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We present a Monte Carlo approach to prompt-photon production, where photons and QCD partons are

treated democratically. The photon fragmentation function is modeled by an interleaved QCDþ QED

parton shower. This known technique is improved by including higher-order real-emission matrix

elements. To this end, we extend a recently proposed algorithm for merging matrix elements and

truncated parton showers. We exemplify the quality of the Monte Carlo predictions by comparing

them to measurements of the photon fragmentation function at LEP and to measurements of prompt

photon and diphoton production from the Tevatron experiments.
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I. INTRODUCTION

The measurement of final states containing photons at
large transverse momenta plays a key role in collider
experiments. Most prominently, at hadron colliders inclu-
sive diphoton or diphotonþ jet signatures are promising
channels to search for a light Higgs boson [1]. Signatures
with photons might furthermore provide access to physics
beyond the standard model like supersymmetry or extra
spatial dimensions [2]. Less spectacular but extremely
important though, photonþ jet final states can be used to
determine the absolute energy scale of low-pT jets [3] and
to constrain the gluon distribution inside the beam hadron
[4]. The success of the outlined physics menu however
strongly depends on our ability to thoroughly understand
and accurately simulate such prompt-photon production
processes in the context of the standard model.

In the framework of perturbation theory, the mechanism
of hard-photon production is twofold. A photon can be
well-separated from any other particle in the collision,
which makes it possible to describe the reaction with
fixed-order matrix elements. The fact that these matrix
elements include initial- and/or final-state QCD partons
necessitates an all-orders resummation of large logarithmic
QCD corrections, which are then absorbed into parton
distribution functions (PDFs) and fragmentation functions.
Because of its vanishing mass, a photon can also be infi-
nitely close to an initial- or final-state QCD parton. The
related singularities in hard matrix elements are absorbed
into process-independent photon fragmentation functions
[5], describing the transition of a QCD parton into a bunch
of hadrons and a not well-separated photon during the
process of hadronization. Because of the nonperturbative
nature of the hadronization process, parton-to-photon frag-
mentation functions contain a nonperturbative component
and must therefore be determined from experimental data.
Their evolution with the factorization scale �F;� can how-

ever be calculated perturbatively. While the description of
hard photons through matrix elements is said to yield the
direct component of photon observables, the description by
fragmentation functions gives the so-called fragmentation
component. Both components are related by factorization
and must be combined to obtain a meaningful prediction of
QCD-associated photon production.
The standard method to theoretically devise a mean-

ingful prompt-photon cross section is to reflect certain
experimental photon-isolation criteria in perturbative cal-
culations. However, one must allow for a minimal hadronic
activity in the vicinity of the photon. Only then it can then
be ensured that all QCD infrared divergences are properly
cancelled. Several such criteria are on disposal, e.g. the
cone approach [6,7], the democratic approach [8], and the
smooth isolation procedure [9]. For both, single- and di-
photon production at hadron colliders, the complete next-
to-leading order (NLO) QCD corrections to respective
direct and fragmentation components are known [6,10–
13]. The parton-level Monte Carlo programs JETPHOX

[14] and DIPHOX [15] implement these NLO results nu-
merically and allow the user to choose from different
photon-isolation criteria. The NLO corrections to the direct
channel ��þ 1 jet have been calculated in [16]. The
results for the loop-induced processes gg ! �� [17] and
gg ! ��g [18] are also available. Beyond calculations at
fixed order, in the strong coupling, large efforts were spent
on the evaluation of soft-gluon emission effects and on the
resummation of corresponding large logarithms. Soft-
gluon resummation up to next-to-next-to leading logarith-
mic accuracy is taken into account in the program RESBOS

[19]. The analytic result for resumming threshold loga-
rithms was presented in [20], while small-x logarithms
have been studied in [21]. Only recently a first study of
the prompt-photon process in the framework of Soft-
Collinear Effective Theory has been presented [22].
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Let us note, that there is a further source of final-state
photons, namely, decays of hadrons, such as �0 or �.
However, such nonprompt production processes can to
some approximation be separated from the other two ex-
perimentally and measurements are usually corrected for
these effects. This is the case for all experimental data
referenced in this work.

In this publication, we pursue a different strategy of
simulating final states including photons. We account for
the hard-production process, the QCD evolution of initial-
and final-state partons, as well as the transition of QCD
partons into hadrons by means of a multipurpose
Monte Carlo event generator. In this context, the lowest-
order matrix elements for single- and diphoton production
supplemented with QCD parton showers correspond to the
above mentioned direct component. The fragmentation
contribution is modeled by the incorporation of QED
effects into the parton shower. In fact, a generic algorithm
to treat photon radiation is also given by the approach of
Yennie, Frautschi, and Suura [23]. This scheme is particu-
larly suited to compute logarithmic corrections arising
from soft photon radiation, where the coherent emission
off all QED charges involved in the process plays an
important role. In this publication, however, we are pri-
marily interested in the production of hard, well-separated
photons. Such emissions need to be treated by an improved
algorithm; see, for example, [24]. We therefore choose to
simulate photon radiation using a dipolelike QED shower
model. This approach only presents a primitive approxi-
mation to soft photon effects, but is easily realized and no
additional free parameters are introduced in the parton-
shower algorithm, cf. [25]. Similar methods are employed
in most contemporary shower programs [26]. An apparent
advantage is that this method also allows for a direct
comparison with experimental data since it yields predic-
tions at the level of the experimentally observed particles.
In particular, the parton-to-photon fragmentation functions
are explicitly modeled this way. As a consequence, no
further corrections accounting for the nonperturbative
parton-to-hadron transition need to be applied and again
no additional free parameters need to be introduced. This is
crucial also for the validation of a separation of nonprompt
photons from prompt photons as mentioned above. The
democratic treatment of partons and photons in this ap-
proach combines the direct and the fragmentation compo-
nent in a very natural way. It is well suited for comparison
to experiments, where it is often necessary to study the
impact of photon-isolation criteria.

An apparent disadvantage of the approach is that it relies
on lowest-order matrix elements only, and correspondingly
higher-order QCD corrections are taken into account in the
approximation of the parton shower only. We improve on
this deficiency by including higher-order real-emission
matrix elements. Parton-shower simulations supplemented
with multileg matrix elements have become a standard tool

for the description of QCD radiation accompanying the
production of massive gauge bosons [27] or colored heavy
states [28]. In this line, we extend the formalism originally
presented in [29] to the case of prompt-photon production.
This process, as stated before, introduces the additional
complication of a second source of photon production—
the fragmentation component—which is not present for
massive gauge bosons. While in most cases of W- or
Z-boson production, the massive boson is the hardest
object in the interaction; the photon is unlikely to play
this role in most prompt-photon events. We lay out a
formalism that is capable of coping with this situation
and allows us to consistently combine tree-level matrix
elements of variable photon and QCD parton multiplicity
with a combined QCDþ QED parton-shower model.
Photons and QCD partons are treated fully democratically
in this scheme.
The outline of this paper is as follows. In Sec. II, we

introduce our method for simulating photon production
using a dipolelike parton-shower model. Section III
presents the formalism for combiningQCDþ QEDmatrix
elements of different final-state multiplicity with the parton
shower. We also discuss how to efficiently incorporate a
given photon-isolation criterion. In Sec. IV, we present the
results of our Monte Carlo analysis and discuss the inter-
play between the direct photon contribution and the frag-
mentation component in our approach. Finally, Sec. V
contains our conclusions.

II. INTERLEAVED QCDþQED PARTON
EVOLUTION

In this section, we briefly recall a formalism which is
used in our simulations to generate the combined QCDþ
QED parton evolution. Similar approaches are imple-
mented in most contemporary shower programs [26]. For
simplicity of the argument, we focus on pure final-state
evolution. Note that any parton-shower algorithm is
uniquely defined by three ingredients: The first is the
Sudakov form factor, �að�2; Q2Þ, i.e. the probability for
a given parton, a, not to radiate another parton between the
two evolution scalesQ2 and�2. The second is the ordering
or evolution variable. While the Sudakov form factor de-
fines the anomalous-dimension matrix, and thereby the
functional form of logarithms which are resummed, the
evolution variable selects their argument, i.e. it defines a
‘‘direction’’ in the phase space, into which the evolution is
performed. The third ingredient of a parton-shower model
is the method, which is applied in order to reshuffle mo-
menta of already existing partons when one of them goes
off-shell to allow for a branching process.
For QCD parton evolution, we choose to employ the

parton-shower algorithm of [30], including the ordering
variables for initial-state evolution proposed in [29]. This
means that the Sudakov form factor for final-state evolu-
tion reads
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The Jacobian factor J and the spin-averaged dipole func-
tions hVi are defined in [30]. The sums run over all possible
splitting products i and all possible spectator partons k of
the splitting parton (ij). The ordering parameter is the
invariant transverse momentum squared
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where Q ¼ pi þ pj þ pk, yij;k ¼ pipj=ðpipj þ pjpk þ
pkpiÞ and m are the parton masses.

Since QCD and QED emissions do not interfere, their
corresponding emission probabilities factorize trivially. A
combined QCDþ QED evolution scheme is thus obtained
by employing the combined Sudakov form factor

�ð�2
0; Q

2Þ ¼ �QCDð�2
0; Q

2Þ�QEDð�2
0; Q

2Þ; (4)

where

K QED
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�ðk2?Þ
2�

Jðk2?; ~zÞhVQED
ðijÞi;kðk2?; ~zÞi: (5)

Note that we use spin-averaged dipole functions, not only
in the QCD, but also in the QED case. One possible
improvement of the present algorithm would therefore be
to include the spin-dependent splitting kernels. However,
in the domain of hard-photon radiation that we are inter-
ested in, this can simply be done by employing the full
real-emission matrix element instead. No special treatment
is therefore necessary in the parton shower.

The functional form of the spin-averaged splitting ker-
nels is largely constrained by the infrared singularity struc-
ture of one-loop QCD amplitudes. It is, however, not fixed
and one has the freedom to incorporate nonsingular pieces,
which can help to improve the predictions of dipole-
shower simulations, cf. [31]. Likewise, the construction
of the splitting kinematics is largely constrained by the
phase-space variables selected in the splitting. It is, how-
ever, not fixed and one has one additional degree of free-
dom, which corresponds to the choice of the angular
orientation of the splitter-spectator system with respect to

the remaining particles. One of the most prominent
criticisms of the new dipolelike parton-shower models is
the seemingly unphysical recoil strategy employed in con-
figurations with initial-state splitter and final-state specta-
tor. This strategy is entirely due to a choice for the
momentum mapping between leading-order and real-
emission kinematics, which was initially proposed in
[32]. The transverse momentum of the emitted parton is
thereby compensated by the spectator, leaving not only the
virtuality of the splitter-spectator system invariant, but also
its complete four-momentum. One can easily imagine a
different recoil strategy, where the transverse momentum
of the emission is instead compensated by the set of all
final-state particles. Such an approach was recently sug-
gested in [33] for the case of massless partons. We extend it
to the fully massive case in Appendix A and investigate the
corresponding effects on the Monte Carlo results in
Sec. IV.
It is otherwise straightforward to extend the above algo-

rithm to initial-state showering. The only subtlety in this
context arises from the fact that the fully democratic
approach pursued here also allows initial-state photon
splitting into a quark-antiquark pair, with the quark (anti-
quark) initiating the hard scattering. In this case, parton
distributions which incorporate QED effects are in princi-
ple necessitated. Even though such PDF fits exist (e.g.
[34]), the corresponding effects on physical observables
should be very small, such that the usage of PDF’s without
QED contribution does not pose a conceptual problem.
An apparent disadvantage of the above algorithm for

generating QED emissions using a parton shower is the low
efficiency with which isolated photons will be produced.
This problem is dealt with in Appendix B, where we
introduce a method to enhance the corresponding emission
probability, at the price of generating weighted events.

III. MERGING QCDþQED MATRIX ELEMENTS
AND TRUNCATED SHOWERS

In this section, we discuss an algorithm for merging tree-
level QCDþ QED matrix elements and parton showers,
based on the method proposed in [29]. We treat photons
and QCD partons democratically, i.e. higher-order tree-
level matrix elements can be of order �n�m

s compared to
the leading order. If n > 0, they may contribute to an
observed hard-photon final state. In this respect, the inclu-
sion of higher-order real corrections corresponds to shift-
ing the simulation of hard-photon production from the
parton-shower to the matrix-element domain.
The merging approach presented in [29] is essentially

based on replacing the splitting kernels of the parton
shower by the appropriate ratio of full tree-level matrix
elements in the domain of hard-parton radiation. This
domain is identified by simple phase-space slicing. The
slicing parameter, the so-called jet criterion, is given in
terms of parton momenta pi, pj, and pk as

HARD PHOTON PRODUCTION AND MATRIX-ELEMENT . . . PHYSICAL REVIEW D 81, 034026 (2010)

034026-3



Q2
ij ¼ 2pipjmin

k�i;j

2

Ck
i;j þ Ck

j;i

;

where Ck
i;j ¼

(
pipk

ðpiþpkÞpj
� m2

i

2pipj
if j ¼ g

1 else
: (6)

For initial-state partons, one considers the splitting process
a ! ðajÞj instead of ðijÞ ! ij. With the momentum of the
combined particle (aj) given by paj ¼ pa � pj, one then

defines Ck
a;j ¼ Ck

ðajÞ;j. The minimum in Eq. (6) is over all

possible color partners k of the combined parton (ij). The
jet criterion Q2

ij identifies—to leading-logarithmic accu-

racy—the most likely splitting in a dipolelike parton cas-
cade leading to the set of final-state momenta {pg. The
phase-space slicing is now implemented by selecting a cut
value Qcut and defining the evolution kernels KME and
KPS for matrix-element and parton-shower domain as

KME
ðijÞi;kð~z; k2?Þ ¼ KðijÞi;kð~z; k2?Þ�½Qijð~z; k2?Þ �Qcut�;

(7)

K PS
ðijÞi;kð~z; k2?Þ ¼ KðijÞi;kð~z; k2?Þ�½Qcut �Qijð~z; k2?Þ�:

(8)

The kernel KME is then replaced by appropriate ratios of
tree-level matrix elements up to a given maximum multi-
plicity. A detailed description of the corresponding algo-
rithm can be found in [29]. It is obvious that the same
procedure can be applied to QED emissions, once they are
resummed by the parton shower using Eq. (4). It is then in

principle possible to define two separate slicing cuts,QQCD
cut

and QQED
cut , which account for the merging of QCD and

QED tree-level matrix elements with the parton shower,
respectively. Within the context of this work, we choose to
leave these slicing cuts identical, since the typical ‘‘hard-
ness’’ of a hard well-separated final-state photon is similar
to the one of a final-state QCD jet.

In prompt photon production processes, we might be
confronted with a situation which cannot arise in pure
QCD events, namely, that a single, perturbatively produced
particle—the photon—is identified out of potentially many
particles forming a broad jet. Several methods exist to
achieve this identification. In the democratic approach
[8], final-state particles are clustered into jets, treating
photons and hadrons equally. The obtained object is called
a photon or a photon jet, if the energy fraction z ¼
E�=ðE� þ EhadÞ of an observed photon inside the jet is

larger than an experimentally defined value zcut. In the cone
approach [6,7], photons are required to have a minimum
transverse momentum and to be isolated from any signifi-
cant hadronic activity within a cone in�-� space. Minimal
hadronic activity in the vicinity of the photon (adding of
the order of a few GeV to the total transverse momentum in
the cone) must thereby be admitted to ensure the infrared
finiteness of observables.

While the jet criterion Eq. (6) works very well also for
photons defined by the democratic approach, in the case of
the cone approach it might not be appropriate to separate
matrix-element and parton-shower domain. Note that the
main idea of the merging procedure is to improve the
parton-shower prediction with fixed-order matrix elements
in those regions of phase space which are relevant for the
analysis of multijet (multiphoton) topologies. In this re-
spect, it is certainly desirable that experimental require-
ments are reflected by Q2

ij. This is possible, because the jet

criterion, Eq. (6), is not fixed, but rather chosen conven-
iently to reflect the singularity structure of next-to-leading
order real-emission amplitudes in QCD [29]. Moreover, it
is a flavor-dependent measure, which allows us to redefine
it just for branching processes involving photons. The most
common experimental requirements of a minimum trans-
verse momentum and an isolation cone in �-� space
could, for example, be reflected by

Q2
ij ¼ minfp2

?;i; p
2
?;jg

��2
ij þ��2

ij

D2
and Q2

ib ¼ p2
?;i;

(9)

where the first equation applies to final-state photons and
charged final-state particles, while the second applies to
photons and charged beams. Note that Eq. (9) is essentially
equivalent to a longitudinally invariant jet measure [35].
One can now increase the ratio of photons produced
through matrix elements over photons produced in the

shower by simply lowering the value of QQED
cut . A conve-

nient way to obtain the largest fraction of events from hard
matrix elements is to require a jet separation below the
experimental cut on the photon transverse momentum and
by setting D lower than the radius of the experimentally
imposed isolation cone.

IV. RESULTS

In this section, we apply the event-generation techniques
introduced above to prompt-photon production at lepton
and hadron colliders. In Sec. IVA, we study the capability
of our proposed QCDþ QED shower algorithm to repro-
duce the scale-dependent photon fragmentation function
measured in hadronic Z0 decays at LEP. In Sec. IVB and
IVC, we turn the discussion on single- and diphoton final
states at hadron colliders, respectively. Besides quantifying
the size of the different core-process components in the
democratic shower approach, we elaborate on the impact
of real-emission matrix-element corrections incorporated
using the formalism described in Sec. III. All results pre-
sented here are obtained using the Monte Carlo event
generator SHERPA [36] in a setup described in Appendix C.

A. The photon fragmentation function

A crucial benchmark for the combined QCDþ QED
shower algorithm introduced in Sec. II is posed by the
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requirement to reproduce the scale-dependent photon frag-
mentation function D�ðz�; ycutÞ [8], where z� is the pho-

ton’s energy fraction with respect to its containing jet and
ycut a resolution scale, given e.g. in the Durham scheme.
This observable was measured to very high precision in
hadronic Z0 decays by the ALEPH Collaboration [37]. In
this analysis, events are selected where all final-state par-
ticles are democratically taken into account for jet finding.
The events are subdivided into 2-jet, 3-jet and � 4-jet
topologies with at least one reconstructed jet containing a
photon where the photon carries at least 70% of the jet
energy (z� > 0:7) and E� > 5 GeV. The resolution mea-

sure ycut is varied between 0.01 and 0.33. The measured
data is statistically corrected for residual hadronic decay
backgrounds and initial-state radiation off the incoming
leptons.

Figure 1 shows a comparison between our hadron-level
Monte Carlo results and the data from [37]. In the left
column, the z� distribution for 2-jet events at four different

ycut values, namely, 0.01, 0.06, 0.1, and 0.33, are shown.
The right column shows corresponding results for 3-jet
events at ycut ¼ 0:01, 0.06, 0.1, and� 4-jet events at ycut ¼
0:01. For all the data, z� ¼ 1 corresponds to completely

isolated photons, which is reflected by a strong peak in the
z� distribution. At the parton level, the lowest-order con-

tribution to fully isolated photon production corresponds to
q �q� final states where the quarks form one jet and the
photon makes up the other one. At the hadron level, how-
ever, this sharp peak gets somewhat broadened by hadro-
nization effects due to the association of soft hadrons with
the photon by the jet-clustering algorithm. Our
Monte Carlo simulation agrees very well with the data
for the measured z� range in the three topology classes at

the given jet resolutions. This can be seen as a strong
indication that the proposed QCDþ QED shower scheme
is indeed appropriate to describe hard-photon radiation.

The above analysis is especially tailored to study the
fragmentation component of the prompt photon production
mechanism. The key point in this respect is the application
of a democratic jet-clustering procedure which is in one-to-
one correspondence with the democratic approach used to
compute the photon production rate from the theory in [8].
It is therefore not obvious, that the democratic approach,
also underlying our simulation, performs well in experi-
mental situations where the photon must pass a strict
isolation criterion, as discussed in Sec. III. We will now
turn to investigate such isolated photon final states in more
detail, focusing on their emergence at hadron colliders.

B. Prompt-photon hadroproduction

The inclusive production of isolated photons has been
measured over a wide range of photon transverse energies
by the CDF and D0 experiments at the Fermilab Tevatron
at

ffiffiffi
s

p ¼ 1:96 GeV. In [38], CDF has presented a measure-
ment covering j��j< 1:0 and transverse energies between

30< ET;� < 400 GeV. The photon-isolation criterion used

corresponds to the requirement that the additional trans-

verse energy found in a cone of R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p ¼
0:4 around the photon is less than 2 GeV. A similar D0
measurement was described in [39]. It covers photons of
transverse momentum pT;� > 23 GeV up to pT;� ¼
300 GeV and j��j< 0:9. Photon isolation is implemented

by demanding ðER¼0:4 � ER¼0:2Þ=ER¼0:2 < 0:1, where ER

is the total energy found in a cone of size R around the
photon. Both measurements have been corrected to particle
level and the dominant background of photon production
from hadron decays, such as �0 ! �� and � ! ��, has
been subtracted. We therefore attempt a comparison with
Monte Carlo predictions at the parton level after jet
evolution.
Figure 2 compares the data for d2�=ðdET;�d��Þ from

[38], respectively, d2�=ðdpT;�d��Þ from [39], to our

parton-level Monte Carlo results, obtained using leading-
order matrix elements in the democratic approach com-
bined with QCDþ QED shower evolution. In addition to
the total result (red histograms), we display contributions
from the different classes of partonic core processes, i.e.
from dijet production (jj ! jj), single-photon production
(jj ! �j), and diphoton production (jj ! ��). Taking
into account the uncertainties of the measurements and
the finite Monte Carlo statistics in the high-ET;� bins, our

calculation agrees well with the data. For the CDF mea-
surement, the data has a somewhat steeper slope at low
ET;� and the Monte Carlo calculation pronounces the high

ET;� end of the spectrum. Regarding the different sources

of final-state photons in our theoretical model, the main
contribution to this observable stems from single photon
production. But even though strict isolation criteria are
applied, there is a considerable fraction of dijet events,
where a hard, isolated photon is produced during the
parton-shower evolution in both data samples. This sub-
stantiates the argument that the combined shower scheme
is crucial for a proper description of such photon final
states. The diphoton core process on the other hand is
negligible here.
We now turn to study the impact of higher-order real-

emission matrix elements on the results. Therefore, we
supplement the pure parton-shower evolution by tree-level
matrix elements with up to two additional light QCD
partons or photons using the matrix-element parton-shower
merging formalism described in Sec. III. The comparison
with measurements from CDF and D0 is shown in Fig. 3.
Besides the total results (red histograms), we again present
the subcontributions assigned to matrix-element core pro-
cesses with exclusively 0, 1, and 2 photons plus a variable
number of additional QCD partons. When comparing to
Fig. 2, where the pure shower result is shown, it is apparent
that the majority of events with a dijet core process in the
shower simulation is now ascribed to matrix-element cores
with one or two photons plus additional QCD partons.
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FIG. 1 (color online). The z� distribution measured in hadronic Z0 decays by ALEPH [37] for 2-jet, 3-jet, and � 4-jet events at
different Durham resolution ycut. The theory result corresponds to QCDþ QED shower evolution of the leading-order q �q process,
taking into account hadronization corrections.
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Thereby, what might traditionally be called fragmentation
component gets significantly reduced and turned into what
is called direct component. For this very inclusive mea-
surement, we observe no strong variation of the total result
due to the inclusion of real-emission matrix elements. The
biggest effect is a somewhat larger inclusive rate for the
merged samples & 20%. The shape of the distributions is

preserved. This in fact has to be understood as a highly
nontrivial consistency check of our merging formalism.

C. Prompt-diphoton production

An interesting further test bed for the democratic merg-
ing approach is diphoton production at hadron colliders.
The CDF collaboration has measured properties of the

FIG. 2 (color online). Inclusive photon transverse energy distribution compared to data from CDF [38] (left) and D0 [39] (right). The
contributions of different classes of leading-order core processes are also displayed. For the notation used cf. the main text.

FIG. 3 (color online). The inclusive photon transverse energy obtained with a QCDþ QED shower simulation supplemented by
real-emission matrix elements with up to two additional QCD partons or photons (denoted 2 ! 2, 3, 4) is compared to data from CDF
[38] (left) and D0 [39] (right).
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corresponding final states in some detail. The analysis
presented in [40] selects leading/subleading photons with
transverse momenta larger than 14=13 GeV. Those must
be isolated from any significant hadronic activity within a
distance of R ¼ 0:4, by requiring the hadronic activity
within this cone to yield ET < 1 GeV. For the selected
events, the invariant mass and transverse momentum of the
photon pair are analyzed as well as the azimuthal separa-
tion between the photons.

It is worth noting that our Monte Carlo simulations
include the loop-induced contribution gg ! ��. It has
been shown [40] that its main influence is seen in the
invariant mass spectrum around 30 GeV where it accounts
for a significant enhancement of the cross section.

To again exemplify the importance of the fragmentation
contribution even for the required isolated photons in this
analysis, Fig. 4 compares our Monte Carlo prediction for
leading-order matrix elements plus shower evolution. It
displays the contributions from the previously introduced
classes of matrix elements (i.e. jj ! jj, jj ! �j and jj !
��). It is evident that the democratic treatment of photons
and QCD partons is absolutely mandatory to describe these
observables.

From a theoretical perspective, this reaction is interest-
ing because the diphoton system does not have a transverse
momentum when described by leading-order matrix ele-
ments. Hence, its transverse-momentum spectrum depends
strongly on the proper inclusion of higher-order effects. In
addition, the azimuthal angle gives a measure for the
correlation of the two photons which is also sensitive to
higher-order corrections. Especially in the region of large
transverse momenta or large decorrelation, one expects
these corrections to be better described by matrix elements
than by the parton shower.

In this context, the parton-shower kinematics might
become important, because the recoil scheme discussed

in Sec. II plays an important role for the generation of
transverse momentum for the diphoton system. Thus, as a
first step, Fig. 5(a) compares parton-level Monte Carlo
predictions using two different splitting kinematics. We
observe that both the algorithm outlined in Appendix A,
denoted ‘‘Scheme 1,’’ and the method proposed in [30],
denoted ‘‘Scheme 2,’’ have difficulties describing the criti-
cal regions mentioned above.
We show in Fig. 5(b) that with the inclusion of higher-

order real-emission matrix elements, the simulation is able
to describe the measurement significantly better.
Especially, the transverse-momentum distribution exem-
plifies two unique features: The resummation of large
logarithms correctly reproduces the Sudakov shape of the
low-p? region which is not possible with fixed-order cal-
culations. At the same time exact matrix elements allow for
a consistent simulation of the high-p? tail where a tradi-
tional parton-shower approach would fail. Also, the decor-
relation between the photons is now matched very well.1

The simulation becomes largely independent of the precise
implementation of the parton-shower kinematics, an effect
which is also observed in [31]. This happens because in the
relevant part of the phase space, hard matrix elements are
employed to define the kinematics of the diphoton system.
In this way, the merging algorithm of Sec. III can be used to
eliminate theoretical uncertainties in the parton-shower
model employed. At the same time, we substantiate our
introductory statement, that within the domain of hard-
photon production the parton shower can easily be cor-
rected using higher-order matrix elements.

FIG. 4 (color online). Properties of diphoton events measured by CDF [40]. Displayed are the subcontributions from different
leading-order matrix elements and their sum.

1The deviations in the second and third bin might be due to
large statistical fluctuations in the measurement and seem to be
contradicted by an earlier albeit unfortunately unpublished D0
measurement [41].
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FIG. 5 (color online). Properties of diphoton events measured by the CDF collaboration [40]. Figure (a) compares the influence of
different parton-shower kinematics when using leading-order matrix elements. Figure (b) shows the same comparison for merged
event samples with up to two additional particles in the matrix element-final state. Scheme 1 refers to the algorithm outlined in
Appendix A; scheme 2 stands for the original implementation [30].
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V. CONCLUSIONS

We have presented Monte Carlo algorithms for the
precise simulation of hard-photon production in collider
experiments. Using interleaved QCDþ QED evolution in
a dipolelike parton shower enables us to simulate the
photon fragmentation function within a general-purpose
Monte Carlo event generator. Comparison with data from
the ALEPH experiment exemplifies the quality of the
approach.

To diminish intrinsic uncertainties of parton-shower
models, we have supplemented our simulation with
higher-order tree-level matrix elements. To do so, an ex-
isting algorithm for QCD has been extended to include
QED democratically. This can be seen as a first step
towards a unified prescription for treating strong and elec-
troweak radiative corrections. At the same time, it provides
a natural way to simulate hard-photon production, where
the fragmentation component is described consistently by
the combined QCDþ QED resummation in the parton
shower supplemented with a nonperturbative hadroniza-
tion model. We have employed this procedure to analyze
prompt-photon production in hadron-hadron collisions and
to find an improved description of Tevatron measurements.
Because of a much larger phase space available for radia-
tive corrections, these effects should become even more
pronounced at LHC energies.
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APPENDIX A: DIPOLE-SPLITTING KINEMATICS

In this appendix, we derive alternative splitting kinemat-
ics for dipolelike parton showers in the spirit of [30]. In
addition to the massless case proposed in [33], we give
explicit formulas for the fully massive case, which plays an
important role for truncated-shower algorithms and in
processes involving heavy quarks [42]. Effectively, only
one dipole configuration is considered, i.e. branching final-
state partons with the spectator parton being in the final
state. In this case, we closely follow the proposal in [30],
which is inspired by the original kinematics of the massive
Catani-Seymour dipoles [32]. Kinematic relations for all
other dipole configurations are then derived using crossing
relations.
We consider the process depicted in Fig. 6, where a

parton eij, accompanied by a spectator parton ~k, splits
into partons i and j, with the recoil absorbed by the
spectator k. We define the combined momenta pij ¼ pi þ
pj and Q ¼ pij þ pk and the variables

�ij;k ¼
pipj

pijpk

; �i;jk ¼ pipk

pijpk

: (A1)

Thus, we immediately obtain

sij ¼
�ij;k

1þ �ij;k

ðQ2 �m2
kÞ þ

1

1þ �ij;k

ðm2
i þm2

j Þ: (A2)

Now let the lightlike helper vectors l and n be given by
(cf. [43])

l ¼ pij � �ijpk

1� �ij�k

; n ¼ pk � �kpij

1� �ij�k

; (A3)

where

FIG. 6. Schematic view of the splitting of a final-state parton with a final-state spectator. The blob denotes the hard process from
which the three partons emerge. Since the four-momentum of the splitter-spectator system is conserved, the pair can be regarded as
decay products in a two-particle transition of a virtual particle with momentum Q ¼ pij þ pk.
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� ¼ p2

�ij;k

and

�ij;k ¼ 2 ln¼ 1

2
½ðQ2 � sij �m2

kÞ

þ sgnðQ2 � sij �m2
kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðQ2; sij; m

2
kÞ

q
�; (A4)

with 	 denoting the Källen function 	ða; b; cÞ ¼ ða� b�
cÞ2 � 4bc.

The momenta pi and pj can then be expressed in terms

of l, n, and a transverse component k? as

p�
i ¼ zil

� þm2
i þ k2?
zi

n�

2ln
þ k�?;

p�
j ¼ ð1� ziÞl� þm2

j þ k2?
1� zi

n�

2 ln
� k�?:

(A5)

The parameters zi and k2? of this decomposition are given

by

zi ¼
Q2 � sij �m2

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðQ2; sij; m

2
kÞ

q
�

�
�i;jk � m2

k

j�ij;kj
�
�ij;k þ 2m2

i

Q2 � sij �m2
k

��
;

k2? ¼ ðQ2 �m2
i �m2

j �m2
kÞ

�ij;k

1þ �ij;k

zið1� ziÞ

� ð1� ziÞ2m2
i � z2i m

2
j : (A6)

Equations (A2) and (A6) are valid for all dipole configu-
rations, i.e. initial and final-state branchings with the recoil
partner being either in the initial or in the final state. The
corresponding mapping of variables �ij;k and �i;jk onto

those defined for massless partons in [32] is listed in
Table I. Note, that in the massless case these kinematic
relations reproduce the results of [33].

Constructing a shower emission proceeds as follows:
(1) Determine �ij;k and �i;jk from evolution and split-

ting variable.
Compute sij according to Eq. (A2) and zi and k2?
according to Eq. (A6).

(2) Construct pk according to2 [32]

pk ¼
�
~pk �

Q2 þm2
k �m2

ij

2Q2
Q

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðQ2; sij; m

2
kÞ

	ðQ2; m2
ij; m

2
kÞ

vuut
þQ2 þm2

k � sij

2Q2
Q: (A7)

(3) From pij and pk, construct the lightlike momenta l

and n according to Eq. (A3).

Determine the new momenta pi and pj according to

Eq. (A5).
Because of the possibly vanishing denominator of �i;jk

and �ij;k in the case of initial-state splitters with final-state

spectator, the corresponding kinematic relations occasion-
ally become numerically unstable. Except for a tiny region
of the phase space, where jxik;a � uij< 
, such configura-

tions can be dealt with in the following way: Instead of
constructing pi, we construct ðxik;a � uiÞpi. The energy of

this helper momentum is determined using the on-shell
constraint for pi and the whole four-vector is then rescaled
with 1=ðxik;a � uiÞ. We typically have 
 of the order of

10�3.

APPENDIX B: ENHANCING PHOTON
PRODUCTION IN THE PARTON SHOWER

To improve the statistical significance of event samples
with identified photons described by the parton shower, it is
useful to enhance the corresponding branching probabil-
ities. When doing so, one must of course correct for this
enhancement by means of an event weight, which depends
on both, acceptance and rejection probabilities in the
parton-shower evolution. In this appendix, we describe a
method to incorporate an enhancement, which is constant
over the emission phase space. Our derivation is based on
the applicability of the veto algorithm, cf. e.g. [26].
Let t be the parton-shower evolution variable and fðtÞ

the splitting kernelK, integrated over the splitting variable
z.3 The differential probability for generating a branching
at scale t, when starting from an upper evolution scale t0 is
then given by

P ðt; t0Þ ¼ fðtÞ exp
�
�
Z t0

t
d�tfð�tÞ

�
: (B1)

A new scale t is therefore found as

TABLE I. Mapping of variables for Eqs. (A2) and (A6).

Configuration �i;jk �ij;k

Final-final ~zi
yij;k

1�yij;k

Final-initial �~zi xij;a � 1

Configuration �j;ak �ja;k

Initial-final j1� 1�uj
xjk;a�uj

j uj
xjk;a�uj

Initial-initial 1� 1
xj;abþ~vj

�~vj

xj;abþ~vj

2Relation (A7) is crossing invariant and can therefore be
employed for all dipole configurations.

3For simplicity, we assume that only one splitting function
exists, i.e. that there is no flavor change of the splitter during the
evolution. The extension to flavor changing splittings is straight-
forward, but it would unnecessarily complicate the notation at
this point.

HARD PHOTON PRODUCTION AND MATRIX-ELEMENT . . . PHYSICAL REVIEW D 81, 034026 (2010)

034026-11



t ¼ F�1½Fðt0Þ þ logR� where FðtÞ ¼
Z t

dtfðtÞ; (B2)

and where R is a random number between zero and one.
The key point of the veto algorithm is, that even if the
integral FðtÞ is unknown, one can still generate events
according to P using an overestimate gðtÞ � fðtÞ with a
known integral GðtÞ. First, a value t is generated as t ¼
G�1½Gðt0Þ þ logR�. Second, the value is accepted with
probability fðtÞ=gðtÞ. A splitting at t with n intermediate
rejections is then produced with differential probability

P nðt; t0Þ ¼ fðtÞ
gðtÞgðtÞ exp

�
�
Z t1

t
d�tgð�tÞ

�
�Yn

i¼1

�Z tiþ1

ti�1

dti

�
1� fðtiÞ

gðtiÞ
�
gðtiÞ

� exp

�
�

Z tiþ1

ti

d�tgð�tÞ
��
; (B3)

where tnþ1 ¼ t0 and t0 ¼ t. The nested integrals in
Eq. (B3) can be disentangled, and summing over n leads
to the exponentiation of the factor gðtÞ � fðtÞ, such that
Eq. (B1) is reproduced [26].

Our purpose is to introduce an additional overestimate
hðtÞ ¼ CgðtÞ, where C is a constant. The additional weight
gðtÞ=hðtÞ ¼ 1=C is then applied analytically rather than
using a hit-or-miss method. This leads to the following
expression for the differential probability to generate an
emission at t with n rejections between t and t0

P nðt; t0Þ ¼ fðtÞ
gðtÞhðtÞ exp

�
�
Z t1

t
d�thð�tÞ

�
�Yn

i¼1

�Z tiþ1

ti�1

dti

�
1� fðtiÞ

gðtiÞ
�
hðtiÞ

� exp

�
�
Z tiþ1

ti

d�thð�tÞ
��

1

C

Yn
i¼1

gðtiÞ � fðtiÞ=C
gðtiÞ � fðtiÞ :

(B4)

The factor in the second line of Eq. (B4) gives the analytic
weight associated with this event, where the term 1=C is
due to the acceptance of the emission with probability
fðtÞ=hðtÞ. The product, which is needed for an exponentia-
tion of hðtÞ � fðtÞ instead of gðtÞ � fðtÞ, runs over all
correction weights for rejected steps.

APPENDIX C: MONTE CARLO SETUP

In this appendix, we describe the details of the
Monte Carlo setup used to generate the results in this
publication. We employ the SHERPA [36] framework, which
is a multipurpose Monte Carlo event generator for collider
experiments.
The matrix-element generator COMIX [44] is used to

produce parton-level events for the following processes:

eþe� collisions ðSec: 4:1Þ; eþe� ! rrþ Nr;

N � Nmax; p �p collisions ðSec: 4:2; 4:3Þ;
p �p ! rrþ Nr; N � Nmax:

The ‘‘resummed’’ container r implements the demo-
cratic treatment of photon and parton radiation, i.e. it
contains the light quarks d, u, s, c, and b as well as gluons
and photons. In addition to all automatically generated
tree-level amplitudes, the loop-induced process gg ! ��
[17] has been implemented.
As a parton shower, we employ the CSS [30] module

which in case of Nmax > 0 is merged to the matrix-element
emissions above Qcut ¼ 10 GeV through the algorithm
described in [29]. Unless stated otherwise, we employ
the parton-shower kinematics described in Appendix A.
All QED splitting functions are included. The shower cut-
off has been left at the default value of pmin

? ¼ 1 GeV for

the LEP runs and has been switched to pmin
? ¼ 2 GeV for

the Tevatron runs purely for efficiency reasons.
The PDF set employed for p �p runs is CTEQ 6L [45],

which defines the corresponding �s parametrization in
hadron collisions. All other generator parameters are left
at the default values of the Monte Carlo programs, since
none of them is expected to have any impact on the results
presented here.
Hadron-level results for the fragmentation function

analysis in Sec. IVA are produced using the fragmentation
module AHADIC++ [46] and the hadron and � decay pack-
age HADRONS++ [47]. The AHADIC++ default tune to data
from the LEP experiments at the Z0 resonance, obtained
using the PROFESSOR [48] framework, has been used. To
account for corrections in the ALEPH measurement, the
decays of �0 and � have been disabled. Extra QED radia-
tion in hadron decays is simulated through PHOTONS++

[49]. All Tevatron analyses are presented at the parton
level after parton-shower evolution.
Multiple parton interactions have been disabled, because

the presented measurements have been corrected for their
effects.
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