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In-medium chiral symmetry breaking in confining potential models of QCD is examined. Past attempts

to analyze these models have been hampered by infrared divergences that appear at nonzero temperature.

We argue that previous attempts to circumvent this problem are not satisfactory and demonstrate a simple

resolution. We also show that the expectation that confining models do not exhibit a chiral phase transition

is incorrect. The effect of summing ring diagrams is investigated, and we present the first determination of

the temperature-density phase diagram for three model systems. We find that observables and the phase

structure of the confinement models depend strongly on whether vacuum polarization is accounted for.

Finally, it appears that standard confinement models cannot adequately describe both hadron phenome-

nology and in-medium properties of QCD.
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I. INTRODUCTION

The properties of QCD at finite temperature and density
find applications in topics as diverse as the nature of proto-
neutron stars, early universe cosmology, and experiment at
the RHIC and the LHC [1]. Unfortunately, many of the
properties of interest are nonperturbative, and, with the
exception of lattice techniques, tools for dealing with non-
perturbative field theory remain rudimentary. Heightening
our discomfort is the continuing statistical ‘‘minus sign’’
problem in lattice field theory that is present at finite
chemical potential [2]. Furthermore, well-known problems
of infrared (IR) divergences at high order in perturbation
theory persist [3]. Even old hopes that QCD at large
temperature is perturbative may be misplaced since large
temperature QCD corresponds to the dimensionally re-
duced QCD of three dimensions, which is also confining.
Thus, it is of interest to develop nonperturbative methods
for analysing QCD and model systems in-medium.

Here, we examine the properties of two simple models
of confinement that are motivated by QCD in Coulomb
gauge. The analysis of such models dates from the mid-
1980s and parallels extensive work with Nambu-Jona-
Lasinio models [4]. (We note that Nambu-Jona-Lasinio
models are not renormalizable and do not exhibit confine-
ment.) In the following we will examine a contact model in
detail, focussing on coupling constant dependence of the
phase diagram, possible critical points, and the effects of
incorporating polarization in the formalism. We demon-
strate that a surprisingly rich structure emerges.

We also examine confining potential models with the
intent of clarifying several points in the literature. The first
of these concerns the existence of infrared divergences in
the temperature-dependent gap equations that naively ren-
ders them useless. The second issue is whether a linear
model can support a chiral phase transition. We resolve
these issues and also examine the effects of polarization on
the phase diagram. As far as we are aware this investigation

presents the first determination of the phase structure of
confining models and the first examination of general
vacuum polarization effects in contact and confining
models.

II. CONFINEMENT MODELS AND INFRARED
DIVERGENCES

A. Linear and contact models

Our starting point is the Hamiltonian of QCD in
Coulomb gauge. Coulomb gauge is especially appropriate
for the study of in-medium properties of QCD because all
its degrees of freedom are physical. The usual demerit
associated with nonmanifest covariance is obviated by
the presence of the heat bath. Upon neglecting transverse
gluons, the QCD Hamiltonian takes the form

H ¼
Z

�c ð�i ~� � r þmÞc þ 1

2

Z
�aðxÞVðx� yÞ�aðyÞ;

(1)

where �a ¼ c yTac is the color quark current, and Ta is a
generator of SUðNÞ.
Neglecting transverse gluons ruins the gauge and

Lorentz invariance properties to the theory. However, it
has been argued that (dynamically) massive transverse
gluons provide a more accurate basis for the exploration
of low energy properties of QCD [5,6]. Thus, as long as the
induced error is not too great, gauge invariance should be
approximately respected. Similarly, the full theory is
Lorentz invariant, even if it is not manifestly covariant.
Accurate truncations should accurately preserve this
property.
The instantaneous interaction kernel corresponds to the

Coulomb potential in QED; in the case of QCD it can be
written as the vacuum expectation value of the Coulomb
operator [5,7]
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�abVð ~x� ~yÞ ¼ h�j
�
~xa

��������
g

r �D ð�r2Þ g

r �D
�������� ~yb

�
j�i:

(2)

Here, ~Dab ¼ ~r�ab þ gfacb ~Ac
is the adjoint covariant de-

rivative, a, b are color indices, and � is the full vacuum.
This interaction is often modeled as a linear confinement
potential:

Vð ~rÞ ¼ � 3

4
br; Vð ~qÞ ¼ 6�b

q4
(3)

The string tension is denoted b, and its phenomenological
value is approximately 0:2 GeV2.

An alternative that matches to perturbation theory is
provided by the Richardson potential,

Vð ~qÞ ¼ 3

4

4�

q2�0 logð1þ q2=�2Þ (4)

with �0 ¼ 11� 2
3nf, �

2 ¼ 2b�0, and nf is the number of

quark flavors.
Finally, we shall consider a simple contact model de-

fined by

Vð ~rÞ ¼ �

�2
�ð ~rÞ: (5)

The scale � is introduced to set dimensions and will be
used as an ultraviolet cutoff in this model. Of course the
contact model is not confining; however, it permits detailed
analysis of in-medium effects since the resulting equations
are considerably simplified. It also serves as a reference
point for the confining models.

The partition function is defined as

Z½ ��;�� ¼
Z

D �cDc exp½�Aþ ��c þ �c�� (6)

with

A ¼
Z �

0
d�d3x �c ð�0ð@� �	Þ � i ~� � ~rþmÞc

þ 1

2

Z �

0
d�d3xd�0d3y�aðxÞVð ~x� ~yÞ�ð�� �0Þ�aðyÞ:

(7)

Notice that a quark chemical potential term, proportional
to 	, has been added to the action.

We employ the imaginary time formalism for evaluating
the partition function. In particular, the time integral re-
duces to sums over bosonic and fermionic Matsubara
frequencies. These sums are evaluated by integrating
over appropriate contours using the Orsay representation
of the propagators.

B. Schwinger-Dyson equations

Our goal is to study the in-medium properties of chiral
symmetry breaking in the models defined in Sec. II A.

Thus, nonperturbative methods are required and we em-
ploy the Schwinger-Dyson equations as our organizing
principle.
The Schwinger-Dyson equation for the full fermion

propagator in potential models such as those employed
here is shown in Fig. 1. The dashed line in this figure
represents an application of the instantaneous interaction.
Notice that this line is not dressed and does not have an
analogous Schwinger-Dyson equation because it is not
dynamical. Inserting the tree level approximation to the
fermion four-point vertex of Fig. 1 yields the equation
represented in Fig. 2. This equation represents a series of
diagrams that yield the rainbow-ladder approximation to
the fermion propagator, corrections to the rainbow-ladder
approximation generated by a dressed vacuum polarization
insertion, and corrections due to vertex dressing.
If one neglects vertex correction diagrams, it is possible

to sum all dressed vacuum polarization insertions by re-
writing the equation represented in Fig. 2 as shown in
Fig. 3. These coupled equations, called the gap equations,
form the starting point for our investigation of dynamical
mass generation. It is important that the vacuum polariza-
tion fermion loop of the second equation utilizes dressed
fermion propagators. Failure to do so would yield a branch
cut that signifies the decay of dressed fermions to bare
fermions—which is clearly physically unreasonable.
The second gap equation (Fig. 3) implements the ‘‘ring

approximation’’ to the full interaction potential. This ap-
proximation was first employed by Brueckner and Gell-
Mann [8] to solve the infrared divergence problem in the
electron self energy of the degenerate electron gas. As we
shall discuss shortly, it will serve the same purpose here.
We define the polarization as

�ðk0; kÞ ¼ 1

2�
nf
X
n

Z d3p

ð2�Þ3 tr½�0SðkÞ�0Sðpþ kÞ�; (8)

where nf is the number of quarks (considered of equal

mass in the following), S is the full quark propagator
(discussed more fully below), and k is a four vector defined

= +

−1 −1

+

FIG. 1. Schwinger-Dyson equation for the full fermion propa-
gator in potential models. Minus signs are not made explicit.

= +

−1 −1

++ + . . .

FIG. 2. Expanded Schwinger-Dyson equation for the full fer-
mion propagator.
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as

k	 ¼ ði!n þ	; ~kÞ; (9)

the fermionic Matsubara frequency is given by !n ¼
ð2nþ 1Þ�=�, and 	 is the quark chemical potential. The
color trace yields the factor of 1

2 in Eq. (8). The expression

for the polarization is usually split into vacuum and matter
components, with the vacuum contribution being defined
as�ðk;T ! 0; 	 ! 0Þ. Renormalization follows the stan-
dard vacuum formalism and hence only affects �vac.

With this definition the ring potential is given by

Vringðq0; ~qÞ ¼ Vð ~qÞ
1��ðq0; ~qÞVð ~qÞ : (10)

To establish contact with well-known results we note
that

lim
p!0

�ðp0 ¼ 0; pÞ � �m2
gnf ¼ �

�
T2

6
þ 	2

2�2

�
nf (11)

in the case of a massless bare quark. Of course the full
computation must be made with dressed quark propagators
and hence forms part of the coupled gap equations.

Incorporating polarization effects in the gap equations
can be very important. For example, quantum electrody-
namics in three dimensions is a (logarithmically) confining
theory; however, including polarization effects due to
massless fermions completely screens the confinement
potential, leaving a Coulombic heavy fermion interaction
[9]. Similarly, increasing the number of quarks in QCD
eventually drives the theory into a conformal window with
no confinement [10].

C. The gap equations

The diagrams of Fig. 3 represent four coupled integral
equations; three involve the scalar functions defined in the
general expression for the in-medium inverse quark propa-
gator:

S�1ðkÞ ¼ ið!n � i ~	Þ�0 � ~� � ~kA� B: (12)

The scalars ~	, A, and B are functions of k0 and j ~kj. Note
that Vring depends on k0 and ~k, substantially complicating

the solution to the gap equations. However, the dominant
infrared contribution to the ring potential is obtained in the
static limit, k0 ! 0 and we employ this limit in the follow-
ing. Under these conditions the gap equations become

Að ~pÞ ¼ 1þ CF

2

Z d3q

ð2�Þ3 Vringð ~p� ~qÞAq

Eq

~p � ~q
p2

�ðqÞ

Bð ~pÞ ¼ mþ CF

2

Z d3q

ð2�Þ3 Vringð ~p� ~qÞBq

Eq

�ðqÞ

~	ð ~pÞ ¼ 	þ CF

2

Z d3q

ð2�Þ3 Vringð ~p� ~qÞ½nðqÞ � �nðqÞ�
E2
p ¼ A2

pp
2 þ B2

p:

(13)

We have introduced the color factor CF ¼ ðN2 � 1Þ=ð2NÞ.
The thermodynamic function is defined in terms of the
quark densities as

�ðqÞ ¼ 1� nðqÞ � �nðqÞ (14)

with

nðpÞ ¼ 1

expð�ðEp � ~	ÞÞ þ 1
(15)

and

�nðpÞ ¼ 1

expð�ðEp þ ~	ÞÞ þ 1
: (16)

Similar equations have been considered by Kocić [11]
and more recently in Refs. [12,13]. Kocić presents analytic
results for a contact model very similar to ours, but without
consideration of vacuum polarization effects. All three
papers consider the linear confinement model at zero tem-
perature; Reference [12] incorporates ring corrections and
examines the effect on charmonium dissociation, but ne-
glects the vacuum part of the polarization without com-
ment. A contact model is considered at finite temperature
and density in Ref. [14]; additional related studies are
listed in Ref. [15].
In the case of the contact potential or the ring contact

potential in the static and long wavelength limits (dis-
cussed below) these equations simplify further to

A ¼ 1;

B ¼ mþ CF

2

Z d3q

ð2�Þ3 V
con
ringð~0Þ

BðqÞ
E0ðqÞ�0ðqÞ;

~	 ¼ 	þ CF

2

Z d3q

ð2�Þ3 V
con
ringð~0Þ½nðqÞ � �nðqÞ�

E2
0ðpÞ ¼ p2 þ B2;

(17)

where �0 is defined in terms of E0.
More generally, the ring contact case is as complicated

as the linear model since the interaction becomes

= +

−1 −1

=

−1 −1

+

FIG. 3. Gap Equations: summing polarization insertions in the truncated Schwinger-Dyson equations.
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Vcon
ringð ~pÞ ¼

1

�2

�

1� ��ð0; ~pÞ
�2

: (18)

Since the chief role of the polarization function is to
regulate the infrared divergence that appears in the gap
equations (discussed in the next section), it is appropriate
to consider the approximation

Vringð ~qÞ ¼ Vð ~qÞ
1��ð0; ~q ! 0ÞVð ~qÞ : (19)

Indeed, as Eq. (19) illustrates, in the linear case Vð ~qÞ
dominates Vring for q2 � mg

ffiffiffi
b

p
, and it is reasonable to

use the zero-momentum limit of the polarization function
in the gap equations. We shall confirm this in the following.
In this limit the vacuum contribution to the polarization
function vanishes, and we need only consider the matter
contribution. In fact no ultraviolet divergences remain in
the linear model and we do not consider renormalization.
Of course the contact model must be cut off at the scale �,
as previously indicated.

In the contact case, this approximation implies that Vring

is a constant and hence B is a constant. Thus, the integral
equation for B in the contact case becomes a relatively
simple algebraic equation, greatly simplifying the
problem.

In the low momentum limit the explicit expression for�
becomes

�ð0; ~q ! 0Þ ¼ �4nf�
Z d3k

ð2�Þ3 ½2þ e�EðkÞ þ e��EðkÞ��1;

(20)

where EðkÞ depends on A and B and is naively infrared
divergent (cf. Eqs. (13) and Sec. II D).

Finally, the dynamical quark mass is given by

MðpÞ ¼ BðpÞ
AðpÞ ; (21)

and a gap equation can be derived for this function directly:

MðpÞ ¼ mþ CF

2

Z d3q

ð2�Þ3 Vringð ~p� ~qÞ

�
�
MðqÞ
E0ðqÞ �

MðpÞ
E0ðqÞ

~p � ~q
p2

�
�ðqÞ; (22)

where now E0ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þMðqÞ2p

. It is important, how-
ever, to note that � still depends on the full single particle
energy, EðqÞ.

D. Infrared behavior of the gap equations

In the absence of polarization effects the linear model
gap equations of Eq. (13) are naively infrared divergent.

Specifically, as ~q ! ~pþ ~� on the right-hand side, the
potential diverges as Vð�Þ � ��4. Thus, the quark energy
EðqÞ is divergent, the thermodynamic function approaches

unity, and temperature effects disappear from the in-
medium gap equations. We stress that it is not possible to
write the equations in terms of IR-finite quantities, in
contrast to the zero-temperature case. This nonsensical
result was first noted by Davis and Matheson [16] who
suggested that one should make the ad hoc replacement

EðqÞ ! EðqÞ � Eð0Þ (23)

in the expression for �ðqÞ. This removes the infrared
divergence and yields a sensible in-medium gap equation.
An alternative suggestion was made by Alkofer et al.

[17], who simply replaced EðqÞ with E0ðqÞ. The utility of
this Ansatz is that the equation for M is infrared finite as
evidenced in Eq. (22). We shall denote this procedure as
‘‘AAL’’ in the following.
Finally, the Orsay group has argued that infinite quark

energies are physically reasonable and reflect the absence
of individual quarks in the physical spectrum [18]. They
therefore reformulate the thermodynamic trace to sum over
color singlet states only. This greatly complicates the
thermodynamic trace but eventually yields a simple result:
momentum space integrals such as appearing in Eqs. (13)
are restricted to q � p, thereby eliminating the infrared
divergence.
None of these resolutions seem appropriate. The sub-

stitutions of Refs. [16,17] are completely ad hoc. However,
it is possible that they are reasonable approximations, and
we investigate this in the next section. The Orsay approach
is physically motivated, however, it should not be neces-
sary to explicitly remove nonsinglet degrees of freedom
from the thermodynamic trace because they are automati-
cally removed by the Boltzmann factor.
We note the following: (i) infrared divergences are

normally removed by considering additional physical ef-
fects (such as bremsstrahlung) or by summing additional
classes of diagrams (as with the resolution of the IR
divergence problem in the degenerate electron gas [8] or
in the hard thermal loop partial resolution of gauge-
variance and other problems in thermal QCD [19])
(ii) ‘‘artificial’’ infrared divergences sometimes appear in
problems involving confinement potentials [20].
We examine both issues in the following. Specifically,

issue (i) has been addressed by summing the ring diagrams
in the gap equations. This has the effect of removing the
infrared divergence in all expressions, as evident in
Eq. (19). Surprisingly, issue (ii) is also relevant here.
Indeed, the gap equations are trivially IR regulated by
subtracting zero. For example, the third of Eqs. (13) can
be rewritten as

Bp ¼ mþ CF

2

Z d3q

ð2�Þ3 Vringð ~p� ~qÞ
�
Bq

Eq

�ðqÞ � Bp

Ep

�ðpÞ
�
:

(24)

While this yields a formally IR-finite equation, we find that
it is still strongly dependent on the infrared regime, thus it
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remains useful to employ the ring potential in the formal-
ism when performing numerical computations.

We examine the regulated gap equations with the bare
and ring potentials in the following section.

III. PHASE STRUCTURE

Our results will be presented as plots of the dynamical
mass at zero momentum as a function of chemical potential
and temperature. Thus we determine the phase structure of
the contact and confinement models. As far as we know
these are the first computations of these phase diagrams for
confining potentials. The results for all potentials with ring
corrections are also new.

The coupled gap equations are solved with a variety of
techniques. Our typical approach is to compute on a mo-
mentum grid. Unknown functions A, B, and Vring are

determined by minimizing an appropriate functional that
represents the gap equations using a modified Levenburg-
Marquardt algorithm. Alternatively, we attempt iterative
solutions (which are often not stable) and combinations of
iteration and minimization. We also employ a variety of
analytic approximations to quantities such as M and Vring

and confirm the more complete results. For example, com-
puting the full momentum dependence of � is time-
consuming, and it is useful to expand it as a Taylor series
in momentum. The results presented here represent several
months of single core computer time.

A. Contact model results

The contact model is defined in terms of the coupling �
and ultraviolet cutoff �. It is IR finite and hence the only
issues here are the effect of the ring interaction and, of
course, the new phase structure shown below. Contact
models such as ours have a critical coupling �c, below
which no chiral symmetry breaking occurs. Since this is a
zero-temperature property of the model and�mat vanishes
in this limit, the critical coupling is the same for the bare
and ring models:

�c ¼ 6�2: (25)

To set conventions we choose to work in the broken
phase, setting � ¼ 1:5�c and then fixing the scale � ¼
370 MeV to yield reasonable approximations for the dy-
namical quark mass and chiral restoration temperature,
MðT ¼ 0; 	 ¼ 0Þ � 260 MeV and Tc � 150 MeV. The
chiral condensate is given by the expression

h �c c i ¼ � 3

�2

Z
k2dk

BðkÞ
EðkÞ (26)

and is numerically ð�150 MeVÞ3, which is approximately
a factor of 2 too small (in linear dimension). Finally the
critical chemical potential is approximately 300 MeV. The
numerical values of these observables shift slightly with

the coupling, for example, for � ¼ 3�c one finds � ¼
140 MeV, Tc ¼ 135 MeV, and 	c ¼ 250 MeV.
It is the fact that the zero-temperature gap equation has a

critical coupling that drives the finite temperature and
density phase transitions. Specifically, the presence of the
thermodynamic function� at T > 0 can be modeled as an
effective coupling:

�ðT;	Þ ¼ �h�ðq;T;	Þi; (27)

where the angle brackets denote some average over the
integrand of the gap equation. Once �ðT;	Þ drops below
�c the model makes the transition to the symmetric phase.
The phase diagram for the bare contact model is shown

in Fig. 4. In the following we will refer to M0 defined as
Mðk ! 0;T;	Þ. This represents a ‘‘constituent quark
mass’’ and is a useful and simple proxy for the chiral
condensate. We note that the simplicity of the contact
gap equations permit a detailed analysis of the phase
structure, including a precise determination of the order
of the phase transition. This is useful since, as the figure
illustrates, the phase structure is quite complex. We find
that the chiral symmetry restoration phase transition is
second order for all chemical potentials below a critical
density

	?ð� ¼ 1:5�cÞ � 0:53�: (28)

For higher chemical potential the transition is first order.
Furthermore, a second solution to the gap equations devel-
ops—these are the lower lines seen in the figure between
	? and	 ¼ 0:9. These solutions indicate the presence of a
first order phase transition; however, they are unphysical in
that they have higher free energy, as demonstrated by their
lack of continuity with the low-	 solutions.
Including the zero-momentum vacuum polarization

function (with nf ¼ 1) in the gap equations induces non-

trivial dynamical mass, temperature, and chemical poten-
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FIG. 4. Dynamical mass vs temperature and density for the
contact model (� ¼ 1:5�c, all quantities in units of �).

CONFINEMENT MODELS AT FINITE TEMPERATURE AND . . . PHYSICAL REVIEW D 81, 034030 (2010)

034030-5



tial dependence in the kernel of the gap equation. The
results are presented in Fig. 5. It is apparent that the addi-
tional mass dependence causes the bifurcated solution to
exist for all chemical potential. The phase transition is first
order for all values of temperature and chemical potential.
Furthermore, the numerical value of the critical tempera-
ture is strongly affected:

Tcð	 ¼ 0;� ¼ 1:5�c; bareÞ ¼ 0:38� (29)

drops to

Tcð	 ¼ 0;� ¼ 1:5�c; ringÞ ¼ 0:17�: (30)

For � ¼ 3�c the analogous results are TcðbareÞ ¼ 0:95�
and TcðringÞ ¼ 0:30�. Of course, 	c does not change
because it is defined at T ¼ 0 and � ¼ 0 at this point.
Thus, the shape of the critical region and the phase tran-
sition are strongly affected by moving beyond the bare
interaction approximation in the gap equation.

Finally, we consider the case where the full momentum
dependence is retained in the vacuum polarization, leading
to a momentum dependent ring potential. The results are
shown in Fig. 6. We see that the dynamical fermion mass
has dropped to M ¼ 0:23�, as have the critical tempera-
ture and chemical potential Tc ¼ 0:06�, and	c ¼ 0:22�.
However, upon rescaling � we find that all of these quan-
tities remain essentially unchanged. Furthermore, it ap-
pears that the phase transition is first order throughout
the phase diagram, as it is in the zero-momentum ring
case (determining the order of the phase transition is
difficult with momentum dependent interactions because
algebraic methods are not applicable). Thus, it appears that
including the full momentum dependence of the polariza-
tion function and ring potential alters the numerical values
of quantities in units of the cutoff, but leaves physical
quantities approximately invariant.

We have also studied the � dependence of the phase
diagram for the ‘‘bare’’ contact model. We find that all
quantities scale roughly linearly with �. For example, to a
good approximation

M0ð�Þ ¼ 0:011 ��� � ð1� e�0:028ð���cÞÞ: (31)

Furthermore, the relative strengths of the dimensional
quantities seem to be roughly independent of the coupling,
and we find

	cð�Þ � M0ð�Þ � 2Tcð�Þ � 2	?ð�Þ: (32)

The coupling dependence of the phase diagram for the
bare interaction case is illustrated in Fig. 7. The approxi-
mate linear scaling is evident. This is also true for the
critical point 	? down to � � 1:2�c. Below this point
the first order phase transition disappears and the entire
diagram represents a second order phase transition.
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FIG. 5. Dynamical mass vs temperature and density for the
contact model with the static, zero-momentum ring potential
(� ¼ 1:5�c, all quantities in units of �).
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B. Confinement model results

The confinement models exhibit the full IR singularities
that have driven the discussion. Unfortunately, the models
are much more difficult to analyze and one must rely on
accurate numerics to establish the order of phase transi-
tions. The relation of the chiral restoration and deconfine-
ment transitions is also of interest. Long-standing lattice
gauge theory results indicate that these transition tempera-
tures coincide [21]. Since the confinement potential is fixed
bare models cannot reproduce this behavior. Indeed Davis
andMatheson have argued [16] that all confining potentials
break chiral symmetry and since the only in-medium effect
is the addition of the factor� in the gap equation kernels, it
is feasible that there can be no transition to the chirally
symmetric phase. Nevertheless, Alkofer et al. have nu-
merically found a phase transition.

As shown in Fig. 8 we confirm the existence of a phase
transition in the confinement model with the AAL pre-
scription (and we extend their results to the T �	 plane).
We speculate that the argument of Davis and Matheson has
failed because for high temperature and low momentum
the thermodynamic function is approximately�ðq; T;	 ¼
0Þ � q=T, and hence the effective confining potential is
replaced by V � q�4 ! q�3, which is not confining.
Perhaps this is sufficient to drive the observed behavior.

Numerical values for the linear potential are Tc �
38 MeV, 	c � 75 MeV, M0 � 80 MeV, and the conden-

sate is determined to be ð�h �c c iÞ1=3 � 110 MeV. Note
that we interpret the dynamical mass as a constituent quark
mass. All of these quantities fall below their phenomeno-
logically expected values; however, using a string tension
of about 1:8 GeV2 brings them all into reasonable agree-
ment. In fact, Alkofer et al. employed such a large string
tension in their computation. This is unfortunately at odds
with well-established hadron phenomenology; a point
which we will discuss further below.

The chiral restoration transition line is plotted in Fig. 9.
A clear inflection point is visible at ðT?;	?Þ �
ð20; 43Þ MeV. We identify the right side of this point as a
region of first order phase transitions, while the left side is
second order. This identification is based on the continuity
of M displayed on Fig. 8, the evident first order phase
transition seen at T ¼ 0, the relative lack of stability of the
solution algorithm for large 	, and the appearance of
secondary solutions (not shown) for 	>	?. The exis-
tence of a tricritical point is in keeping with expectations
for QCD [2].
The results of Fig. 8 have been computed with the ad hoc

AAL prescription. We now consider modifying the infra-
red behavior of the quark interaction with the vacuum
polarization diagram of Fig. 3. Our first study is in the
static, low momentum limit with nf ¼ 1. In this case, the

vacuum contribution to � vanishes and we need not con-
sider renormalization of the model.
Our results are shown in Fig. 10. The AAL and ring

results must agree at the origin. The surfaces at	 ¼ 0 look
very similar, however the critical temperature has dropped
from 38 MeV to 10 MeV. The critical chemical potential
remains fixed at 	c � 75 MeV. Thus, the shape of the
phase diagram has been severely distorted by incorporating
vacuum polarization in the model. Furthermore, as with the
contact model, it appears that all phase transitions are now
first order, and the tricritical point no longer exists. Thus, as
anticipated, including dynamical quarks in the model can
have a dramatic effect on thermodynamic properties.
The vacuum polarization function introduces explicit

temperature and density dependence to the quark interac-
tion, which raises the possibility of explicit quark decon-
finement in the model. It is possible that this dependence
causes the potential to deconfine at a critical temperature.
However, it is more likely that the potential deconfines for
all nonzero temperature. Indeed, in perturbation theory one
can approximate the ring potential as
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Vringðq; T;	 ¼ 0Þ � 6�b

q4 þ �bT2
: (33)

The Fourier transform of this potential is linear when T ¼
0. When T > 0 the potential is linear at small distances, has

a transition region at r� ð�bT2Þ�1=4, and approaches zero
at large distances, so that deconfinement is natural,
although not sudden. A careful analysis of deconfinement
awaits a study of QCD.

Finally, we consider incorporating the full momentum
dependence of the polarization function in the gap equa-
tions. It is important to note that the vacuum contribution to
the polarization function is not zero for nonzero momen-
tum. This contribution must be renormalized at the expense
of introducing another parameter to the model. In practice,
the relatively good agreement with heavy quark spectros-
copy would be ruined by this procedure. We therefore
consider �vac to already be incorporated in the model
interaction, and simply consider matter contributions to
the ring potential.

Unfortunately, the numerical solution of the gap equa-
tions is substantially complicated in this case. Solving the
full set of coupled integral equations can be time-
consuming and unstable. We have found that setting AðqÞ
to be large provides a very good approximation to the full
gap equations, and this approximation has been employed
for most of the linear ring results presented here. An addi-
tional complication is provided by the requirement to
compute the polarization at many grid points at each step
of the computation. However, we have found that expand-
ing �ðqÞ to Oðq4Þ is very accurate, and this speeds the
solution tremendously.

In the end, the results are very similar to those of the
zero-momentum case, as anticipated above. For example,
the dynamical massMðk ¼ 0; T ¼ 0; 	 ¼ 0Þ is lowered by
approximately 1 MeV when incorporating the momentum
dependence of the vacuum polarization. Similarly, the

critical temperature remains the same to the accuracy we
compute.
The results presented in this section are for the linear

potential of Eq. (3). We have performed the same compu-
tations with the Richardson confinement model of Eq. (4).
This permits examining the dependence of our results on
the details of the confinement model. In particular, the
Richardson potential incorporates a running Coulomb in-
teraction, and it has been speculated that this can enhance
the chiral condensate. We find, however, that the
Richardson potential yields nearly identical results as the
linear potential. For example, the AAL Richardson dy-
namical mass is only 1 MeV less than the corresponding
linear mass. Similarly, the critical temperature drops
0.7 MeV and the critical density raises 3.2 MeV.

IV. CONCLUSIONS

We have examined bare and ring versions of a contact
model that mimics the structure of QCD in Coulomb
gauge. First results for the phase diagram of the ring
contact model are presented here. The bare model exhibits
interesting behavior, including approximate linear scaling
of Tc, 	c, and the dynamical mass with the coupling. The
numerical values of these quantities can be placed in rough
agreement with QCD expectations with an appropriate
choice of the cutoff scale. Surprisingly, we find a tricritical
point for all models with � > 1:2�c, again in keeping with
expectations for QCD. However, incorporating ring-type
Schwinger-Dyson equations in the formalism changes
these conclusions dramatically. Ring values for 	c, M0

and the condensate do not change substantially, however,
the critical temperature drops by a factor of 3, ruining the
phenomenology. Furthermore, the region of second order
phase transitions disappears and only a first order phase
transition appears in the phase diagram. Given the strong
nf dependence expected in gauge theories, perhaps the

strong effects seen here should not be surprising.
For the bare linear and Richardson models with the AAL

infrared prescription we confirm the existence of a second
order phase transition at small chemical potential. For
chemical potential larger than 	? � 43 MeV the phase
transition becomes first order. The appearance of any phase
transition is somewhat surprising, since it is in conflict with
the reasonable expectations of Davis and Matheson. The
numerical values for the dynamical mass, chiral restoration
temperature and density, and chiral condensate are all in
agreement with QCD expectations if the string tension is
increased to a value of 1:8 GeV2. Unfortunately, this is in
severe conflict with well-established quark model phe-
nomenology and lattice gauge results that require a string
tension of approximately 0:2 GeV2. It is thus apparent that
the simplest confinement models cannot both reproduce
thermodynamic and spectroscopic quantities with any re-
liability. Of course this conclusion depends on the approx-
imations we have made. However, the large discrepancy
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seems difficult to overcome and we expect that simple
confinement models are incapable of describing in-
medium properties of QCD. These conclusions hold for
both linear and Richardson models.

We have noted that two resolutions to the confinement
model infrared problem exist: a direct physical resolution
is to employ the ring approximation and a simple mathe-
matical resolution involves the proper regularization of the
Fourier transform of the linear potential. We find sufficient
numerical infrared instability to warrant employing the
physically reasonable, and presumably more accurate,
ring Schwinger-Dyson equations. Results in the static/
low momentum and static/finite momentum limits were
found to coincide very well. As with the contact interac-
tion, ring diagrams induce strong effects in thermodynamic
observables, causing the critical temperature to drop by a
factor of 4 and changing all phase transitions to first order.

Pisarski and McLerran have recently used the large Nc

limit to argue that a ‘‘quarkyonic’’ QCD phase may exist
[22]. This phase is proposed to exist at high chemical
potential and low temperature and to be characterized by
chirally symmetric but confined quark matter. (We note
that the argument is supported by observations that chiral
symmetry breaking should be irrelevant high in the zero-
temperature hadron spectrum [23].) The large Nc limit
suppresses quark loop effects, thereby yielding an interac-
tion that is independent of the chemical potential. Thus, the

linear no-ring model presented here can be considered an
implementation of the large Nc scenario. Our results then
confirm the idea that a confining but chirally symmetric
phase can exist. Of course, decreasing the number of colors
implies an increasing importance of vacuum polarization
with commensurate changes in phenomenology, as noted
above. A full assessment of the quarkyonic matter scenario
must await a nonperturbative investigation of more realis-
tic models of QCD.
The application of finite temperature and density

Schwinger-Dyson methods to the QCD Hamiltonian will
be of great interest. As illustrated here, one of the over-
riding considerations will be the construction of a robust
truncation scheme for Hamiltonians with infrared en-
hanced interactions. Indeed, the Ward identities relate
vertices and propagators, so one expects that if corrections
to propagators are necessary, one should truncate full
vertices very carefully. Of course this observation is borne
out by the experience with the effective field theory gen-
erating the hard thermal loop limit of QCD.
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