
QED contribution to the color-singlet J=c production in � decay near the endpoint

Xiaohui Liu

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
(Received 4 December 2009; published 19 February 2010)

A recent study indicates that the �2�2
s order QED processes of � ! J=c þ X decay are compatible

with those of QCD processes. However, in the endpoint region, the nonrelativistic QED calculation breaks

down since the collinear degrees of freedom are missing under the framework of this effective theory. In

this paper we apply the soft-collinear effective theory (SCET) to study the color-singlet QED process at

the kinematic limit. Within this approach we are able to sum the kinematic logarithms by running

operators using the renormalization group equations of soft-collinear effective theory, which will lead to a

dramatic change in the momentum distribution near the endpoint and the spectrum shape consistent with

the experimental results.
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I. INTRODUCTION

During the past 15 years, the interactions of nonrelativ-
istic heavy quarks inside quarkonium have been under-
stood to some extent using the framework of
nonrelativistic effective theories [1,2]. These theories re-
produce the physics of full QCD or QED by adding local
interactions that systematically incorporate relativistic cor-
rections through any given order in the heavy quark veloc-
ity v. They provide generalized factorization theorems that
include nonperturbative corrections to the color-singlet
model, including color-octet decay mechanisms. All infra-
red divergences can be factored into nonperturbative ma-
trix elements, so that infrared safe calculations of inclusive
decay rates are possible [3]. These nonrelativistic effective
theories solve some important phenomenological problems
in quarkonium physics. For instance, they provide the most
convincing explanation to the surplus J=c and c 0 produc-
tion at the Tevatron [4], in which a gluon fragments into a
color-octet c �c pair in a pointlike color-octet S-wave state
which evolves nonperturbatively into the charmonium
states plus light hadrons. The factorization formalism
allows these fragmentation procedures to be factored into
the product of short distance coefficients and long
distance matrix elements among which the leading one is
hO8

c ðc 0Þ½3S1�i where O8
c ðc 0Þ are local four-fermion opera-

tors in terms of the nonrelativistic fields.
There are, however, some problems that remain to be

solved. One challenging problem is with the polarization of
J=c at the Tevatron. The same mechanism that produces
the J=c described above predicts the J=c should become
transversely polarized as the transverse momentum p?
becomes much larger than 2mc [5]. Though the theoretical
prediction is consistent with the experimental data at in-
termediate p?, at the largest measured values of p? the
J=c is observed to be slightly longitudinally polarized and
discrepancies at the 3� level are seen in both prompt J=c
and c 0 polarization measurements [6].

A new problem arose as a result of measurements of the
spectrum of J=c produced in the �ð1SÞ decay by the
CLEO III detector at the Cornell Electron Storage Ring
(CESR) [7]. Nonrelativistic QCD (NRQCD) calculations
have been made for the production of J=c through both
color-singlet and color-octet configurations [8,9].
Theoretical calculations predict that the color-singlet pro-
cess �ð1SÞ ! J=c c �cgþ X features a soft momentum
spectrum. Meanwhile, the theoretical estimates based on
color-octet contributions indicate that the momentum spec-
trum peaks near the kinematic endpoint [9]. In contrast to
the theoretical predictions, the experimentally measured
momentum spectrum is significantly softer than predicted
by the color-octet model and somewhat softer than the
color-singlet case [7].
A more detailed study on the color-singlet contribution

to this process has been presented recently [10]. It was
found that the contribution of the color-singlet QED pro-
cess is comparable with the QCD process. Nonrelativistic
QED (NRQED) calculations indicate that the QED process
will give a large contribution to the spectrum near the
endpoint that is not observed in the data. This contribution
results from the J=c being produced back-to-back with a
pair of gluons forming a low-mass jet. However, in this
region of phase space, the NRQED calculation breaks
down, since it does not contain the correct degrees of
freedom. NRQED contains soft quarks, photons, and glu-
ons, but it does not contain quarks and gluons moving
collinearly. The correct effective theory to use in situations
where there is both soft and collinear physics is soft-
collinear effective theory (SCET) [11–14].
A similar situation happens when studying eþe� !

J=c þ X. The combination of SCET and NRQCD has
been successful in reproducing the shape of the measured
J=c momentum spectrum in eþe� ! J=c þ X [15].
SCET has the power to describe the endpoint regime by
including the light energetic degrees of freedom. In addi-
tion, the renormalization group equations of SCET can be
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used to resum large perturbative logarithmatic corrections.
The nonperturbative NRQCD martix elements arise natu-
rally in deriving the factorization theorem using SCET.

In this paper, we use SCET to study the color-singlet
contribution to the � ! J=c þ X decay near the endpoint
via a virtual photon. We derive the factorization theorem in
SCET for this process. We find that the spectrum is softer
than the tree order prediction of NRQED when including
perturbative and nonperturbative corrections near the end-
point, giving better agreement with the data than the pre-
vious predictions.

II. MATCHING AND FACTORIZATION

In this section, we derive the SCET factorization theo-
rem for the color-singlet contribution to� ! J=c þ X via
a virtual photon near the endpoint. This factorization for-
mula is crucial since the NRQED does not properly include
the relevant collinear degrees of freedom and thus breaks
down in this regime. This can be understood by analyzing
the kinematics near the endpoint. In the center-of-mass
frame, we have

p�
� ¼ M�

2
n� þM�

2
�n� þ k��;

p
�
c ¼ M2

c

2zM�

n� þ zM�

2
�n� þ k

�
c ;

p
�
X ¼ M�

2

��
1� r

z

�
n� þ ð1� zÞ �n�

�
þ k

�
X :

(1)

Here n ¼ ð1; 0; 0; 1Þ and �n ¼ ð1; 0; 0;�1Þ, we have defined
z ¼ ðEc þ pc Þ=M� and r ¼ m2

c=m
2
b. We also assumed

thatMc ¼ 2mc andM� ¼ 2mb. k
�
� and k

�
c are the residual

momentum of the Q �Q pair inside the � and J=c respec-
tively. Near the kinematic endpoint, the variable z ! 1 and
thus the jet invariant mass approaches zero. In NRQED, an
expansion of k�=mX is performed and hence the jet mode
is integrated out, which is only valid when the jet mass is
large compare to the residual momentum. The invariant
mass of the jet is large away from the endpoint. As z ! 1,
the jet becomes energetic, with small invariant mass.
Hence we must keep k�=mX to all orders. As a result, the
standard NRQED factorization breaks down at the end-
point. SCET is the appropriate framework for properly
including the collinear modes needed in the endpoint in
order to make reasonable predictions.

To derive the factorization theorem in SCET, we start
with the optical theorem in which the decay rate is written
as

2Ec

d�

d3pc

¼ 1

32�3mb

X
X

Z
d4ye�iq�yh�jOyðyÞjJ=c þ Xi

� hJ=c þ XjOð0Þj�i; (2)

where the summation includes integration over the X phase
space, which includes both the ultrasoft (usoft) Xu and
collinear Xc sectors. The SCET operator O is of the form

O ¼ X
!

e�iðM�vþ �P ðn=2ÞÞ�yCð�;!Þ�����J ��ð!ÞO�
J=cO

�
�;

(3)

where the Wilson coefficient Cð�;!Þ is obtained by
matching from QCD to SCET at some hard scale � ¼
�H. The operator is constrained by the gauge invariance. In
our case, to leading order we have

J ��ð!Þ ¼ Tr½B�
?!1

B�
?!2

�; (4)

O �
J=c ¼ c y

�c ð�1 � �Þ��c; (5)

O �
� ¼ �y

�b
ð�2 � �Þ�c b: (6)

Here the �’s boost the J=c or � from the center-of-mass
frame to an arbitrary frame. c and � are the heavy quark
and antiquark fields which create or annihilate the con-
stituent heavy (anti)quarks inside the quarkonia. The col-
linear gauge invariant field strength B�

? is built out of the

collinear gauge field A�
n;q

B�
? ¼ �i

gs
Wy

n ðP�
? þ gsðA�

n;qÞ?ÞWn; (7)

where

Wn ¼
X
perms

exp

�
�gs

1
�P
�n � An;q

�
(8)

is the collinear Wilson line. The operator P is used to
project out the large momentum label [13].
The hard coefficient containing the spin structure is

obtained by matching the Feynman diagrams shown in
Fig. 1, which gives

����� ¼ i
32�2

2Nc

eceb��s

mcmb

g?��g
?
��; (9)

where g?�� ¼ g�� � ðn� �n� þ n� �n�Þ=2. We have chosen

the hard coefficient so that the Wilson coefficient
Cð�;!Þ is 1 at the hard scale �H.
Inserting the operator in Eq. (3) into Eq. (2),OyðyÞ picks

an additional phase, and the differential rate becomes

FIG. 1. Diagrams for the QED contribution to the color-singlet
J=c production via � decay at order �2�2

s .
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2Ec

d�

d3pc

¼ 1

32�3mb

X
X

X
!!0

Cyð�;!ÞCð�;!0Þ
Z

d4ye�iM�=2ð1�zÞ �n�y�y
������0�0�0�0 h�jJ ��y

! O�y
J=cO

�y
� ðyÞjJ=c þ Xi

� hJ=c þ XjJ �0�0
!0 O�0

J=cO
�0
� ð0Þj�i

� X
!!0

Cyð�;!ÞCð�;!0Þ�y
������0�0�0�0A����;�0�0�0�0

!!0 : (10)

In the exponent of Eq. (10), we have used q� �M�v
� þ �Pn�=2 � M�=2ð1� zÞ �n�. Furthermore, we can decouple the

usoft modes from the collinear degrees of freedom using the field redefinition [14]

A
�
n;q ¼ YA

ð0Þ�
n;q Yy: (11)

The fields with the superscript (0) do not interact with usoft degrees of freedom. In the color-singlet contribution the usoft
Wilson lines Y cancel since YyY ¼ 1. The � and the J=c states contain no collinear quanta, so we can write

A����;�0�0�0�0
!!0 ¼ 1

32�3mb

Z
d4ye�iM�=2ð1�zÞ �n�yh�jO�y

J=cO
�y
� ðyÞayc acO

�0
J=cO

�0
� ð0Þj�ih0jJ ��y

! ðyÞJ �0�0
!0 ð0Þj0i: (12)

Here we defined an interpolating field ac for the J=c and used the completeness of states in the usoft and collinear fields

X
Xu

jJ=c þ XuihJ=c þ Xuj ¼ jJ=c ihJ=c j � ayc ac ; (13)

X
Xc

jXcihXcj ¼ 1: (14)

The � is a very compact bound state, due to the large b-quark mass. In a multipole expansion, long wavelength gluons
interact with the � color charge distribution through its color dipole moment since the state itself is color neutral. In the
theoretical limit of very heavy bottom quark, this coupling to the dipole vanishes [16]. Therefore we are able to write

A ����;�0�0�0�0
!!0 ¼ 1

32�3mb

Z
d4ye�iM�=2ð1�zÞ �n�yh�jO�y

� ðyÞO�0
� ð0Þj�ih0jO�y

J=c ðyÞayc acO
�0
J=c ð0Þj0ih0jJ ��y

! ðyÞJ �0�0
!0 ð0Þj0i:

(15)

To proceed, we introduce the shape function for J=c

Sc ðlþÞ ¼
Z dy�

4�
e�ði=2Þlþy� h0j½�

y
�c�ic cðy�Þaycac c

y
c�i� �c�j0i

4mchO1
c ½3S1�i

; (16)

as well as the shape function for �

S�ðlþÞ ¼
Z dy�

4�
e�ði=2Þlþy� h�j�y

�b
�ic bðy�Þc y

b�i� �bj�i
4mbh�jO1

�½3S1�j�i : (17)

Both shape functions are normalized so that
R
dlþSc ;�ðlþÞ ¼ 1. The color-singlet shape functions can be related simply to

the color-singlet NRQCD matrix elements [17],

h�y�ic�ðin � @� kþÞc y�i�i ¼ �ðkþÞh�y�ic c y�i�i; (18)

which amounts to a shift from the partonic to hadronic endpoint.
In addition a jet function J!ðkþÞ is defined as

h0jTr½B?
�B

?
� �ðyÞTr½B?

�0B?
�0 �ð0Þj0i ¼ i

N2
c � 1

2
ðg��0g��0 þ g��0g��0 Þ�!!0

Z dkþ

2�
�ð2Þðy?Þ�ðyþÞe�ði=2Þkþy�J!ðkþÞ: (19)
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The leading-order result for the collinear jet function is
[18]

J!ðkþÞ ¼ 1

8�
�ðkþÞ

Z 1

0
d	�	;ðM�þ!Þ=ð2M�Þ: (20)

Using the spin symmetry relation [19]

��
i �

�0
j h. . .�i . . .�j . . .i ¼ 1

3
�ij��

i �
�0
j h. . .�k . . .�k . . .i;

(21)

and applying the identity �ij��
i �

�0
j ¼ ðv�v�0 � g��

0 Þ,
where v� is the four-velocity of the � or J=c , we can
write the decay rate as

d�

dpc
¼ �0P½x; r�

Z 1

�1

d	

2
jCðM�	;�Þj2�ðM� � 2EXÞ;

(22)

in which

�0 ¼ 4�

9

N2
c � 1

N2
c

e2be
2
c�

2�2
s

m3
bm

3
c

ð1� rÞ2
1þ r

h�jO1
�½3S1�j�i

� hO1
c ½3S1�i; (23)

and P½x; r� ¼ ðx2 � 4rÞð1þ rÞ=ðxð1� rÞ2Þ. Near the end-
point, P½x; r� ! 1. The variable x is defined as x ¼
Ec =mb. It is straight forward to check that to the leading
order the differential decay rate reproduces the NRQED
calculation [10].

III. RESUMMING SUDAKOV LOGARITHMS AND
PHENOMENOLOGY

SCET has the power to sum logarithms using the renor-
malization group equations (RGEs). Large logarithms arise
naturally in the processes involving several well-separated
scales and will cause the perturbative expansion breaking
down. By matching onto an effective theory, the large scale
is removed and replaced by a running scale �. After
matching at the high scale, the operators are run to the
low scale using the RGEs. This sums all large logarithms
into an overall factor, and any logarithms that arise in the
perturbative expansion of the effective theory are of order
one.

In the previous section, we have matched onto the SCET
color-singlet operator, by integrating out the large scale
�H, replacing it with a running scale �. We now run the
operator from the hard scale to the collinear scale, which
sums all logarithms. The counterterm as well as the anoma-
lous dimension used for running the operator in the RGEs
have already been calculated in Ref. [18], and we can lift
the results from that paper. The result for the resummed
differential decay rate is given by

1

�0

d�resum

dpc

¼ P½x; r��ðM� � 2EXÞ
Z

d


�
�sð�cÞ
�sð�HÞ

�
2�ð
Þ

;

(24)

where � is defined as

� � 2

�0

�
CA

�
11

6
þ ð
2 þ ð1� 
Þ2Þ

�
�

1

1� 

ln
þ 1



lnð1� 
Þ

��
� nf

3

�
: (25)

To sum the large logarithms, the collinear scale �2
c is

chosen to be approximately m2
X and the hard scale is set

to be �H ¼ 2mc, in same way as in Ref. [10].
The result from Eq. (24) sums up the leading logarithmic

corrections which are important only near the endpoint.
Away from the endpoint, the logarithms that we have
summed are not important and contributions that we ne-
glected in the endpoint become dominant. We therefore
would like to interpolate between the leading-order
NRQED color-singlet calculation away from the endpoint
and the resummed result in the endpoint. To do this, we
define the interpolated differential rate as

1

�0

d�

dpc

¼
�
1

�0

d�dir
LO

dpc

� P½x; r�
�
þ 1

�0

d�resum

dpc

: (26)

The first term in parentheses vanishes when approaching
the kinematic limit, leaving only the resummed contribu-
tion in that region. Away from the endpoint the resummed
contribution combines with the �P½x; r� to give higher
order corrections in �sð�HÞ to the spectrum.
In Fig. 2, we compare the resummed, interpolated decay

rate, Eq. (26), to the leading-order color-singlet result [10].
We usemc ¼ 1:548 GeV andmb ¼ 4:73 GeV.�QCD is set

to 0.21 GeV so that �sð2mcÞ ¼ 0:259. In our figure, the

FIG. 2 (color online). The decay rate 1=�0d�=dpc via QED
process. The dashed curve is the tree level direct rate [10]. The
solid line presents the interpolated resummed direct rate. The
shaded band is obtained by varying the collinear scale from
�c ¼ mX=

ffiffiffi
2

p
to �c ¼

ffiffiffi
2

p
mX, since the choice of scale could

only be determined by a higher order calculation.
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dashed line presents the leading-order color-singlet calcu-
lation and the solid curve corresponds to the interpolated
decay rate with the collinear scale chosen as�c ¼ mX. The
shaded band is obtained by varying the collinear scale from

�c ¼ mX=
ffiffiffi
2

p
to �c ¼

ffiffiffi
2

p
mX, since the choice of scale

could only be determined by higher order corrections.
After resumming the spectrum shape softens near the
endpoint and is thus more consistent with experimental
data [7].

IV. CONCLUSION

In this work, we study the color-singlet QED process for
J=c production in � decay in the kinematic limit region.
Since the NRQED breaks down at this limit, we apply the
SCET to study the spectrum. Our calculation consists of
matching onto a color-singlet operator in SCET by inte-
grating out the hard scale. Once the usoft modes are
decoupled from the collinear modes using a field redefini-
tion, we are able to show a factorization theorem for the

differential decay rate, in which the decay rate can be
factorized into a hard piece, a collinear jet function, and
usoft functions. As pointed out by Ref. [17] the usoft
function in this case can be calculated, resulting in just a
shift from the partonic to the physical endpoint.
By running the resulting rate from the hard scale �H to

the collinear scale �c, we sum the large Sudakov loga-
rithms. Finally, we combine the SCET calculation with the
leading-order, color-singlet NRQED result to make a pre-
diction for the color-singlet contribution via QED process
to the differential decay rate spectrum over the entire
allowed kinematic range.
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