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Photon distribution amplitudes up to twist four are calculated within the nonlocal chiral quark model

with a simple pole ansatz for momentum dependence of the constituent quark mass. Calculations are

performed using a modified electromagnetic vector current in order to satisfy Ward identities. Quark

condensate and magnetic susceptibility of the QCD vacuum entering definitions of the distribution

amplitudes are computed and compared with existing phenomenological estimates. Both real and off-shell

photons are considered and relevant form factors are calculated. Our results are analytical up to the

numerical solution of certain algebraic equations.
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I. INTRODUCTION

In the present paper we calculate photon distribution
amplitudes (DA) within a low energy nonlocal model
based on the instanton model of the QCD vacuum. There
are seven different photon DAs corresponding to the Dirac
structure probing the photon and to the light-cone twist
(here we follow closely the definitions of Ref. [1]).
However in reality only one of them, twist two tensor
DA, can be accessed experimentally in hard exclusive
processes [2–5] (for an experimental overview, see
Ref. [6]). Higher twist amplitudes are suppressed in hard
processes and vector twist two DA decouples for real
photons. However, the interest in the remaining photon
DAs is not purely academic. They are normalized through
low energy observables such as quark condensate—h �c c i,
magnetic susceptibility—�m and mixed quark-gluon con-
densate—f3� that are of importance for our understanding

of the properties of the QCD vacuum. Only the calculation
of all photon DAs provides a test of the whole approach
and may prove its consistency.

In the present work, we employ a nonlocal generaliza-
tion of the semibosonized Nambu Jona-Lasinio model with
momentum dependent constituent quark mass MðpÞ
(which will be denoted as Mp) which follows from the

instanton model of the QCD vacuum [7,8]. This model in
the present version has been previously used to calculate
pion [9–11] and kaon [12–14] distribution amplitudes, two
pion DAs [15], pion-to-photon transition distribution am-
plitudes [16], and also twist two tensor photon DA [17]
(see also [9]). However, a complete analysis of all seven
photon DAs has been, to the best of our knowledge, con-
ducted only in Ref. [18] in a model similar to ours with,
however, results that in some respects are different than the
ones obtained in the present paper.

Since instantons do not account for confinement, neither
does our model. Therefore some of our results have to be

taken with caution since confinement might lead to their
modification. We shall come back to this issue in the
Summary. It is however interesting to note at this point
that the momentum dependent constituent quark mass
arises also in the context of deep inelastic scattering.
Although deep inelastic scattering is in principle defined
for large Q2 one may try to extrapolate to the low Q2

region. In this case, in the proton rest frame, the photon
dissociates into a quark-antiquark dipole well before the
target. The wave function for this process that for large Q2

can be calculated perturbatively, is matched with the low
Q2 region by introducing a momentum dependent quark
mass. Here, however, in contrast to the instanton model of
the QCD vacuum, the momentum dependence is attributed
to confinement rather than to the chiral symmetry breaking.
We refer the reader to Ref. [19] for details.
One of the obvious problems that arises when one con-

siders momentum dependent fermion mass is the noncon-
servation of the naive vector current containing only the ��

Dirac matrix. There are many proposals in the literature
about how to extend the vector current to satisfy electro-
magnetic Ward identities. None of them is unique, since
current conservation does not fix the transverse part of the
modified vertex. One of the simplest extensions of this type
discussed already many years ago in Refs. [20,21] and
employed also in Ref. [18], consists in the following sub-
stitution

�� ! ~��ðk; k� PÞ

¼ �� � k� þ ðk� pÞ�
k2 � ðk� pÞ2 ðMk �Mk�pÞ: (1)

Extension (1) follows from the assumption concerning
both Ward identities and analytical structure of the modi-
fied vertex that is required to match the perturbative ex-
pansion. In principle one could add to (1) terms
proportional to r� where r � p ¼ 0, and the Ward identities
would be satisfied. In Refs. [22,23] and also in [24] another
modification has been advocated; here the ambiguity is
connected to a freedom of choosing the integration path
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that defines the nonlocal vertex. In view of this ambiguous
situation, we have decided to use the simplest possible
extension of Ref. [20] given by Eq. (1).

Unlike the pion or the � meson the photon has a dual
nature being both pointlike and composite at the same
time. Therefore in order to calculate photon DAs that
describe nonperturbative quark-antiquark structures, one
has to subtract the perturbative part. In order to avoid
ambiguities, this procedure has to be well defined. In our
case, since we work in the chiral limit, we subtract the
perturbative part only from the photon DAs that are non-
zero for massless quarks. These are vector and axial DAs
which are also UV divergent. Therefore the subtraction of
the perturbative part renormalizes these DAs ensuring their
finiteness. At the same time, it introduces a term propor-
tional to lnð�P2Þ that develops the imaginary part for
positive virtualities. This is the reflection of the fact that
the photon can decay into free massless quarks in the
chirally even channels. Throughout this paper we plot
DAs both for negative and positive photon virtualities; in
the latter case we take just the real part if the imaginary part
exists. We also display momentum dependence of the
pertinent decay constants that are characterized by dimen-
sionless functions FT;V;AðP2Þ for brevity referred to as form
factors.

Finally, let us make a technical remark concerning loop
integrals over d4k with the kþ ¼ uPþ component fixed by
the � function. Such integrals, depending on the tensor
structure, may contain ‘‘singular’’ pieces proportional to
�ðuÞ and �ðu� 1Þ or even the derivatives of the � func-
tions. This is the case for higher twist photon DAs only. We
discuss this in more detail in Sec. IV, here we just want to
point out that higher twist DAs are in fact distributions
rather than ordinary functions. Quite importantly, the �
function contribution is always accompanied by a regular
piece that together with the � piece integrates to zero for
any P2. This allows us to define a properly normalized
regular part and a singular part of DA of zero norm.

In the next section, we introduce kinematical variables
and define photon distribution amplitudes. In Sec. III, we
describe the main features of our model specifying the
ansatz for the momentum dependence of the constituent
quark mass. We fix model parameters requiring that the
experimental value of the pion decay constant F� ¼
93 MeV is reproduced. To this end, we use the model
formula given in Eq. (18). Next, in Sec. IV, we describe
techniques used to calculate loop integrals with momentum
dependent constituent quark mass. We pay special atten-
tion to Lorentz invariance and show how the end point
singularities proportional to the Dirac � functions arise.
The main results are presented in Sec. V. First we calculate
dimensional constants entering definitions of the DAs (7)–
(9), namely, quark condensate, magnetic susceptibility, and
yet another constant called f3�. We obtain numerical re-

sults that agree with the ‘‘experimental’’ values known

from phenomenology. Finally, in Secs. VA and VB we
present our main results plotting different DAs and discus-
sing their properties.
Our results can be briefly summarized as follows.

Leading twist amplitudes are rather insensitive to model
parameters, whereas higher twist amplitudes exhibit much
stronger dependence, moreover some of them contain �
functions. We also show the influence of the nonlocal part
of the photon vertex (1) on the shape of photon DAs. For
some DAs it is rather unimportant, for the other ones it is
absolutely crucial. More discussion and comparison with
other models is given in Sec. VI. Technical details are
collected in the Appendixes.

II. DEFINITIONS AND KINEMATICS

Photon distribution amplitudes are defined through ma-
trix elements of the nonlocal quark-antiquark billinears
between the vacuum and one photon state. Quark operators
are assumed to be on the light cone separated by the
distance 2�. In the following, we use the light-cone coor-
dinates defined by two lightlike vectors n� and ~n� such
that n� ¼ ð1; 0; 0;�1Þ and ~n� ¼ ð1; 0; 0; 1Þ. In this basis
any four-vector v� can be decomposed into vþ and v�
components

v� ¼ vþ ~n�

2
þ v� n�

2
þ v�

?: (2)

The scalar product can be written as

u � v ¼ 1
2u

þv� þ 1
2u

�vþ � ~u? � ~v?: (3)

We shall work in the system where the photon momentum
is expressed as

P� ¼ Pþ ~n�

2
þ P2

Pþ
n�

2
: (4)

Decomposition of the polarization vector reads

"� ¼ "þ
~n�

2
þ "�

n�

2
þ "

�
?;

where "�?"?� ¼ � ~"? � ~"? ¼ �1: (5)

Since P � " ¼ 0 we have the relation

"� ¼ � P2

ðPþÞ2 "
þ: (6)

For the real photon we obviously have "þ ¼ " � n ¼ 0 and
consequently "� ¼ 0 as well.
Depending on the different tensor nature of the bilocal

operators, we can define tensor

PIOTR KOTKO AND MICHAL PRASZALOWICZ PHYSICAL REVIEW D 81, 034019 (2010)

034019-2



h0j �c ð�nÞ�	
c ð��nÞj�ðP;"Þi
¼ i

e

2
h �c c iFTðP2Þ

�
ð"	?~n
�"
?~n

	ÞPþ�m

Z 1

0
duei��P

þ

��Tðu;P2Þ 1

Pþð~n	n
� ~n
n	Þ"þ
Z 1

0
duei��P

þ

�c Tðu;P2Þ 1

Pþð"	?n
�"
?n
	Þ
Z 1

0
duei��P

þ
hTðu;P2Þ

�
;

(7)

vector

h0j �c ð�nÞ��c ð��nÞj�ðP; "Þi

¼ ef3�FVðP2Þ
�
1

2
~n�"þ

Z 1

0
duei��P

þ
�Vðu; P2Þ

þ "�?
Z 1

0
duei��P

þ
c Vðu; P2Þ � 1

2

� P2

ðPþÞ2 n
�"þ

Z 1

0
duei��P

þ
hVðu; P2Þ

�
; (8)

and axial vector

h0j �c ð�nÞ���5c ð��nÞj�ðP; "Þi
¼ 1

2
ef3�FAðP2Þ
��	
"

�
?~n

	n
Pþ�

�
Z 1

0
duei��P

þ
c Aðu; P2Þ (9)

distribution amplitudes. For compactness, we used the
notation � ¼ 2u� 1 where u is a longitudinal fraction of
the quark momentum and dropped Wilson lines ½��n; �n�
that ensure gauge invariance of the nonlocal operators. In
the light-cone gauge A � n ¼ 0 and hence ½��n; �n� ¼ 1.
Moreover, since we use an effective model where gluonic
fields are integrated out, Wilson lines corresponding to
gluon fields never appear.

Our definitions follow closely those of Refs. [1,18],
however we need only one P2-dependent dimensionless
form factor for each tensor structure: FTðP2Þ, FVðP2Þ, and
FAðP2Þ where subscripts T, V, and A stay for the vector,
tensor, and axial vector, respectively. Constant �m is the
magnetic susceptibility of the quark condensate h �c c i, and
f3� corresponds to the axial mixed quark-gluon conden-

sate. They provide natural mass scales for distribution
amplitudes. Analytical expressions for h �c c i, �m, and
f3�, and for the form factors can be retrieved from the

matrix elements of local operators:

h0j �c ð0Þ�	
c ð0Þj�ðP; "Þi ¼ ieh �c c i�mFTðP2Þ
� ð"	P
 � "
P	Þ; (10)

h0j �c ð0Þ��c ð0Þj�ðP; "Þi ¼ ef3�FVðP2Þ"�; (11)

d

d�
h0j �c ð��nÞ���5c ð�nÞj�ðP; "Þij�¼0

¼ ef3�FAðP2Þ
��	
"
�P	n
: (12)

Equations (7)–(9) define photon distribution amplitudes
that can be classified according to the kinematical light-
cone twist. We have distributions of twist two: �T , �V , of
twist three: c T , c V , c A, and of twist four: hT , hV . This can
be easily seen by inspecting Eqs. (7)–(9), since the twist
counting actually reduces to counting the powers of Pþ.
Notice that in the case of axial distribution, the power of
Pþ equals 1, which would correspond to twist two, how-
ever additionally there is a path stretch �with inverse mass
dimensionality that makes c A to have twist three rather
than two.
Constants �m, h �c c i, and f3� are chosen in such a way

that the following normalization conditions are satisfied:

Z 1

0
�Tðu; P2Þdu ¼ 1;

Z 1

0
c Tðu; P2Þdu ¼ �mP

2;

Z 1

0
hTðu; P2Þdu ¼ �mP

2; (13)

Z 1

0
�Vðu; P2Þdu ¼ 1;

Z 1

0
c Vðu; P2Þdu ¼ 1;

Z 1

0
hVðu; P2Þdu ¼ 1;

(14)

Z 1

0
c Aðu; P2Þdu ¼ 1: (15)

Note that due to the conservation of vector current
FVð0Þ ¼ 0. On the other hand FTð0Þ ¼ 1. Normalization
of the axial form factor FAð0Þ is arbitrary and depends on
the dimensional constant used in definition (9).

III. NONLOCAL CHIRAL QUARK MODEL

In order to calculate relevant matrix elements in the low
energy domain, we shall use effective action based on the
instanton vacuum theory [7]. Its main feature is momentum
dependent constituent quark mass

MðkÞ ¼ MF2ðkÞ (16)

appearing due to the chiral symmetry breaking. This de-
pendence enters not only into propagators, but serves as a
nonlocal quark-meson coupling as well. For zero momen-
tum Mð0Þ � M is of order of 350 MeV, while for k ! 1
constituent quark mass vanishes MðkÞ ! 0.
One has to remember that the semibosonized Nambu

Jona-Lasinio model, although devised to describe chiral
physics of Goldstone bosons, has been widely used to
incorporate baryons as chiral solitons both in local (for
review see, e.g., Ref. [25]) and nonlocal [26] cases.
Generally the results of these studies show that the soliton
ceases to exist for too small constituent quark massM. The
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critical value of M depends on the details of the given
model, however it is of the order of 300 MeVor a bit less.
Typical values ofM that fit well the hyperon spectrum may
be as high as 420 MeV [27]. In order to investigate depen-
dence of photon DAs onM, we use three distinct values of
M: 300, 350, and 400 MeV.

Because of the momentum dependence of the quark
mass, the naive vector current j� ¼ �c��c violates elec-
tromagnetic Ward identities. In order to fix this deficiency,
new nonlocal terms have to be added to j�. As already
discussed in the Introduction, there are several ways of
constructing extensions that make the current conserved. In
the present paper, we use the simplest possible general-
ization of the vector current, [18,20] replacing �� by an
effective vertex of (1). One can easily check that electro-
magnetic Ward identities are satisfied when (1) is used
instead of ��. Although Eq. (1) introduces an extra pole
inside Feynman amplitudes, its residue, as we will explic-
itly show, is zero due to the mass difference in the numera-
tor. This generalization of the vector current has been
widely used in the literature and also in the context of
the photon DAs [18].

Expression for the form factor FinstðkÞ within the instan-
ton vacuum model is known analytically in Euclidean
space and is highly nontrivial [7]. Therefore, in order to
perform analytical calculations directly in Minkowski
space, we use the following formula [9]:

FðkÞ ¼
� ��2

n

k2 ��2
n þ i


�
n
; (17)

where �n is cutoff parameter adjusted for each n in such a
way that the experimental value of the pion decay constant
is reproduced. For transparency we shall skip subscript n
and use � rather than �n in the following.

Equation (17) reproduces reasonably well original shape
FinstðkÞ when continued to Euclidean momentum. It should
be however pointed out that expression (17) does not
follow the exponential asymptotics of FinstðkÞ [7].
Parameter n is introduced in order to check sensitivity of
our results to the shape of FðkÞ.

In order to fix the model parameter � we use the
following Euclidean expression for the weak pion decay
constant [22]:

F2
� ¼ Nc

4�2

Z 1

0
dk2Ek

2
E

�M2ðk2EÞ � k2EMðk2EÞM0ðk2EÞ þ k4EM
0ðk2EÞ2

ðk2E þM2ðk2EÞÞ2
(18)

where M0ðk2EÞ ¼ dMðk2EÞ=dk2E. Notice that this formula
differs from the Pagels-Stokar formula of Ref. [28]. It
has been also obtained in Ref. [10] from partial conserva-
tion of axial current in Minkowski space. Using experi-
mental value F� ¼ 93 MeV and (17) we obtain the cutoff
parameters listed in Table I for several choices of the
constituent quark massM and n. The analytical expression

obtained within the present model is given in Appendix B.
We remark at this point that the cutoff parameter � should
not be confused with a typical scale of the model, which for
the instanton model is about 600 MeV.

IV. LOOP INTEGRALS WITH MOMENTUM
DEPENDENT MASS

In this section, we present a brief sketch of our calcu-
lations underlying the most important steps. Further tech-
nicalities are relegated to the Appendixes. In order to
calculate the DA of interest—denoted generically as
fðuÞ—we have to invert formulas (7)–(9) by contracting
them with appropriate four-vectors and by performing
Fourier transformation in �. This results in the following
formulas:

fðuÞ ¼ �ieq4P
þNc

C

Z dDk

ð2�ÞD T�ðk; k� PÞ�ðkþ � uPþÞ
(19)

where C is the constant obtained by the contraction, � is
the contracted tensor structure defining given amplitude,
and

T�ðk; qÞ ¼ 1

4
Tr

�
�

1

k6 �Mk þ i

"� ~�

�ðk; k� PÞ

� 1

ðk6 � P6 Þ �Mk�P þ i


�
(20)

stands for the Dirac trace. Note that in the case of axial DA,
because of � standing in the left-hand side of (9)

fðuÞ ¼ 1
2ðc 0

AðuÞ þ c Að0Þ�ðuÞ � c A�ðu� 1ÞÞ: (21)

Since some of the integrals can be UV divergent, we shall
work in D ¼ 4� 2
 dimensions.
Previous calculations using the present nonlocal model

were done by integration in the light-cone coordinates,
with special care concerning the integration contour to
ensure analyticity in �. Here we present another method
of performing such integrals based on the 	 representation
for the propagators. It is especially useful in the case of
integrals appearing in higher twist distributions, because of

TABLE I. Numerical values of the model parameters obtained
using the Birse-Bowler formula for pion decay constant F�.

M ¼ 300 MeV
n ¼ 1 � ¼ 1016 MeV
n ¼ 5 � ¼ 2385 MeV
M ¼ 350 MeV
n ¼ 1 � ¼ 836 MeV
n ¼ 5 � ¼ 1970 MeV
M ¼ 400 MeV
n ¼ 1 � ¼ 721 MeV
n ¼ 5 � ¼ 1704 MeV
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the end point delta-type singularities, which are cumber-
some to treat by integration in the light-cone coordinates.

The above complication can be well illustrated by con-
sidering a loop integral of the type (19) for the numerator
involving k�. If not for the � function, it would have been
proportional to P�, but because kþ � uPþ ¼ n � k� un �
P we have

Z dDk

ð2�ÞD
k�N

ðk2 �M2
k þ i
Þððk� PÞ2 �M2

k�P þ i
Þ
� �ðkþ � uPþÞ ¼ AðuÞP� þ BðuÞn� (22)

where N is some scalar function involving n, ", and P.
There is an obvious condition following from Lorentz
invariance

Z 1

0
duBðuÞ ¼ 0: (23)

However, as mentioned above and as shown explicitly in
Appendix C, function BðuÞ contains both the regular piece
and the piece with delta functions: �ðuÞ and �ðu� 1Þ. Only
the sum of both contributions integrates over du to zero.
Note that this cancellation occurs for any P2. Since n � n ¼
0 and "? � n ¼ 0, the delta functions contribute only to the
integrals of the k� component. The integrals with tensor
structure k�k� are even more complicated, since they in-
volve derivatives of � functions.

As it was already discussed in Ref. [9], momentum mass
dependence given by (17) introduces a set of poles, whose
positions depend on parameter �. To this end it is conve-
nient to introduce dimensionless scaled variables

� ¼ k=�n; p ¼ P=�n; r ¼ M=�n (24)

and to define

z1 ¼ ð�� pÞ2 � 1þ i
; z2 ¼ �2 � 1þ i
: (25)

Then the loop integral involving two propagators, like the
one in Eq. (22), is transformed into

I ¼ �D�5
Z dD�

ð2�ÞD �ð� � n� upþÞ z4n1 z4n2 N
Gðz1ÞGðz2Þ ; (26)

where the numerator N ðz1; z2; � � n; � � ~n; � � "?Þ de-
pends on the DA considered. Here

GðziÞ ¼ z4nþ1
i þ z4ni � r2 ¼ Y4nþ1

j¼1

ðzi � �jÞ (27)

corresponds to the propagator with momentum dependent
mass (for n ¼ 0 it reduces to the ordinary propagator in
scaled variables) where the complex numbers �j are roots

of polynomial G to be obtained numerically.
Next we decompose the inverse product of Gðz1ÞGðz2Þ

into a sum of simple poles

zM1 z
N
2

Gðz1ÞGðz2Þ
¼ X4nþ1

i;j¼1

fifj
�M
i �

N
j

ðz1��iÞðz2��jÞ forM;N� 4n

(28)

with

fi ¼
Y4nþ1

k¼1;k�i

1

�i � �k

: (29)

In this way, integral (26) is reduced to the sum of contri-
butions involving two propagators only. It is convenient to
use the 	 representation (exponential Schwinger represen-
tation) for the product of propagators since also the �
function in (26) can be written as an exponent. Further
calculations are rather standard and are summarized in
Appendix C. As a result, we obtain analytical expressions
given as sums over roots �i. Certain simplifications occur
when we use the following identity [which is true for any
set of complex numbers f�ig not only for the solutions of
Gð�iÞ ¼ 0]:

X4nþ1

i¼1

fi�
N
i ¼

�
0 N < 4n;
1 N ¼ 4n:

(30)

The proof of (30) and other useful identities can be found
in Appendix A.
Some of the loop diagrams discussed above are UV

divergent and require renormalization. This results in the
subtraction of the perturbative part which is uninteresting
from the point of view of the hadronic component of the
photon. To illustrate this problem, consider loop integral
(26) with N ¼ 1. Performing dD� integration gives

J ¼ i

16�2Pþ

�
4�e��

�2

�

 1




X4nþ1

i;j¼1

fi�
4n
i fj�

4n
j

� ½1� �u�i þ u�j þ u �up2��


¼ i

16�2Pþ

�
4�e��

�2

�

 X4nþ1

i;j¼1

fi�
4n
i fj�

4n
j

�
�
1



� ln½1� �u�i þ u�j þ u �up2�

�
(31)

with �u ¼ u� 1. Because of (30) the coefficient of the 1=

pole is equal to 1. For N involving negative powers of �i

(likeN ¼ Mk for example) the coefficient of the pole is 0
and no subtraction is needed. For constant mass (n ¼ 0)
GðzÞ ¼ zþ 1� r2 and for zero mass (current masses are
zero in the chiral limit) there is only one solution ofGðzÞ ¼
0, namely, �1 ¼ �1. Hence the perturbative part of the
loop integral (26) reads

J pert ¼ i

16�2Pþ

�
4�e��

�2

�


�
1



� ln½u �up2�

�
: (32)

This result can of course be obtained by standard tech-

niques for M ¼ 0. Renormalization in the MS scheme
proceeds by subtracting the pole only. Here we subtract
full perturbative contribution and go back to D ¼ 4 (
 ¼
0) dimensions which gives
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J sub ¼ � i

16�2Pþ
X4nþ1

i;j¼1

fi�
4n
i fj�

4n
j

� ln

�
1� �u�i þ u�j þ u �up2

u �up2

�
(33)

where we have again used (30). Note that subtraction
occurs only for terms which do not involve Mk or Mk�P,
and these terms are always UV divergent. In other words,
in the chiral limit all perturbative photon DA are either UV
divergent or identically zero.

V. PHOTON DAs IN THE NONLOCAL MODEL

Before we proceed with photon DAs and systematically
present our results, we have to fix numerical constants
appearing in the definitions (7)–(9). We have already in-
troduced the expression for pion decay constant (18) which
is used to fix model parameters. Next we consider the
quark condensate given as the trace of the quark propagator
which reads in Euclidean metric

h �c c i ¼ � Nc

4�2

Z
dk2E

k2EMðk2EÞ
k2E þM2ðk2EÞ

; (34)

which in our model turns out to be simply

h �c c i ¼ �NcM�2

4�2

X4nþ1

i¼1

fi�
2n
i ð1þ �iÞ lnð1þ �iÞ: (35)

Numerical values obtained from this formula coincide with
those of Ref. [9] if we use model parameters corresponding
to F� obtained from the Pagels-Stokar formula [28].

The formula for magnetic susceptibility �m in the non-
local model used in Ref. [18]

�m ¼ Nc

4�2h �c c i
Z

dk2E
k2EðMðk2EÞ � k2EM

0ðk2EÞÞ
ðk2E þM2ðk2EÞÞ2

(36)

[with M0ðk2EÞ ¼ dMðkEÞ=dk2E] reduces in our case to

�m ¼ NcM

4�2h �qqi
X4nþ1

i;j¼1

fifj�
4n
i ð1þ �jÞ½�2n

j þ 2nð1þ �jÞ

� �2n�1
j �

�
"ij

�i � �j

ðlogð1þ �iÞ � logð1þ �jÞÞ

þ �ij

1þ �i

�
(37)

where 
ij is 0 for i ¼ j and 1 otherwise, while �ij is the

Kronecker delta. Numerical values of h �c c i and �m for the
present set of model parameters are listed in Table II. Note
that in fact we do not have to use (37) to calculate �m since
it can be retrieved from the normalization condition of
�TðuÞ. Numerical values of �m obtained in both ways
agree, proving consistency of our calculations and defini-
tions (7).

To calculate f3� we have used the Euclidean formula

from Ref. [18]:

f3� ¼ � Nc

4�2

Z
dk2E

M2ðk2EÞ
k2E þM2ðk2EÞ

; (38)

which in our model transforms into

f3� ¼ NcM
2

4�2

X4nþ1

i¼1

fi lnð1þ �iÞ: (39)

Numerical values of f3� are listed in Table III.

Phenomenological values of h �c c i, �m, and f3� are well

known only for the quark condensate: approximately
�ð250 MeVÞ3 [29] at low momentum scale. This value is
still used in more recent phenomenological applications
[1]. Magnetic susceptibility is still a subject of large phe-
nomenological uncertainties. Different estimates are nicely
summarized in Ref. [30] where it is shown that �m ’ 2:5�
5:5 GeV�2 with some preference to the values around
4:3 GeV�2. Finally the value of f3� obtained in different

low energy models, as discussed in Ref. [18], is negative
and of the order of �0:004 GeV2. Our values are here a
factor of 2 smaller (� 0:0094 GeV2), however they are
almost insensitive to actual model parameters. On the other
hand, magnetic susceptibility is quite sensitive to M and n
[see, Eqs. (16) and (17)] remaining, however, within the
range of acceptable phenomenological values discussed in
Ref. [30]. Similarly, h �c c i varies with M and n, however,
for the preferred value of the constituent quark mass M ¼
350 MeV it is quite close to the phenomenological esti-
mates. From this point of view, our model satisfactorily
describes low energy observables relevant for photon DAs.

TABLE II. Numerical values of the quark condensate h �c c i
obtained using model parameters from Table I and magnetic
susceptibility �m used in the calculations.

M ¼ 300 MeV
n ¼ 1 h �c c i ¼ �ð277 MeVÞ3 �m ¼ 2:30 GeV�2

n ¼ 5 h �c c i ¼ �ð230 MeVÞ3 �m ¼ 3:75 GeV�2

M ¼ 350 MeV
n ¼ 1 h �c c i ¼ �ð253 MeVÞ3 �m ¼ 2:85 GeV�2

n ¼ 5 h �c c i ¼ �ð208 MeVÞ3 �m ¼ 4:71 GeV�2

M ¼ 400 MeV
n ¼ 1 h �c c i ¼ �ð236 MeVÞ3 �m ¼ 3:34 GeV�2

n ¼ 5 h �c c i ¼ �ð192 MeVÞ3 �m ¼ 5:58 GeV�2

TABLE III. Numerical values of f3� obtained using model
parameters from Table I.

M ¼ 300 MeV
n ¼ 1 f3� ¼ �0:0095 GeV2

n ¼ 5 f3� ¼ �0:0093 GeV2

M ¼ 350 MeV
n ¼ 1 f3� ¼ �0:0095 GeV2

n ¼ 5 f3� ¼ �0:0092 GeV2

M ¼ 400 MeV
n ¼ 1 f3� ¼ �0:0094 GeV2

n ¼ 5 f3� ¼ �0:0091 GeV2
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A. Leading twist distributions

1. Tensor photon DA

Tensor twist two amplitude has already been discussed
in Refs. [17] and also [9] in a model with the local vertex
only. Here we extend the discussion to off-shell photons
and calculate the correction appearing due to the modified
vertex (1). In the case of the leading twist tensor DA, we
obtain the following expression using local current:

�ð0Þ
T ðu; P2Þ ¼ i4NcP

þ

h �c c i�mFTðP2Þ
Z dDk

ð2�ÞD �ðk � n� un � PÞ

� �uMk � uMk�P

ðk2 �M2
k þ i
Þððk� PÞ2 �M2

k�P þ i
Þ ;
(40)

where �u ¼ u� 1. Notice, that the special choice of the
contour described in [9] allows for passing to Euclidean
space. Therefore we can use the Schwinger representation
for scalar propagators and proceed in the spirit of [18]. The
result reads:

�ð0Þ
T ðu; P2Þ ¼ �NcM

4�2h �c c i�mFTðP2Þ
X4nþ1

i;j¼1

fifjð �u�2n
i �4n

j

� u�4n
i �2n

j Þ lnð1þ u �up2 � �u�i þ u�jÞ
(41)

for 0 � u � 1.
Now let us consider the part coming from the nonlocal

part of the vertex (1). It is given by the integral

�ð1Þ
T ðu; P2Þ ¼ �i8NcP

þ

h �c c i�mFTðP2Þ
Z dDk

ð2�ÞD �ðk � n� un � PÞ ðMk �Mk�PÞð"? � k?Þ2
ðk2 �M2

k þ i
Þððk� PÞ2 �M2
k�P þ i
Þð2k � P� P2 þ i�Þ :

(42)

Notice that additional denominator appears 2k � P� P2 þ
i�, where the þi� prescription introduced at this stage is
completely arbitrary. However, as already explained in
Sec. III, the residue of this pole is zero so that it does not
contribute to the amplitude irrespectively of the sign of �.
Therefore in the following we shall always omit contribu-
tion of this spurious pole. After performing the integration
as described in Appendix C, we finally obtain

�ð1Þ
T ðu; P2Þ ¼ MNc

4�2h �c c i�mFTðP2Þ

� X4nþ1

i;j

fifj
�2n
i �2n

j ð�2n
i � �2n

j Þ
�i � �j

ð1þ u �up2

� �u�i þ u�jÞ lnð1þ u �up2 � �u�i þ u�jÞ
(43)

for 0 � u � 1. The full twist two tensor photon DA is
given by

�T ¼ �ð0Þ
T þ�ð1Þ

T : (44)

We plot this function in Fig. 1 for several values of photon
virtuality and constituent quark mass. Notice that the non-
local part of the quark-photon vertex is small and the full
amplitude is almost equal to the local one. The resulting
DA is almost flat for real photons and does not vanish at the
end points.

The tensor form factor is shown in Fig. 2. It can be in
principle calculated by analytical integration, which has to
be performed carefully because of the complex numbers
under logarithms.

2. Vector photon DA

Calculation of the vector twist two amplitude proceeds
in a similar way. After performing the traces we get

c VðuÞ ¼ �i4PþNc

f3�FVðP2Þ"þ
Z dDk

ð2�ÞD

� ðTð0Þ
V þ Tð1Þ

V Þ�ðk � n� un � PÞ
ðk2 �M2

k þ i
Þððk� PÞ2 �M2
k�P þ i
Þ ;

(45)

where Tð0Þ
V and Tð1Þ

V stand for traces corresponding to local
and nonlocal parts of the photon vertex, respectively:

Tð0Þ
V ¼ "þðMkMk�P þ ~k2? �P2u �uÞ � ð ~"? � ~k?ÞPþð �uþ uÞ;

Tð1Þ
V ¼�ðMk �Mk�PÞð �uMk þ uMk�PÞ

k� þ �u P2

Pþ

�
�
"þ

�
k� � u

P2

Pþ

�
� 2ð ~"? � ~k?Þ

�
: (46)

Note that single powers of ð ~"? � ~k?Þ integrate to zero.
In the case of the twist two vector DA, we have to

subtract the perturbative piece corresponding to MðkÞ ¼
0. Then, the contribution to the vector photon DA coming
from the local part of the vertex consists of two parts

�ð0;aÞ
V ðu; P2Þ ¼ Nc

4�2f3�FVðP2Þ
X4nþ1

i;j¼1

fifjð�2�4n
i �4n

j

� ð �u�i � u�j � 1Þ þM2�2n
i �2n

j Þ
� lnð1þ u �up2 � �u�i þ u�jÞ (47)

and
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�ð0;bÞ
V ðu; P2Þ ¼ Nc

4�2f3�FVðP2Þ ð�2u �uP2Þ X4nþ1

i;j¼1

fifj�
4n
i �4n

j

� ln

�
1þ u �up2 � �u�i þ u�j

u �up2

�
: (48)

The addition coming from the nonlocal part of the current

can be conveniently split into a sum of two contributions

�ð1;aÞ
V ðuÞ ¼ �Nc

4�2f3�FVðP2ÞM
2
X4nþ1

i;j¼1

fifjð�2n
j � �2n

i Þ

� ð �u�2n
j þ u�2n

i Þ lnð1þ u �up2 � �u�i þ u�jÞ;
(49)
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FIG. 2 (color online). Tensor form factor for (a) fixed n ¼ 1 and different M, (b) fixed M ¼ 350 MeV and two different n ¼ 1, 5.
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FIG. 1 (color online). Leading twist tensor photon DA for (a) different photon virtualities and fixed M ¼ 350 MeV and n ¼ 1,
(b) differentM and fixed n ¼ 1 and P2 ¼ 0, (c) different n and fixedM ¼ 350 MeV and P2 ¼ 0, (d) decomposition into contributions
corresponding to local (dashed lines) and nonlocal (dotted lines) parts of the vector vertex for M ¼ 350 MeV, n ¼ 1, and P2 ¼ 0.

PIOTR KOTKO AND MICHAL PRASZALOWICZ PHYSICAL REVIEW D 81, 034019 (2010)

034019-8



�ð1;bÞ
V ðuÞ ¼ Nc

4�2f3�FVðP2Þ ð1� 2uÞM
2P2

�2

X4nþ1

i;j¼1

fifj

� ð�2n
i � �2n

j Þð �u�2n
j þ u�2n

i Þ
ð�i � �jÞ

� lnð1þ u �up2 � �u�i þ u�jÞ: (50)

Notice that subtraction concerns only the �ð0;bÞ
V part since

�ð1Þ
V is always proportional to the mass.
In the tensor case, the only effect due to the local vertex

is a small change in the shape of the distribution. The
situation is different for vector DA. When we use local
current only, the vector distribution alternates in sign (re-
call that leading twist DAs have probabilistic interpreta-
tion). Only when we include the nonlocal part of the vertex,

contributions �ð0;aÞ
V and �ð1;aÞ

V cancel exactly for any P2.
This is explicitly shown in Fig. 3(d). As a consequence,�V

is effectively the sum of �ð0;bÞ
V and �ð1;bÞ

V . We plot this
function in Fig. 3 for different sets of model parameters.

Furthermore, since both �ð0;bÞ
V and �ð1;bÞ

V are explicitly
proportional to P2, normalization conditions (14) require
that FVð0Þ ¼ 0 as it should be in accordance with the
conservation of the vector current (Fig. 4). This condition
would be violated if not for the nonlocal part of the photon
vertex.

B. Higher twist distributions

For higher twist distributions, we encounter an addi-
tional difficulty. As shown in Appendix C, it turns out
that they are in fact generalized functions. Because of
k� ¼ k � ~n occurring in the numerator [kþ ¼ k � n is
fixed—see the delta function in (40)], additional end point
delta functions appear. They are crucial for Lorentz invari-
ance of the integrals and in consequence for the correct
normalization of the distributions. These singularities were
already discussed in Ref. [18].

a) b)
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FIG. 3 (color online). Leading twist vector photon DA for (a) different photon virtualities and fixed M ¼ 350 MeV and n ¼ 1,
(b) different M and fixed n ¼ 1 and P2 ¼ �0:3 GeV2, (c) different n and fixed M ¼ 350 MeV and P2 ¼ �0:3 GeV2,

(d) decomposition into different contributions, as described in the main text; notice the exact cancellation of �ð0;aÞ
V and �ð1;aÞ

V

following from the gauge invariance. For positive P2 we show only the real part of DA.
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1. Tensor DAs

We start with tensor DAs. For twist three tensor ampli-
tude, we have

c TðuÞ ¼ 4Nc

h �c c iFTðP2Þ
Pþ

"þ
Z d4k

ð2�Þ4

� ðTð0Þ
T þ Tð1Þ

T Þ�ðk � n� uPþÞ
ðk2 �M2

k þ i
Þððk� PÞ2 �M2
k�P þ i
Þ

(51)

where Tð0Þ
T and Tð1Þ

T stand for traces corresponding to local
and nonlocal parts of the photon vertex, respectively:

Tð0Þ
T ¼ � i

2
"þ

�
PþðMk �Mk�PÞ

�
k� þ �u

P2

Pþ

�

� P2ðMk þMk�PÞ
�
; (52)

Tð1Þ
T ¼ i

2

PþðMk �Mk�PÞ
k� þ �u P2

Pþ

�
k� � u

P2

Pþ

�

�
�
"þ

�
k� � u

P2

Pþ

�
� 2 ~k? � ~"?

�
: (53)

Note that even powers of ~k? � ~"? integrate to zero under

d2 ~k?.
Luckily, in the case of c TðuÞ, contributions involving k�

cancel out in the sum of (52) and (53) and the final result is
the sum of two pieces

c ðaÞ
T ðuÞ ¼ NcM

8�2h �c c i�mFTðP2Þ ð�mP
2Þ

� X4nþ1

i;j¼1

fifj�
2n
i �2n

j ½ð�2n
j þ �2n

i Þ þ 2ð1� 2uÞ

� ð�2n
j � �2n

i Þ� lnð1þ u �up2 � �u�i þ u�jÞ
(54)

and

c ðbÞ
T ðuÞ ¼ �NcM

8�2h �c c i�mFTðP2Þ ð�mP
2Þ P

2

�2
ð1� 2uÞ2

� X4nþ1

i;j¼1

fifj�
2n
i �2n

j

�2n
j � �2n

i

�j � �i

� lnð1þ u �up2 � �u�i þ u�jÞ: (55)

Note that c T is proportional to the same normalization
constant as�T times (�mP

2) which means that it decouples
for real photons.
In the case of twist four tensor amplitude, the � function

contributions do not cancel out. Performing Dirac traces,
we have

hTðuÞ ¼ 4NcP
þ2

h �c c iFTðP2Þ
Z d4k

ð2�Þ4

� ðRð0Þ
T þ Rð1Þ

T Þ�ðk � n� un � PÞ
ðk2 �M2

k þ i
Þððk� PÞ2 �M2
k�P þ i
Þ

(56)

where again the contributions of local and nonlocal parts of
the vector current have been singled out:

Rð0Þ
T ¼ �i

P2

Pþ2
"þðMk �Mk�PÞð ~"? � ~k?Þ

� i

�
ðMk �Mk�PÞk� �Mk

P2

Pþ

�
; (57)

Rð1Þ
T ¼ �i

P2

Pþ2

Mk �Mk�P

k� þ �u P2

Pþ
ð ~"? � ~k?Þ

�
�
"þ

�
k� � u

P2

Pþ

�
� 2ð ~"? � ~k?Þ

�
: (58)

Note that significant simplifications occur since the single

power of ~k? � ~" integrates to zero. Following the steps
described in Appendix C, we finally arrive at the final
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FIG. 4 (color online). Vector form factor for (a) fixed n ¼ 1 and different M, (b) fixed M ¼ 350 MeV and two different choices of
n ¼ 1, 5. Notice that the form factor vanishes for zero virtuality as required by vector current conservation.
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formula for hTðuÞ. It is convenient to split it into 4 different
pieces—regular local vertex contribution:

hð0;aÞT ðuÞ ¼ NcM

4�2h �c c i�mFTðP2Þ�mP
2
X4nþ1

i;j¼1

fifj�
2n
i �2n

j

� ðu�2n
i � �u�2n

j Þ lnð1þ u �up2 � �u�i þ u�jÞ;
(59)

second local vertex contribution:

hð0;bÞT ðuÞ ¼ �NcM

4�2h �c c i�mFTðP2Þ�m�
2
X4nþ1

i;j¼1

fifj�
2n
i �2n

j

� ð�2n
j � �2n

i Þðð�i � �jÞ þ ð1� 2uÞp2Þ
� lnð1þ u �up2 � �u�i þ u�jÞ (60)

that integrates to zero with �-function contribution:

hð0;deltaÞT ðuÞ ¼ NcM

4�2h �c c i�mFTðP2Þ�m�
2
X4nþ1

i;j¼1

fifj�
2n
i �2n

j

� ð�2n
i � �2n

j Þ½ð1þ �jÞ lnð1þ �jÞ�ðu� 1Þ
� ð1þ �iÞ lnð1þ �iÞ�ðuÞ�; (61)

and hence does not contribute to the normalization, and the
contribution corresponding to the nonlocal part of the
photon vertex:

hð1ÞT ðuÞ ¼ NcM

4�2h �c c i�mFTðP2Þ�mP
2
X4nþ1

i;j¼1

fifj�
2n
i �2n

j

� ð1þ u �up2 � �u�i þ u�jÞ
�2n
i � �2n

j

�i � �j

� lnð1þ u �up2 � �u�i þ u�jÞ: (62)

The delta contribution hð0;deltaÞT can be rewritten using the
expression (39) for f3� and the identities given in

Appendix A:
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FIG. 5 (color online). Tensor twist three photon DA for (a) different photon virtualities and fixed M ¼ 350 MeV and n ¼ 1 (for
P2 ¼ 0 it is identically zero), (b) different n and P2 for fixed M ¼ 350 MeV, (c) different M and fixed n ¼ 1 and P2 ¼ �0:3 GeV2,
(d) decomposition into contributions corresponding to local (dashed lines) and nonlocal (dotted lines) parts of the vector vertex.
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hð0;deltaÞT ðuÞ ¼ �1

FTðP2Þ ½�ðu� 1Þ þ �ðuÞ�: (63)

Note that the fact that the sum of (60) and (61) integrates
over du to zero is a consequence of the Lorentz invariance

discussed in Sec. IV [see Eq. (23)]. Therefore only hð0;aÞT

and hð1ÞT ðuÞ contribute to the normalization condition (13)

given by (�mP
2). If not for the �-term hð0;bÞT would also

contribute to the norm spoiling the normalization
condition.

Full results (with nonlocal current) for twist three c T

and twist four hT tensor distributions are show in Figs. 5
and 6, respectively.

2. Vector DAs

In the case of higher twist vector DAs, c V and hV ,
calculations are basically the same, with the restriction
that we have to perform subtractions similarly to the twist
two case. For twist three amplitude, we obtain

c VðuÞ ¼ i4NcP
þ

f3�FVðP2Þ
Z d4k

ð2�Þ4

� ðTð0Þ
V þ Tð1Þ

V Þ�ðk � n� un � PÞ
ðk2 �M2

kÞððk� PÞ2 �M2
k�PÞ

(64)

with

Tð0Þ
V ¼ ½2ð ~"? � ~k?Þ2 � ~k2?� � "þð ~"? � ~k?Þ

�
k� � u

P2

Pþ

�

� 1

2
ð1� 2uÞPþk� � 1

2
uP2 �MkMk�P: (65)

In fact, after integrating over the transverse angle the terms
in the first line vanish. Next,

Tð1Þ
V ¼ ð ~"? � ~k?Þ

Pþ
ðM2

k �M2
k�PÞ

k� þ �u P2

Pþ

�
�
"þ

�
k� � u

P2

Pþ

�
� 2ð ~k? � ~"?Þ

�
: (66)
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FIG. 6 (color online). Tensor twist four photon DA (without end point delta functions) for (a) different photon virtualities and fixed
M ¼ 350 MeV and n ¼ 1, (b) various M and fixed n ¼ 1 and P2 ¼ 0, (c) two choices of n ¼ 1, 5, and fixed M ¼ 350 MeV and
P2 ¼ 0, d) decomposition into contributions corresponding to local (dashed lines) and nonlocal (dotted lines) parts of the vector vertex.
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Again only the quadratic term ð ~"? � ~k?Þ2 survives integra-
tion over the transverse angle. The result can be split into a
regular part coming from the local part of the vertex:

c ð0;regÞ
V ðuÞ ¼ Nc

8�2f3�FVðP2Þ
X4nþ1

i;j¼1

fifj�
2n
i �2n

j

� ln

�
1þ u �up2 � �u�i þ u�j

u �up2

�
ðð1þ 2u �uÞ�2n

i

� �2n
j P2 þ 2M2 þ ð1� 2uÞð�i � �jÞ

� �2n
i �2n

j �2Þ; (67)

the part with delta functions also coming from the local
part of the vertex:

c ð0;deltaÞ
V ðuÞ ¼ �Nc

8�2f3�FVðP2Þ�
2
X4nþ1

i¼1

fi�
4n
i ð1þ �iÞ

� lnð1þ �iÞ½�ðu� 1Þ þ �ðuÞ�; (68)

and the nonlocal part:

c ð1Þ
V ðuÞ ¼ Nc

8�2f3�FVðP2Þ 2M
2
X4nþ1

i;j¼1

fifjð�2n
j þ �2n

i Þ

� ð1� �i �uþ �juþ u �ur2Þ�
2n
i � �2n

j

�i � �j

� lnð1þ u �up2 � �u�i þ u�jÞ (69)

The part with delta functions can be rewritten as

c ð0;deltaÞ
V ðuÞ ¼ �1

2FVðP2Þ ½�ðu� 1Þ þ �ðuÞ�; (70)

where we used (39) and the identity �2�4n
i ð1þ �iÞ ¼ M2

following from Eq. (27) for zeros of GðzÞ.
Next we calculate the twist four vector distribution

amplitude hVðuÞ:

hVðuÞ ¼ i4NcP
þ

f3�FVðP2Þ
ðPþÞ
2P2

Z d4k

ð2�Þ4

� ðRð0Þ
V þ Rð1Þ

V Þ�ðk � n� un � PÞ
ðk2 �M2

kÞððk� PÞ2 �M2
k�PÞ

(71)
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FIG. 7 (color online). Vector twist three photon DA for (a) different photon virtualities and fixed M ¼ 350 MeV and n ¼ 1,
(b) various M and fixed n ¼ 1 and P2 ¼ �0:05 GeV2, (c) two choices of n ¼ 1, 5 and fixed M ¼ 350 MeV and P2 ¼ �0:05 GeV2,
(d) decomposition into contributions corresponding to local (dashed lines) and nonlocal (dotted lines) parts of the vector vertex.
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where the traces read

Rð0Þ
V ¼ ðk�Þ2 � P2

Pþ k� � P2

ðPþÞ2 k
2
T �MkMk�P (72)

Rð1Þ
V ¼ k� � P2

Pþ u

k� þ �u P2

Pþ
½k�ðM2

k �M2
k�PÞ �MkðMk �Mk�PÞ�:

(73)

The only additional complication is due to the second
derivative of the delta function—the details can be found
in Appendix C, Eqs. (C20)–(C22). Results for the local part
read

hð0;regÞV ðuÞ ¼ �Nc

8�2f3�FVðP2Þ 2
X4nþ1

i;j¼1

fifj�
2n
i �2n

j

� ln

�
1þ u �up2 � �u�i þ u�j

u �up2

��
2u �u�2n

i �2n
j P2

� 2M2 þ �2n
i �2n

j ð2�i � �j þ 1

� 3uð�i � �jÞÞ�2 (74)

þ ð�i � �jÞ2�4

P2

�
; (75)

and

hð0;deltaÞV ðuÞ ¼ �Nc

8�2f3�FVðP2Þ
2�2

P2

�
�2M2

X4nþ1

i¼1

fi

� lnð1þ �iÞ½ð1þ �iÞ½�ðuÞ þ �ðu� 1Þ�

þ p2�ðuÞ� þ�2
X4nþ1

i;j¼1

fifj�
4n
i �4n

j

1

2

� ln

�
1þ u �up2 � �u�i þ u�j

u �up2

�
ð1þ u �up2

� �u�i þ u�jÞ2½�0ðuÞ þ �0ðu� 1Þ�
�
; (76)

and for the contribution coming from the nonlocal part of
the photon vertex:
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FIG. 8 (color online). Vector twist four photon DA for (a) different photon virtualities and fixed M ¼ 350 MeV and n ¼ 1,
(b) various M and fixed n ¼ 1 and P2 ¼ �0:05 GeV2, (c) two choices of n ¼ 1, 5 and fixed M ¼ 350 MeV and P2 ¼ �0:05 GeV2,
(d) decomposition into contributions corresponding to local (dashed lines) and nonlocal (dotted lines) parts of the vector vertex.
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hð1;regÞV ðuÞ ¼ �Nc

8�2f3�FVðP2Þ
2M2�2

P2

X4nþ1

i;j¼1

fifj

� lnð1þ u �up2 � �u�i þ u�jÞ
�2n
i � �2n

j

�i � �j

� ð�i � �j � ð2u� 1Þp2Þ
� ðð�2n

i þ �2n
j Þ � p2�2n

j Þ; (77)

hð1;deltaÞV ðuÞ ¼ �Nc

8�2f3�FVðP2Þ
2M2�2

P2

X4nþ1

i¼1

fið1þ �iÞ

� lnð1þ �iÞ½�ðuÞ þ �ðu� 1Þ�: (78)

We note that
Z 1

0
hð0;deltaÞV ðuÞdu ¼ �Nc

8�2f3�FVðP2Þ
�4M2�2

P2

� X4nþ1

i¼1

fið1þ �iÞ lnð1þ �iÞ; (79)

thus it cancels with
R
1
0 h

ð1;deltaÞ
V ðuÞdu as can be easily seen.

Our results are shown in Figs. 7 and 8 for twist three and
twist four, respectively. The magnitude of both distribu-
tions is growing unlimitedly when the photon becomes
softer (obviously distributions multiplied by the vector
form factor remain finite). Notice however that for the
real photon hV decouples.

3. Axial DA

We have only one distribution in the axial vector channel
which is of twist three. When inverting the definition (9),
due to the presence of � on the right-hand side, we obtain
the expression for the derivative of DA rather then for DA
itself

~c 0
AðuÞ¼c 0

AðuÞþc Að0Þ�ðuÞ�c Að1Þ�ð �uÞ

¼�i
8Nc

f3�FAðP2Þ
Z dDk

ð2�ÞD
Tð0Þ
A

ðk2�M2
kÞððk�PÞ2�M2

k�PÞ
��ðk�n�uPþÞ; (80)

with
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FIG. 9 (color online). Axial photon DA for (a) different photon virtualities and fixed M ¼ 350 MeV and n ¼ 1, (b) various M and
fixed n ¼ 1 and P2 ¼ 0, (c) two choices of n ¼ 1, 5 and fixedM ¼ 350 MeV and P2 ¼ 0. (d) Axial form factor for different choices
of M (there is almost no n dependence).
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Tð0Þ
A ¼ �Pþ2

2

�
k� � P2

Pþ u

�
� "þP2ð ~"? � ~k?Þ: (81)

In the case of axial DA, the nonlocal part of the vertex does
not give any contribution. This is simply because the Dirac
trace is equal to zero. To obtain c AðuÞ, one has to integrate
(80) over du0 from 0 to u:

c AðuÞ ¼
Z u

0

~c 0
Aðu0Þdu0: (82)

Notice that the end point contributions cancel out and one
might get an impression that c AðuÞ is determined up to a
constant. Fortunately, we have at our disposal an indepen-
dent formula for FAðP2Þ given by Eq. (12) [see, also,
Eq. (D8) in Appendix D] and the normalization condition
(15) that fix the value of c Að0Þ ¼ c Að1Þ � 0 at nonzero
value.

As in the case of vector twist two DA, c AðuÞ is UV
divergent and requires subtraction of the perturbative part.
The result splits into a regular part

~c ðaÞ0
A ðuÞ ¼ Nc

4�2f3�FAðP2Þ
X4nþ1

i;j¼1

fifj�
4n
i �4n

j ðð�i � �jÞ�2

þ ð1� 2uÞP2Þ ln
�
1þ u �up2 � �u�i þ u�j

u �up2

�

(83)

and the piece involving � functions:

~c ðaÞ0
A ðuÞ ¼ Nc

4�2f3�FAðP2Þ�
2
X4nþ1

i¼1

fi�
4n
i ð1þ �iÞ

� lnð1þ �iÞ½�ðuÞ � �ðu� 1Þ�: (84)

Note that �4n
i ð1þ �iÞ ¼ r2, and in virtue of (39)

~c ðaÞ0
A ðuÞ ¼ 1

FAðP2Þ ½�ðuÞ � �ðu� 1Þ�: (85)

The form factor FAðP2Þ and c AðuÞ itself is shown in
Fig. 9. We obtain the following values for the axial form
factor at zero momenta: FAð0Þ � 0:77 for M ¼ 350 MeV,
FAð0Þ � 0:79 for M ¼ 300 MeV, and FAð0Þ � 0:75 for
M ¼ 400 MeV.

VI. SUMMARY

In this work, we calculated analytically a set of photon
distribution amplitudes up to twist four in tensor, vector,
and axial vector channels. We used a nonlocal chiral quark
model with momentum dependent quark mass. In order to
get a correct behavior of low energy matrix elements, we
modified vector vertices (making them nonlocal) in such a
way that Ward-Takahashi identities were fulfilled (1).
Similar, although the numerical calculation was already
done in Ref. [18]. They also used an instanton motivated
nonlocal model with dressed vertices, taking into account

rescattering in the �meson channel. The shape of the mass
dependence on momentum was chosen as an exponent
decreasing with k2. Here we use FðkÞ as given by (17)
and neglect rescattering which turns out to be small.
First we obtained numerical estimates for quark conden-

sate h �c c i, magnetic susceptibility �m, and decay constant
f3� in our model. For larger values of constituent quark

massM or power n, our results are getting close to the ones
of Ref. [18]. Unlike h �c c i and �m, the value of f3� is rather

stable as far as model parameters are concerned. Using
evolution equations (following Refs. [1,18]) we find that
for M ¼ 350 MeV and n ¼ 5, the scale of our model is
about � � 500 MeV (this estimation was done using
h �c c i, �m, f3� as given by sum rules at 1 GeV scale and

evolving them backwards down to the model values). This
is in rough agreement with the scale of the instanton liquid
model which is believed to be of the order of 600 MeV [7].
Next, let us discuss the properties of the distribution

amplitudes obtained within the present approach.
Leading twist amplitudes are not very sensitive to the value
of power n. However, it seems that higher twist DAs are
rather strongly model dependent.
Comparing our results with those of Ref. [18], we find

some similarities, but also some discrepancies. Tensor
leading twist DAs are in fact the same. For real photons
they are almost constant with small maximum at u ¼ 1=2
and they do not vanish at the end points. The contribution
of the nonlocal part of the vertex is rather small; it is
however producing the small maximum in the middle.
For P2 � 0, the end points move up for negative P2 and
down for positive P2, whereas the middle value behaves in
the opposite way.
Twist two vector DA (�V) should decouple for P2 ¼ 0.

Here the importance of gauge invariance shows up.We find
cancellation of two contributions to �V coming from the
local and nonlocal parts of the photon vertex which are not
proportional to P2. The remaining part is therefore propor-
tional to P2 and decouples as required by the gauge invari-
ance. We find that �V vanishes at the end points and
develops minimum in the middle for P2 	 0, whereas
for P2 
 0 it has a bell-like shape with a small dip in
the middle. This behavior is very different from the one
obtained in Ref. [18], where �V is almost flat and does not
vanish at the end points. However both vector and also
tensor form factors are quite similar in both cases.
One has to note that because of the subtraction of the

perturbative part that is required in this case, �V develops
an imaginary part for positive photon virtualities, so in this
case we only discuss the real part.
As far as higher twist DAs are concerned, the situation is

as follows.
Our tensor twist three DA (c T) is identically zero for

P2 ¼ 0, because it is simply proportional to P2. For P2 < 0
it is negative and has the shape of an inverted ‘‘U,’’ similar
to the one of Ref. [18]. In this case, DA is a regular function
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without �-type singularities. Vector twist three DA (c V) in
our case blows up at the end points; such behavior is not
seen in Ref. [18]. However, similar to Ref. [18], we also
obtained delta-type singularities at the edges of the physi-
cal support. Twist three axial DAs (c A) in both cases show
similar behavior: they do not vanish at the end points and
have a minimum for u ¼ 1=2. Despite the fact that for
P2 ¼ 0 axial vector DAs, both in our case and in the case of
Ref. [18] look similar, the axial form factors behave differ-
ently for P2 < 0. In our case, FAðP2Þ vanishes at large
negative momenta, contrary to the one of Ref. [18] that
tends to unity in the same limit.

A regular part (without delta-type singularities) of twist
four tensor DA (hT) is in our case positive and vanishes at
the end points forP2 ¼ 0whereas in Ref. [18] it is negative
and does not vanish at the end points. For spacelike photon
momentum P2 < 0, we see some similarity in shape be-
tween our hT and �hT of Ref. [18]. Vector twist four DA
(hV) is in our case a result of large cancellation of the
positive nonlocal piece and the negative local piece. Its
properties are not discussed in detail in Ref. [18].

The only phenomenologically accessible photon distri-
bution amplitude is the leading twist tensor DA—�T . It is
almost flat and does not vanish at the end points. This
behavior is seen in our model and in other models dis-
cussed in Ref. [18] and also in Refs. [9,17]. Flat DA is
characteristic for the elementary pointlike particle, how-
ever, it is violating factorization theorems of QCD that
require the DAs to vanish for u ¼ 0, 1. Formal evolution of
such an amplitude is questionable, not only because the
Gegenbauer series is not convergent at the end points, but
also, because potentially large contributions coming from
the vicinity of u ¼ 0, 1 are not summed by the Efremov-
Radyushkin-Brodsky-Lepage evolution equations [31].

Let us finish by a remark, that the light-cone wave
functions that do not vanish at the end points are unnatural
in the models with confinement. Indeed, the configurations
in which one of the quarks takes all of the longitudinal
momentum are expected to be suppressed, as discussed in
Ref. [32].
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APPENDIX A: IDENTITIES

In this appendix, we summarize some of the identities
used in this paper that deal with the sums of factors fi and
powers of �i. Some of them have been already introduced
in Ref. [9], but the general proofs have not been given. For
definiteness, let us recall that �i, i ¼ 1; . . . ; 4nþ 1 are the
solutions of the algebraic equation GðzÞ ¼ z4nþ1 þ z4n �

r2 ¼ 0. We denote

fi ¼
Y
j�i

ð�i � �jÞ�1:

For any set of 4nþ 1 complex numbers �i [not neces-
sarily satisfying GðzÞ ¼ 0] we have

X4nþ1

i¼1

fi�
N
i ¼

�
1 for N ¼ 4n;
0 for N < 4n:

(A1)

To prove (A1), let us define the following function

fðzÞ ¼ zMQ
4nþ1
i¼1 ðz� �iÞ

; (A2)

where M � 4n and integrate it over a circle with infinite
radius. On one hand, we can use residue technique to get
the sum entering (A1), on the other hand, direct integration
over the large circle gives the right-hand side of (A1).
If, in addition, �i satisfies Gð�iÞ ¼ 0, then

X4nþ1

i¼1

fi�
P
i ¼ ð�1ÞP (A3)

for 4n � P � 8n. This can be proven in the following way.
Notice that for P ¼ 4n equality (A3) is satisfied due to
(A1). Let us move to P ¼ 4nþ 1, that is we want to
calculate

x ¼ X4nþ1

i¼1

fi�
4nþ1
i : (A4)

Adding to this equation the result for P ¼ 4n we get

X4nþ1

i¼1

fið�4nþ1
i þ �4n

i Þ ¼ xþ 1: (A5)

Using the fact that Gð�iÞ ¼ �4nþ1
i þ �4n

i � r2 ¼ 0 and
(A1) we have

xþ 1 ¼ r2
X4nþ1

i¼1

fi ¼ 0; (A6)

and x ¼ �1. This procedure can be repeated several times
to prove (A3) until P ¼ 8n.
For any set of 4nþ 1 complex numbers �i we have the

following identity

X4nþ1

i¼1

fi�
4nþ1
i ¼ X4nþ1

i¼1

�i: (A7)

Imposing in addition the constraint Gð�iÞ ¼ 0 we getP
4nþ1
i �i ¼ �1. The proof is similar to the one of (A1),

however we integrate the following function
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gðzÞ ¼ z4nþ1

ðz� �1Þðz� �2Þ . . . ðz� �iÞ2 . . . ðz� �4nþ1Þ
:

(A8)

After several algebraic steps we arrive at (A7).

APPENDIX B: PION DECAY CONSTANT

In our model Birse-Bowler formula (18) for pion decay
the constant reduces to the following form

F2
� ¼ �NcM

2

4�2

X4nþ1

i;j¼1

fifj�
2n
i ðð1þ 2nð1þ 2nÞÞ�2nþ1

j

þ ð1þ 4nð1þ 3nÞÞ�2n
j þ 2nð1þ 6nÞ�2n�1

j

þ 4n2�2n�2
j Þ

�

ij

�i � �j

ðlnð1þ �iÞ � lnð1þ �jÞÞ

þ �ij

1þ �i

�
(B1)

where 
ij is 0 for i ¼ j and 1 otherwise, while �ij is the

Kronecker delta.

APPENDIX C: LIGHT-CONE INTEGRALS IN
SCHWINGER REPRESENTATION

Here we summarize formulas used to perform dDk loop
integration in the presence of �ðn � �� un � pÞ. We will
consider three cases when the numerator contains no k� at
all and one or two powers of k�. We follow closely the
method of Ref. [33].

Consider loop integral (26) and apply to it (28):

J ¼ A�D�5
Z dD�

ð2�ÞD �ðn � �� un � pÞ

� X4nþ1

i;j¼1

fifj
�4n
i �4n

j N

ðz1 � �iÞðz2 � �jÞ (C1)

expressed in terms of scaled variables (24). HereN is the
numerator to be specified later. Recall that

z1 ¼ ð�� pÞ2 � 1þ i
; z2 ¼ �2 � 1þ i
: (C2)

We shall now make continuation to the Euclidean metric:

�0 ¼ i�4 (C3)

with

�2 ! � ~�2; � � p ! � ~� � ~p; n � � ! � ~n � ~�
(C4)

where the arrows denoteD dimensional Euclidean vectors.
Therefore

J ¼ iA�D�5
Z dD ~�

ð2�ÞD �ð ~n � ~�þ upþÞ

� X4nþ1

i;j¼1

fifj
�4n
i �4n

j N

ð ~�2 þ 1þ �iÞðð ~�� ~pÞ2 þ 1þ �jÞ
:

(C5)

We shall parametrize now

1

ð ~�2 þ 1þ �iÞðð ~�� ~pÞ2 þ 1þ �jÞ
¼

Z 1

0
d	

Z 1

0
d
e�	ð ~�2þ1þ�iÞ�
ðð ~�� ~pÞ2þ1þ�jÞ (C6)

and

�ð ~n � ~�þ upþÞ ¼
Z 1

�1
d�

2�
e�i�ð ~n� ~�þupþÞ: (C7)

It is convenient to introduce new variables:

	þ 
 ¼ s; 
 ¼ ys; 	 ¼ ð1� yÞs ¼ � �ys:

(C8)

Integration measure then reads

Z 1

0
d	

Z 1

0
d
 ¼

Z 1

0
sds

Z 1

0
dy: (C9)

Finally, we will shift momentum

~� ¼ ~�0 þ
�
y ~p� i

�

2s
~n

�
: (C10)

In these new variables we have

J ¼ iA�D�5
X4nþ1

i;j¼1

fifj�
4n
i �4n

j

Z 1

0
dy

Z d�

2�
e�i�pþðu�yÞ

�
Z 1

0
sdse�s½1� �y�iþy�jþy �yp2� Z dD ~�0

ð2�ÞD N e�s ~�02
:

(C11)

Further calculations depend on the nature of N . If N
can be expressed entirely in terms of z1;2 then, in virtue of
(28), it is enough to replace pertinent powers of zN1;2 ! �N

i;j

and perform Gaussian integration over �0. Let us denote
such an integral as J 0. Also the integral over d� is trivial.
In the following we shall need also integrals with � and �2

which read

Z d�

2�
f1; �; �2ge�i�pþðu�yÞ ¼ 1

pþ

�
1;� i

pþ @y;� 1

pþ2
@2y

�

� �ðu� yÞ: (C12)

Hence (for D ¼ 4� 2") we get
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J 0 ¼ iA
�
1

4�

�
2�" ��1�2"

pþ
X4nþ1

i;j¼1

fi�
4n
i fj�

4n
j N ð�i; �jÞ

�
Z 1

0
dss"�1e�s½1� �u�iþu�jþu �up2�: (C13)

In order to perform the integral over ds we shall use

Z 1

0
dss"�1�ne�s½���� ¼ ½� � ��n�"�ð"� nÞ

’ ½� � ��n�"

"ð"� 1Þ . . . ð"� nÞ e
��" þ . . .

(C14)

arriving at

J 0 ¼ i
A

16�2Pþ

�
4�e��

�2

�
" 1

"

X4nþ1

i;j¼1

fi�
4n
i fj�

4n
j

� N
½1� �u�i þ u�j þ u �up2�"

¼ i
A

16�2Pþ

�
4�e��

�2

�
" X4nþ1

i;j¼1

fi�
4n
i fj�

4n
j

�N
�
1

"
� ln½1� �u�i þ u�j þ u �up2�

�
: (C15)

If numerator N involves additionally one power of ��,
we have then

N ! N ð�i; �jÞðw � �Þ ¼ �N ð�i; �jÞð ~w � ~�Þ (C16)

where w is a constant four-vector. Let us denote such an
integral by J 1. Here the only difference from the previous
case comes from the integration over �0. Since

~w � ~� ¼ ~w � ~�0 þ
�
y ~w � ~p� i

�

2s
~w � ~n

�
(C17)

only the terms in parenthesis survive. After integrating
over d� with the help of (C12) and over dy (in the case
of �0 we have to integrate by parts) we arrive, back in the
Minkowski metric, at

J 1 ¼ i
A

16�2Pþ

�
4�e��

�2

�
" 1

"

� X4nþ1

i;j¼1

fifj
z4ni z4nj N

½1� �uzi þ uzj þ u �up2�"
�
uðw � PÞ

þ ðw � nÞ
2Pþ ðð�i � �jÞ�2 þ ð1� 2uÞP2Þ � ðw � nÞ

2Pþ

� �2

"� 1
½ð1þ �jÞ�ðu� 1Þ � ð1þ �iÞ�ðuÞ�

�

(C18)

where p2 ¼ P2=�2. Note that if w ¼ n then w � n ¼ 0 and
we get J 0 of Eq. (C15) multiplied by uPþ as it should be,
since we could have used �ðk � n� un � PÞ in the first

place. Similarly, if w ¼ "? we have J 1 ¼ 0 which means
that a single power of �? integrates to zero. Note that due
to Lorentz invariance after du integration, the coefficient in
front of w � n should vanish in accordance with (23).
Finally, if the numerator contains ����, let us call such

an integral J 2, we have

N ! N ð�i; �jÞðw � �Þðv � �Þ
¼ N ð�i; �jÞð ~w � ~�Þð ~v � ~�Þ: (C19)

Using (C12) and integrating over dy, we get three different
contributions to J 2 depending on the tensor structure:

J ð0Þ
2 ¼ i

A
16�2

�2

Pþ

�
e��

4��2

��" 1

"

X4nþ1

i;j¼1

fifj

� �4n
i �4n

j N

½1� �u�i þ u�j þ u �up2�"

�
�
� 1

2

½1� �u�i þ u�j þ u �up2�
ð"� 1Þ ðw � vÞ

þ u2

�2
ðv � PÞðw � PÞ

�
; (C20)

J ð1Þ
2 ¼ i

A
16�2

�2

2Pþ2

�
e��

4��2

��" 1

"
fðw �PÞðv �nÞ

þ ðw �nÞðv �PÞg X
4nþ1

i;j¼1

fifj
�4n
i �4n

j N

½1� �u�iþu�jþu �up2�"

�fð1þ�jÞ�ðu� 1Þ� ð1� �u�iþu�jþu �up2Þ
þu½ð�i��jÞþ ð1� 2uÞp2�g; (C21)

and finally

J ð2Þ
2 ¼ i

A
16�2

�4

4Pþ3

�
e��

4��2

��" 1

"
ðw � nÞðv � nÞ

� X4nþ1

i;j¼1

fifj
�4n
i �4n

j N

½1� �u�i þ u�j þ u �up2�"

�
�
1

2
½½1þ �j�2�0ðu� 1Þ � ½1þ �i�2�0ðuÞ�

þ ½ð�i � �jÞ þ ð1� 2uÞp2�½½1þ �j��ðu� 1Þ
� ½1þ �i��ðuÞ� þ ½1� �u�i þ u�j þ u �up2�up2

þ ½ð�i � �jÞ þ ð1� 2uÞp2�2
�
: (C22)

In Eq. (C22) we encounter derivatives of � functions; it is
here implicitly assumed that the coefficientN ½1� �u�i þ
u�j þ u �up2��" when multiplied by �0ðu� 1Þ or �0ðuÞ is
taken at the corresponding value of u. Note that Lorentz
invariance requires that
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Z 1

0
duJ ð1;2Þ

2 ¼ 0 (C23)

(modulo possible subtraction of the perturbative part).
Finally, let us remark that if we need an integral of k2? we

may use the following trick in two dimensional transverse
plane:

Z
d2 ~k? ~k2? ¼ 2

Z
d2 ~k?ð ~"? � ~k?Þ2 (C24)

if there is no other dependence on the transverse angle, as it
indeed happens in our case. We can then evaluate the right-
hand side of Eq. (C24) using the formulas from the present
appendix.

APPENDIX D: AXIAL FORM FACTOR

In this appendix we show, as an example, simple calcu-
lation of the axial form factor. We start from the matrix
element on the left-hand side in Eq. (12):

h0j �c ð��nÞ���5c ð�nÞj�ðP; "Þi

¼ �eNc"�
Z dDk

ð2�ÞD eið2k�n�P�nÞ�

� Tr

�
���5

1

k6 �Mk

�� 1

ðk6 � P6 Þ �Mk�P

�
: (D1)

Calculating the trace and taking the derivative with respect
to � as in the definition (12) we obtain

M � d

d�
h0j �c ð��nÞ���5c ð�nÞj�ðP; "Þij�¼0

¼ 4eNc"�P
"
��	


Z dDk

ð2�ÞD
k	ð2k � n� P � nÞ
DðkÞDðk� PÞ :

Using Lorentz invariance and some simple algebra we get

M ¼ �2eNc"�P	n
"
��	


Z dDk

ð2�ÞD

� ð2k � n� P � nÞðk � ~n� �pk � nÞ
DðkÞDðk� PÞ (D2)

with �p ¼ P2=Pþ2. Comparing this with the right-hand side

of (12) we get the following expression:

FAðP2Þ ¼ 2iNc

f3�
J ; (D3)

where J denotes the integral in (D2). However, it can be
easily shown that Lorentz invariance requires that

Z dDk

ð2�ÞD
k � nk � ~n� �pðk � nÞ2

DðkÞDðk� PÞ

¼ 2

2�D

Z dDk

ð2�ÞD
k2T

DðkÞDðk� PÞ (D4)

and

Z dDk

ð2�ÞD
k � ~n� �pk � n
DðkÞDðk� PÞ ¼ 0: (D5)

Using this, J reduces to

J ¼ 4

2�D

Z dDk

ð2�ÞD
k2T

DðkÞDðk� PÞ : (D6)

This integral reads

J ¼ �D�2

pþ
4i

D� 2

�
1

4�

�
D=2 X4nþ1

i;j¼1

fifj�
4n
i �4n

j

�
Z 1

0
duð1� �u�i þ u�j þ u �up2Þ1�
�ð
Þ: (D7)

Expanding in 
 and subtracting the perturbative part we
obtain the final expression

FAðP2Þ ¼ 1

4�2

�2Nc

f3�

X4nþ1

i;j¼1

fifj�
4n
i �4n

j

Z 1

0
duð1� �u�i

þ u�j þ u �up2Þ ln
�
1� �u�i þ u�j þ u �up2

u �up2

�
:

(D8)

Integration over du can, in principle, be done analytically
(taking into account remarks given in the main text), how-
ever here we just plot FAðP2Þ in Sec. VB 3.
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