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I. INTRODUCTION

Nowadays, the interpretation of diffractive processes in
high energy particle collisions in terms of the two-gluon
exchange mechanism is widely discussed in the literature.
This approach has already demonstrated its capability to
describe a large range of experimental data, and it provides
attractive theoretical grounds for deriving further predic-
tions for running and planned experiments.

The present work is devoted to a detailed comparison
between theoretical calculations and recent experimental
data collected by the HERA collaborations H1 [1] and
ZEUS [2,3] on inclusive diffractive production of D� me-
sons. Each of the two collaborations have explored both the
real photoproduction and the deep-inelastic regimes, so
that in total there are four sets of experimental data.

Within the two-gluon exchange model, calculations for
the diffractive production of unbound heavy quark states
Q �Q have been reported in [4], but, at the experimental
conditions under study, this process is found to bring only a
minor contribution. In Ref. [5], the production of massless
quark pairs with an additional gluon in the final state q �qg
has been considered, and later on, this approach has been
extended to the massive Q �Qg states [6]. Although a com-
parison with the first H1 and ZEUS data has been presented
in Ref. [6], a body of new and more precise data has been
collected by both collaborations since then. Apart from the
theoretical results shown just in Ref. [1] (also obtained
within the approach of Ref. [6]), no other comparisons with
the mentioned data are known to the author. The only
exception is the recent paper [7], which is, however, based
on the ‘‘constituent’’ or ‘‘resolved’’ Pomeron picture rather
than the two-gluon exchange model.

A few words are in order to clarify the difference be-
tween the approach which we are using here and that of
Ref. [6]. First, we are working in the collinear scheme,
while the authors of [6] prefer kt factorization, where the
Pomeron exchange is modeled by the unintegrated gluon
distribution F gðxP; k2t Þ. In that approximation the differ-

ence of the longitudinal momenta x1 and x2 of the two
gluons is neglected. Therefore, in contrast with our ap-
proach (see below), there is no integration over the gluon

longitudinal momentum fraction, but, instead, there is in-
tegration over the gluon transverse momentum. Second, we
suspect that the calculations in [6] are based on a much
lower number of Feynman diagrams, a fact that potentially
may cause problems with gauge invariance.
The outline of the paper is the following. In Sec. II we

describe the theoretical approach used in our calculations.
The evaluation of the real and imaginary parts of the two-
gluon exchange amplitude is explained in every detail in
Sec. III. In Sec. IV we display our numerical predictions on
the different kinematic distributions along with the results
of experimental measurements. Our findings are summa-
rized in Sec. V.

II. THEORETICAL FRAMEWORK

This study focuses on the process

eþ p ! e0 þ p0 þD� þ X: (1)

The relevant kinematic variables are explained in Fig. 1.
Our calculations are based on perturbative QCD and the
two-gluon exchange model with so-called skewed gluon
distributions. At the parton level, we consider the subpro-
cesses

FIG. 1. Schematic representation of the reaction kinematics.
Left panel, ‘‘resolved Pomeron’’ model; right panel, two-gluon
exchange model.*baranov@sci.lebedev.ru
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�� þ ðggÞ ! cþ �c (2)

and

�� þ ðggÞ ! cþ �cþ g; (3)

where the notation ðggÞ stands for a colorless and parity-
even system of two gluons carrying the longitudinal mo-
mentum fractions x1 and x2 with respect to the quantity
ðpp þ p0

pÞ=2, with pp and p0
p being the momenta of the

initial and scattered protons. Hereafter, we will refer to the
subprocesses (2) and (3) as LO and next-to-leading (NLO)
contributions. The corresponding Feynman diagrams are
displayed in Figs. 2 and 3.

The evaluation of the diagrams is straightforward and
follows the standard QCD Feynman rules. The spin density
matrix of the virtual photon is determined by the momenta
pe and p0

e of the initial and scattered electrons and is
represented in our calculations by the full lepton tensor

L�� ¼ 8p�
e p�

e � 4ðpek�Þg��; (4)

with k� ¼ pe � p0
e being the virtual photon momentum. In

this way we automatically take into account the contribu-
tions from both transversely and longitudinally polarized
photons, as well as the interference between them. The
polarization vectors of the initial gluons constituting the
‘‘Pomeron’’ are defined as explicit 4-vectors. In the frame
with the z axis oriented along the Pomeron momentum, the
x, y, z, and t components of the gluon polarization vector
are parametrized as

�ðx;y;z;tÞg ¼ ðcos�; sin�; 0; 0Þ; (5)

where the angle � is taken at random for every generated
event. This definition suits both the collinear and the
kt-factorization regimes. In the collinear approximation,
the averaging over the random angle � stands for the
averaging over transverse polarizations of the on-shell gluons. At the same time, this definition meets the usual

kt-factorization prescription [8] ��g ¼ k�gT=jkgTj, with �

being the azimuthal angle of the gluon transverse momen-
tum kgT . The outgoing gluon in the NLO subprocess (3) is

assumed to be on shell and transversely polarized.
The evaluation of Feynman diagrams has been per-

formed using the algebraic manipulation system FORM

[9]. Managing as many as 42 interfering diagrams was
not an easy technical task. To do this job we used the
method of orthogonal amplitudes described in detail in
Refs. [10]. The gauge invariance of the matrix elements
MLOð��P ! c �cÞ and MNLOð��P ! c �cgÞ of the indi-
cated subprocesses has been explicitly tested by substitut-
ing the gluon momentum k

�
g for the gluon polarization

vector �
�
g and, independently, by substituting the photon

momentum k�� for the photon polarization vector ��� . The
FORTRAN code for the matrix elements is available from the

author on request.
The matrix elements of the partonic subprocesses have

to be convoluted with generalized (or skewed) gluon dis-

FIG. 3. Examples of Feynman diagrams representing the NLO
subprocess �� þ P ! cþ �cþ g. The full gauge invariant set
comprises 42 diagrams.

FIG. 2. Feynman diagrams representing the LO subprocess
�� þ P ! cþ �c. The numbers 1 and 2 indicate the initial state
gluons constituting the Pomeron.
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tribution H . Let xP be the Pomeron momentum fraction,
x1 and x2 the gluon momentum fractions, and v and � the
integration variables in symmetric notation [11], such that
x1 ¼ ð�þ vÞ=ð1þ �Þ, x2 ¼ ð�� vÞ=ð1þ �Þ, and x1 þ
x2 ¼ xP ¼ 2�=ð1þ �Þ. Then, the amplitude of the process
(1) reads

A ðep ! epD�XÞ ¼
Z 1

�1

MH ðv; �;�2; tÞ
ðvþ �� i�Þðv� �þ i�Þdv:

(6)

In the approach which we are using here, the skewed
gluon distribution H ðv; �;�2; tÞ is related to the double
distribution FDDðx; y;�2; tÞ [12] via the reduction integral

H ðv; �;�2; tÞ ¼
Z 1

�1
dx0

Z 1�jxj

�1þjxj
dy0�ðx0 þ �y0 � vÞ

� FDDðx0; y0;�2; tÞ; (7)

and a model for FDDðx; y;�2; tÞ is introduced in [13], in
which its t dependence factorizes from the x and y depen-
dences:

FDDðx; y;�2; tÞ ¼ hðx; yÞGðx;�2ÞrðtÞ: (8)

In accord with [14], the profile function hðx; yÞ is chosen in
the form

hðx; yÞ ¼ �ð2bþ 2Þ
22bþ1�2ðbþ 1Þ

½ð1� jxjÞ2 � y2�
ð1� jxjÞ2bþ1

; (9)

normalized to
R1�jxj
�1þjxj hðx; yÞdy ¼ 1, and with the parame-

ter b set equal to 2 for the case of gluons. For the input
gluon density Gðx;�2Þ in (8), we use the parametrization
of Glück, Reya, and Vogt (GRV) [15]. We have checked
that the resulting distribution is numerically very close to
the one presented in Ref. [16].

The t dependence of the form factor rðtÞ is taken as [17]

r2ðtÞ ¼ expð�bjtj þ ct2Þ (10)

with b ¼ 9:5 GeV�2 and c ¼ 5 GeV�4 [17].
The multiparticle phase space

Q
d3pi=ð2EiÞ�4ðP pin �P

poutÞ of the considered reactions ep ! e0p0c �c and ep !
e0p0c �cg is parametrized in terms of rapidities, transverse
momenta, and azimuthal angles: d3pi=ð2EiÞ ¼
ð�=2Þdp2

iTdyid	i=ð2�Þ. Let s be the total initial invariant
energy squared, ŝ ¼ ðk� þ pPÞ2 the squared energy of the

partonic subprocess, Q2 ¼ �k2� the photon virtuality, t the

momentum transfer at the proton vertex, and p0
eT , p1T , p2T ,

	e, 	1, 	2, y1, y2, and yg the transverse momenta, azimu-

thal angles, and rapidities of the scattered electron, final
state quark, antiquark, and coproduced gluon, respectively.
Then, the fully differential cross sections read

d
LOðep ! e0p0c �cÞ ¼ �2�2
s

16�s2
1

Q4

1

2

X
spins

1

64

� X
colors

jALOð��P ! c �cÞj2r2ðtÞ

� dtdp02
eTdp

2
1Tdy1dy2

d	e

2�

d	1

2�
;

(11)

d
NLOðep! e0p0c �cgÞ¼ �2�3
s

64�2s2
1

Q4

1

2

X
spins

1

64

� X
colors

jANLOð��P! c �cgÞj2r2ðtÞ

�dtdp02
eTdp

2
1Tdp

2
2Tdy1dy2dyg

�d	e

2�

d	1

2�

d	2

2�
: (12)

The phase space physical boundary is determined by the
inequalities [18]

Gðŝ; t1; s2;�Q2; t; 0Þ � 0 and 4m2
c � s2 � s; (13)

where mc is the charmed quark mass, t1 ¼ ðk� � kgÞ2,
s2 ¼ ðp1 þ p2Þ2, and G is the standard kinematic function
[18]. The multidimensional integration over the phase
space has been performed by means of the Monte Carlo
technique, using the routine VEGAS [19]. Finally, the pro-
duced charmed quarks have been converted into D� me-
sons using the Peterson fragmentation function [20].

III. TECHNICAL DETAILS

In this section we present details of the calculation of the
quantity (6). First, consider the leading order amplitude
ALO. The expression for the corresponding matrix ele-
ment MLO exhibits singularities at v ¼ ��. First of all,
we have to factor them out. Using the symmetry of MLO

and H with respect to v $ �v, we can restrict the inte-
gration interval to ½0; 1� and rewrite Eq. (6) in the form

A LO ¼ 2
Z 1

0

ðv� �ÞMLOH ðv; �Þ
ðvþ �Þðv� �þ i�Þ2 dv

¼
Z 1

0

Fðv; �Þ
ðv� �þ i�Þ2 dv (14)

with Fðv; �Þ being the shorthand notation for the product
of the regular part of the matrix element and the skewed
gluon distribution:

Fðv; �Þ ¼ 2MLOH ðv; �Þðv� �Þ=ðvþ �Þ: (15)

The integrand expression contains a double pole at v ¼ �.
The real and imaginary parts of the amplitude (14) read
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ReALO ¼
Z 1

0

½ðv� �Þ2 � �2�Fðv; �Þ
½ðv� �Þ2 þ �2�2 dv

¼
Z 1��

��

ðx2 � �2ÞFðx; �Þ
ðx2 þ �2Þ2 dx; (16)

ImALO ¼ �2�
Z 1

0

ðv� �ÞFðv; �Þ
½ðv� �Þ2 þ �2�2 dv

¼ �2�
Z 1��

��

xFðx; �Þ
ðx2 þ �2Þ2 dx; (17)

where x ¼ v� �. Now, we expand Fðx; �Þ in powers of x
around x ¼ 0:

Fðx; �Þ ¼ F0 þ xF1 þ F2ðx; �Þ; (18)

where F0 ¼ Fðx; �Þjx¼0, F1 ¼ d
dx Fðx; �Þjx¼0, and

F2ðx; �Þ ¼ Fðx; �Þ � F0 � xF1, so that F2ðx; �Þ=x2 is fi-
nite at x ¼ 0. The term by term integration yields, for the
real part,

F0

Z 1��

��

ðx2 � �2Þ
ðx2 þ �2Þ2 dx ¼ �F0

x

ðx2 þ �2Þ
��������

1��

��

! �F0

1

�ð1� �Þ ; (19)

F1

Z 1��

��

ðx2 � �2Þx
ðx2 þ �2Þ2 dx ¼ 1

2
F1 lnðx2 þ �2Þj1��

��

! F1 ln
1� �

�
; (20)

and, for the imaginary part,

� 2�F0

Z 1��

��

x

ðx2 þ �2Þ2 dx ¼ �F0

x2 þ �2

��������
1��

��
! 0; (21)

� 2�F1

Z 1��

��

x2

ðx2 þ �2Þ2 dx ¼ �F1 arctan
x

�

��������
1��

��

! ��F1; (22)

thus resulting in

ReALO ¼ � F0

�ð1� �Þ þ F1 ln
1� �

�
þ

Z 1

0

F2ðv; �Þ
ðv� �Þ2 dv

(23)

and

ImALO ¼ ��
dFðv; �Þ

dv

��������v¼�
: (24)

As it has been mentioned already, the integrand expression
in the third term in (23) is finite at v ¼ �, and so, the
integration can be safely performed numerically, by means
of any standard integration technique.

Now let us turn to the gluon-associated production of
charm. The corresponding matrix element MNLO has sin-

gularities at v ¼ �� and also at

v ¼ �fð1þ �Þ½ðp1k�Þ � k2��=½ðk�ppÞ � ðp1ppÞ� � �g
(25)

and

v ¼ �fð1þ �Þðp1kgÞ=½ðkgppÞ þ ðp1ppÞ� � �g; (26)

So, the integrand expression in (6) has two double poles at
v ¼ �� and four single poles as indicated in Eqs. (25) and
(26). Since the position of the poles is known, the full
integration interval can be divided into six intervals, each
containing only one singularity.
The double poles at v ¼ �� can be treated exactly in

the same manner as in the previous (LO) case. So, we only
have to consider the single poles. Let v0 be the pole
position and a and b the endpoints of the proper integration
interval, v0 2 ½a; b�. Then, the contribution from this par-
ticular interval to the amplitude ANLO reads

A ab
NLO ¼

Z b

a

MNLOH ðv; �Þ
ðvþ �Þðv� �Þ

ðv� v0Þ
ðv� v0 þ i�Þdv

¼
Z b

a

Fðv; �Þ
ðv� v0 þ i�Þdv (27)

with Fðv; �Þ being the shorthand notation for the product
of the regular part of the matrix element and the skewed
gluon distribution:

Fðv; �Þ ¼ MNLOH ðv; �Þðv� v0Þ=½ðvþ �Þðv� �Þ�:
(28)

The contributions to the real and imaginary parts of the
amplitude are

ReAab
NLO ¼

Z b

a

ðv� v0ÞFðv; �Þ
ðv� v0Þ2 þ �2

dv; (29)

ImAab
NLO ¼ �

Z b

a

�Fðv; �Þ
ðv� v0Þ2 þ �2

dv: (30)

To evaluate the real part, we split the integrand function
into three terms using the decomposition

Fðv; �Þ ¼ F0 þ ðv� v0ÞF1 þ F2ðv; �Þ; (31)

where F0 ¼ Fðv; �Þjv¼v0
, F1 ¼ d

dv Fðv; �Þjv¼v0
, and

F2ðv; �Þ ¼ Fðv; �Þ � F0 � ðv� v0ÞF1, so that the expres-
sion for F2ðv; �Þ=ðv� v0Þ exhibits no singularity at v ¼
v0. After performing the integration we obtain

F0

Z b

a

ðv� v0Þ
ðv� v0Þ2 þ �2

dv ¼ 1

2
F0 ln½ðv� v0Þ2 þ �2�jba

! F0 ln

��������
b� v0

a� v0

��������; (32)
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F1

Z b

a

ðv� v0Þ2
ðv� �Þ2 þ �2

dv ! F1

Z b

a
dv ¼ ðb� aÞF1;

(33)

thus arriving at

ReAab
NLO ¼ F0 ln

��������
b� v0

a� v0

��������þðb� aÞF1

þ
Z b

a

F2ðv; �Þ
ðv� v0Þdv; (34)

where the third term can be evaluated numerically by
means of any standard integration technique.

Finally, to evaluate the imaginary part of the amplitude
ANLO we use the property that

lim
�!0

f�=½ðv� v0Þ2 þ �2�g ¼ ��ðv� v0Þ; (35)

which results in

ImAab
NLO ¼ ��Fðv; �Þjv¼v0

: (36)

The contributions (24) and (36) to the imaginary part of
the amplitude can be easily recognized as the residues of
the integrand expression in (14) at the isolated poles v ¼
�� and (25) and (26). Note, however, that the famous
formula

Z
C
FðvÞdv ¼ 2�i

X
k

Res½FðvÞ; vk� (37)

does not apply directly to our case because the integration
interval ½�1; 1� does not form a closed contour. By taking
the residues, we would be unable to calculate the real part
of the amplitude.

We have seen in our numerical calculations that the
double poles and single poles are of equal numerical
importance. We have also found that the real part of the
amplitude contributes at the level of about 1=4with respect
to the imaginary part.

There is no contradiction with the result of Ref. [21],
where the diffractive production of J=c mesons was
studied, and the contribution from the real part was found
to be of the same order or even larger than that of the
imaginary part. The difference between the production of
open and bound c �c states comes from the different struc-
ture and position of poles of the matrix element, as it has
already been clearly explained in [21].

IV. NUMERICAL RESULTS AND DISCUSSION

First of all, we recall the definitions of the basic kine-
matic observables (see Fig. 1): s ¼ ðpe þ ppÞ2, the total

invariant energy squared; Q2 ¼ �k2�, the virtuality of the

exchanged photon; y ¼ ðk�ppÞ=ðpeppÞ, the fraction of the

electron energy-momentum transferred to the photon; z ¼
ðpDppÞ=ðk�ppÞ, the fraction of the photon energy-

momentum transferred to the D� meson; ptðD�Þ and

�ðD�Þ, the transverse momentum and rapidity of the pro-
duced D� meson; W ¼ ðk� þ ppÞ2, the center-of-mass

energy of the photon-proton system; MX, the mass of the
final state hadronic system separated by a rapidity gap from
the proton remnant system; xP ¼ ðQ2 þM2

XÞ=sy ¼ ðQ2 þ
M2

XÞ=ðQ2 þW2Þ, the fraction of the proton energy trans-
ferred to the Pomeron; x ¼ Q2=2ðk�ppÞ, the Bjorken vari-
able; and 
 ¼ x=xP ¼ Q2=ðQ2 þM2

XÞ.
In addition to that, the H1 Collaboration uses the vari-

able zP ¼ ðQ2 þ ŝobsÞ=xpys. The meaning of zP is as-

sumed to be the fraction of the Pomeron’s energy-
momentum carried by the interacting gluon. This definition
is based on the ‘‘constituent’’ picture of the Pomeron (see
Fig. 1, left panel), but does not suit well the two-gluon
exchange model (Fig. 1, right panel). For the LO subpro-
cess (2) zP must be identically equal to 1; but at the NLO, it
can be interpreted as the fraction of the Pomeron energy
transferred to the charmed quark pair, zP ¼ ½ðp1k�Þ þ
ðp2k�Þ�=ðpPk�Þ. The latter definition was used in our

theoretical calculations.
The collaborations H1 and ZEUS have collected data in

the photoproduction and deep-inelastic domains. The H1
photoproduction domain is defined as Q2 < 0:01 GeV2,
0:3< y< 0:65, xP < 0:04, jtj< 1 GeV2, pTðD�Þ>
2 GeV, and j�ðD�Þj< 1:5.
The H1 deep-inelastic domain is 2<Q2 < 100 GeV2,

0:05< y< 0:7, xP < 0:04, jtj< 1 GeV2, pTðD�Þ>
2 GeV, and j�ðD�Þj< 1:5.
The ZEUS photoproduction domain is Q2 < 1 GeV2,

0:17< y< 0:89, 130<W < 300 GeV, xP < 0:035,
pTðD�Þ> 1:9 GeV, and j�ðD�Þj< 1:6. Events with xP <
0:01 have been considered as a separate subsample.
The ZEUS deep-inelastic domain is 1:5<Q2 <

200 GeV2, 0:02< y < 0:7, xP < 0:035, 
< 0:8,
pTðD�Þ> 1:5 GeV, and j�ðD�Þj< 1:5. Events with xP <
0:01 have again been considered as a separate subsample.
The parameter setting in theoretical calculations was as

follows: charmed quark mass, mc ¼ mD ¼ 1:8 GeV;
Peterson fragmentation parameter, �ðc ! D�Þ ¼ 0:06;
overall fragmentation probability, fðc ! D�Þ ¼ 0:24
[22]; renormalization scale in the strong coupling and
factorization scale in the gluon density, �2

R ¼ �2
F ¼ ŝ=4.

To regulate the collinear and infrared divergences in the
NLO matrix element we impose cutoffs on the invariant
mass of the final state quark-gluon subsystems, ðp1 þ
kgÞ2 >M2

cut and ðp2 þ kgÞ2 >M2
cut, with Mcut ¼

2:5 GeV. The physics motivation is that, if the mass of a
quark-gluon system is of the order of the hadron mass, the
gluon emission is under the control of confinement forces
where pQCD methods are not applicable. We also require
that the transverse momentum of the final state gluon be
larger than 2 GeV. The sensitivity of the results to the cutoff
value is logarithmic, so that increasing Mcut from 2.5 to
5 GeV has approximately a 25% decreasing effect on the
production cross section.
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The choice of form factor is an important issue. Within
the factorization hypothesis (8), the production cross sec-

tion is proportional to the integral
Rtmax

0 r2ðtÞdt.
Experimental data [17] give evidence for changing the
value of the effective slope parameter b from b �
9 GeV�2 at the lowest jtj to b � 4:5 GeV�2 at jtj ’
1 GeV2. Another evidence [23] is given by the diffractive
production of W� and Z bosons at the Fermilab Tevatron,

showing the t dependence of cross sections like d
=dt /
6:38e�8jtj þ 0:424e�3jtj. Given the normalization condi-
tion r2ðt ¼ 0Þ ¼ 1, we get from Eq. (10)

R
1
0 r

2ðtÞdt ¼
0:125, a value which is about twice as low compared to
that if more ordinary parametrizations, such as r2ðtÞ ¼
½ð4� 2:8tÞ=ð4� tÞ�2ð1� t=0:7Þ�4 [24] or r2ðtÞ ¼
ð1� t=m2

2gÞ�4 with m2
2g ¼ 0:55 GeV2 [25], would have

been used. Taken together, the theoretical uncertainties
(connected to the quark mass, factorization scale, form
factor, and infrared regularization) can change the pre-
dicted cross sections by a factor of roughly 2 with respect
to its central value. The uncertainties mainly concern the

absolute normalization and, to a much less extent, the
shape of the distributions.
Our numerical results are displayed in Figs. 4–7. In

addition to the experimentally measured differential cross
sections, we show predictions on the angular distribution
d
=dc , with c being the angle between the electron
scattering plane and the D� meson production plane. We
recover the well-known LO result [26] that, in the photon-
Pomeron rest frame, the produced quarks prefer to lie in the
plane perpendicular to the electron scattering plane.
However, the effect is washed out when the NLO contri-
bution is considered (see Fig. 4, the right side of the lower
panel).
In general, the agreement with experimental data is

reasonably good. It could even be said to be surprisingly
good, if not excellent, having in mind that quite a lot of
different distributions at rather different kinematic regimes
have been described within the same parameter setting.
The only conclusion that we can derive from this fact is,
maybe, just the consistency of the model.
Our approach shows agreement with the data of at least

the same quality as those of Ref. [6], and it would hardly be
possible to favor either of the two on the basis of the
comparison with experiment. On the technical side, our
approach has the advantage of enabling one to separately
calculate the real and imaginary parts of the amplitude.
But, on the other hand, this could be of only academic
interest, because the contribution from the real part is
found to be not very important numerically for the process
under consideration.

FIG. 5. Predictions on the differential cross sections within the
H1 photoproduction kinematic range. Solid histograms show the
sum of LO and NLO contributions; dotted histograms are for LO
contributions alone; j represents H1 experimental data.

FIG. 4. Predictions on the differential cross sections within the
H1 deep-inelastic kinematic range. Solid histograms show the
sum of LO and NLO contributions; dotted histograms are for LO
contributions alone; j represents H1 experimental data. The
angular distributions d
=dc are shown with an arbitrary nor-
malization for ease of comparison.
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We agree with the result of Ref. [6] that the production
cross section in the deep-inelastic regime is dominated by
the NLO rather than LO partonic subprocess, although the
LO contribution is not totally negligible. At the same time,
the LO contribution plays almost no role in the photo-
production regime.

V. CONCLUSION

We have considered the diffractive production of D�
mesons at HERA conditions in the framework of the

two-gluon exchange model in its collinear interpretation.
The same approach and the same parameter setting were
applied to describe the data collected by the H1 and ZEUS
collaborations in the deep-inelastic and real photoproduc-
tion regions, and a very good agreement was found in all
cases. The success of the approach can be regarded as
validation of its consistency.
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