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We discuss central exclusive production (CEP) of the tensor �cð2þÞ meson in proton-(anti)proton

collisions at Tevatron, RHIC, and LHC energies. The amplitude for the process is derived within the

kt-factorization approach. Differential and total cross sections are calculated for several unintegrated

gluon distribution functions (UGDFs). We compare exclusive production of all charmonium states

�cð0þÞ, �cð1þÞ and �cð2þÞ. Good description of the recent Tevatron data is achieved both with

Martin-Ryskin phenomenological UGDF and UGDF based on unified BFKL-DGLAP approach. Unlike

for Higgs production, the main contribution to the diffractive amplitude of heavy quarkonia comes from

nonperturbative region of gluon transverse momenta Q? < 1 GeV. At y � 0, depending on UGDF we

predict the contribution of �cð1þ; 2þÞ to the J=�þ � channel to be comparable or larger than that of the

�cð0þÞ one. This is partially due to a significant contribution from lower polarization states � ¼ 0 for

�cð1þÞ and � ¼ 0, �1 for �cð2þÞ meson. Corresponding theoretical uncertainties are discussed.
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I. INTRODUCTION

It is well-known that the exclusive diffractive Higgs
production provides a very convenient tool for Higgs
searches at hadron colliders due to a very clean environ-
ment unlike the inclusive production [1]. A QCD mecha-
nism for the diffractive production of heavy central system
has been proposed by Kaidalov, Khoze, Martin, and Ryskin
(Durham group) for Higgs production at the LHC (see
Refs. [1–3]). Below we will refer to it as the KKMR
approach. In the framework of this approach the amplitude
of the exclusive pp ! pXp process is considered to be a
convolution of the hard subprocess amplitude describing
fusion of two off-shell gluons producing a heavy system
g�g� ! X, and the soft hadronic factors containing infor-
mation about emission of the relatively soft gluons from
the proton lines (see Fig. 1). In the framework of the
k?-factorization approach these soft parts are written in
terms of so-called off-diagonal unintegrated gluon distri-
butions (UGDFs). The QCD factorization is rigorously
justified in the limit of very large factorization scale being
the transverse mass of the central system M?.

In order to check the underlying production mechanism
it is worth to replace the Higgs boson by a lighter (but still
heavy enough to provide the QCD factorization) meson
which is easier to measure. In this respect the exclusive

production of heavy quarkonia is under special interest
from both experimental and theoretical point of view [4].
Verifying the KKMR approach against various data on
exclusive meson production at high energies is a good
test of nonperturbative dynamics of parton distributions
encoded in UGDFs.
Recently, the signal from the diffractive �cð0þ; 1þ; 2þÞ

charmonia production in the radiative J=�þ �
decay channel has been measured by the CDF Col-
laboration [5]: d�=dyjy¼0ðpp ! ppðJ=c þ �ÞÞ ’
ð0:97� 0:26Þ nb. Assuming the absolute dominance of
the spin-0 contribution, this result was published by the
CDF Collaboration in the form:
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FIG. 1. The QCD mechanism of diffractive production of the
heavy central system X.
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d�

dy

��������y¼0
ð�cð0þÞÞ ’ 1

BRð�cð0þÞ ! J=c þ �Þ
d�

dy

��������y¼0

� ðpp ! ppðJ=c þ �ÞÞ
¼ ð76� 14Þ nb:

Indeed, in the very forward limit the contributions from
�cð1þ; 2þÞ vanish due to the Jz ¼ 0 selection rule [6,7].
This is not true, however, for general kinematics [8,9]. In
particular, it was shown in Ref. [10] that the axial-vector
�cð1þÞ production, due to a relatively large branching
fraction of its radiative decay, may not be negligible and
gives a significant contribution to the total signal measured
by the CDF Collaboration. The same holds also for the
tensor �cð2þÞ meson contribution [11]. Recent Durham
group investigations [12] support these predictions.

The production of the axial-vector �cð1þÞ meson is
additionally suppressed w.r.t. �cð0þ; 2þÞ in the limit of
on-shell fusing gluons (with nonforward protons) due to
the Landau-Yang theorem [10]. Such an extra suppression
may, in principle, lead to the dominance of the �cð2þÞ
contribution over the �cð1þÞ one in the radiative decay
channel [11]. Off-shell effects play a significant role even
for the scalar �cð0þÞ production reducing the total cross
section by a factor of 2–5 depending on UGDFs [8]. The
major part of the amplitude comes from rather small gluon
transverse momenta Q? < 1 GeV. This requires a special
attention and including all polarization states �cð1þ; 2þÞ.
Our present goal is to analyze these issues in more detail in

the case of tensor charmonium production at the Tevatron,
to study its energy dependence and to compare with cor-
responding contributions from scalar and axial-vector
charmonia.
The paper is organized as follows. Sec. II contains the

generalities of the QCD central exclusive production
mechanism, two different prescriptions for off-diagonal
UGDFs are introduced and discussed. In Sec. III we derive
the hard subprocess amplitude g�g� ! �cð2þÞ in the non-
relativistic QCD formalism and consider its properties.
Sec. IV contains numerical results for total and differential
cross sections of �cð0þ; 1þ; 2þÞ CEP and their correspon-
dence to the last CDF data. In Sec. V the summary of main
results is given.

II. DIFFRACTIVE pp ! pp�cð2þÞ PRODUCTION
AMPLITUDE

The general kinematics of the central exclusive produc-
tion (CEP) process pp ! pXp with X being the color
singlet q �q bound state has already been discussed in our
previous papers on �cð0þÞ [8] and �cð1þÞ [10] production.
In this section we adopt the same notations and consider
the matrix element for exclusive �cð2þÞ production and its
properties in detail.
According to the KKMR approach the amplitude of the

exclusive double diffractive color singlet production pp !
pp�cJ is [6,8]

M pp!pp�cJ

J;� ¼ s � �2 1

2

�c1c2

N2
c � 1

Z
d2q0;tV

c1c2
J;� ðq1; q2; pMÞ

foffg;1ðx1; x01; q20;t; q21;t; t1Þfoffg;2ðx2; x02; q20;t; q22;t; t2Þ
q20;tq

2
1;tq

2
2;t

; (2.1)

where t1;2 are the momentum transfers along the proton
lines, q0 is the momentum of the screening gluon, q1;2 are
the momenta of fusing gluons, and foffg;i ðxi; x0i; q20;t; q2i;t; tiÞ
are the off-diagonal UGDFs (see Fig. 1).

Traditional (asymmetric) form of the off-diagonal
UGDFs is taken in the limit of very small x0 � x1;2 in

analogy to collinear off-diagonal gluon distributions (with
factorized t-dependence) [13,14], i.e.

foffg;1 ¼ Rgf
ð1Þ
g ðx1; Qeff2

1;t ; �
2Þ � FNðt1Þ;

foffg;2 ¼ Rgf
ð2Þ
g ðx2; Qeff2

2;t ; �
2Þ � FNðt2Þ; �2 ¼ M2

?
4
(2.2)

with a quasiconstant prefactor Rg which accounts for the

single logQ2 skewed effect [15] and is found to be 1.4 at
the Tevatron energy and 1.2 at the LHC energy (for LO

PDF), Qeff2

1=2;t ¼ minðq20;t; q21=2;tÞ are the effective gluon

transverse momenta, as adopted in Ref. [1,6], FNðtÞ is the
proton vertex factor, which can be parametrized as FNðtÞ ¼
expðb0tÞ with b0 ¼ 2 GeV�2 [16], or by the isoscalar

nucleon form factor F1ðtÞ as we have done in Ref. [8].
Below we shall refer to Eq. (2.2) as KMR UGDF.1

Our results in Ref. [8] showed up a strong sensitivity of
the KMRS numerical results [6] on the definition of the
effective gluon transverse momenta Qeff

1=2;t and the factori-

zation scales �1;2. This behavior is explained by the fact

that for �c production the great part of the diffractive
amplitude (2.1) comes from nonperturbatively small q0;t <
1 GeV. It means that the total diffractive process is domi-
nated by very soft screening gluon exchanges with no hard
scale and extremely small x0 � x1;2.
In principle, the factor Rg in Eq. (2.2) should be a

function of x0 and x1 or x2. In this case the off-diagonal
UGDFs do not depend on x0 and q20;t (or q

2
1=2;t), and their

evolution is reduced to diagonal UGDFs evolution corre-
sponding to one ‘‘effective’’ gluon. In general, the factor

1In actual calculations we use a more precise phenomenologi-
cal Martin-Ryskin UGDF introduced in Ref. [14]. We are very
thankful to L. Harland-Lang for a discussion on this point.
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Rg can depend on UGDF and reflects complicated and still

not well-known dynamics in the small-x region.
In order to test this small-x dynamics and estimate the

theoretical uncertainties related to introducing one effec-
tive gluon transverse momentum instead of two ones in
Eq. (2.2), in Refs. [8,17] we have used more generalized
symmetrical prescription for the off-diagonal UGDFs.
Actually, it is possible to calculate the off-diagonal
UGDFs in terms of their diagonal counterparts as follows2

foffg;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1Þg ðx01; q20;t; �2

0Þ � fð1Þg ðx1; q21;t; �2Þ
q

� FNðt1Þ;

foffg;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð2Þg ðx02; q20;t; �2

0Þ � fð2Þg ðx2; q22;t; �2Þ
q

� FNðt2Þ;
(2.3)

where

x01 ¼ x02; �2
0 ¼ q20;t; �2 ¼ M2

?
4

:

This form of skewed two-gluon UGDFs (2.3) is inspired by
the positivity constraints for the collinear Generalized
Parton Distributions [18], and can be considered as a
saturation of the Cauchy-Schwarz inequality for the den-
sity matrix [19]. It allows us to incorporate the actual
dependence of the off-diagonal UGDFs on longitudinal
momentum fraction of the soft screening gluon x0 and its
transverse momentum q20;t in explicitly symmetric way. As

will be shown below, these symmetric off-diagonal UGDFs
lead to results which are consistent with the Tevatron data.

However, trying to incorporate the actual dependence of
UGDFs on (small but nevertheless finite) x0 we may en-
counter a problem. The kinematics of the double diffrac-
tive process pp ! pXp does not give any precise
expression for x0 in terms of the phase space integration
variables. From the QCD mechanism under consideration
one can only expect the general inequality x0 � x1;2 and

upper bound x0 & q0;t=
ffiffiffi
s

p
since the only scale appearing in

the left part of the gluon ladder is the transverse momen-
tum of the soft screening gluon q0;t.
To explore the sensitivity of the final results on the

values of x0, staying in the framework of traditional
KKMR approach, one can introduce naively x0 ¼
� � q0;t=

ffiffiffi
s

p
with an auxiliary parameter � [10]. In our ear-

lier papers [8,17] we considered the limiting case of maxi-
mal x0 (with � ¼ 1). However, it is worth to compare the
predictions of the underlying QCD mechanism for smaller
� against the available experimental data in order to esti-
mate typical x0 values. We will analyze this issue in greater
detail in the Results section.

III. HARD SUBPROCESS g�g� ! �cð2þÞ
AMPLITUDE

Projection of the hard amplitude onto the singlet char-
monium bound state Vc1c2

�	 is given by an four-dimensional
integral over relative momentum of quark and antiquark
q ¼ ðk1 � k2Þ=2 [20,21]:

Vc1c2
J;�	ðk1; k2Þ ¼ P ðq �q ! �cJÞ ��c1c2

ik;�	ðk1; k2Þ ¼ 2� �X
i;k

X
Lz;Sz

1ffiffiffiffi
m

p
Z d4q

ð2�Þ4 �
�
q0 � q2

M

�
�L¼1;Lz

ðqÞ

� hL ¼ 1; Lz;S ¼ 1; SzjJ; Jzih3i; �3kj1iTrf�c1c2
ik;�	P S¼1;Szg;

�c1c2
ik;�	 ¼ �g2

�
tc1ij t

c2
jk �

�
�	

q̂1;t � k̂1;t �m

ðq1 � k1Þ2 �m2
��

�
� tc2kjt

c1
ji �

�
��

q̂1;t � k̂2;t þm

ðq1 � k2Þ2 �m2
�	

��
:

(3.1)

Here the function�L¼1;Lz
ðqÞ is the momentum space wave

function of the charmonium, the Clebsch-Gordan coeffi-
cient in color space is h3i; �3kj1i ¼ �ik=

ffiffiffiffiffiffi
Nc

p
, the trace of

t-matrices is Trðtc1 tc2Þ ¼ �c1c2=2, and the projection op-
erator P S¼1;Sz for a small relative momentum q has the
form

P S¼1;Sz ¼
1

2m
ðk̂2 �mÞ 
̂ðSzÞffiffiffi

2
p ðk̂1 þmÞ: (3.2)

Since P-wave function �L¼1;Lz
vanishes at the origin,

we may expand the trace in Eq. (3.1) in the Taylor series
around q ¼ 0, and only the linear terms in q� survive. This
yields an expression proportional to

Z d3q

ð2�Þ3 q
��L¼1;Lz

ðqÞ ¼ �i

ffiffiffiffiffiffiffi
3

4�

s

�ðLzÞR0ð0Þ; (3.3)

with the derivative of the P-wave radial wave function at
the origin R0ð0Þ whose numerical value can be found in
Ref. [22]. The general P-wave result (3.1) may be further
reduced by employing the Clebsch-Gordan identity which
for the tensor �cJ¼2 charmonium states reads

T ��
J¼2 	

X
Lz;Sz

h1; Lz; 1; Szj2; Jzi
�ðLzÞ
�ðSzÞ ¼ 
��ðJzÞ:

Taking into account standard definitions of the light-
cone vectors nþ ¼ p2=Ecms, n

� ¼ p1=Ecms and momen-
tum decompositions q1 ¼ x1p1 þ q1;t, q2 ¼ x2p2 þ q2;t
and using the gauge invariance property (Gribov’s trick)
one gets the following projection (for any spin J)

2For diagonal distributions without explicit scale dependences
the �2

0, �
2 arguments must be omitted.
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q	1V
c1c2
J;�	 ¼ q

�
2 V

c1c2
J;�	 ¼ 0;

Vc1c2
J ðq1; q2Þ ¼ nþ�n�	 V

c1c2
J;�	ðq1; q2Þ

¼ 4

s

q	1;t
x1

q
�
2;t

x2
Vc1c2
J;�	ðq1; q2Þ: (3.4)

Since we adopt here the definition of the polarization
vectors proportional to gluon transverse momenta q1=2;t,
then

Vc1;c2
J;� ðq1;t; q2;tÞ ! 0; q1;t ! 0; or q2;t ! 0:

(3.5)

It shows that gluon transverse momenta are necessary to
get a nonzeroth diffractive cross section.
Summarizing all ingredients above, we get the vertex

factor g�g� ! �cð2þÞ in the following covariant form

Vc1c2
J¼2 ¼ 2ig2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

M�Nc

s
�c1c2R0ð0Þ
ð�Þ��

MM2
?ðq1q2Þ2

½ðq1;tq2;tÞðq�1 � q�2 ÞfP�ðq21;t � q22;tÞ þ ðx1p�
1 � x2p

�
2 ÞM2 � ðq�1;t � q�2;tÞM2g

� 2ðq1q2Þ
�
M2ðq�1;tq�2;t þ q�1;tq

�
2;tÞ � q21;tðq�1;tq�2;t þ q�2;tq

�
2;tÞ � q22;tðq�1;tq�2;t þ q�1;tq

�
1;tÞ

þ ðx1p�
1 � x2p

�
2 Þðq21;tq�2;t � q22;tq

�
1;tÞ þ ðq1;tq2;tÞðx1p�

1 � x2p
�
2 Þðq�1;t � q�2;tÞ � 2q21;tx1p

�
1q

�
2;t � 2q22;tx2p

�
2q

�
1;t

þ 2ðq1;tq2;tÞðx1p�
1 q

�
2;t þ x2p

�
2 q

�
1;tÞ þ

M2
?
s

ðq1;tq2;tÞðp�
1p

�
2 þ p

�
2p

�
1 Þ
�

(3.6)

Polarization tensor of �cJ¼2 satisfies the following relations (see e.g. Ref. [23])

P�
�	ð�Þ ¼ P	
�	ð�Þ ¼ 0; 
�	ð�Þ ¼ 
	�ð�Þ; 
��ð�Þ ¼ 0; 
�	ð�Þ
�	�ð�0Þ ¼ ���0 ;

X
�¼0;�1;�2


�	ð�Þ
���ð�Þ ¼ 1

2
M��M	� þ 1

2
M��M	� � 1

3
M�	M��; M�	 ¼ g�	 �

P�P	

M2
:

One can check that it may be represented in the following general form


�	ð�j�jÞ ¼
ffiffiffi
6

p
2

�0j�j
�
n
�
3 n

	
3 þ

1

3

�
g�	 �

P�P	

M2

��
þ 1

2
�1j�jði½n�2 n	3 þ n

�
3 n

	
2
 � ½n�1 n	3 þ n

�
3 n

	
1
Þ

� 1

2
�2j�jði½n�1 n	2 þ n�2 n

	
1
 � ½n�1 n	1 � n�2 n

	
2
Þ; (3.7)

where n1;2;3 are lightlike basis vectors satisfying n
�
�n	
g�	 ¼ g�
 (with n�0 ¼ P�=M), and � ¼ 0,�1,�2 are the �cð2þÞ

meson helicities. To our best knowledge, there is no explicit decomposition of the meson polarization tensor 
�	ð�Þ in
terms of basis vectors ni like Eq. (3.7) in the literature. In practical calculations below it is convenient to use it in a different
representation:


�	ð�Þ ¼
ffiffiffi
6

p
12

ð2� j�jÞð1� j�jÞ
�
g�	 �

P�P	

M2

�
þ

ffiffiffi
6

p
4

ð2� j�jÞð1� j�jÞn�3 n	3 þ
1

4
�ð1� j�jÞ½n�1 n	1 � n

�
2 n

	
2


þ 1

4
ij�jð1� j�jÞ½n�1 n	2 þ n�2 n

	
1
 þ

1

2
�ð2� j�jÞ½n�1 n	3 þ n�3 n

	
1
 þ

1

2
ij�jð2� j�jÞ½n�2 n	3 þ n�3 n

	
2
:

Similarly to what has been done for �cð1þÞ production
in Ref. [10], in the c.m.s. frame we choose the basis with
collinear n3 and P vectors (so, we have P ¼ ðE; 0; 0; PzÞ,
Pz ¼ jPj> 0) as a simplest one

n
1 ¼ ð0; 1; 0; 0Þ; n
2 ¼ ð0; 0; 1; 0Þ;

n
3 ¼ 1

M
ðjPj; 0; 0; EÞ; jPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �M2

p
:

(3.8)

Note, that we choose n2 to be transverse to the c.m.s beam
axis (see Fig. 2), while n1, n3 are turned around by the
polar angle c ¼ ½0 . . .�
 between P and the c.m.s. beam

axis. In the considered basis fn1;n2;n3g we have the
following coordinates of the incoming protons

p1 ¼
ffiffiffi
s

p
2
ð1;� sinc ; 0; cosc Þ;

p2 ¼
ffiffiffi
s

p
2
ð1; sinc ; 0;� cosc Þ:

(3.9)

The gluon transverse momenta with respect to the c.m.s.
beam axis are
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q1;t ¼ ð0; Qx
1;t cosc ; Qy

t ; Q
x
1;t sinc Þ;

q2;t ¼ ð0; Qx
2;t cosc ;�Qy

t ; Q
x
2;t sinc Þ;

where Qx
1=2;t;�Qy

t are the components of the gluon trans-

verse momenta in the basis with the z-axis collinear to the
c.m.s. beam axis.

From definition (3.9) it follows that energy of the meson
and polar angle c are related to covariant scalar products
in the considered coordinate system as [10]

E ¼ ðp1PÞ þ ðp2PÞffiffiffi
s

p ; cosc ¼ ðp1PÞ � ðp2PÞffiffiffi
s

p jPj ;

sinc ¼ ðp2n1Þ � ðp1n1Þffiffiffi
s

p : (3.10)

Furthermore, we also see that from q1 ¼ x1p1 þ q1;t, q2 ¼
x2p2 þ q2;t and q1 þ q2 ¼ P we have

x1 ¼ Eþ jPj coscffiffiffi
s

p ; x2 ¼ E� jPj coscffiffiffi
s

p : (3.11)

Relations (3.10) and (3.11) show that the interchange of
proton momenta p1 $ p2 is equivalent to the interchange
of the angle c $ c � �, i.e. sinc $ � sinc and
cosc $ � cosc simultaneously. The last permutation
also provides the interchange of the longitudinal compo-
nents of gluons momenta x1 $ x2.
Conservation laws provide us with the following rela-

tions between components of gluon transverse momenta
and covariant scalar products

Qx
1;t ¼ �q21;t þ ðq1;tq2;tÞ

jPj sinc ;

Qx
2;t ¼ �q22;t þ ðq1;tq2;tÞ

jPj sinc ;

Qy
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21;tq

2
2;t � ðq1;tq2;tÞ2

q
jPtj signðQy

t Þ;
P2
t ¼ �jPtj2 ¼ �jPj2sin2c ¼ q21;t þ q22;t þ 2ðq1;tq2;tÞ;

q21=2;t ¼ �jq1=2;tj2;

where jPtj ¼ jPjj sinc j is the meson transverse momen-
tum with respect to the z-axis. The appearance of the factor
signðQy

t Þ guarantees the applicability of (3.12) for positive
and negative Qy

t . Note that under permutations q1;t $ q2;t
implied by Bose statistics the components interchange as
Qx

1;t $ Qx
2;t and Qy

t $ �Qy
t . In our notations the quantity

sinc plays a role of the noncollinearity of meson in
considered coordinates. A straightforward calculation
leads to the following vertex function in these coordinates

Vc1c2
J¼2;� ¼ 2ig2�c1c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3M�Nc

s
R0ð0Þ

MjPtj2ðM2 � q21;t � q22;tÞ2
� ½6M2ij�jðq21;t � q22;tÞsignðQy

t Þ

� fj½q1;t � q2;t
 � n1jð1� j�jÞsignðsinc Þsignðcosc Þ þ 2j½q1;t � q2;t
 � n3jð2� j�jÞg
� ½2q21;tq22;t þ ðq21;t þ q22;tÞðq1;tq2;tÞ
f3M2ðcos2c þ 1Þ�ð1� j�jÞ þ 6ME sinð2c Þ�ð2� j�jÞsignðsinc Þ
� signðcosc Þ þ ffiffiffi

6
p ðM2 þ 2E2Þsin2c ð1� j�jÞð2� j�jÞg
; (3.12)

where

j½q1;t � q2;t
 � n1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21;tq

2
2;t � ðq1;tq2;tÞ2

q
j cosc j;

j½q1;t � q2;t
 � n3j ¼ E

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21;tq

2
2;t � ðq1;tq2;tÞ2

q
j sinc j:

The amplitude (3.12) explicitly obeys the Bose symmetry
under the interchange of gluon momenta and polarizations
due to resulting simultaneous permutations cosc $
� cosc , sinc $ � sinc and Qy

t $ �Qy
t .

It follows from the conservation laws that

q1t þ p0
1t ¼ �q0t; q2t þ p0

2t ¼ q0t;

Pt ¼ �ðp0
1t þ p0

2tÞ
Let us consider first the limit of the ‘‘coherent’’ scattering
of protons p0

1t ¼ p0
2t 	 pt, so

q1t ¼ �ðpt þ q0tÞ; q2t ¼ �ðpt � q0tÞ;
Pt ¼ �2pt; py

t ¼ 0:
(3.13)

The production vertex (3.12) in this limit has the form

ψ

x

z

y

P
n

n

n

pp

1

2

3

1 2

Pt

FIG. 2. Coordinate basis in the center-of-mass system of in-
coming protons p1;2.

NONPERTURBATIVE AND SPIN EFFECTS IN THE . . . PHYSICAL REVIEW D 81, 034024 (2010)

034024-5



Vc1c2
J¼2;�ðqx0t; qy0t; ptÞ ¼ 2ig2�c1c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3M�Nc

s
R0ð0Þ

MðM2 � 2ðp2
t þ q20tÞÞ2

�
�
12M2ij�jqx0tqy0t

�
ð1� j�jÞ cosc þ 2E

M
ð2� j�jÞ sinc

�

þ ½p2
t þ ðqx0tÞ2 � ðqy0tÞ2
f3M2ðcos2c þ 1Þ�ð1� j�jÞ þ 6ME sinð2c Þ�ð2� j�jÞsignðsinc Þ

� signðcosc Þ þ ffiffiffi
6

p ðM2 þ 2E2Þsin2c ð1� j�jÞð2� j�jÞg
�
: (3.14)

We see that in contrast to the axial-vector case considered
in Ref. [10], the diffractive amplitude of �cð2þÞ production
does not turn to zero in this coherent limit for pt � 0.

In the forward limit pt ! 0 (which is a particular case of
the coherent one) the amplitude turns to zero at any meson
rapidities y. Indeed, we have Pt ! 0 and sinc ! �0 and
the amplitude turns into

Vc1c2
J¼2;�ðqx0t; qy0t; pt ! 0Þ

¼ g2�c1c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3M�Nc

s
12MR0ð0Þ
ðM2 � 2q20tÞ2

� ð1� j�jÞfi�½ðqx0tÞ2 � ðqy0tÞ2

� 2j�jqx0tqy0t signðcosc Þjc!0;�g: (3.15)

The imaginary part of this vertex function turns out to be

antisymmetric w.r.t. interchanging qx0t $ qy0t, whereas its

real part is antisymmetric w.r.t. changing the sign of qx0t or
qy0t component, i.e.

=Vc1c2
J¼2;�ðqx0t; qy0t; pt ! 0Þ

¼ �=Vc1c2
J¼2;�ðqy0t; qx0t; pt ! 0Þ

<Vc1c2
J¼2;�ðqx0t; qy0t; pt ! 0Þ

¼ �<Vc1c2
J¼2;�ð�qx0t; q

y
0t; pt ! 0Þ

¼ �<Vc1c2
J¼2;�ðqx0t;�qy0t; pt ! 0Þ:

Since in this case q1t ¼ �q0t, q2t ¼ q0t in the forward
limit, then the double integral in the diffractive amplitude
has an antisymmetric integrand and turns to zero in the
symmetric limit

M pt!0 � F1ðt1ÞF1ðt2Þ
Z

dqx0tdq
y
0t

VJ¼2ðqx0t; qy0t; pt ! 0Þ � fðx1; q20;t; q20;tÞfðx2; q20;t; q20;tÞ
q60t

¼ 0: (3.16)

This explicitly confirms the observation made in
Refs. [3,24].3

Very recently, when our paper was almost complete, a
paper by L. Harland-Lang, V. Khoze, M. Ryskin, and W.
Stirling (HKRS) [12] appeared where the hard subprocess
amplitudes gg ! �cðJþÞ (based on formalism by Kuhn
et al. for ���� ! �cðJþÞ [25]) including the gluon virtual-
ities were listed for different spins including the tensor
�cð2þÞ:

VHKRS
J¼0 ¼

ffiffiffi
1

6

s
c

M
½3M2ðq1;tq2;tÞ � ðq1;tq2;tÞðq21;t þ q22;tÞ

� 2q21;tq
2
2;t
; (3.17)

VHKRS
J¼1;� ¼ � 2ic

s
p1;	p2;�"

�	�


½ðq2;tÞ�q21;t
� ðq1;tÞ�q22;t
; (3.18)

VHKRS
J¼2;� ¼

ffiffiffi
2

p
cM

s

��½sðq1;tÞ�ðq2;tÞ� þ 2ðq1;tq2;tÞp1;�p2;�
;

(3.19)

where the constant prefactor is

c ¼ 1

2
ffiffiffiffiffiffi
Nc

p 4g2

ðq1q2Þ2
ffiffiffiffiffiffiffiffiffiffiffi
6

4�M

s
R0ð0Þ:

The first amplitude VHKRS
J¼0 (3.17) is the same as the

expression obtained in Ref. [8] (up to a factor of 2 coming
from different normalizations of the hard part nþ�n�	 VJ;�	

in our case and ð2=sÞp�
1 p

	
2VJ;�	 in Ref. [12]), where the

major role of the gluon virtualities in the hard subprocess
amplitude of quarkonia production was claimed to be
crucial. In particular, it was shown that an account of the
gluon virtualities reduces the previous KMRS result in
Ref. [6] for on-mass-shell gluons VKMRS

0 � ðq1;tq2;tÞ by a

factor of 2–3.
The second amplitude, VHKRS

J¼1;�, looks different from our

previous result, obtained in Ref. [10]. However, one can
directly check that the difference between the amplitudes
(3.18) and (2.12) in Ref. [10] turns to zero when fixing the
coordinates in the c.m.s. frame of reference as in Eq. (3.19)
(see also Fig. 2) and the meson polarization vector 

 with
the basis as in Eq. (3.8). Because of the covariant structure
of these amplitudes, the last observation means that they
are the same in any frame of reference. The calculations
proving this equality are rather involved, and we do not
show them explicitly here.

3We are grateful to V. A. Khoze for helpful discussions of this
problem.
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Very similar situation holds for �cð2þÞ production am-
plitudes. Namely, the amplitudes (3.6) and (3.19) turned
out to be the same under fixing the coordinates as in the
previous section. Therefore, under the kinematical rela-
tions our results for the hard subprocess amplitudes are
in complete agreement with the corresponding HKRS
results. Let us now turn to the discussion of numerical
results.

IV. NUMERICAL RESULTS

Results for the differential cross sections d�=dyðy ¼ 0Þ
of the diffractive �cð0þ; 1þ; 2þÞ meson production at the
Tevatron energy W ¼ 1960 GeV for different UGDFs are
shown in Table I. In the last column we show the results for
the expected signal in the J=c þ � channel summed over
all �c spin states (and all polarization states of �cð1þ; 2þÞ
mesons)

d�obs

dy

��������y¼0
� X

J¼0;1;2

KðJÞ
NLOhS2effiJ BRð�cðJþÞ

! J=�þ �Þ d�
bare
�cðJþÞ
dy

��������y¼0
; (4.1)

which can be compared with the corresponding value
measured by the CDF Collaboration [5]:
d�exp=dyjy¼0ðpp ! ppðJ=c þ �ÞÞ ’ ð0:97� 0:26Þ nb.

In Refs. [6,12] is was assumed that the NLO corrections
factor KNLO in the g�g� ! � vertex is the same as in the
� ! gg width implying that jVJj2 � �ð� ! ggÞ. In gen-
eral, such corrections depend on spin of q �q resonance. So,
the diffractive cross section for each �cðJþÞ has to be

multiplied by not necessarily the same factor KðJÞ
NLO, as

shown in Eq. (4.1).4 This can be done, however, only for
0þ and 2þ states, and the corresponding NLO QCD radia-
tive corrections are well-known [28]:

Kð0Þ
NLO ¼ 1þ 8:77

�sðM�Þ
�

’ 1:68;

Kð2Þ
NLO ¼ 1� 4:827

�sðM�Þ
�

’ 0:63:

(4.2)

Because of the Landau-Yang theorem the decay of the
axial-vector charmonium 1þþ to on-shell gluons is forbid-
den, and there are no reliable calculations of the NLOQCD
corrections to its coupling with off-shell gluons. In the

following we take naively Kð1Þ
NLO ¼ 1. This leads to an

additional uncertainty of the model predictions.
As has been claimed in Refs. [9,12] the absorptive

corrections are quite sensitive to the meson spin-parity.
This was studied before in the context of scalar and pseu-
doscalar Higgs production in Ref. [2]. We adopt here the
following effective gap survival factors, calculated in
Ref. [12] for different spins including eikonal and so-called
enhanced contributions:

hS2effð�cð0þÞÞi ’ 0:033; hS2effð�cð1þÞÞi ’ 0:050;

hS2effð�cð2þÞÞi ’ 0:073: (4.3)

The contribution of the scalar �cð0þÞ CEP, which was
initially assumed to be the dominant one [6], is reduced by
a very small branching ratio of its observable radiative
decay [10,12]. In turn, the strong suppression of the
�cð1þÞ central production in both the on-mass-shell limit

TABLE I. Differential cross section d��c
=dyðy ¼ 0Þ (in nb) of the exclusive diffractive production of �cð0þ; 1þ; 2þÞ mesons and

their partial and total signal in radiative J=c þ � decay channel d�J=c�=dyðy ¼ 0Þ at Tevatron for different UGDFs, cuts on the

transverse momentum of the gluons in the loop ðq0; tÞ and different values of the auxiliary parameter � controlling the characteristic x0
values in the symmetric skewed UGDFs prescription (2.3) (denoted as sqrt). NLO skewedness factor RLO

g ¼ 1:4 and RNLO
g ¼ 1:3 for

the KMR asymmetric prescription (2.2) (denoted as ‘‘Rg’’), NLO correction factors (4.2) and absorptive correction factors (4.3) are

included. Contributions from all polarizations are incorporated.

skewed UGDF �cð0þÞ �cð1þÞ �cð2þÞ ratio signal

prescription �
d��c

dy

d�J=c�

dy

d��c

dy

d�J=c�

dy

d��c

dy

d�J=c�

dy 1þ=0þ 2þ=0þ d�obs

dy

GBW [26], ‘‘Rg’’ — 94.2 1.07 1.64 0.58 19.5 3.78 0.5 3.5 5.4

GBW [26], sqrt 1.0 13.2 0.15 0.13 0.04 2.07 0.39 0.3 2.6 0.6

0.3 12.8 0.15 0.13 0.04 1.65 0.34 0.3 2.3 0.5

lin KS [27], ‘‘Rg’’ — 32:6 0:37 0:93 0:31 1:34 0:25 0:8 0:7 0:9
lin KS [27], sqrt 1.0 17.2 0.19 0.44 0.16 0.98 0.19 0.8 1.0 0.5

nlin KS [27], sqrt 1.0 12.6 0.14 0.36 0.12 0.67 0.13 0.9 0.9 0.4

0.3 20.6 0.23 0.58 0.20 1.04 0.20 0.9 0.9 0.6

0:1 29:6 0:34 0:84 0:29 1:4 0:27 0:9 0:8 0:9
KMR [14], GRV94LO, qcut0;t ¼ 0:85 GeV — 48.8 0.56 1.94 0.66 1.61 0.31 1.2 0.6 1.5

KMR [14], GRV94HO, qcut0;t ¼ 0:85 GeV — 13.5 0.16 0.58 0.19 0.45 0.09 1.2 0.6 0.4

KMR [14], GRV94HO, qcut0;t ¼ 0:60 GeV — 33:8 0:39 1:11 0:38 1:18 0:23 1:0 0:6 1:0
HKRS result [12] qcut0;t ¼ 0:85 GeV — 27.1 0.31 0.72 0.25 0.95 0.19 0.8 0.6 0.7

4See Ref. [12] for discussion of extra uncertainties coming
from NNLO and higher-order corrections.
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of fusing gluons (due to Landau-Yang theorem [29]) and
the forward scattering limit of outgoing protons (due to the
so-called Jz ¼ 0 selection rule [6,7]) may be partially
compensated by its much higher branching ratio to the
observed J=c þ � final state [10]. Analogously to the
axial-vector case, the suppression of the tensor �cð2þÞ
CEP is likely to be eliminated by its large decay branching
ratio [12], and the resulting value of the radiative decay
signal is under our special interest.

As it was discussed in Ref. [8], the dominant contribu-
tion to the diffractive CEP of �cð0þÞ comes from non-
perturbative values of the gluon transverse momenta
qt < 1 GeV. In order to estimate the role of small qt in
the central production of �cð1þ; 2þÞ and related theoretical
uncertainties we use different UGDFs known from the
literature (for details see Refs. [8,30]). Among them there
are perturbatively modeled KMR UGDF [1,13,14], which
include the Sudakov form factor, as well as GBW [26] and
linear/nonlinear Kutak-Staśto (KS) [27] UGDF models
which by construction can be used for any values of the
gluon transverse momenta.

In the last row of Table I we show the HKRS results for
partial cross sections extracted from their original paper
[12]. These cross sections were calculated by the HKRS at
some small energy scale and subsequently extrapolated up
to the Tevatron energy assuming a Regge type energy
dependence.5

By direct calculation at the Tevatron energy with the
same UGDFs we get the observable J=c� cross section
d�J=c�=dyðy ¼ 0Þ ’ 1:0 nb which is in excellent agree-

ment with the CDF result d�exp=dyjy¼0ðpp ! ppðJ=c þ
�ÞÞ ’ ð0:97� 0:26Þ nb without imposing any arguments

beyond the QCD framework (like Regge scaling, for ex-
ample). Relations between different �c’s obtained in
Ref. [12] are also reproduced with a rather good accuracy.
However, this demanded to incorporate physics below
HKRS cutoff on gluon transverse momentum in the loop
integral (2.1) qcut0;t ¼ 0:85 GeV underlining the importance

of nonperturbative contributions of small q0;t in the QCD

mechanism under consideration. This result is highlighted
in bold in Table I.
Note that at zeroth meson rapidity y ¼ 0 a significant

part of the cross section comes from lower polarization
states in the center-of-mass frame � ¼ 0 (�cð1þÞ) and � ¼
0, �1 (�cð2þÞ). In the total (integrated over y) cross
section the maximal helicity contributions, however,
strongly dominate. We leave a more detailed investigation
of the polarization effects for a separate publication.
Relative contributions of �cð0þ; 1þ; 2þÞ CEP to observ-

able signal (J=�þ �) require an additional discussion.
Last PDG updated set of branching ratios for charmonia
radiative decays is [31]:

BRð�cð0þÞ ! J=c þ �Þ ¼ 0:0114;

BRð�cð1þÞ ! J=c þ �Þ ¼ 0:341;

BRð�cð2þÞ ! J=c þ �Þ ¼ 0:194:

Furthermore, as one can see in Table I, despite of larger
branching ratio in the axial-vector case the observable
signal from the �cð1þÞ CEP occurs to be close to or even
smaller than that from �cð2þÞ for UGDFs enhanced at
sufficiently small nonperturbative qt (in particular, for
the Kutak-Staśto (KS) and GBW UGDFs) due to an addi-
tional suppression of the g�g� ! �cð1þÞ subprocess vertex
at small q1=2;t. For the GBW UGDF the �cð1þÞ contribu-
tion is strongly suppressed whereas the �cð2þÞ contribu-
tion turned out to be smaller than the �cð0þÞ one. The
GBWmodel leads to somewhat underestimated observable
signal at Tevatron�0:6 nb, however, it can be still reliable
within relatively large theoretical uncertainties of the QCD
mechanism under discussion. In the case of the KS model,
contributions from all �c states are found to be quite
similar to each other. At the same time, for the UGDFs
which are not significantly growing at extremely low qt or
enhanced at larger qt (like, KMR UGDF) the situation
becomes opposite—the �cð1þÞ observable signal domi-
nates over the �cð2þÞ one.
In the case of the KMR UGDF, we observe quite sub-

stantial dependence of the predicted observable signal
w.r.t. variations of the infrared cutoff on small transverse
momenta of the gluons in the most internal loop (see
Fig. 3). From Table I we see that the shift of Qcut

t from
the value 0.85 GeV used in Ref. [12] down to the minimal
perturbative scale of the integrated GRV94HO distribu-
tions 0.6 GeV [32] leads to increase of the cross section
by a factor of about 2, approaching the CDF data. For
comparison, decrease of the Qcut from 1 GeV down to

FIG. 3 (color online). Dependence of the differential cross
section d��c

=dyðy ¼ 0Þ of �cð0þ; 1þ; 2þÞ CEP on the infrared

cutoff on small effective gluon transverse momentum Qcut
t for

the KMRUGDF with GRV94HO (Rg ¼ 1:3). Absorption effects

and NLO QCD vertex corrections are not included here. Arrow
points to the HKRS cutoff 0:72 GeV2 [12].

5We are grateful to L. Harland-Lang for explaining these
details to us.
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0.6 GeV leads to increase of the cross section by a factor of
6. Since we can not estimate the nonperturbative contribu-
tion coming from below 0.6 GeV, this allows us to conclude
that perturbatively motivated KMRUGDF leads to infrared
unstable result in the case of relatively light charmonium
CEP. It is clear that the essential part of the QCD dynamics
comes from the nonperturbative region of transverse mo-
menta below the HKRS cutoff Qcut

t ¼ 0:85 GeV [12]. KS
and GBW UGDFs allow to incorporate some physics even
below the minimal GRV scale Q0 ¼ 0:6 GeV, avoiding
ambiguities in defining the effective gluon momenta.

Applying the KMR’s asymmetrical off-diagonal UGDF
according to Eq. (2.2) (‘‘Rg’’ prescription) in the case of

the GBWmodels we get strongly overestimated observable
signal at Tevatron, which means that in this case it is
crucial to take into account the x0-dependence of off-
diagonal UGDFs when going deeply into the infrared
region of small qt’s. The x

0-dependent ‘‘sqrt’’ prescription,
introduced in Eq. (2.3), leads to observable signal, which is
much closer to the experimental data.

In contrast, the ‘‘Rg’’ prescription works perfect in the

Kutak-Staśto model [27] (see the first highlighted row in
Table I). In addition, the sqrt prescription, introduced in
Eq. (2.3), also provides perfect agreement with the data
with the KS (nonlinear) model with rather small � ¼ 0:1
giving the cross section d�obs=dyðy ¼ 0Þ ’ 0:9 (see
Table I). This practically means that the smaller q0;t comes

into the game, the smaller x0 w.r.t. q20;t=s is required to get

the data description, providing one more argument about
importance of nonperturbative effects in charmonia CEP.
The relative contributions of different charmonium states
in the J=c þ � channel (including absorption effects) in
this case are found to be:

�d��c0

J=c�

dy

�
KS
:

�d��c1

J=c�

dy

�
KS
:

�d��c2

J=c�

dy

�
KS

¼ 1:0:9:0:8:

(4.6)

They are not affected by smaller x0 or nonlinear effects in
this model. As the normalization point we took the con-
tribution of the �cð0þÞ meson CEP as was done in
Ref. [12].

In Table I we also presented results with the linear
Kutak-Staśto model based on the unified BFKL-DGLAP
framework and the nonlinear one based on the Balitsky-
Kovchegov equation [27]. It turned out that incorporation
of the nonlinear effects responsible for the gluon recombi-
nation in this model reduces the �cðJþÞ CEP cross sections
by 30–50%.We see that the nonlinear effects play a crucial
role in diffractive quarkonia production effectively de-
creasing the characteristic values of x0 (controlled by �).
However, reliable predictions including the nonlinear ef-
fects require the exact knowledge of the triple Pomeron
vertex at NLLx accuracy, which is yet unknown.

It is also interesting to compare the diffractive produc-
tion of �c states at different energies. As an example, in

Table II we present the integrated (over full phase space)
cross sections of �cð0þ; 1þ; 2þÞ production at RHIC,
Tevatron and LHC energies. The results show similar
energy behavior of the diffractive cross section for differ-
ent UGDFs as well as for different �c states.
Finally, let us turn to differential distributions. In Fig. 4

we show the differential cross section d�=dy in rapidity y
for all �c states. In this figure and in the following, all
helicity contributions for �cð1þ; 2þÞ CEP are taken into
account. Here and below we show only bare CEP cross
sections for GBW, KS and KMR UGDFs. In the last case,
we present the results computed with the HKRS cutoff
parameter 0.85 GeV [12]. We see that the shape of the
curves is rather similar, however, they have substantially
different maxima. The biggest cross section for the
�cð0þ; 2þÞ states is obtained with the KS UGDF, whereas
for �cð1þÞ the KS and KMR UGDFs give quite similar
cross sections.
In Fig. 5 we present corresponding distributions in t ¼

t1 or t ¼ t2 (identical), again for different UGDFs. Except
of normalization the shapes are rather similar. This is
because of the t1 and t2 dependencies of form factors
(describing the off-diagonal effect) are taken the same
for different UGDFs.
In Fig. 6 we show the correlation function d�=d� in

relative azimuthal angle � between outgoing protons for
different �c states. The shapes of the distributions are
somewhat dependent on UGDFs. It is interesting to note
here that the KS and KMR UGDFs lead to very similar
angular dependence of d�=d� for all �c states. In the case
when energy resolution is not enough to separate contri-
butions from different states of �c (�cð0þÞ, �cð1þÞ,
�cð2þÞ), which seems to be the case for Tevatron, the
distribution in relative azimuthal angle may, at least in
principle, be helpful.
The fact that the angular distributions are not simple

functions (like sin�, cos�) of the relative azimuthal angle
between outgoing nucleons is due to the loop integral in
Eq. (2.1) which destroys the dependence one would obtain

TABLE II. Integrated over full phase space (bare) cross sec-
tions (in nb) for the central exclusive �cð0þ; 1þ; 2þÞ production
at RHIC, Tevatron and LHC energies. Infrared cutoff for the
KMR UGDF (in ‘‘Rg’’-prescription) is taken to be Qcut

t ¼
0:85 GeV. We take Rg to be equal 1.3 at all three energies.

Absorption effects and NLO QCD corrections to the gg ! �c

vertex are not included here.

�c UGDF RHIC Tevatron LHC

�cð0þÞ nlin. KS, � ¼ 0:3 66 2142 13369

KMR, GRV94HO 27 1360 18333

�cð1þÞ nlin. KS, � ¼ 0:3 2 66 461

KMR, GRV94HO 1 63 887

�cð2þÞ nlin. KS, � ¼ 0:3 4 130 712

KMR, GRV94HO 1 56 704
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FIG. 4 (color online). Distributions d��c
=dy in rapidity of �cð0þÞ (left panel), �cð1þÞ (middle panel) and �cð2þÞ (right panel)

mesons for different UGDFs at the Tevatron energy
ffiffiffi
s

p ¼ 1:96 TeV. The dash-dotted line corresponds to the KS UGDF [27] in the
symmetrical sqrt-prescription with � ¼ 1:0, solid line KMR UGDF [14] with Rg ¼ 1:3, Qcut

t ¼ 0:6 GeV and GRV94HO PDF [32],

and short-dashed line represents result with the GBW UGDF [26] (� ¼ 0:3). Absorption effects and the NLO QCD vertex corrections
are not included here.

FIG. 5 (color online). Distribution in t1;2 of �cð0þÞ (left panel), �cð1þÞ (middle panel) and �cð2þÞ (right panel) for meson CEP for
different UGDFs. The meaning of curves here is the same as in Fig. 4.

FIG. 6 (color online). Distribution in relative azimuthal angle � between outgoing protons for �cð0þÞ (left panel), �cð1þÞ (middle
panel) and �cð2þÞ (right panel) meson CEP for different UGDFs. The meaning of curves here is the same as in Fig. 4.
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with single fusion of well defined (spin, parity) objects
(mesons or Reggeons) [8].

V. CONCLUSIONS AND DISCUSSION

Our results can be summarized as follows:
We have derived the QCD amplitude for central exclu-

sive production of tensor �cð2þÞ meson. This amplitude
vanishes in the forward limit of outgoing protons, as de-
manded by the Jz ¼ 0 selection rule. Our numerical results
show the importance of nonforward corrections, including
all polarization states of �cð2þÞ and nonperturbative con-
tributions to the �cð2þÞ CEP. Inclusion of all the ingre-
dients leads to the significant contribution of the �cð2þÞ
meson in the observable radiative decay channel depending
on UGDF. We have observed the importance of the � ¼ 0
state �cð1þÞ CEP and � ¼ 0, �1 states for �cð2þÞ CEP at
y � 0, whereas the total CEP cross section is dominated by
maximal helicity contributions.

The main contribution to diffractive charmonium pro-
duction comes from small gluon transverse momentaQt <
1 GeV leading to quite substantial sensitivity of the corre-
sponding cross section on the infrared cutoff in perturba-
tively modeled KMR UGDF. Alternatively one could use
UGDFs like Kutak-Staśto and GBW models, which by
construction can be used for any values of the gluon
transverse momenta.

We have tested the symmetrical prescription for off-
diagonal UGDFs, following from positivity constraints
and incorporating x, qt dependence of both participating
gluons, against the present CDF experimental data. A
rather good quantitative agreement with the CDF data on
charmonium CEP in the radiative decay channel is
achieved with the nonlinear Kutak-Staśto UGDF model
giving the cross section d�obsðJ=c�Þ=dyðy ¼ 0Þ ’
0:9 nb without imposing extra normalization conditions
beyond the QCD framework. Such a description is
achieved by incorporating very soft screening gluons
with x0 � 0:1 � q0;t=

ffiffiffi
s

p
. We have also calculated total cross

sections of �c CEP at different energies (RHIC, Tevatron
and LHC), as well as differential distributions in three
phase space variables y, t, �.
Overall theoretical uncertainty of the QCD mechanism

under consideration is rather high but hard to estimate due
to large unknown nonperturbative contributions coming
into the game and not well-known higher-order QCD
corrections to the hard subprocess g�g� ! �c (especially,
in the axial-vector case). Also, absorptive corrections may
depend on UGDF used in the calculation, and there is no
reliable estimation of such a sensitivity in literature. In the
present paper we kept the strategy to study different dis-
tinct options and analyze the sensitivity of the final results
with respect to the UGDFs choice, prescriptions for
skewed UGDFs, nonperturbative cutoff parameter and
characteristic x0 variations, etc. Then a comparison with
experimental data would allow to select the most reliable
option. However, we observe a variety of such ‘‘good’’
options, namely, description of the data is achieved for a
few UGDFs (GBW, KS and KMR UGDFs, see Table I).
Each of them pick up some essential QCD dynamics.
Further constraints can, in principle, be settled by experi-
mental measurements of separate �cðJþÞ contributions, the
energy dependence of the cross section and the shapes of
differential distributions.
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