

@h �qqi
@mq

þ ZqZm þ � � � ; (3.12)

�PðpÞ ¼ C

p2

h �qqi
mq

þ ZqZm þ � � � : (3.13)

From these expressions, one sees an enhancement in the
low p2 region due to the chiral condensate only for the
pseudoscalar channel, while the scalar channel should not
be affected too much because of a derivative with respect to
mq rather than a factor 1=mq.

The quark mass dependence of the condensate h �qqi is
not a trivial issue, since it has effects from both ultraviolet
and infrared origins. Since the operator �qq contains qua-

dratic divergence of the form mq=a
2 apart from the chiral

limit, the chiral condensate h �qqi directly calculated on the
lattice contains unphysical, large mq dependence. It has to

be subtracted before the analysis using (3.12) and (3.13),
because the formulas are obtained as an expansion around
the chiral limit.
In the infrared regime, the chiral condensate has a non-

trivial quark mass dependence, especially in a finite vol-
ume. First, because of the pion-loop effects, the chiral
condensate develops the chiral logarithm of the form
mq lnmq with known coefficients [27]. On a finite volume

lattice, the quark mass dependence becomes more compli-
cated. Namely, once the quark mass enters the � regime,
the mass dependence is no longer governed by the simple
chiral logarithm, but given by the formula recently devel-
oped in [28].
In our analysis, instead of using the formula in [28] we

calculate the condensate using its eigenvalue decomposi-
tion by making use of the low eigenmodes obtained on the
same ensembles. For each lattice configuration, we define

ð �qqÞðNÞ ¼ 1

L3
sLt

XN
i¼1

2mq

m2
q þ 
̂


i 
̂i

; (3.14)

where 
̂i is an eigenvalue of the massless overlap-Dirac
operator, which satisfies the eigenequation

Dovð0Þ
�
1�Dovð0Þ

2m0

��1
uiðxÞ ¼ 
̂iuiðxÞ (3.15)

with uiðxÞ an eigenvector. In (3.14) we use the fact that the
eigenvalues appear as complex conjugate pairs. The nor-
malization in (3.14) contains the lattice volume L3

sLt.
We truncate the sum in (3.14) at the Nth eigenvalue,

which may be considered as a ‘‘renormalization scheme’’
to define the divergent operator �qq. Here, N plays the role
of the ultraviolet cutoff. After taking an ensemble average,

we denote the chiral condensate thus defined as h �qqiðNÞ. In
the course of our project, we calculate and store the low-
lying eigenvalues and eigenvectors of the overlap-Dirac
operator. In addition to the calculation of the truncated
chiral condensate (3.14), these eigenmodes can be used
to precondition the solvers, to average over source points,
or to construct disconnected diagrams in the calculations of
physical observables [13,15,29]. The numbers of the stored
low modes for each configuration are listed in Table I.
From a dimensional analysis, the quark mass depen-

dence of h �qqiðNÞ may be parametrized as

h �qqiðNÞ ¼ h �qqiðsubtÞ þ cðNÞ
1

mq

a2
þ cðNÞ

2 m3
q: (3.16)

Because of the exact chiral symmetry of the overlap fer-
mion, there is no leading power divergence of the order
1=a3, and the term behaves as m2

q=a is also absent.

Although the cubic term cðNÞ
2 m3

q in (3.16) may accompany

a logarithm lnmq, we omit it for simplicity as the m3
q term
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itself is a minor correction. The subtracted condensate

h �qqiðsubtÞ is then free from power divergences, but could
still contain nondivergent mq dependence, such as the

chiral logarithm.
In Fig. 6, we compare a ‘‘full’’ calculation of h �qqi

(circles) corresponding to N ¼ 12L3
sLt and h �qqiðN¼50Þ.

The full calculation contains the contributions of all eigen-
modes which are evaluated by a stochastic method. (Our
setup is explained in [29].) The data on the NF2p lattice
with sea and valence quark masses set equal are shown as

an example. The results clearly show that the divergent
term mq=a

2 in (3.16) dominates the full condensate, and it

seems difficult to extract h �qqiðsubtÞ from these data alone.
The truncated condensate, on the other hand, does not have
that strong mq dependence, but both the mq=a

2 and m3
q

terms are still visible.

We now try to extract the nondivergent term h �qqiðsubtÞ
using (3.16). In Figs. 7–9 (left panels) we plot the truncated

condensate h �qqiðNÞ as a function of the valence quark mass
with three or four different values ofN. The data are shown
for individual lattice ensembles (NF2�, NF2p, NF3p-a, and
NF3p-b); except for NF2�, the results at the lightest sea
quark are shown as an example. The truncated condensate
can be constructed at arbitrary values of the valence quark
mass mq without extra computational costs. In order to see

the ultraviolet behavior, we plot in the mass region up to
mq ¼ 0:20, which is twice as big as the largest simulated

sea quark mass.
When we fit the lattice data to (3.16), we take five or six

representative points of mq in the range 0:10 � mq � 0:18

for NF2� and NF2p or 0:10 � mq � 0:20 for NF3p-a and

NF3p-b. The upper limit is chosen such that j
̂Nj>mq for

the given N. Otherwise, we do not expect the ultraviolet
behavior (3.16). In this rather heavy mass region, we do not
expect additional mass dependence from the infrared ori-

gin, and we simply set �h �qqiðsubtÞ ¼ � with � a constant.
The fit results are shown in Figs. 7–9 (left panels) by

dashed curves. In the right panels of these figures, the

subtracted condensates h �qqiðsubtÞ ¼ h �qqiðNÞ � cðNÞ
1 =a2mq�

cðNÞ
2 m3

q for the same choices of N as the left panels are
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FIG. 6 (color online). Comparison between h �qqi obtained from
all-to-all propagators (circles) and h �qqiðN¼50Þ (squares) as a
function of msea ¼ mq. The data obtained on NF2p are shown.
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FIG. 7 (color online). Subtraction of the power divergence in the chiral condensate. The left panel shows h �qqiðNÞ calculated on the
NF2� lattice as a function of the valence quark mass mq (solid curves). The number of low modes included are N ¼ 50, 40, and 30

from top to bottom. The solid curves are data constructed from calculated eigenvalues, and the points with error bars are representative
points used in our fit. The fit curves according to (3.16) are shown by dashed curves. The right panel represents the subtracted
condensate h �qqiðsubtÞ.
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FIG. 9 (color online). Same as Fig. 7 but for NF3p-a (top panels) and NF3p-b (bottom panels) at mud ¼ 0:015. The number of low
modes included are N ¼ 80, 70, 60, and 50 from top to bottom.
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FIG. 8 (color online). Same as Fig. 7 but for NF2p at msea ¼ 0:015.
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shown. We observe that the subtracted condensate depends
on N very mildly to a few percent order. It implies that our

subsequent analysis using h �qqiðNÞ with the maximal N may
contain a small systematic error due to the truncation of N.
We discuss this point and estimate the error in Sec. III D.

We use h �qqiðsubtÞ thus obtained at each sea quark mass as
a function of the valence quark mass in the analysis of the
scalar and pseudoscalar vertex functions, (3.12) and (3.13),
respectively. The valence quark mass dependence of
�latt

S ðplattÞ and �latt
P ðplattÞ at four representative values of

p2
latt is plotted in Fig. 10. We find that both the scalar (filled

symbols) and pseudoscalar (open symbols) vertices are
nicely described by the fit curves according to (3.12) and

(3.13) supplemented by the measured h �qqiðsubtÞ. In particu-
lar, as seen near the chiral limit of the NF2� data, the fit

curves precisely reproduce the agreement of�latt
S ðplattÞ and

�latt
P ðplattÞ in the � regime, which is not expected when h �qqi

is treated as a mass-independent constant.
In addition to (3.12) and (3.13), quadratic mass depen-

dence is possible for the vertex functions �latt
S ðplattÞ and

�latt
P ðplattÞ:

�SðplattÞ ¼ C

p2

@h �qqi
@mq

þ ZqZm þ BSm
2
q; (3.17)

�PðplattÞ ¼ C

p2

h �qqi
mq

þ ZqZm þ BPm
2
q: (3.18)

From a combined fit of the valence quark mass depen-
dence, we obtain the parameters C, ZqZm, BP, and BS at
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FIG. 10 (color online). Vertex functions �latt
S ðplattÞ (filled symbols) and �latt

P ðplattÞ (open symbols). The data are shown for the NF2�
(upper-left panel), NF2p (upper-right panel), NF3p-a (lower-left panel), and NF3p-b (lower-right panel) lattices as functions of mq. In

each panel, data at selected values of p2
latt and their fit curves are presented. For NF2p, NF3p-a, and NF3p-b, data with a fixed sea quark

mass mseaðmudÞ ¼ 0:015 are plotted as an example.
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each value of p2
latt. Numerical results are listed in Tables IV,

V, VI, and VII for each sea quark mass of the NF2�, NF2p,
NF3p-a, and NF3p-b lattices. We find that the values of C
depend on p2 only mildly, which is consistent with the
logarithmic dependence through �s.

D. Renormalization constants

From the fits described in the previous subsections, we
obtain the numerical results for Zq and ZqZm ¼ Zq=ZS for

each available value of platt. From a similar analysis, we
also obtain �T ¼ ZqZ

�1
T , which does not depend on the

quark mass significantly. We combine these results with

Zqð�Þ to obtain ZRI=MOM
m ð�Þ ¼ 1=ZRI=MOM

S ð�Þ and

ZRI=MOM
T ð�Þ as functions of the renormalization scale �.

The results are plotted in Figs. 11 and 12 for Zm and ZT ,
respectively. Filled black symbols representing the numeri-
cal data for the RI/MOM scheme clearly show a scale (or
p2
latt) dependence. This dependence can partly be absorbed

by the perturbatively calculated matching factor

wRI=MOM
O ð�Þ (O ¼ m or T) to the RGI values as in the

case of Zq. The perturbative results for wRI=MOM
O ð�Þ and

wMS
O ð�Þ are summarized in the Appendix.

The numerical data for ZRGI
O ¼ ZRI=MOM

O ðplattÞ=
wRI=MOM

O ðplattÞ are also shown in Figs. 11 and 12. We find

that the scale dependence is largely absorbed at least above
ðplattÞ2 ’ 1, as expected. Below ðplattÞ2 ’ 1 the perturbative

estimate of wRI=MOM
O ðpÞ becomes less precise even though

three- or four-loop calculations are used. The remaining

TABLE IV. Parameters in the simultaneous fit of �latt
S and �latt

P for NF2�. Results at
representative values of lattice momenta are listed.

p2
latt C ZqZm BS BP 	2=dof

1.426 5.92(40) 1.443(16) �3:10ð90Þ �1:35ð34Þ 0.025

1.889 5.01(32) 1.384(13) �2:08ð62Þ �0:85ð25Þ 0.017

2.352 4.32(28) 1.342(11) �1:60ð48Þ �0:76ð22Þ 0.016

2.814 3.78(26) 1.3060(92) �1:23ð36Þ �0:65ð15Þ 0.017

TABLE V. Same as Table IV but for NF2p.

msea p2
latt C ZqZm BS BP 	2=dof

0.015 1.426 8.48(83) 1.472(22) �2:0ð1:9Þ �0:80ð91Þ 0.004

1.889 7.16(68) 1.412(16) �1:5ð1:3Þ �0:57ð66Þ 0.005

2.352 6.19(59) 1.366(11) �1:01ð95Þ �0:35ð46Þ 0.005

2.814 5.31(51) 1.3271(89) �0:65ð75Þ �0:18ð38Þ 0.004

0.025 1.426 7.43(39) 1.497(20) �5:3ð1:1Þ �2:21ð49Þ 0.139

1.889 6.29(32) 1.429(15) �3:53ð76Þ �1:33ð35Þ 0.084

2.352 5.43(26) 1.380(13) �2:66ð56Þ �1:07ð25Þ 0.071

2.814 4.61(23) 1.341(10) �2:18ð43Þ �0:96ð23Þ 0.094

0.035 1.426 8.57(91) 1.446(24) �0:2ð2:0Þ �0:1ð1:1Þ 0.190

1.889 7.37(77) 1.392(17) 0.1(1.4) 0.11(71) 0.179

2.352 6.23(61) 1.353(13) �0:13ð92Þ �0:02ð48Þ 0.133

2.814 5.40(56) 1.317(11) 0.00(76) 0.09(43) 0.129

0.050 1.426 9.00(58) 1.469(21) �1:3ð1:5Þ �0:86ð63Þ 0.021

1.889 7.61(49) 1.419(15) �1:1ð1:1Þ �0:54ð48Þ 0.014

2.352 6.54(42) 1.377(12) �0:95ð81Þ �0:59ð36Þ 0.019

2.814 5.60(37) 1.340(10) �0:89ð63Þ �0:61ð31Þ 0.047

0.070 1.426 7.33(54) 1.476(19) �5:1ð1:4Þ �2:19ð63Þ 0.303

1.889 6.23(45) 1.412(14) �3:56ð99Þ �1:50ð45Þ 0.267

2.352 5.36(40) 1.363(11) �2:61ð78Þ �1:03ð38Þ 0.228

2.814 4.56(34) 1.3262(93) �2:23ð58Þ �0:94ð30Þ 0.249

0.100 1.426 8.24(61) 1.444(19) �1:9ð1:5Þ �1:09ð62Þ 0.008

1.889 6.99(53) 1.394(14) �1:4ð1:1Þ �0:81ð46Þ 0.014

2.352 6.04(47) 1.351(12) �0:92ð88Þ �0:51ð42Þ 0.003

2.814 5.18(42) 1.316(10) �0:72ð74Þ �0:32ð39Þ 0.004
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scale dependence above ðplattÞ2 ’ 1 is ascribed to the
discretization effect of Oða2Þ. We therefore extrapolate
the data for ZRGI

O above ðplattÞ2 ¼ 1 to the vanishing

ðplattÞ2 limit, assuming a linear dependence on ðplattÞ2,
which is shown by solid lines in Figs. 11 and 12.

The renormalization constants in the MS scheme are

obtained as ZMS
O ð�Þ ¼ wMS

O ð�Þ � ZRGI
O , again using the

matching factor to the RGI value wMS
O ð�Þ. Results of the

RGI value and those in the MS scheme at � ¼ 2 GeV are

TABLE VI. Same as Table IV but for NF3p-a.

mud p2
latt C ZqZm BS BP 	2=dof

0.015 1.405 9.00(98) 1.445(21) 2.3(2.8) 1.3(1.5) 0.345

1.851 7.58(82) 1.393(14) 1.3(1.9) 0.9(1.1) 0.248

2.279 6.65(72) 1.347(10) 1.2(1.5) 0.87(86) 0.276

2.690 5.86(62) 1.3228(83) 0.8(1.1) 0.55(58) 0.194

0.025 1.405 7.18(52) 1.477(14) �3:5ð1:4Þ �1:59ð60Þ 0.046

1.851 6.14(44) 1.418(11) �2:77ð94Þ �1:41ð42Þ 0.056

2.279 5.25(37) 1.3661(93) �2:07ð72Þ �1:03ð35Þ 0.046

2.690 4.64(32) 1.3379(78) �1:86ð53Þ �0:92ð26Þ 0.065

0.035 1.405 7.21(54) 1.495(19) �3:3ð2:0Þ �1:90ð81Þ 0.018

1.851 6.19(46) 1.427(15) �2:1ð1:5Þ �1:17ð58Þ 0.018

2.279 5.36(40) 1.376(12) �1:6ð1:1Þ �0:91ð48Þ 0.015

2.690 4.75(36) 1.3448(97) �1:20ð88Þ �0:58ð38Þ 0.010

0.050 1.405 7.88(56) 1.444(16) �0:2ð1:9Þ �0:34ð82Þ 0.098

1.851 6.80(52) 1.391(12) 0.0(1.5) �0:03ð72Þ 0.099

2.279 5.82(44) 1.3464(92) 0.0(1.1) 0.14(52) 0.086

2.690 5.27(43) 1.3216(80) 0.08(98) 0.10(48) 0.075

0.080 1.405 9.24(67) 1.449(19) �0:7ð2:6Þ �9:35ð78Þ 0.211

1.851 8.00(59) 1.395(13) �0:2ð1:9Þ �5:81ð59Þ 0.226

2.279 6.81(50) 1.352(10) �0:1ð1:4Þ �3:93ð47Þ 0.189

2.690 6.06(44) 1.3296(86) �0:2ð1:1Þ �3:01ð38Þ 0.138

TABLE VII. Same as Table IV but for NF3p-b.

mud p2
latt C ZqZm BS BP 	2=dof

0.015 1.405 8.08(59) 1.464(13) �2:30ð94Þ �0:99ð55Þ 0.020

1.851 6.92(49) 1.4009(98) �1:57ð63Þ �0:57ð35Þ 0.029

2.279 5.97(42) 1.3527(78) �1:04ð50Þ �0:34ð29Þ 0.010

2.690 5.30(37) 1.3239(68) �0:76ð41Þ �0:19ð22Þ 0.007

0.025 1.405 7.04(42) 1.4699(93) �2:61ð78Þ �1:21ð42Þ 0.012

1.851 6.01(36) 1.4101(75) �1:88ð56Þ �0:83ð31Þ 0.004

2.279 5.19(32) 1.3595(60) �1:34ð43Þ �0:54ð22Þ 0.003

2.690 4.65(29) 1.3321(52) �1:11ð34Þ �0:51ð18Þ 0.005

0.035 1.405 7.14(50) 1.475(11) �3:44ð78Þ �1:39ð43Þ 0.146

1.851 6.09(41) 1.4126(85) �2:47ð54Þ �1:07ð27Þ 0.087

2.279 5.26(35) 1.3624(68) �1:84ð41Þ �0:77ð22Þ 0.095

2.690 4.67(31) 1.3320(58) �1:31ð32Þ �0:48ð18Þ 0.059

0.050 1.405 8.93(56) 1.423(15) �0:1ð1:3Þ 0.03(55) 0.295

1.851 7.59(47) 1.3755(99) �0:09ð84Þ 0.03(37) 0.325

2.279 6.52(41) 1.3363(77) �0:16ð63Þ �0:01ð29Þ 0.200

2.690 5.85(36) 1.3115(65) �0:04ð50Þ 0.02(22) 0.240

0.100 1.405 8.68(56) 1.468(16) �1:7ð1:2Þ �0:61ð60Þ 0.123

1.851 7.34(48) 1.412(12) �1:21ð91Þ �0:49ð46Þ 0.113

2.279 6.26(40) 1.3650(87) �1:00ð66Þ �0:41ð29Þ 0.072

2.690 5.61(35) 1.3353(75) �0:59ð54Þ �0:24ð26Þ 0.104
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listed in Table VIII for O ¼ m and S with the four-loop
level matching, and in Table IX for O ¼ T with the three-
loop level matching.

For the NF2p ensembles the renormalization factors at
finite sea quark masses are extrapolated to the limit of
msea ¼ 0 as a linear function of 2m2

sea. For the 2þ
1-flavor data, we combine NF3p-a and NF3p-b to quote
the final result in the chiral limit of all three flavors,

assuming a sea quark mass dependence of the form Zð1þ
cð3Þð2m2

ud þm2
sÞÞ. The extrapolation is shown in Figs. 13

and 14 for the NF2p (left panels) and NF3p-a/b (right
panels) ensembles. Although we do not observe any sys-
tematic sea quark mass dependence, the data show larger
fluctuations than the statistical errors at each sea quark

mass for Zm. As a result, the 	2=dof for the combination
of NF3p-a and NF3p-b is uncomfortably large (� 2:6), as
listed in Table VIII. This may indicate that the statistical
error estimated at each sea quark mass is underestimated.
This is also suggested from the size of the statistical error at
a fixed sea quark mass, say mseaðormudÞ ¼ 0:015. Namely,
the size of the error is comparable between NF2p and
NF3p-a/b, though the statistics is more than a factor of 2
larger for NF2p. We use the jackknife method for the
statistical analysis with a bin size of 50 HMC trajectories.
Given the limited total length of trajectories (2500 for
NF3p-a/b), the statistical error does not change much
even if we increase the bin size to 100 trajectories. We
do not investigate this point further, because the statistical
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FIG. 11 (color online). Renormalization factors for the quark mass Zm in the RI/MOM scheme (circles) and their RGI values
(squares) as functions of p2

latt for NF2� (upper-left panel), NF2p (upper-right panel), NF3p-a (lower-left panel), and NF3p-b (lower-

right panel). Results of the linear extrapolation to the ðplattÞ2 ! 0 limit of ZRGI
m are shown as well. For NF2p, NF3p-a, and NF3p-b, data

with a fixed sea quark mass mseaðmudÞ ¼ 0:015 are plotted as an example.
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error does not give the dominant part of the error in the
final results.

For the central values of the final results, we quote the
result at msea ¼ 0:002 for NF2� and that in the msea ¼ 0

limit for NF2p or in the mud ¼ ms ¼ 0 limit for the com-
bination of NF3p-a and NF3p-b. In Table VIII, the extrapo-
lated values are listed in separate rows. The results for Zm

are

ZMS
m ð2 GeVÞ ¼

8><
>:
0:824ð14Þð24Þðþ14

�00Þ for Nf ¼ 2; � ¼ 2:35
0:804ð10Þð25Þðþ00

�21Þ for Nf ¼ 2; � ¼ 2:30
0:806ð12Þð24Þðþ00

�11Þ for Nf ¼ 2þ 1; � ¼ 2:30:
(3.19)

The first error is statistical, and includes the small statisti-
cal errors in the extraction of ZWTI

A and the lattice scale
a�1. The scale affects the determination of the matching
point � ¼ 2 GeV. On this error, we also take account of
the ambiguity in removing the scale dependence of ZRGI

m by
comparing the results with different ranges of the linear fit.

The systematic errors given in the second and third sets of
parentheses are described in the following.
An important source of the systematic error is the trun-

cation of the perturbative expansion in the matching be-

tween the RI/MOM andMS schemes. It is given by a ratio

of two matching factors to the RGI value, i.e. wRI=MOM
m ð�Þ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p
latt

2

1.4

1.5

1.6

1.7

1.8

1.9

RI/MOM
RGI

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p
latt

2

1.4

1.5

1.6

1.7

1.8

1.9

RI/MOM
RGI

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p
latt

2

1.4

1.5

1.6

1.7

1.8

1.9

RI/MOM
RGI

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p
latt

2

1.4

1.5

1.6

1.7

1.8

1.9

RI/MOM
RGI

FIG. 12 (color online). Same as Fig. 11 but for the tensor current renormalization factor ZT .
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and wMS
m ð�Þ in (A1). The perturbative expansion of these

factors is given in (A2) and known to four-loop order. By
setting � ¼ 2 GeV, we may evaluate how it depends on

the loop order. For Nf ¼ 2, the ratio wMS
m ð�Þ=wRI=MOM

m ð�Þ
becomes 1, 0.911, 0.863, and 0.835 when the perturbative
expansion includes Oð�0

sÞ, Oð�1
sÞ, Oð�2

sÞ, and Oð�3
sÞ

terms, respectively. From this observation, we find that
the perturbative expansion converges such that the addi-
tional correction is about 60% of the correction of the
previous order. The same level of the correction is ob-
served for the case of Nf ¼ 2þ 1. We therefore assume

that this convergence persists at the next unknown pertur-
bative coefficient. The second error in (4.4) is estimated by
taking the difference of the current best four-loop analysis
and the second best three-loop analysis and multiplying by
a factor 0.6.

The effect of SCSB may arise in two different ways.
First, in the extraction of Zq we used the axial-vector

vertex function �A, but if we used the vector vertex func-
tion �V instead, the result would be slightly shifted, as
given in the third set of parentheses. Note that this does not
matter for NF2�, because there is no significant difference
between �V and �A in the � regime. Second, one may
expect some uncertainty in the process of subtraction of the

power-divergent piece from h �qqiðNÞ. In Sec. III C, we dem-
onstrate that the power-divergent term can be removed

TABLE VIII. Renormalization factors of the scalar operator and quark mass in the RGI and in
theMS schemes at � ¼ 2 GeV. The results at each sea quark mass are listed, as well as those in
the chiral limit of sea quarks.

mseaðmudÞ ZRGI
S ZRGI

m ZMS
S ð2 GeVÞ ZMS

m ð2 GeVÞ
NF2� 0.002 0.709(11) 1.411(21) 1.205(18) 0.830(12)

NF2p 0.015 0.743(18) 1.345(33) 1.263(30) 0.791(19)

0.025 0.719(12) 1.390(24) 1.223(21) 0.818(14)

0.035 0.764(20) 1.308(37) 1.298(35) 0.769(22)

0.050 0.746(16) 1.339(29) 1.268(27) 0.788(17)

0.070 0.726(14) 1.378(26) 1.234(23) 0.810(15)

0.100 0.761(14) 1.313(26) 1.293(24) 0.772(15)

0.000 0.7309(87) 1.366(16) 1.243(15) 0.8035(97)

(	2=dof 1.15 1.15 1.15 1.15)

NF3p-a 0.015 0.766(19) 1.303(34) 1.296(32) 0.770(20)

0.025 0.734(10) 1.362(20) 1.242(17) 0.805(12)

0.035 0.721(17) 1.386(33) 1.221(29) 0.819(19)

0.050 0.757(15) 1.320(27) 1.281(25) 0.780(16)

0.080 0.765(17) 1.304(31) 1.296(29) 0.770(18)

NF3p-b 0.015 0.748(11) 1.337(19) 1.265(18) 0.790(11)

0.025 0.7354(62) 1.359(12) 1.245(11) 0.8031(70)

0.035 0.7311(87) 1.368(17) 1.238(15) 0.8078(98)

0.050 0.774(13) 1.289(23) 1.310(22) 0.761(14)

0.100 0.748(13) 1.336(25) 1.266(22) 0.789(15)

‘‘Chiral limit’’: 0.7325(88) 1.364(16) 1.240(15) 0.8057(97)

(	2=dof 1.61 1.64 1.61 1.64)

TABLE IX. Same as Table VIII but for ZT .

mseaðmudÞ ZRGI
T ZMS

T ð2 GeVÞ
NF2� 0.002 1.7023(62) 1.4689(53)

NF2p 0.015 1.7461(69) 1.5066(59)

0.025 1.7418(63) 1.5030(54)

0.035 1.7393(70) 1.5008(61)

0.050 1.7470(72) 1.5075(62)

0.070 1.7361(63) 1.4981(54)

0.100 1.7330(64) 1.4953(55)

0.000 1.7441(38) 1.5050(33)

(	2=dof 0.24 0.24)

NF3p-a 0.015 1.7662(44) 1.5283(38)

0.025 1.7663(50) 1.5284(43)

0.035 1.7685(54) 1.5303(47)

0.050 1.7591(38) 1.5222(33)

0.080 1.7674(48) 1.5294(41)

NF3p-b 0.015 1.7620(43) 1.5247(37)

0.025 1.7630(42) 1.5255(37)

0.035 1.7637(42) 1.5261(36)

0.050 1.7518(43) 1.5159(37)

0.100 1.7640(56) 1.5264(48)

‘‘Chiral limit’’: 1.7639(35) 1.5262(30)

(	2=dof 1.18 1.18)
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from h �qqiðNÞ to obtain h �qqiðsubtÞ in an almost
N-independent way. However, this does not guarantee

that the results for h �qqiðsubtÞ are unchanged beyond the
maximum value of N we studied. In fact, in the p regime,

we find that � � h �qqiðsubtÞ (mq ¼ 0) obtained with various

values of N slightly increases as a function of N. In the
calculation based on chiral perturbation theory on the same
ensembles [10,30], we find � 10% larger values of � than
those from the eigenvalue decomposition for NF2p and
NF3p-a/b. For NF2�, the result of the calculation based on
the chiral random matrix theory [11] is� 10% smaller. To
estimate the effect of the truncation of eigenvalues, we
repeat the same analysis by fixing the value of� to be 10%
smaller (larger) than the original one for NF2� (NF2p and
NF3p-a/b). As a result, we find that the magnitude of a
finiteN effect is similar to the statistical errors for all cases.
We quote the difference from the central value in the third
error in (4.4). For NF2p and NF3p-a/b, we combine this

error with the effect from the difference between �A and
�V , which is in the same direction.
For completeness, we also present results for ZT .

Matching procedures are illustrated in Fig. 12. Table IX

summarizes the RGI and the MS values. The left and right
panels in Fig. 14 show the linear extrapolation as a function
of 2m2

sea (NF2p) and 2m2
ud þm2

s (NF3p-a/b), respectively.

IV. CONCLUSION

We calculated the renormalization factors for the quark
bilinear operators constructed from the overlap fermion
formulation, based on the original idea of NPR proposed
in [1]. The aim of this calculation is to provide the renor-
malization factors for a series of numerical studies being
performed by the JLQCD and TWQCD Collaborations
using dynamical overlap fermions. By virtue of the exact
chiral symmetry of the overlap fermion, the analysis is
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largely simplified compared to other nonchiral fermion
formulations.

Through the simulation in the � regime, we explicitly
confirm that the vector and axial-vector vertex functions
agree with each other when the effect of spontaneous chiral
symmetry breaking is negligible. This may provide a clean
way to calculate the renormalization factors through the
NPR method, since the calculation does not suffer from the
potential problems due to pion poles.

In the p regime, where spontaneous symmetry breaking
effectively remains even on a finite volume lattice, we may
precisely control the nonperturbative quark mass depen-
dence of the quark propagator and vertex functions using
the OPE analysis supplemented by the condensate explic-
itly constructed from the low-lying quark eigenmodes. The
exact chiral symmetry of the overlap fermion plays an
important role also in this analysis.
As the final result, we quote

ZA ¼ ZV ¼
8><
>:
1:3511ð12Þ for Nf ¼ 2; � ¼ 2:35
1:382 22ð82Þ for Nf ¼ 2; � ¼ 2:30
1:393 60ð48Þ for Nf ¼ 2þ 1; � ¼ 2:30;

(4.1)

ZMS
q ð2 GeVÞ ¼

8><
>:
1:4799ð50Þ for Nf ¼ 2; � ¼ 2:35
1:5170ð31Þ for Nf ¼ 2; � ¼ 2:30
1:5296ð31Þ for Nf ¼ 2þ 1; � ¼ 2:30;

(4.2)

ZMS
T ð2 GeVÞ ¼

8><
>:
1:4689ð53Þ for Nf ¼ 2; � ¼ 2:35
1:5050ð33Þ for Nf ¼ 2; � ¼ 2:30
1:5262ð30Þ for Nf ¼ 2þ 1; � ¼ 2:30;

(4.3)

and

ZMS
m ð2 GeVÞ ¼

8><
>:
0:824ð14Þð24Þðþ14

�00Þ for Nf ¼ 2; � ¼ 2:35
0:804ð10Þð25Þðþ00

�21Þ for Nf ¼ 2; � ¼ 2:30
0:806ð12Þð24Þðþ00

�11Þ for Nf ¼ 2þ 1; � ¼ 2:30;
(4.4)

where the errors are statistical except for Zm.
Our main results are those of the mass renormalization

factor Zm, which is an inverse of the scalar density renor-
malization factor ZS. The result has already been used in
the calculation of the chiral condensate in two-flavor QCD
from the Dirac operator spectrum [11,12] and from the
topological susceptibility [14]. It has also been used in our
calculation of the up and down quark mass through the
analysis of the pion mass and decay constant [15].
Extension of these works to the 2þ 1-flavor case is in
progress.

By using the value of ZMS
m we quoted in this article, we

are planning to determine the up and down quark massmud

and the strange quark mass ms from the analysis of the
meson masses m2

� and m2
K and the decay constants f� and

fK in theNf ¼ 2þ 1 dynamical simulation. A preliminary

results from this project was reported in [16].
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APPENDIX: PERTURBATIVE MATCHING

In this appendix, we present the details of our matching
procedure.

The matching of an operator O between theMS scheme
and the RI/MOM scheme is written as

OMSð�Þ ¼ wMS
O ð�Þ

wRI=MOM
O ð�0Þ

ORI=MOMð�0Þ; (A1)

where the conversion factor wX
Oð�Þ from a given scheme X

to the so-called RGI value is written as
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wX
Oð�Þ ¼ �Sð�Þ ��0

�
1þ ð ��1 � ��1 ��0Þ�Sð�Þ

4�
þ 1

2
ðð ��1 � ��1 ��0Þ2 þ ��2 þ ��2

1 ��0 � ��1 ��1 � ��2 ��0Þ
�
�Sð�Þ
4�

�
2

þ
�
1

6
ð ��1 � ��1 ��0Þ3 þ 1

2
ð ��1 � ��1 ��0Þð ��2 þ ��2

1 ��0 � ��1 ��1 � ��2 ��0Þ þ 1

3
ð ��3 � ��3

1 ��0 þ 2 ��1
��2 ��0 � ��3 ��0

þ ��2
1 ��1 � ��2 ��1 � ��1 ��2Þ

��
�Sð�Þ
4�

�
3
�
X
; (A2)

to the four-loop order in terms of the strong coupling
constant �Sð�Þ. (For the coupling constant, we always
use the MS scheme.) The coefficients ��i and ��i are given
in terms of the coefficients of the � function �ð�SÞ and the
anomalous dimension �Oð�SÞ,

� ¼ ��0

�2
S

4�
� �1

�3
S

ð4�Þ2 � �2

�4
S

ð4�Þ3 � �3

�5
S

ð4�Þ4 � � � � ;
(A3)

�O ¼ ��ð0Þ
O

�S

4�
� �ð1Þ

O

�
�S

4�

�
2 � �ð2Þ

O

�
�S

4�

�
3 � �ð3Þ

O

�
�S

4�

�
4

� � � � ; (A4)

as ��i ¼ �i=�0 and ��i ¼ �ðiÞ
O =�0.

The � function is specified by

�0 ¼ 11� 2
3Nf; (A5)

�1 ¼ 102� 38

3
Nf; (A6)

�2 ¼ 2857

2
� 5033

18
Nf þ 325

54
N2

f; (A7)

�3 ¼ 149 753

6
þ 3564�3 �

�
1 078 361

162
þ 6508

27
�3

�
Nf

þ
�
50 065

162
þ 6472

81
�3

�
N2

f þ
1093

729
N3

f; (A8)

with �3 ¼ 1:202 056 9. The running coupling constant is
then obtained as

�Sð�Þ ¼ 4�

�0 ln�
2=�2

�
1� �1

�2
0

lnðln�2=�2Þ
ln�2=�2

þ �2
1

�4
0ðln�2=�2Þ2

�
ðlnln�2=�2Þ2 � lnðln�2=�2Þ þ �2�0

�2
1

� 1

�

� �3
1

�6
0ðln�2=�2Þ3

�
ðlnln�2=�2Þ3 � 5

2
ðlnln�2=�2Þ2 �

�
2� 3�0�2

�2
1

�
lnln�2=�2 þ 1

2
� �2

0�3

2�3
1

��
: (A9)

In our work, we chose � ¼ 245 MeV for both two- and
2þ 1-flavor analysis.

The renormalization of the scalar bilinear operator O ¼
S ¼ �qq is an inverse of the mass renormalization. The
anomalous dimension thus has a relation �m ¼ ��S. At

the lowest order, �ð0Þ
m ¼ 4 for any scheme. Higher order

coefficients are calculated in [31] to the four-loop order in
the RI/MOM scheme,

�ð1Þ
m ¼ 126� 52

9
Nf; (A10)

�ð2Þ
m ¼ 20 911

3
� 3344

3
�3 þ

�
� 18 386

27
þ 128

9
�3

�
Nf

þ 928

81
N2

f; (A11)

�ð3Þ
m ¼ 300 665 987

648
� 15 000 871

108
�3 þ 6160

3
�5

þ
�
� 7 535 473

108
þ 627 127

54
�3 þ 4160

3
�5

�
Nf

þ
�
670 948

243
� 6416

27
�3

�
N2

f �
18 832

729
N3

f; (A12)

and in the MS scheme,

�ð1Þ
m ¼ 202

3
� 20

9
Nf; (A13)

�ð2Þ
m ¼ 1249�

�
2216

27
þ 160

3
�3

�
Nf � 140

81
N2

f; (A14)
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�ð3Þ
m ¼ 4 603 055

162
þ 135 680

27
�3 � 8800�5

�
�
91 723

27
þ 34 192

9
�3 � 880�4 � 18 400

9
�5

�
Nf

þ
�
5242

243
þ 800

9
�3 � 160

3
�4

�
N2

f

�
�
332

243
� 64

27
�3

�
N3

f; (A15)

where �3 ¼ 1:202 057, �4 ¼ �4=90, and �5 ¼ 1:036 928.
For the quark field renormalization (O ¼ q), the lowest

order coefficient vanishes in the Landau gauge for any
scheme. The higher order coefficients for the RI/MOM
scheme are [31]

�ð1Þ
q ¼ 67

3
� 4

3
Nf; (A16)

�ð2Þ
q ¼ 43 477

36
� 607

2
�3 �

�
3674

27
� 16�3

�
Nf þ 80

27
N2

f;

(A17)

�ð3Þ
q ¼ 54 714 743

648
� 7 004 309

162
�3 þ 15 846 715

1296
�5

�
�
4 659 455

324
� 637 413

162
�3 þ 830�5

�
Nf

þ
�
166 269

243
� 64�3

�
N2

f �
688

81
N3

f; (A18)

while the MS coefficients are

�ð1Þ
q ¼ 67

3
� 4

3
Nf; (A19)

�ð2Þ
q ¼ 20 729

36
� 79

2
�3 � 550

9
Nf þ 20

27
N2

f; (A20)

�ð3Þ
q ¼ 2 109 389

162
� 565 939

324
�3 þ 2607

4
�4 � 761 525

1296
�5

�
�
162 103

81
þ 2291

27
�3 þ 79

2
�4 þ 160

3
�5

�
Nf

þ
�
3853

81
þ 160

9
�3

�
N2

f þ
140

243
N3

f: (A21)

Coefficients for the tensor current O ¼ T ¼ �q���q are

known to three-loop order [3,32]. Besides the common

value �ð0Þ
T ¼ 4=3, higher order coefficients for the RI/

MOM scheme are

�ð1Þ
T ¼ 362

9
� 52

27
Nf; (A22)

�ð2Þ
T ¼ 159 607

81
� 13 072

27
�3 þ

�
� 17 426

81
þ 256

27
�3

�
Nf

þ 928

243
N2

f; (A23)

and those for the MS scheme are

�ð1Þ
T ¼ 362

9
� 52

27
Nf; (A24)

�ð2Þ
T ¼ 52 555

81
� 928

27
�3 �

�
5240

81
þ 160

9
�3

�
Nf � 4

9
N2

f:

(A25)
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