
Timelike virtual compton scattering from electron-positron radiative annihilation

Andrei Afanasev,1 Stanley J. Brodsky,2 Carl E. Carlson,3 and Asmita Mukherjee4

1Department of Physics, Hampton University, Hampton, Virginia 23668, USA,
and Theory Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

2SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA
3Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

4Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076, India
(Received 29 July 2009; published 10 February 2010)

We propose measurements of the deeply virtual Compton amplitude (DVCS) �� ! h �h� in the timelike

t ¼ ðph þ p �hÞ2 > 0 kinematic domain which is accessible at electron-positron colliders via the radiative

annihilation process eþe� ! h �h�. These processes allow the measurement of timelike deeply virtual

Compton scattering for a variety of h �h hadron pairs such as �þ��, KþK�, and D �D as well as p �p. As in

the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike

processes involving C ¼ � form factors. The interference between the amplitudes measures the phase of

the C ¼ þ timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated

by considering the forward-backward eþ $ e� asymmetry. The J ¼ 0 fixed pole contribution which

arises from the local coupling of the two photons to the quark current plays a special role. As an example

we present a simple model.
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I. INTRODUCTION

Deeply virtual Compton scattering (DCVS) ��ðqÞ þ
pðpÞ ! �ðkÞ þ pðp0Þ, where the virtuality of the initial
photon �q2 is large, measures hadronic matrix elements
of the current commutator hp0j½J�ðxÞ; J�ð0Þ�jpi and has
become a key focus in QCD, because of its direct sensi-
tivity to fundamental hadron structure. Assuming the hand-
bag approximation [1], interactions between the virtual and
real photons can be ignored, so that at large spacelike q2

one measures matrix elements of elementary quark com-
mutators

P
e2qhp0jj�q ðxÞ; j�qð0Þ�jpi and each DVCS helicity

amplitude factorizes as a convolution in x of the hard
��q ! �q Compton amplitude with a hadronic subampli-
tude constructed from the generalized parton distributions
(GPDs) Hðx; �; tÞ, Eðx; �; tÞ, ~Hðx; �; tÞ, and ~Eðx; �; tÞ. Here
x is the light cone momentum fraction of the struck quark,
and the skewness 2� ¼ Q2=ð2P � qÞ measures the longitu-
dinal momentum transfer in the DVCS process.

The DVCS helicity amplitudes can be constructed in the
light-front formalism from the overlap of the target had-
ron’s light-front wave functions [2,3]. Since the DVCS
process involves off-forward hadronic matrix elements of
light-front bilocal currents, the overlaps are in general
nondiagonal in particle number, unlike ordinary parton
distributions. Thus in the case of GPDs, one requires not
only the diagonal parton number conserving n ! n over-
lap of the initial and final light-front wave functions, but
also an off-diagonal nþ 1 ! n� 1 overlap, where the
parton number is decreased by two. Thus the GPDs mea-
sure hadron structure at the amplitude level in contrast to
the probabilistic properties of parton distribution functions.
In the forward limit of zero momentum transfer, the GPDs
reduce to ordinary parton distributions; on the other hand,

the integration of GPDs over x at fixed skewness 2� ¼
Q2=2P � q reduces them to electromagnetic and gravita-
tional form factors. One also obtains information on the
orbital angular momentum carried by quarks.
The Fourier transform of the deeply virtual Compton

scattering amplitude with respect to the skewness parame-
ter 2� ¼ Q2=2P � q can be used to provide an image of the
target hadron in the boost-invariant variable �, the coor-
dinate conjugate to light-front time � ¼ tþ z=c [4,5]. The
Fourier Transform of the GPDs with respect to the trans-
verse momentum transfer �? in the idealized limit � ¼ 0
measures the impact parameter dependent parton distribu-
tions qðx; b?Þ defined from the absolute squares of the
hadron’s light-front wave functions in x and impact space
[6–10].
Virtual Compton scattering is normally measured in

radiative electron-proton scattering ep ! e0�p0, where
the photon virtuality q2 ¼ ðp0

e � peÞ2 < 0 and the momen-
tum transfer to the target proton t ¼ ðp0 � pÞ2 < 0 are
spacelike. The real part of the DVCS amplitude can be
measured by using the interference with the coherent
Bethe-Heitler bremsstrahlung contribution where the real
photon is emitted from the lepton in ep ! e0�p0. The
interference of the DVCS amplitude and the coherent
Bethe-Heitler amplitude leads to an e� asymmetry which
is related to the real part of the DVCS amplitude [11]. The
imaginary part can also be accessed through various spin
asymmetries [12]. In the deep inelastic inclusive case, the
electron-positron beam asymmetry gives a three-current
correlator which is sensitive to the cube of the quark
charges [13].
In this paper we will discuss possible measurements of

the DVCS amplitude in the timelike or t > 0 kinematic
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domain, where t ¼ W2 ¼ ðph þ p �hÞ2 is the mass of the
produced hadron pair. The process we consider is the
radiative annihilation process eþe� ! h �h� [14], which
is accessible at electron-positron colliders and measures
the timelike DVCS amplitude Mð��ðqÞ ! �h �hÞ illus-
trated in Fig. 1(a). We focus on p �p hadronic pairs, but
many of the considerations apply for a variety of h �h hadron
pairs including �þ��, KþK�, and D �D. The hadronic
matrix element is C even since two photons attach to it.
The same final state can also come from Bethe-Heitler
processes, Fig. 1(b), where the hadronic part of the matrix
element is C odd.

One can apply charge conjugation the electron and
positron in the initial state, thus relating two kinematic
situations where the momentum and spin of the electron
and positron are interchanged. The amplitudes change sign
or not depending on the photon attachment to the initial
electron line. The asymmetry obtained by interchanging
the electron and positron is sensitive to the interference
term between the C-even and C-odd amplitudes as

A ¼ �� �ðeþ $ e�Þ
�þ �ðeþ $ e�Þ

¼ 2ReðMyðC ¼ þÞ �MðC ¼ �ÞÞ
jMðC ¼ þÞj2 þ jMðC ¼ �Þj2 ; (1)

which is sensitive to the relative phase of theC-even DVCS
amplitude and the timelike form factors.

The cross sections and amplitudes above are for fixed
final state momenta with the electrons interchanged. In the
center-of-mass (CM) frame, the result of electron-positron

exchange can also be obtained (at least in the unpolarized
case) by a 180� rotation about a suitable axis. Hence one
can obtain the same asymmetry A from fixed electron and
positron momenta and rotating all the final state momenta.
The QED equivalents of these amplitudes, where had-

rons are replaced by muons, usefully show that the magni-
tude of the eþ $ e� asymmetry can be quite large.
Regarding related processes, another timelike

DVCS process [15] can also be accessed using electron-
positron colliders. This is doubly virtual DVCS, where one
uses eþe� ! eþe�h �h to measure the amplitude
Mð��ðqÞ��ðq0Þ ! h �hÞ with one or both initial photons
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FIG. 1 (color online). Processes contributing to eþe� !
hþh��: (a) the generic timelike DVCS process and (b) Bethe-
Heitler processes.
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FIG. 2 (color online). Other processes of interest: (a) doubly
virtual timelike DVCS; (b) Bethe-Heitler processes interfering
with doubly virtual timelike DVCS; (c) production of hadron
pairs with one spacelike virtual photon and one real photon; and
(d) a process with a timelike photon, but with spacelike momen-
tum transfer to the hadron, which here is already present in the
initial state.
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highly spacelike, as illustrated in Fig. 2(a). This process
also has interfering Bethe-Heitler companion processes
leading to the same final state, Fig. 2(b). We defer further
consideration of the doubly virtual process to a future
discussion.

Another related process is shown in Fig. 2(c). It is the
production of hadron pairs from photon pairs where one
photon is virtual, but in contrast to our process is spacelike
rather than timelike, and the other photon is real, but again
in contrast to our process is incoming rather than outgoing.
This process is studied in Ref. [16] for outgoing pions.
These authors give the amplitude in terms of a two-hadron
matrix element that they call the ‘‘generalized distribution
amplitude,’’ which we might prefer to call a timelike
generalized parton distribution, and whose analog we dis-
cuss in Sec. II C.

The description ‘‘timelike Compton scattering’’ has also
been applied to the process �p ! eþe�p [17], Fig. 2(d),
which is timelike in the sense that the outgoing photon is
timelike. However, this process still has spacelike momen-
tum transfer to the nucleon, and so measures nucleon
information complementary to what we are targeting
here. Also, having a preexisting nucleon allows modeling
based on known parton distribution functions, a type of
modeling which is not possible here.

Returning to the topic of this paper, we present a model
calculation of the asymmetry for kinematic conditions of
existing electron-positron colliders. Relevant kinematics is
chosen for tau-charm factories, s ¼ 14 GeV2 (BEPCII)
and B-factories, s ¼ 112 GeV2 (BABAR at PEPII and
Belle at KEKB) [18]. The increased luminosity of the
electron-positron colliders, such as the projected SuperB
facility [19], will facilitate studies of the exclusive reac-
tions at high transferred momenta, an example of which is
considered in our paper. We note that the use of a radiative
return method (see Ref. [20] and references therein) would
allow studies of the reaction of interest in a broad range of
Mandelstam s.

Measurements of the radiative annihilation process can
provide valuable new information on the analytic continu-
ation of the DVCS amplitude. A feature expected for
photon-hadron amplitudes is a J ¼ 0 fixed pole, which
would be an amplitude that is constant in energy (and
real in the spacelike case) though not constant in momen-
tum transfer. The fixed pole has no analog in purely had-
ronic reactions [21–24]. It occurs because the hadron has
pointlike constituents and it comes from a configuration
where both photons attach locally to the same quark
propagator.

(This term is the seagull interaction in the case of
charged scalar quarks. The same local two-photon interac-
tion also emerges for spin-1=2 from the usual handbag
Feynman diagram for Compton scattering. The numerator
of the quark propagator � � kF þm appearing between the
two photons in the handbag contributions to the Compton

amplitude contains a specific term �þ�k�=2 which can-
cels the k2F �m2 Feynman denominator, leaving a local

term inversely proportional to kþ. This can also be identi-
fied with the instantaneous fermion exchange contribution
in the light-front Hamiltonian formulation of QCD [25].
Thus in the spin-1=2 case, the two-photon interaction is
local in impact space and light-front time � ¼ xþ ¼ x0 þ
x3, but it is nonlocal in the light-front coordinate � ¼
x� ¼ x0 � x3.)
In the case of ordinary spacelike DVCS this local con-

tribution is universal, giving the same contribution for real
or virtual Compton scattering for any photon virtuality and
skewness at fixed momentum transfer squared t. The t
dependence of this J ¼ 0 fixed Regge pole is given by a
yet unmeasured even charge-conjugation form factor of the
target nucleon. In the spacelike region, this gives an am-
plitude which behaves as s0FþðtÞ for s � �t correspond-
ing to a local scalar probe. One can analytically continue
the J ¼ 0 amplitude to a local form independent of photon
virtuality at fixed t. It is characterized by a complex time-
like form factor Fþðt ¼ W2 > 0Þ dominated by scalar
meson resonances.
We obtain a simple hadronic estimate by modeling the

C-even p �p timelike hadronic DVCS amplitude after an
analysis of how it can be written in terms of several Lorentz
structures multiplied by C ¼ þform factors. One of these
is RVð�;W2Þ and all of these can be related to the timelike
generalized parton distributions, or generalized distribu-
tion amplitudes [15,16]. We will keep only the RV term,
which has the appearance of the QED amplitude multiplied
by RVð�;W2Þ, and we will model this form factor in a
simplified way where it depends only on W2 ¼ t ¼ ðq�
q0Þ2 and is independent of s, or the overall q2. One can say
that this model simulates the C-even Compton amplitude
as a J ¼ 0 fixed pole amplitude with Regge behavior s0 at
fixed t.
Of relevance here is an experimental result for the space-

like C ¼ þform factor RVðtÞ from real wide-angle
Compton scattering. It is defined as the ratio of the mea-
sured real Compton amplitude Mð�p ! �0p0Þ divided by
the pointlike Klein-Nishina formula. RVðtÞ is measured to
fall off as 1=t2 at large t [26], consistent with perturbative
quantum chromodynamics and anti-de Sitter/QCD count-
ing rules, which in turn is consistent with what we do in the
present context.
We also need the C ¼ �amplitude, which can be calcu-

lated in terms of familiar single-photon form factors, and is
taken as the corresponding muon pair amplitude times
Dirac form factor F1ðW2Þ.
Details of the calculation are given in the next section,

which is divided into parts describing the kinematics, the
massless pure QED limit, the continuation of the GPD
analysis to the timelike region, and the actual calculation
and results. A summary and conclusions are offered in
Sec. III.
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II. CROSS SECTIONS AND ASYMMETRY

A. Kinematics

The process is

eþðpeþÞ þ e�ðpe�Þ ! pðphþÞ þ �pðph�Þ þ �ðq0Þ; (2)

and for comparison, we also consider the same process
with p and �p replaced by �þ and ��, respectively.

The Mandelstam invariants can be defined as they are by
Berends et al. [27], namely,

s ¼ ðpeþ þ pe�Þ2; t ¼ ðpeþ � phÞ2;
u ¼ ðpeþ � p �hÞ2; s0 ¼ ðph þ p �hÞ2;
t0 ¼ ðpe� � p �hÞ2; u0 ¼ ðpe� � phÞ2:

(3)

Five of these variables are independent, and the sum is

sþ tþ uþ s0 þ t0 þ u0 ¼ 4m2; (4)

where m is the mass of the hadron (or muon) in the final
state, and we neglect the mass of the electron.

The cross section for process (2) is [14]

d� ¼ 	Wðs�W2Þ
64ð2�Þ5s2 jMj2dWd��d�; (5)

where jMj2 is the matrix element summed over final and
averaged over initial polarizations and we also use the
notations

s ¼ q2 ¼ Q2; s0 ¼ W2; 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

W2

s
: (6)

The solid angle �� gives the direction of the outgoing
proton or �þ in the p �p or �þ�� rest frame and � gives
the direction of the incoming electron in the eþe� rest
frame. We define the z axis as the negative of the direction
of the visible outgoing photon, and define the x axis from
the transverse direction of the proton (or�þ); see [14]. The
angle between the proton or �þ and the outgoing photon
will be 
�, and the electron e� will enter at angles ð
;�Þ in
the eþe� rest frame. Thus

d�� ¼ 2�dðcos
�Þd� ¼ dðcos
Þd�: (7)

The momenta are conveniently given using two lightlike
vectors p and n with the property p � n ¼ 1. Using these
vectors,

q ¼ peþ þ pe� ¼ Qffiffiffi
2

p pþ Qffiffiffi
2

p n;

� ¼ ph þ p �h ¼
Qffiffiffi
2

p pþ W2

Q
ffiffiffi
2

p n;

q0 ¼ q�� ¼ Q2 �W2

Q
ffiffiffi
2

p n:

(8)

In the eþe� rest frame,

p ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ; n ¼ 1ffiffiffi
2

p ð1; 0; 0;�1Þ; (9)

while for the p �p (or �þ��) CM one chooses

p ¼ W

Q
ffiffiffi
2

p ð1; 0; 0; 1Þ; n ¼ Q

W
ffiffiffi
2

p ð1; 0; 0;�1Þ: (10)

In the p �p (or �þ��) rest frame the proton or �þ
momentum is

ph ¼ W
2 ð1; 	 sin
�; 0; 	 cos
�Þ (11)

while the electron momentum in the eþe� CM is

pe� ¼ Q
2ð1; sin
 cos�; sin
 sin�; cos
Þ (12)

The kinematics is illustrated for the p �p CM frame in Fig. 3.
The Mandelstam invariants t, u, t0, and u0 are given in

terms of Q, W, and the angles by

t ¼ m2 �W2

4
ð1� cos
Þð1� 	 cos
�Þ

�Q2

4
ð1þ cos
Þð1þ 	 cos
�Þ

� 	QW

2
sin
� sin
 cos�;

u ¼ ðsame as t but 
� ! �þ 
�Þ;
t0 ¼ ðsame as t but 
� ! �þ 
�; 
 ! �þ 
Þ;
u0 ¼ ðsame as t but 
 ! �þ 
Þ:

(13)

B. The muon case at zero mass

Our calculations keep the nonzero mass of the final
hadrons and are hence valid even when s is close to
threshold. The analytic forms for the cross section and
asymmetry for nonzero mass are rather long and we do
not show them. However, the massless limit for the pure
QED calculation, Fig. 4 is relatively simple and valuable as
a benchmark.
The matrix element for m ¼ 0, summed over final and

averaged over initial polarizations, splits into a factor

φ

θ∗

x
y

z

q

q´
p

p
_

e−

e+

FIG. 3 (color online). Kinematics for radiative annihilation.
This diagram is drawn for the p �p rest frame. The angle 
 is
between the electron momentum and the z axis, but in the eþe�
rest frame.

AFANASEV et al. PHYSICAL REVIEW D 81, 034014 (2010)

034014-4



related to the 2 ! 2 process multiplied by a factor for the
photon bremsstrahlung [27],

jMj2 ¼ e4
t2 þ t02 þ u2 þ u02

ss0
S; (14)

with

S ¼ e2
�

s

peþ � q0pe� � q0 þ
s0

ph � q0p �h � q0
� t

peþ � q0ph � q0

� t0

pe� � q0p �h � q0
þ u

peþ � q0p �h � q0
þ u0

pe� � q0ph � q0
�
:

(15)

The simplicity of the above formula is a notable kinematic
achievement, and more complicated earlier writings of the
same quantity, for example, in [13], can be shown after the
fact to agree with it.

We will give a sample result for the massless limit to
show that the asymmetry we wish to observe can be quite
large. The specific choices are:

ffiffiffi
s

p ¼ 8 GeV, photon lab
energy j ~q0jlab ¼ 1 GeV (using ‘‘lab’’ to mean the eþe�
rest frame), all particles in the x-y plane, and a 90� angle
between the entering electron and exiting photon in the lab.
The photon lab energy is related to s and W2 by

2
ffiffiffi
s

p j ~q0jlab ¼ s�W2: (16)

We plot in Fig. 5 the asymmetry

A� ¼ d�ð�þÞ � d�ð��Þ
d�ð�þÞ þ d�ð��Þ (17)

versus the angle 
e� between the electron and positive

muon in the lab (i.e., the lab analog of 
�). This figure

mimics one in [13] (j ~q0jlab here is j ~kjlabj there), and we have
obtained it here both from Eqs. (14) and (15) above and
from the massless limit of our full code. It shows that the
asymmetry is close to 100% for a wide range of angles.

C. Timelike generalized parton distributions

In the Bjorken limit, Q2 � W2 and q � ðph � p �hÞ �
W2, the analysis that relates deeply virtual Compton scat-
tering to the generalized parton distributions [1,28] can be
applied in the timelike case. The relevant diagrams at the
partonic level for the C even case are shown in Fig. 6.
The antihadron in the final state can be thought of as a

crossing of the initial state hadron from the usual DVCS.

e

e+

e

e+

e

e+

e

e+

+ +

+ +

FIG. 4. Timelike DVCS in QED: radiative muon pair produc-
tion.

FIG. 5 (color online). Asymmetry where 
e� is the angle
between entering electron and exiting �þ in the electron-
positron rest frame. Other variables are fixed as

ffiffiffi
s

p ¼ 8 GeV,
j ~q0jlab ¼ 1 GeV, 
 ¼ 90�, and � ¼ 0.

le−

q

le+

le+

le−

q

ph+

ph−

ph−

ph+

FIG. 6 (color online). Partonic diagrams for the case that the
external photon is emitted from the hadrons.
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Changing the appropriate sign from standard DVCS defi-
nitions, one has the momentum combinations

P ¼ 1
2ðph � p �hÞ; � ¼ ph þ p �h; (18)

where �2 ¼ W2 and P2 ¼ �M2 ¼ m2 �W2=4 	 0.
The amplitude corresponding to Fig. 6 is

M �� ¼ �e2q
Z

d4z
d4k

ð2�Þ4 e
ikz

�
�
�� 1

k6 þ q6 � ��6 þ i
��

þ �� 1

k6 � q6 þ ð1� �Þ�6 þ i
��

�
ab

�hph; p �hjT �c að��zÞc bðð1� �ÞzÞj0i; (19)

� represents the freedom in choosing the loop momentum.
For discussing timelike generalized distribution ampli-
tudes, or generalized distribution amplitudes [16,29], we
work in the Bjorken limit, and we choose a frame analo-
gous to a standard choice for spacelike DVCS where the
three-vectors for P and q are along the z axis but in

opposite directions. We can do this with a suitable choice
of the lightlike vectors p and n, and the momenta are
expressed as

P ¼ pþ 1

2
�M2n;

q ¼ 2�pþQ2

4�
n;

� ¼ 2�0
�
p� 1

2
�M2n

�
þ �?;

k ¼ xpþ ðp � kÞnþ k?;

(20)

with �0 ¼ � in the Bjorken limit. In the timelike case, � is
limited in general by

1

	
	 � 	 Q

	W
; (21)

i.e., � 
 1 in contrast to the spacelike case. Neglecting
components that do not give large contributions in the
Bjorken limit, the amplitude becomes

M �� ¼ e2q
2
ðg�� � p�n� � n�p�Þ

Z
dx

�
1

xþ �þ i
þ 1

x� �� i

�
�uðphÞ

�
n6 Hq þ i

2m
��	n��	E

q

�
vðp �hÞ

� ie2q
2

"���	p�n	
Z

dx

�
1

xþ �þ i
� 1

x� �� i

�
�uðphÞ

�
n6 �5 ~Hq þ n � �

2m
�5 ~Eq

�
vðp �hÞ

� �e2qg
��
? �uðphÞ

�
n6 Rq

V þ i

2m
��	n��	R

q
T

�
vðp �hÞ þ ie2q"

���	p�n	 �uðphÞ
�
n6 �5Rq

A þ
n ��
2m

�5Rq
P

�
vðp �hÞ: (22)

We have used the definitions of the timelike analogs of the
generalized parton distributions [30,31],

Z dz�

2�
eixp

þz�hph; p �hjT �c a

�
� z

2

�
c b

�
z

2

�
j0izþ¼z?¼0

¼ 1

4
p6 ba �uðphÞ

�
n6 Hq þ i

2m
��	n��	E

q

�
vðp �hÞ

þ 1

4
ð�5p6 Þba �uðphÞ

�
n6 �5 ~Hq þ n ��

2m
�5 ~Eq

�
vðp �hÞ: (23)

The arguments ofHq, Eq, ~Hq, and ~Eq are ðx; �;W2Þ. These
arguments are standard when discussing GPDs, and the
external variable � may of course be related to W and the
angle 
�. In the Bjorken limit,

� � Q2

4P � q � 1

	 cos
�
; (24)

for cos
� not too small.

For somewhat different kinematics and for the pion case,
one can also find timelike analogs of GPDs defined in
[16,29].
The form factors Rq

V , R
q
T , R

q
A, and Rq

P are [32,33]

Rq
Vð�;W2Þ ¼

Z
dx

x

x2 � �2 � i
Hqðx; �;W2Þ;

Rq
Tð�;W2Þ ¼

Z
dx

x

x2 � �2 � i
Eqðx; �;W2Þ;

Rq
Að�;W2Þ ¼

Z
dx

�

x2 � �2 � i
~Hqðx; �;W2Þ;

Rq
Pð�;W2Þ ¼

Z
dx

�

x2 � �2 � i
~Eqðx; �;W2Þ:

(25)

The full amplitude will depend on

RVð�; tÞ ¼
X

e2qR
q
Vð�; tÞ; (26)

with similar equations for V ! T, A, P.
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As in the spacelike case, one can also relate the GPDs to
the electromagnetic form factors, with the Dirac form
factor given by

F1ðtÞ ¼
X

eq
Z

dxHqðx; �; tÞ: (27)

D. Hadronic model

The asymmetries, Eq. (1), arise from interference be-
tween the C-odd and C-even amplitudes. The hadronic
vertex in the C-odd amplitude is the usual �p �p single
photon vertex with Dirac and Pauli form factors evaluated
at W2, the four-momentum squared of the virtual photon
for those diagrams.

In modeling the hadronic part of the C-even diagrams,
we keep just the term RVð�;W2Þ. Further, recall that
photon-hadron amplitudes can expect a J ¼ 0 fixed pole,
which would be a term with flat energy dependence and a
form factor like dependence on the momentum transfer to
the hadrons, W2. We give RV the same W2 dependence as
an electromagnetic form factor and normalize by

jRVð�;W2Þj ¼ 4
3F1ðW2Þ: (28)

The multiplicative factor is estimated from the expressions
for RVð� ¼ 0; W2Þ and F1ðW2Þ, Eqs. (25)–(27), and ex-
pecting domination by u-quarks and approximate mean
momentum fraction x � 1=2.

Support for this normalization and shape comes from
data on spacelike wide angle Compton scattering. The
numerically most important form factor here is RVðtÞ,
and data shows that while RVðtÞ does drop less rapidly
with increasing jtj than F1ðtÞ, it does not do so by a lot, and
that RVðtÞ ¼ ð4=3ÞF1ðtÞ is a decent representation of the
data.

Further in our modeling, we note that the Lorentz struc-
ture that multiplies RVð�;W2Þ in the Bjorken limit is the
same as one obtains from the QED amplitude in the
Bjorken limit. If we are not deeply in the Bjorken region,
we can argue that the Lorentz structure of the amplitude is
better represented by the QED amplitude, including the
final fermion mass and multiplied by RVð�;W2Þ.

We use the above model and the RV approximation of
Eq. (28) in the calculations that give the plots shown in
Fig. 7. Traces are done using FeynCalc and Mathematica,
and integrations over a range of final state variables are
done using Fortran and Vegas. (Note that our modeling of
the timelike GPDs is rather different from [16].)

The asymmetries can be large when the kinematics are
well chosen. Figure 7 shows two asymmetry plots, one at
s ¼ 112 GeV2 relevant for Belle or BABAR energies and at
s ¼ 14:3 GeV2 relevant for BEPC II energies. The asym-
metries are for cross sections integrated over a stated range
of angles, and plotted versus final hadronic mass W. Since

the sign of the symmetry changes with �, one should not
integrate over more than half the range of that angle; if
desired, one can integrate over fairly broad ranges of 
 and

�. For comparison, and to indicate the mass sensitivity for
the selected s and W, the plots also include the asymme-
tries expected for the purely muonic case.
To compare to a different model, we show in Fig. 8, the

result from treating the C-even diagrams using only proton
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Aµ

2 2.2 2.4 2.6 2.8 3
W

0

0.1
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0.6
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FIG. 7 (color online). Asymmetries for �� ! �p �p and its
muonic counterpart, plotted versus the final fermion pair invari-
ant mass, over a range beginning close to the p �p threshold. The
upper graph (s ¼ 112 GeV2) is for Belle or BABAR energies,
and the lower graph (s ¼ 14:3 GeV2) is for BEPC II kinematics.
The angles (in radians) and angular ranges are indicated on each
plot.

TIMELIKE VIRTUAL COMPTON SCATTERING FROM . . . PHYSICAL REVIEW D 81, 034014 (2010)

034014-7



intermediate states, using Dirac and Pauli form factor
structures at the two �pp vertices, and ignoring the extra
form factors and extra form factor arguments that may

appear when the intermediate proton is off shell. We
keep the F2

1 and F1F2 terms, where here in the dashed

curves F1 and F2 are functions of q2 and q is the four-
momentum of the virtual photon, and show the results in
two plots that are similar to Fig. 7 in that the energies are
relevant to Belle (or BABAR) and BEBC II and the cross
sections are integrated over a range of angles.
The charge asymmetries are largest when the outgoing

photon is at a large angle to the line given by electron and
positron momenta in the CM. Conversely, experiments that
use radiative return to measure timelike form factors [20]
often, though not invariably, keep the angle 
 below 15� or
above 165� in order to minimize contributions of final state
radiation. The cross section drops about an order of mag-
nitude as one changes 
 from 15� to the 90� range, but the
asymmetry increases, and the figure of merit (the cross
section times asymmetry squared) stays roughly the same.

III. SUMMARYAND CONCLUSIONS

We have studied deeply virtual Compton production,
�� ! �p �p in the timelike region. The production ampli-
tudes can be C ¼ þ, where both photons couple to the
hadrons, or C ¼ �, where only one photon couples to the
hadrons. Interference between them allows measuring one
relative to the other, and can be isolated by considering
forward-backward eþe� or p �p asymmetry. We have used a
simple model, wherein one Compton form factor, RV , is
kept and related to the Dirac form factor F1 in a manner in
agreement with data in the spacelike region. We have
found that the asymmetry is quite large and measureable.
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