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Fractured Boer-Mulders effect in the production of polarized baryons
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The fractured Boer-Mulders functions, AN MZT Ha.ah: p(x, PN} % P lzT; 0?), describe an intriguing
class of polarization effects for the production of baryons in the target fragmentation region of deep-
inelastic processes. These functions characterize transverse momentum asymmetries related to the spin
orientation for different flavors of axial-vector diquarks.{g;, ¢ j} 1, in an unpolarized ensemble of protons
just as the familiar Boer-Mulders functions characterize transverse momentum asymmetries connected to
the spin orientation of quarks in unpolarized targets. The asymmetries in pyy of the fractured Boer-
Mulders effect originating in the proton distribution function can be separated kinematically, both in semi-
inclusive deep-inelastic scattering and in the Drell-Yan process, from the asymmetries in kzy of the
polarizing fracture functions, AN M%T /(q‘q):p(x, pTz; 2z, kry: 0%), generated during the soft color rearrange-
ment of the fragmentation process. The experimental requirements for this separation are presented in this
article and it is shown that the fractured Boer-Mulders effect should change sign between Drell-Yan and
semi-inclusive deep-inelastic scattering while the polarizing fracture functions remain the same. Simple
isospin arguments indicate the two polarization mechanisms should give significantly different results for

the production of polarized A’s and ’s.

DOI: 10.1103/PhysRevD.81.034029

L. INTRODUCTION

The experimental results on the production of trans-
versely polarized hyperons in hadron-hadron collisions
[1,2] have played an extremely important role in motivat-
ing the early development of a systematic theoretical ap-
proach to parity-conserving single-spin observables in
high-energy processes. Based on the null result for
single-spin asymmetries in perturbative QCD found by
Kane, Pumplin, and Repko (KPR) [3], it can be explicitly
demonstrated [4] that all such polarization observables
must be associated with coherent spin-orbit dynamics in
the nonperturbative sector of the theory. While the overall
implications of this important theoretical result for baryon
polarization asymmetries have long been apparent, the
phenomenological details specific to this particular appli-
cation have not been directly pursued. Some of the reasons
for this type of neglect can be attributed to the manner in
which the relevant theoretical concepts have been framed.
The coherent mechanisms leading to single-spin observ-
ables can be parametrized as twist-3 operators [5,6] in a
collinear factorization of the hard-scattering model of
QCD. Equivalently, they can be described in terms of
particular kr-dependent parton distribution functions or
parton fragmentation functions [7,8]. Like the careful ges-
tures of a stage magician, both of these formalisms direct
primary attention to asymmetries found in the ‘“‘current
fragmentation region” of deep-inelastic processes. Spin
asymmetries found in baryon production, however, require
that we look more carefully at dynamical mechanisms
found in the target fragmentation region of such processes.

The change in kinematic venues requires some addi-
tional tools and it is helpful to review the existing con-
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ventions in order to formulate a congruent approach.
Mulders and Tangerman [9] have identified four classes
of “leading-twist” quantum structures resulting in single-
spin observables that occur in the formulation of a
kr-dependent extension of the operator product expansion.
This quartet of functions is presented in Table I. Parity
conserving single-spin observables are odd under a par-
ticular symmetry, here designated A, constructed with the
aid of the Hodge dual operator of differential geometry.
The Mulders-Tangerman classification identifies two sets
of A,-odd fragmentation functions, the Collins functions
[10], and the polarizing fragmentation functions [11]. The
A ,-odd parton distribution functions classified here are the
Boer-Mulders functions [12] and the orbital distribution
functions [4]. Table I gives the relationship between the
expressions for partonic number densities used by the
author and the expressions used for the related partonic
correlators that have the dimension of an inverse momen-
tum. The conventions for the signs and the factors of 2
found in this table are explained in the article by A.
Baccetta, U. D’Alesio, M. Diehl and C.A. Miller [13]
that defines the “Trento conventions” for this field. The
scalar quantity

kpy = kp - (6 X p) (1.1)
found in this table defines an A,-odd and P-even, spin-
directed momentum which is characteristic of every trans-
verse single-spin observable. The quantitative value of the
concept of spin-directed momentum is discussed more
extensively in [14,15]. The identification of the mechanism
or mechanisms leading to a spin-directed momentum re-
sponsible for a single-spin observable plays an important
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This table gives the relationship between the expressions used by the author for

partonic number densities in terms of the expressions commonly used for the related correlators

that have the dimension of inverse momentum.

Collins functions
2%k T
ANDy (2, kyy) = M, 1 Uz k)

Boer-Mulders functions
o 1. T
ANGqT/p(X, Prn) = — [;}_:h1 “(x, prv)

Polarizing fragmentation functions

ANDhT/q(Z, kry) = ff\T/;:, Dqu(Z’ kry)

Orbital structure functions
2prn T
ANGq/pT(x’ pTN) = - }C]IPN f] q(x: pTN)

role in the analysis presented here. As indicated above, a
crucial component in this identification takes advantage of
KPR factorization. The concept of KPR factorization ap-
plies the result of Ref. [3] which demonstrates that single-
spin asymmetries involving light quarks in perturbative
QCD are tiny in order to incorporate the coherent dynamics
leading to a spin-directed momentum either into an effec-
tive ““distribution function™ for an initial-state particle or
into the coherent color rearrangement leading to the ““frag-
mentation” of a color constituent producing a final-state
hadron.

The concept of KPR factorization embodied in the op-
erators of Table I has proved to be extremely useful for
phenomenology in the current fragmentation region.
Extensive study of experimental results for single-spin
asymmetries of 7’s and K’s produced in semi-inclusive
deep-inelastic scattering (SIDIS) [16-18] and in pp colli-
sions [19,20] has led to significant advances in the under-
standing of proton spin structure and nonperturbative
processes in QCD. Notable successes include the separa-
tion of asymmetries associated with the Collins-
Heppelmann [21] mechanism from those resulting from
orbital distributions. Combining the results on the Collins-
Heppelmann effect with the extraction of Collins functions
from analysis of e" e~ data [22] then leads to a consistent
specification of the quark transversity distributions [23].

A convenient method for extending the phenomenologi-
cal conventions to allow the inclusion of polarized hyperon
production into this very successful framework for single-
spin asymmetries can be found in the formalism for frac-
ture functions, M? /p(x, 75 Q?), introduced by Veneziano
and Trentadue [24]. The appellation “fracture” was chosen
by those authors to suggest a hybrid form combining
fragmentation functions and structure functions. These
fracture functions characterize the conjoint probability

TABLE II.

for finding both the parton b (quark or gluon) with
Bjorken x = Q?/2p - ¢, and the hadron 4 (meson or
baryon) with Feynman z, = p,-p/q-p in a semi-
inclusive deep-inelastic process involving a proton target.
Conjoint probability distributions are powerful tools in the
study of quantum mechanical systems and including both
the spin designation and the specification of transverse
momentum asymmetries into the fracture function formal-
ism then provides a flexible approach to characterizing the
dynamics involved in single-spin observables. The fracture

function M7, , (x, pr: 2. ky; %), for example, describes the

final state in lepton scattering from a transversely polarized
proton target in which the jet of the u quark has transverse
momentum p; and the detected 7 has transverse momen-

tum k7 in a reference frame defined by § = Qé_ [25]. The
classifications of fracture functions describing the k;y-odd
asymmetries in SIDIS are shown in Table II. Final-state
hadrons in the fracture function formalism can occur either
in the current fragmentation region, the target fragmenta-
tion region, or in the central “plateau’ region that connects
the other two. For hadrons produced in the current frag-
mentation region, the functions in Table II can thus repli-
cate the existing phenomenology on transverse spin
asymmetries. For example the Collins-Heppelmann frac-

ture functions, ANMZ;pT(x, P2z kpws 0F), encode the

description of a chiral-odd quark transversity distribution
convoluted with a chiral-odd and A,-odd Collins function
as found in the familiar Collins-Heppelmann mechanism
without necessarily requiring hard-scattering factorization
[21].

Extending these functions to consider the production of
baryons in the target fragmentation region [26] is then a
natural augmentation of the fracture-function formalism
since the approach is designed to describe the fragmenta-

Transverse-momentum dependent fracture functions that characterize the A,-odd

single-spin asymmetries in the current fragmentation region of semi-inclusive deep-inelastic
lepton scattering are classified in this table. The fracture function formalism defines conjoint
probability distributions without the requirement of assuming hard-scattering factorization.

Collins-Heppelmann fracture functions
ANMZT/,,T(x, Pz kry; 0F)
Boer-Mulders fracture functions
ANMZ;/I,(X; PTNs % ET “ pr: Q%)

Polarizing fracture functions
AVM, (x, pFiz koys O°)
Orbital fracture functions
ANMZ/I,T(X’ PTN> % ]zr - pr: Q%)
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tion of a system with pg or diquark quantum numbers. This
generalization does require, however, a nontrivial modifi-
cation involving the inference of quantum structures de-
scribing diquarks in scattering processes. This issue has
significant impact on understanding how to extend three of
the original dynamical mechanisms in the Mulders-
Tangerman classification to describe spin asymmetries in
baryon production. Diquarks are not fundamental constit-
uents but are themselves composite systems representing
correlations generated in the nonperturbative regime of
QCD by the confinement of color in baryons. The distinc-
tion between pointlike constituents and localized correla-
tions can be partially evaded in the treatment of polarizing
fracture functions found in Ref. [26]. However, extending
the Collins-Heppelmann mechanism, the Boer-Mulders
effect, and the orbital effect to the production of baryons
in the target fragmentation region directly confronts the
fact that the resulting functions do not parametrize asym-
metries in the spin-directed momenta of the quarks under-
going the hard scattering, but instead, must describe
A-odd asymmetries involving the composite diquark cor-
relations in the remnant systems left behind in the target
fragmentation region. To emphasize this shift in dynamical
focus involving the inclusion of composite constituent
systems, the author prefers a corresponding shift in no-
menclature to describe spin-dependent asymmetries for
baryon production in the target fragmentation region. In
this work, the term ““fractured” is used to designate mecha-
nisms where probability distributions involving diquarks
are inferred from the conjoint probabilities of the fracture
function formalism for the hard-scattering process. The
language suggested in Table III pays full homage to the
underlying versatility of the fracture function formalism
but respects the clarity implied by the mechanisms in
Table I. Thus, the Collins-Heppelmann fracture functions

of Table II, ANMZ;pT(x, P33z, kry; O2), can describe the

original Collins-Heppelmann processes in the current frag-
mentation region of SIDIS but when we consider the
“fractured Collins-Heppelmann mechanism,” described
by the functions ANMZ/{q‘q}T:pT(x, P zp kry; 0°), we
employ a notation that characterizes an effective
“transversity-type distribution” for J* = 17 diquarks in
a polarized proton that is convoluted with a Collins-type,
A,-odd, function describing an asymmetry in the fragmen-

TABLE III.
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tation process for such systems of polarized diquarks. Note
that the notation in Table III represents a slight variation of
that used in Ref. [26] for the same structures. Details
outlining the content of this notation will be discussed later
in this paper.

While it is important to be aware of the larger framework
that allows a complete classification for all single-spin
asymmetries for baryon production in the target fragmen-
tation region, the focus of this paper is specifically
directed at the fractured Boer-Mulders mechanism because
previous phenomenological treatments of baryon polariza-
tion asymmetries have ignored this possibility. The
fractured Boer-Mulders functions, written here as
AYMGy 1 o (% PN 2, Pr k3 Q7). describe an asym-
metry in the production of polarized baryons in the target
fragmentation region of SIDIS resulting from an A -odd
correlation between the spin orientation of J© = 17 di-
quarks and their transverse momentum in an unpolarized
ensemble of target protons. The production of polarized
baryons from this mechanism then requires an A_-even
fragmentation process involving these polarized diquark
systems. The fractured Boer-Mulders mechanism can thus
be combined with the polarizing fracture functions [26] of
Table III to account for all the possible leading-twist
processes in QCD that can lead to polarization asymme-
tries in baryon production in the target fragmentation
region of hard scattering. There already exists indirect
evidence for the fractured Boer-Mulders mechanism from
data on polarized A 1 and X 1 production in pp and pA
collisions. In single-particle inclusive processes in hadron-
hadron collisions it is not possible to distinguish kinemati-
cally the fractured Boer-Mulders mechanism from the
polarizing fracture functions, AN M;{;T /(q,q):p(x, P2 25,
kyy: Q), that are described in Ref. [26]. However, it can
easily be demonstrated that the polarizing fracture func-
tions lead to

1
P(pp— 3,1X) = — §P(pp — A, 1X). (1.2)

This result has also long been known to be a consequence
of Lund-model [27] phenomenology. Existing experimen-
tal results [28], however, find the result

P(pp — A, 1X) = —P(pp — 2,1X). (1.3)

The fractured functions in this table describe mechanisms for A -odd single-spin

asymmetries in the production of baryons in the target fragmentation region of semi-inclusive
deep-inelastic scatterings. These fractured functions specify effective distribution functions for
diquarks that mirror the effective distribution functions for quarks classified in Table II.

Fractured Collins-Heppelmann functions
AYME 1y g (6 P32 Ky OF)

FracturedBoer-Mulders Eunctions
ANM 1 a6 PN % R Prs O7)

Polarizing fracture(d) functions
ANMZT/(q,q)rp(x’ Prs % kry; Q%)
Fractured orbital functions
ANMZ/(q,q):pT(x, PTN> % ]zr - pr: Q%)
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Allowing for the impact of small effects associated with
the decay of higher-mass resonances, this large discrep-
ancy between experiment and the Lund model strongly
indicates the need for a polarization mechanism for these
two hyperons that is not part of the fragmentation process.
Since the mechanism must therefore involve an effective
diquark distribution, it is likely that the fractured Boer-
Mulders mechanism has already been observed! Unlike the
polarizing fracture functions, full calculations for the frac-
tured Boer-Mulders functions necessarily involve intrica-
cies associated with initial-state or final-state interactions
that preclude unambiguous predictions. However, the sign
of the polarization in the fractured Boer-Mulders effect can
be inferred from simple kinematic arguments and much
can be learned from isospin constraints. It turns out that the
comparison of the fractured Boer-Mulders functions for
the two hyperon polarization processes pp — A, T X and
pp — 2,1 X can provide a good starting point for the
discussion of diquark structure in the proton. A nontrivial
experimental test of the underlying ideas is that our ap-
proach predicts that the fractured Boer-Mulders mecha-
nism should change sign when comparing polarization
asymmetries of baryons produced in SIDIS with those
found in associated production of the Drell-Yan process.
This important new result follows from the same Collins
conjugation arguments [29] leading to predictions for the
change in sign of orbital distributions in SIDIS and Drell-
Yan that have already received considerable attention. The
new predictions for baryon polarization asymmetries can
be tested without requiring polarized beams or targets.

The remainder of this paper is organized as follows.
Section II discusses the origin of the fractured Boer-
Mulders effect in terms of a spin-directed momentum
transfer associated with virtual fluctuations involving
axial-vector diquarks. Section III describes the parallelism
conjecture relating the initial-state or final-state interac-
tions found in Boer-Mulders functions with those found in
orbital distributions. This connection naturally extends to
the fractured version of these two dynamical structures.
Section IV contains the main result of the paper with
specific predictions for the polarization of A’s and X’s
produced in the target fragmentation region of SIDIS or
of the Drell-Yan process. Section V then presents some
preliminary ideas concerning target spin asymmetries in
baryon productions processes.

II. FRACTURED BOER-MULDERS AND
DIQUARKS

We are interested in polarization asymmetries in hard
processes for a kinematic region in which baryon produc-
tion can be described as resulting from the fragmentation
of a diquark system. As specified in the introduction, the
fractured Boer-Mulders mechanism involves an A, -odd
correlation between the transverse momentum distribution
of JP = 17 diquarks in the target fragmentation region of a
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hard-scattering event involving an unpolarized ensemble
of target nucleons and the spin orientation of these axial-
vector diquarks. Like other dynamical mechanisms leading
to transverse single-spin asymmetries, the genesis of the
fractured Boer-Mulders mechanism involves spin-orbit
correlations. To illustrate how these correlations can lead
to asymmetries in the production of polarized baryons, it is
helpful to first specify what we mean by the transverse
momentum distribution of diquarks.

For this paper, we will describe diquarks within the
framework of a broken SU(3) of flavor and the confining
SU(3),. of QCD. The minimum energy configuration for
localized two-quark system is a color antitriplet and this
color configuration in a color-singlet baryon leads to the
flavor antitriplet of J* = 0" diquarks that we will desig-
nate

[9. ¢] = [u. d].[d, 5] [, u] 2.1)

and to the flavor sextet of J¥ = 17 diquarks whose flavor
content is given by

{a. q} = {d, d}, {u, d}, {u, u}, {d, s}, {s, u}, {s, s}.

As suggested by the nomenclature, the [¢, ¢] diquark con-
figurations are antisymmetric under the interchange of
quarks while the {g, ¢} configurations are symmetric.
Further detailed information concerning such diquark
composite systems can be found in the comprehensive
articles by Jaffe [30]. These articles include an operator
description of such localized correlations. For conve-
nience, we will frequently refer to the angular momentum
content of a diquark system as “‘spin’’ suggesting an under-
lying pointlike interpretation. When the angular-
momentum orientation of the J¥ = 17 configuration is
involved we will use the designation {g, ¢} 1. To simplify
expressions when writing equations that apply for both
scalar and axial-vector diquarks, we will use the notation
(g, q) to describe any color antitriplet diquark. Feynman
diagram calculations involving simple quark-diquark mod-
els for the proton [31] have played an important role in the
construction of phenomenological expressions for orbital
distributions and other A,-odd quantum structures.
However, this study is not specifically considering only
such diquark models. The basic assumption underlying the
treatment of diquarks in this article is that they represent
“localized” rather than “local’ structures and that they are
dynamically important in baryon production processes
because diquarks retain their identity in soft, nonperturba-
tive interactions involving other color-charged gluonic
systems in QCD. The retention of isospin and spin quan-
tum numbers occurs because interactions involving a flavor
interchange with another quark in the system are required
to alter the flavor symmetry properties of diquarks. The
localized nature of diquarks implies that we can use the
fracture function approach to infer an effective distribution
of momentum for them in a hard-scattering event. After the

(2.2)
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hard scattering of a quark with initial longitudinal momen-
tum determined by x = Q?/2p - ¢ and transverse momen-

tum pr, the fracture function M;, (x, pr3z, k; %) can be

used to infer an effective distribution both for the scattered
quark

Fe&(x pr) (2.3)
and for the target remnant system
fle‘?;n(xrem’ pTrem)’ (2.4)

where, at this stage, we can assume a ‘‘quasielastic”
relationship between the kinematics of the target remnant
system and the scattered quark,

xem=1-x D™ = —pr. (2.5)
We then hypothesize that this target remnant system con-
tains a localized diquark that can subsequently “fragment”
by picking up another quark to form a baryon in the final
state. The conditional probability of finding this diquark in
the target remnant system thus defines an effective diquark

distribution
F4D, )

that can then be used to characterize initial aspects of the
fragmentation process that leads to a baryon in the final
state.

To simplify the discussion we will ignore correlations
with the longitudinal momentum variables and concentrate
specifically on the processes that can generate a spin-
directed transverse momentum. Consider, therefore, the
transverse momentum of this baryon produced in the target
fragmentation region of a semi-inclusive deep-inelastic
lepton scattering process as indicated in Fig. 1.
Contributions to the baryon’s transverse momentum can
be separated into three categories:

(1) Initial transverse momentum, p;’, of the diquark

associated with its confinement within the target
proton.

(2.6)

(2) Transverse momentum, QT', transferred to the di-
quark system during the hard-scattering process.

(3) Transverse momentum, IET/, generated by the soft
processes of color rearrangement occurring as the
diquark system captures a quark in the fragmenta-
tion process to form the polarized baryon.

For the spin-averaged production cross section, the con-
volution of contributions from these three categories to the
transverse momentum of the detected baryon leading to

ET = p; + QT’ + lng can then be indicated in the form of
a diagram such as that shown in Fig. 2. It is understood that
the boundaries between these categories are necessarily
flexible. The ambiguities arise because the soft or collinear
components of the hard-scattering process cannot be as-
signed uniquely to one category or another. Such an assign-
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FIG. 1. A semi-inclusive lepton scattering process from an
unpolarized ensemble of protons is sketched in this figure. The
final state includes a quark jet and a baryon in the target
fragmentation region associated with a {g, ¢} 1 diquark. The 3-
momentum of the produced baryon lies in the x-z plane and the
spin state is characterized by a density matrix that is diagonal
when the spin is quantized in the y direction. The A,-odd spin-
directed momentum leading to a polarization asymmetry for the
produced baryon can originate in coherent spin-orbit dynamics
in the target distribution functions (to the left of the first vertical
line) or in the coherent spin-orbit dynamics (to the right of the
second vertical line) associated with the fragmentation of the
{u, d} 1 diquark into the final-state baryon. No A -odd dynamical
effects are generated directly by the hard-scattering process (the
cross-hatched region between the two horizontal lines) since
light-quark QCD perturbation theory obeys Kane, Pumplin, and
Repko (KPR) [3] factorization. The local hard-scattering pro-
cess, however, does break the rotational U(1) invariance of the
virtual spin-orbit fluctuations in the stable nucleon. This sym-
metry breaking leads to process dependence in the A,-odd
“effective distributions’ generated in the initial state.

ment is a matter involving a factorization prescription [32].
One specific feature that can be extracted from Fig. 2 is the
observation that the role of diquark transverse momentum
in the production of a baryon in the target fragmentation
region is quite similar to the role of quark transverse
momentum in the production of a meson in the current
fragmentation region. For our discussion of baryon polar-
ization asymmetries, we will not be required to explore in
detail factorization prescriptions for all such ky-dependent
observables [33] because the issue is not the precise defi-
nition of the boundaries in Figs. 1 and 2 but the identi-
fication of the nonperturbative dynamics of the
mechanisms that produce such spin asymmetries. Since
the perturbatively calculable hard-scattering process can-
not produce A,-odd asymmetries, the mechanisms can
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transverse
momentcl

FIG. 2. The convolutions in transverse momentum leading to
the transverse momentum of a final-state baryon in the target
fragmentation region is shown in the foreground while those
convolutions leading to the transverse momentum for a quark jet
in the current fragmentation region are shown in the background.
Following the divisions of Fig. 1, we start with the intrinsic
transverse momenta of the diquark (foreground) and quark
(background). These are modified by radiative transverse mo-
mentum generated during the hard-scattering process. In addi-
tion, a component of the transverse momentum of the final-state
baryon is also generated in the fragmentation process. The
momenta of hadrons in the current fragmentation region are
summed to specify the kinematics of the quark jet. Transverse
momenta of central particles are also indicated.

therefore be classified according to whether the nonpertur-
bative A,-odd dynamics appear in the distribution function
of the target or in the fragmentation process.

To discuss these coherent, nonperturbative mechanisms
in the production of polarized baryons, it is convenient to
explore here in more detail the concept of spin-directed
momentum as defined in the introduction. As indicated in
the caption of Fig. 1, we specify that the momentum of the
detected baryon lies in the x-z plane and that the spacelike
momentum transfer, g, of the lepton scattering process
defines the z axis and that the only detected spin observable
is given by the polarization vector, pP= Peé,, that must be
normal to the production plane. The A,-odd scalar, k7,

PHYSICAL REVIEW D 81, 034029 (2010)

defined in Eq. (1.1) can then be written

kry = ky - (6 X @) = kr - (¢, X &) = k,. (2.7)
With these directions specified it follows that the A, sym-
metry projections guarantee that spin density matrices are
diagonal in the j-basis as explained more thoroughly in
Ref. [26]. However the factorization prescription is chosen,
the spin-directed momentum leading to a polarization
asymmetry for the baryon cannot originate in the perturba-
tively calculable hard-scattering process. As described in
the introduction, this follows from the result of Kane,
Pumplin, and Repko (KPR) and is designated KPR facto-
rization in Ref. [26]. In this work we are going to extend,
based on the explicit calculations of Dharmaratna and
Goldstein [34], the concept of KPR factorization to pro-
cesses involving the production of strange quarks. For
fragmentation processes, either the fragmentation of
quarks [9,10] or diquarks [26], KPR factorization is con-
sistent with hard-scattering factorization and the A, -odd
fragmentation functions are process independent [35].
However, for distribution functions such as the Boer-
Mulders function considered here, the virtual spin-orbit
effects in a stable proton possess a rotation U(1) invariance
until a hard scattering occurs. This rotational symmetry
leads to the requirement that initial-state and/or final-state
interactions involving the hard-scattering process play an
essential role in generating the necessary spin-directed
momentum. The initial-state and final-state interactions
necessarily result in process dependence for an A -odd
distribution function. The required process dependence
for the spin-directed momentum is easily found and con-
veniently described in the gauge-link formalism [36]. The
resolution of this process dependence with the intrinsic
spin-orbit dynamics is described in Refs. [11,14,15]. The
result is that hard-scattering kinematics can be used with
the “effective” A -odd distribution functions but the func-
tions themselves involve unavoidable process dependence.
We will show that this feature is also found in the diquark
distribution inferred in the fractured Boer-Mulders effect.
We will return to the issue of whether the orbital distribu-
tions and Boer-Mulders functions are related to an “intrin-
sic” property of the target nucleon in Sec. II. The
fractured Boer-Mulders effect demonstrates how the co-
herent spin-orbit effects and initial-state or final-state in-
teractions combine to produce an asymmetry in pzy for an
effective distribution of {g, g} 1 diquarks. Once such an
asymmetry exists, it can be convoluted with an A, even
fragmentation function for these diquarks to generate a
polarized baryon asymmetry.

With the kinematics specified in Fig. 1, we can then
define the fracture function My, (x, priz, krnéy Q?) for

the production of a polarized baryon and use the fact that
the relevant spin density matrices can be diagonalized in
the y basis to classify the possible sources of a spin-
directed momentum in the production process. We define
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the polarization asymmetry

ANMY

_ g
BT/p_M

Bl/p M

gl /p (2.8)
and invoke the separation implied by KPR factorization to
write

ANM?;T/,,()G P13 % kryéy; QZ)

= Y ANMp () + ZANMBT/{q,q}T:p(H). (2.9)
(9,9) {a.q}

The form of the subscripts in (2.8) can be understood by
specifying that the expression B 1 /(g, q) : p represents the
production of a polarized baryon by an A,-odd fragmenta-
tion process of an unpolarized ensemble of diquarks in the
target fragmentation region while B 1 /{q, ¢} 1: p repre-
sents an A,-odd effective distribution of {g, ¢} T diquarks
in the target remnant system followed by an A,-even
fragmentation of these diquarks into the observed baryons.
The separation given by (2.8) can be clarified by the ob-
servation that the polarization asymmetry is necessarily an
odd function of k7, where

kr=kpyé, = (p'r + O'r + k) (2.10)
and the decomposition of transverse momenta is associated
with the categories 1-3 above. The concept of KPR facto-
rization implies that, in any factorization prescription, the
Q/T appearing in (2.9) is an even function of Q7y. The two
remaining possibilities for a spin-directed momentum in-
volve convolutions over the “internal” transverse varia-
bles, p';. E’T, that are either

() evenin p'; - &, = p'yyandoddink'y - &, = k';y or
(II) odd in p'; - &, = p'yy andevenin K'y - 2, = k7.

The two allowed possibilities are indicated schematically
in Fig. 3. The first possibility is associated with the polar-
izing fracture(d) functions discussed in Ref. [26]. The
second distinguishes the fractured Boer-Mulders functions
considered here. Because the fractured Boer-Mulders ef-
fect involves a soft, coherent spin-directed momentum in
an effective distribution of an unpolarized ensemble of
protons we can associate the spin orientation it describes
with a density matrix for the ensemble of {¢, g} 1, J* = 17
diquarks in the target remnant system.

Itis important to keep in mind that the specification of an
A,-odd effective distribution necessarily depends on the
existence of initial-state and/or final-state interactions in-
volving the scattering process to break the U(1) symmetry
of the spin-directed momentum in a spin-orbit state of a
stable composite system. For the fractured Boer-Mulders
function, we will see that this breaking of the rotational
symmetry is necessarily determined by the geometry of the
hard scattering of a quark bound to the diquark in a system
where both are orbiting. The interactions resulting from the
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Spin-Oriented Momerntum

AT

£ o
!
\

Y

¢

~

AT

Fractured

Polarizing
Roer- Mulders

Fractured functidn

Aq cdd in A100dd'-:r
cistribution fragmentation

FIG. 3. Based on the arguments in the text, the possibilities for
producing an A,-odd spin-directed momentum leading to a
polarization asymmetry in baryon production are shown in
separate diagrams. The fractured Boer-Mulders effect has
A,-odd dynamics associated with the distribution function while
the polarizing fractured effect generates A,-odd momentum
transfer in the fragmentation process.

oriented force between the scattered quark and the {g, g} 1
system lead to a correlation between the transverse mo-
mentum asymmetry of the scattered quark and that of the
remnant diquark in a given event of the form

Sp’iTN(diquark) = —(cosO;(x;, .. .))5piTN(quark)

()

with ©; a small angle determined by the soft dynamics.
Based on (2.11) we can see that an A, -odd dynamic effect
involving the axial-vector diquark also generates an asym-
metry for the scattered quark. This kinematic correlation
has the important consequence that it allows the detection
of an A, -odd quark momentum distribution in the current
fragmentation region to select for an A, -odd diquark mo-
mentum distribution in the target fragmentation region.
The connection specified in (2.11) allows for the kinematic
distinction between the polarizing fracture(d) functions,
ANMZT/(q’q):p(x, p2: 7, kry; Q2), where the A -odd dynam-
ics occur in the fragmentation process, from the fractured
Boer-Mulders ANMgT/{q,q}T:p(X, PIN:Z DT °

/ET; 0?), where the A,-odd dynamics can be absorbed into

@2.11)

functions
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SIDIS

Three Planes

B
“2“(5%
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FIG. 4. The kinematic separation of the fractured Boer-
Mulders functions and the polarizing fractured functions in
SIDIS involved weighting experimental events by the angles
defining the orientation of the planes shown in this drawing. All
three planes share the same positive Z-axis that is defined to align
with the spacelike momentum transfer 0 of the hard-scattering
process. The angles between the positive X-axes for the planes
are defined to be ¢z, ¢y, dyp With ¢y = ¢y, + dyp. The
polarization asymmetry for the produced baryon must be an odd
function of ¢ 3. The fractured Boer-Mulders effect producing
the asymmetry is odd in ¢, and even in ¢,z while the polar-
izing fractured effect is even in ¢;, and odd in ¢ .

an effective distribution. The selection is illustrated for the
case of semi-inclusive deep-inelastic lepton scattering in
Fig. 4. The selection is possible because weighting events
according to the orientation of the 3 different planes shown
in this figure can distinguish whether the A -odd dynamics
responsible for the polarization asymmetry occur in the
fragmentation process, as in case I above, or in the target
distribution, given by case II above. A similar selection can
be performed in the case of associated baryon production
in the Drell-Yan process. The possibility for this type of
kinematic separation is important experimentally because
the dynamics of spin-orbit effects in fragmentation are
factorizable while in the effective distributions they are
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process dependent. Using the information described in
Fig. 4 it is possible to explore spin-orbit dynamics in
distributions in a systematic manner. We will return to a
discussion of the mechanisms responsible for the genera-
tion of kry-asymmetries in Sec. IV with an illustration of
the fractured Boer-Mulders effect for polarized = 1 /A 1
production. At this point, it is appropriate to consider
conjectured relationship between initial-state and final-
state interactions in the Boer-Mulders functions and those
in orbital distributions.

III. THE PARALLELISM CONJECTURE FOR
BOER-MULDERS FUNCTIONS AND ORBITAL
DISTRIBUTIONS

The parallelism conjecture for Boer-Mulders functions
and orbital distributions was discussed in Ref. [15] in the
context of the Georgi-Manohar [37] chiral quark model for
spin-orbit dynamics in the proton. The most straightfor-
ward way to present the conjecture is this:

Conjecture.—The ratio of the Boer-Mulders function to
the corresponding orbital distribution function is process
independent.

In terms of the nomenclature of Table I, the conjecture
can be written

ANGqT/p(x: Prns Qz) _
ANGq/pT(x’ P1N> QZ)

r(x, pry: Q%): process independent.

(3.1

This conjecture embodies the idea that the initial-state and/
or final-state interactions involved in the specification of
the two A,-odd distribution functions should cancel when
the ratio is taken. If this connection can be established
experimentally, it would indicate that both of these func-
tions describe an intrinsic property of the proton even
though each of them vanishes in the absence of initial-state
or final-state interactions because of the underlying U(1)
symmetry of the stable nucleon distributions.

For processes in the current fragmentation region the
conjecture is of limited phenomenological value because,
in the absence of final states with measurable polarization
asymmetries, it is difficult to test experimentally. For ex-
ample, the Boer-Mulders effect leads to a transverse po-
larization asymmetry, P, in the production of vector
mesons (p1, w1, K*1, ¢ 1) in the current fragmentation
region of hard processes while the orbital effect leads to
target spin asymmetries, Ay, for the same vector mesons.
Because the vector mesons decay by strong interactions,
the ratio r,(x, pry, Q*) = PP /A,” givenin (3.1) cannot be
measured effectively and the presence of the Boer-Mulders
effect in the current fragmentation region must be inferred
from cos2¢ correlations in the production of mesons from
unpolarized targets. However, the parallelism conjecture
extends in a natural manner to the ratio of fractured func-
tions,

034029-8



FRACTURED BOER-MULDERS EFFECT IN THE ...
N
A MAT/{q,q}T:p —

N g4
A MA/(q,q):pT

ra(x, prys 2 kr - pr; O%):

process independent, (3.2)

that can be tested systematically since it possible to mea-
sure both target spin asymmetries and polarization asym-
metries for the production of hyperons with parallel
experimental situations. A measurement of process inde-
pendence of the ratio, ra(x, pra;z, kp - pr; Q%) =
PA/AM given in (3.2) would then provide support for
the application of the same ratio for the more familiar
functions given by (3.1).

The original conjecture given in (3.1) is suggested by an
examination of Wilson operators involved in the measure-
ment of the two distributions and also implies relationships
between the twist-3 mechanisms leading to the related
asymmetries in the limit of collinear factorization. It also
predicts a change in sign for the Boer-Mulders function
measured in the Drell-Yan process compared to that mea-
sured in SIDIS. The opportunities for checking the original
conjecture are, however, limited. By contrast, the form of
the conjecture given in (3.2) provides the basis for a
systematic experimental program. Comparisons of target
spin asymmetries with polarization asymmetries for hy-
peron production processes can be performed over a large
range of kinematic variables with little experimental bias.
In this context, we will now turn to a more thorough
discussion of polarization asymmetries in the production
of A’s and 3’s.

IV. THE PRODUCTION OF POLARIZED A’S AND
3’S

: N4
The fractured Boer-Mulders functions, A"Mp, (. . (X,

prniz Pr - kps %), can contribute to the polarization
asymmetry of any baryon produced in the target fragmen-
tation region of a hard process. As mentioned in the
introduction, polarization asymmetries for hyperons have
played a significant role in the history of spin physics
because the weak decay of a hyperon allows direct access
to information on its polarization. There exists a very large
amount of data [1,2,28] on the polarization of hyperons in
inclusive hadron-hadron and hadron-nucleus collisions. In
this section, however, we are going to compare the pro-
duction of polarized A’s with the production of polarized
3’s in the target fragmentation region of semi-inclusive
deep-inelastic lepton scattering, SIDIS, in order to illus-
trate the basic components of the fractured Boer-Mulders
mechanism. We will see that the symmetry properties of
axial-vector diquarks lead to distinctly different predic-
tions for the production of A 1’s and X 1’s by this mecha-
nism. Simple kinematic arguments allow the sign of the
fractured Boer-Mulders effect to be determined for these
particles. The same arguments also indicate that the sign of
the polarization changes for the fractured Boer-Mulders
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effect for hyperon production in SIDIS and associated
production in the Drell-Yan process.

We can start this discussion by considering briefly the
type of processes that can generate orbital angular momen-
tum for diquarks within a stable nucleon. A natural initial
approach to this question involves virtual transitions of the
form

Ni— Nl m[L=+1] Ni—=@ATx)[L=—1]

4.1)
and

Nl—-N'Tm[L=~-1] Nl=@l7x[L=+1]

4.2)

involving pionic fluctuations along with the transitions
involving virtual kaons,

N1—=EIK[L=+1] Ni—=E"1KI[L=-1]

4.3)
and

Nl=ETKIL=~-1] NIl=E" KL =+1]

4.4)

where we have assumed a broken SU(3) of flavor for baron
structure. We only consider virtual processes involving
nonzero orbital angular momentum, and, those virtual
fluctuations in (4.1), (4.2), (4.3), and (4.4) that involve
scalar diquarks are of no interest to us at this time since
they do not contribute to fractured Boer-Mulders but only
to fractured orbital distributions. However, let us examine a
composite system of this type that contains an axial-vector
diquark, {g, g} 1, and consider the correlation between
orbital angular momentum and the spin orientation of the
diquark. It is clear that all the fluctuations (4.1), (4.2), (4.3),
and (4.4) lead to the correlation

4.5)

independent of the initial spin of the stable nucleon. This
strong correlation results from the overall conservation of
angular momentum within the virtual transitions. The in-
ternal orbital angular momentum generated from such
virtual processes is shared by all of the constituents in
the strongly interacting system. However, only particular
dynamical configurations can generate a spin-directed mo-
mentum transfer associated with the orientation of diquark
spin. The sketch shown in Fig. 5 illustrates an example of
this type of configuration. This drawing indicates a pos-
sible virtual configuration of a nucleon involving a {g, ¢} 1
diquark with Jy, - &, = +1 and L-é, = —1. In this
drawing the external shell represents the superposition of
densities for the rotating pion cloud while the directed
force between the orbiting quark and diquark is indicated
by a corotating chromoelectric flux tube. This quantum
system displays a U(1) rotational invariance around the
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Spin - Orbit
Dgnamics

FIG. 5. This sketch indicates geometric correlations in a vir-
tual fluctuation of a nucleon into an L, = —1 quark-diquark and
pion configuration. The rotating pion cloud involves a toroidal
color-singlet flux and the superposition of pionic densities is
indicated schematically in the figure as an external shell. The
directed force between the orbiting quark and diquark is shown
by a corotating chromoelectric flux tube.

$-axis, the orientation of the {g, ¢} 1 spin. This rotational
symmetry is necessarily broken by the hard scattering of a
lepton from the quark bound to the polarized diquark
within the virtual configuration. Because the scattered
quark shares in the orbital angular momentum of the 7 ®
{q, g} ® g configuration, the hard scattering process at
fixed Bjorken x preferentially occurs in the specific geo-
metrical configuration in which the quark is moving toward
the incoming lepton. The oriented force between the scat-
tered quark and the polarized diquark then generates the
spin-oriented momentum transfer, 6 pry, that determines
the fractured Boer-Mulders effect as indicated in (2.11). A
short “story board” of the scattering process that indicates
the mechanisms involved in the generation of a transverse
momentum asymmetry for a produced baryon is shown in
two sketches of Fig. 6 indicating the role of the oriented
confining force of the composite system in producing a
polarization asymmetry.

This example shows that the sign of the fractured Boer-
Mulders effect in SIDIS is determined by arguments simi-
lar to those applied by Burkardt [37] to determine the sign

PHYSICAL REVIEW D 81, 034029 (2010)

SIDIS

spin-directed
force

FIG. 6. Drawings suggesting the origin of spin-directed mo-
mentum in the fractured Boer-Mulders effect for SIDIS are
shown in these two sketches. At fixed Bjorken x, lepton quark
scattering occurs preferentially from a quark rotating foward the
incoming lepton. This situation is indicated for an L, = —1
virtual 7 ® {q, ¢} 1 ®¢ configuration in the top panel. The bot-
tom panel shows the confining force (indicated by a corotating
flux tube) producing a negative dp’;y for the localized axial-
vector diquark and a positive d pyy for the scattered quark.

of the spin-dependent force leading to orbital distributions.
Further discussion concerning oriented forces leading to
single-spin asymmetries can be found in Ref. [11]. Using
the convention, discussed in Ref. [26], that chooses the

positive Z-axis to be along the 3-vector Q defined by the
hard scattering process, the polarization asymmetry is then
negative for all baryons produced by the fractured Boer-
Mulders effect.

Although the expectation value for the spin-directed
momentum transfer, (6 pyy), can be estimated from geo-
metrical considerations, the magnitude of the asymmetry
for any specific baryon involves assumptions about the
final-state interactions that require model-dependent cal-
culations with ill-determined parameters. However, simple
isospin arguments allow for a discussion of the relative
magnitude of the fractured Boer-Mulders effect for A 1 and
3, 1 production. Consider the flavor content of the {g, ¢} 1
diquarks generated in a nucleon target by the virtual pionic
processes (4.1) and (4.2). The resulting diquarks must be
from the isospin triplet

{wupt  Audi?

{d,. d}1. (4.6)
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Such diquark configurations cannot combine with an s
quark generated during color fragmentation processes to
produce a polarized A 1. They can only combine with a
strange quark to form an / = 1 state, % 1, or 2* 1. The
production of a polarized AT in the fractured Boer-
Mulders mechanism must involve the isospin doublet of
diquarks

{usyt s di1

generated by the virtual fluctuations (4.3) and (4.4). When
these diquarks join with u or d quarks during the fragmen-
tation process they must form an equal mixture of / = 0
A Tand I =1 X 1 baryon states. The assumption that it is
more probable to generate a strange quark in the fragmen-
tation of a hard-scattering event than in the virtual transi-
tions of a stable nucleon then leads to the ordering

4.7

q q q q
({Z}AM 21/{q,q}1:p)/ My < ({Z}AM AT/{q,q}T:p)/ Myyp=0.
9.9 9.9

(4.8)

As discussed in Sec. II, the fractured Boer-Mulders func-
tions and the polarizing fractured functions for baryons can
be separately measured both in SIDIS and in associated
production in the Drell-Yan process. Because this kine-
matic isolation is possible, it is of direct experimental
interest to consider whether the fractured Boer-Mulders
effect changes sign between the two processes in the
manner of the Collins conjugation effect [29] predicted
for orbital distributions. Simple arguments concerning the
sign of the initial-state directed forces appropriate for
baryon production in the Drell-Yan process sketched in
Fig. 7 suggest strongly that the sign change occurs. The
simple graphs shown in Fig. 8 then give a summary of the
predictions for polarization asymmetries for A T produc-
tion and for 2 T production both for the polarizing frac-
tured functions of Ref. [26] and for the fractured Boer-
Mulders effect as shown in (4.8) above. Experimental
support for the pattern of polarization asymmetries indi-
cated in Fig. 8 would help validate the connection between
baryon polarization asymmetries [1,2,28] and the target
spin asymmetries for meson production [16-20] discussed
in the introduction. The change in sign between Drell-Yan
and SIDIS for these processes can be measured without the
necessity of using polarized beams or polarized targets.

As indicated in (1.2) and (1.3) of the introduction, the
experimental evidence for a mechanism leading to polar-
ization in hyperon production that is not associated with
the fragmentation process already exists from data on
hadron-hadron collisions. If only fragmentation dynamics
are considered, the flavor isospin of QCD combined with
the factorization of A,-odd effects in fragmentation func-
tions cleanly predicts [26]

P(pN — A, 1X) = =3P(pN — 3,1X)  (49)

PHYSICAL REVIEW D 81, 034029 (2010)

Associated Dredl-Yan

9

annihifation

FIG. 7. In the fractured Boer-Mulders effect for the associated
production of baryons in the Drell-Yan process, the quark-
antiquark annihilation preferentially occurs when the quark in
the target nucleon is rotating foward the incoming beam. The
annihilation releases energy from the confining flux resulting in
the recoil of the polarized axial-vector diquark with positive
dp'yy while the produced lepton pair exhibits negative 9 pry.

and this ratio of polarizations is strongly contradicted by
experimental results [28]. Previous efforts to find phe-
nomenological explanations for hyperon polarization ef-
fects [38,39], have not been able to explain this
contradiction. The fractured Boer-Mulders effect consid-
ered here is the only theoretical mechanism for hyperon
polarization in the target fragmentation region of hard
processes that can explain the violation of the prediction
(4.9) while being consistent with KPR factorization [26]
and the results of Dharmarata and Goldstein [34]. The need
for a theoretical connection between the mechanisms lead-
ing to polarization asymmetries in hyperon production and
the mechanisms known to produce transverse target spin
asymmetries in the current fragmentation region has re-
cently been expressed by Aidala [40]. In [26] it was
suggested that measurements of the polarizing fracture(d)
functions can clarify and enhance the understanding of
Collins functions. Here, we argue that measurements of
the fractured Boer-Mulders functions can provide new in-
sight into orbital distributions as well.
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FIG. 8. Graphs comparing the predictions for polarization
asymmetries of A, T and 3, 1 produced in SIDIS and in asso-
ciated Drell-Yan are shown for discussion. The polarizing frac-
ture functions (top panels) factorize in the two processes. The
ratio P(A, 1)/P(2,1) = —3 results from isospin Clebsch-
Gordon coefficients in the fragmentation process. The fractured
Boer-Mulders functions are negative in SIDIS and positive in
Drell-Yan for both hyperons. In each case the magnitude is
greater for 2, 1 than for A, 1 because of the contribution of I =
1 axial-vector diquarks.

L]

V. COMPARING POLARIZATION ASYMMETRIES
AND TARGET SPIN ASYMMETRIES FOR BARYON
PRODUCTION

Arguments concerning the origin of A.-odd spin-
directed momenta have previously been presented [15]
that imply a close connection between those mechanisms
within nonperturbative QCD leading to Collins functions
and those leading to Boer-Mulders distributions and orbital
distributions. Although the reasoning involved in these
arguments is comparatively straightforward the existence
of this important connection remains controversial and
requires experimental support before it can be accepted.
Experimental measurements of baryon spin asymmetries
in the target fragmentation region of hard-scattering pro-
cesses can, in principle, provide a set of thorough and
systematic tests of the interpretation of single-spin asym-
metries in terms of the spin-orbit dynamics of QCD con-
stituents that underlies the reasoning of Ref. [15]. Such
experimental tests are not easy. Detector coverage sensitive
to both the current fragmentation region and the target
fragmentation region is required to separate A.-odd
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mechanisms involving the fragmentation process from
A,-odd mechanisms associated with target distribution
functions. Achieving this type of coverage in fixed target
experiments can be a challenge and the study of baryon
production asymmetries in such processes may best be
suited to experiments at lepton hadron colliders.

Considering the target fragmentation region can aug-
ment our knowledge of nonperturbative dynamics because
the interpretation of single-spin asymmetries in terms of
the orbital angular momentum of SU(3) color constituents
requires nontrivial internal correlations reflecting the con-
finement of the orbiting particles. In the fractured Boer-
Mulders function, ANMgT/{q,q}T:p(X, PrNs % DT kr: 0%),
the confining chromodynamic force between an orbiting
quark and diquark can, upon the hard scattering of the
quark, produce an asymmetry in the transverse momentum
of the attached axial-vector diquark that is associated with
the orientation of the diquark’s spin. These correlations are
a consequence of the observation that orbital angular mo-
mentum within a confined composite system cannot be
isolated onto an individual particle. In the drawings of
Figs. 5 and 6, these correlations are indicated schemati-
cally by corotating “flux tubes.” The sketches of flux tubes
represent the localization of the inward-directed color
electric force connecting the quark and diquark. This sim-
ple pictorial representation of the full correlation may be
inadequate or incomplete. However, the consideration of a
confining force, as discussed in Sec. IV, does provide test-
able predictions for the relative magnitude of the polar-
izations of A 1 and 2 1 associated with the fractured Boer-
Mulders effect as well as a specific prediction for the sign
of the polarization asymmetries in both SIDIS and in the
associated production in the Drell-Yan process. When
combined with the predictions for the polarizing
fracture(d) functions given in Ref. [26] we have found a
comprehensive approach to baryon polarization asymme-
tries that both completes and enhances our understanding
of other inclusive single-spin asymmetries.

Target spin asymmetries for the production of baryons in
the target fragmentation region involve closely related
dynamical mechanisms but do not rely on the parity-odd
decay of hyperons to be experimentally observable.
Therefore, there are many more processes that can be
studied to provide important information about the flavor
dependence of internal structure in hadrons. The fractured
Collins-Heppelman functions, AN Mg /{q,q}T:pT(x’ pTZ; Z
kry: Q%), can provide direct information concerning
“transversity’-type effective diquark distribution func-
tions. Such functions could not exist if diquarks, like
gluons, were fundamental spin-1 constituents with negli-
gible masses but represent allowed internal correlations in
a multiparticle composite system. In contrast, the fractured

orbital distributions, ANMg/(q,q):pT(x, PrNs 2 Pr - ks O),

are sensitive to the orbital dynamics involving both scalar
diquarks, [g, g], as well as the spin-averaged contribution
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of axial-vector diquarks, {g, ¢} 1. The separation of these
two components of the nucleon structure in the production
of different baryons in SIDIS follows arguments similar to
those presented here. A further paper on target spin asym-
metries for baryon production building on these ideas is
currently in preparation.
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