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Predictions for the transverse single spin asymmetry (SSA), AN , are given for the inclusive processes

lp" ! hX and lp" ! jetþ X, which could be measured in operating or future experiments. These

estimates are based on the Sivers distributions and the Collins fragmentation functions which fit the

azimuthal asymmetries measured in semi-inclusive deep inelastic scattering (SIDIS) processes (lp" !
l0hX). The factorization in terms of transverse momentum dependent distribution and fragmentation

functions (TMD factorization)—which supplies the theoretical framework in which SIDIS azimuthal

asymmetries are analyzed—is assumed to hold also for the lp ! hX inclusive process at large PT . A

measurement of AN would then provide a direct test of the validity of the TMD factorization in this case

and would have important consequences for the study and understanding of SSAs in pp" ! hX processes.
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I. INTRODUCTION

Transverse single spin asymmetries (SSAs) in semi-
inclusive deep inelastic scattering (SIDIS), lN ! l0hX,
have been measured by HERMES [1–4] and COMPASS
[5–8]. A large amount of data is still being analyzed by
these collaborations and new results are expected soon
from the JLab experiments at 6 GeV. A rich program
focused on azimuthal asymmetries, as a way of probing
the internal nucleon structure, is planned for JLab operat-
ing at an upgraded energy of 12 GeV and for the future
electron-ion (EIC) or electron-nucleon (ENC) colliders,
which are under active consideration within the hadron
physics scientific community (see e.g. Ref. [9] for a short
up-to-date overview).

These SIDIS SSAs are interpreted and discussed in
terms of unintegrated, transverse momentum dependent,
distribution and fragmentation functions (shortly, TMDs).
In particular, the Sivers distributions [10,11] and the
Collins fragmentation functions [12] have been extracted
[13–18] from SIDIS data, and, thanks to complementary
information from Belle on the Collins function [19,20], a
first extraction of the transversity distribution has been
possible [21,22].

All these analyses have been performed in the �� � p
c.m. frame, within a QCD factorization scheme, according
to which the SIDIS cross section is written as a convolution
of TMDs and elementary interactions:

d�lp!l0hX ¼ X
q

f̂q=pðx; k?;Q2Þ � d�̂lq!lq

� D̂h=qðz;p?;Q2Þ; (1)

where k? and p? are, respectively, the transverse momen-
tum of the quark in the proton and of the final hadron with
respect to the fragmenting quark. At order k?=Q the
observed transverse momentum, PT , of the hadron is given
by

PT ¼ k? þ zp?: (2)

There is a general consensus [23–27] that such a scheme
holds in the kinematical region defined by

PT ’ k? ’ �QCD � Q: (3)

The presence of the two scales, small PT and large Q,
allows one to identify the contribution from the uninte-
grated partonic distribution (PT ’ k?), while remaining in
the region of validity of the QCD parton model. At larger
values of PT other mechanisms, like quark-gluon correla-
tions and higher order pQCD contributions, become im-
portant [27–29]. A similar situation [24,26,30–35] holds
for Drell-Yan processes, AB ! lþl�X, where the two
scales are the small transverse momentum, qT , and the
large invariant mass, M, of the dilepton pair.
The situation is not so clear for processes in which only

one large scale is detected, like the inclusive production, at
large PT , of a single particle in hadronic interactions,
AB ! CX. However, the most striking and large SSAs
have been [36–39] and keep being measured [40–44] in
these cases. The TMD factorization for these processes
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was first suggested in Refs. [10,11] and adopted in
Refs. [45–47] to explain the large single spin asymmetries
observed by the E704 Collaboration [37,39]. The same
approach led to successful predictions [48,49] for the
values of AN measured at RHIC [50].

Alternative approaches to explain the origin of SSAs,
linking collinear partonic dynamics to higher-twist quark-
gluon correlations, were originally proposed in Refs. [51–
55] and phenomenologically adopted in Refs. [56–59].
These two approaches, the TMD factorization and the
higher-twist correlations, have been shown to be somewhat
related [60,61] and consistent with each other [32,33,62].

However, a definite proof of the validity of the TMD
factorization for hadronic inclusive processes with one
large scale only is still lacking. Because of this, the study
of dijet production at large PT in hadronic processes was
proposed [63–66], where the second small scale is the total
qT of the two jets, which is of the order of the intrinsic
partonic momentum k?. This approach leads to a modified
TMD factorization approach, with the inclusion in the
elementary processes of gauge link color factors [67–69].

In this paper we propose a phenomenological test of the
validity of the TMD factorization in cases in which only
one large scale is detected, by considering SSAs for the
lp" ! hX process, with the detection, in the lepton-proton
c.m. frame, of a single large PT final particle, typically a
pion. The final lepton is not observed; notice, however, that
a large value of PT implies, at leading perturbative order,
large values of Q2. Such a measurement is the exact
analogue of the SSAs observed in the pp" ! hX processes,
the well-known and large left-right asymmetries AN [36–
44]. We compute these SSAs assuming the TMD factori-
zation and using the relevant TMDs (Sivers and Collins
functions) as extracted from SIDIS data.

Such a choice is natural for the Collins function, which
is expected to be universal [70,71]. The Sivers distribution,
instead, is expected to be process dependent as it is origi-
nated by final (or initial, depending on the process consid-
ered) state interactions, which also model the gauge links
necessary for its correct gauge invariant definition
[23,72,73]. However, these final state interactions should
be the same in usual SIDIS processes and in the process
considered here.

A similar idea of computing left-right asymmetries in
SIDIS processes, although with different motivations and
still demanding the observation of the final lepton, has been
discussed in Ref. [74]. A first simplified study of AN in
lp" ! hX processes was performed in Ref. [75]. The pro-
cess was also considered in Refs. [76,77] in the framework
of collinear factorization with twist-three correlation func-
tions, obtaining anomalously large asymmetries with a sign
opposite to that of the corresponding asymmetries in pp
processes.

The plan of the paper is the following: in Sec. II we
present the formalism for the study of SSAs in a TMD

approach for both the p"l ! hX and the p"l ! jetþ X
processes; in Sec. III we show our numerical estimates of
the contributions of the Sivers and Collins effects to AN,
based on the present knowledge of TMDs, for several
different kinematical setups and discuss their phenomeno-
logical aspects; finally, in Sec. IV we give some comments
and conclusions. Technical details on the full noncollinear
kinematics are given in Appendix A, while the calculation
of the helicity amplitudes is worked out in Appendix B.
The complete expression of AN for the process p"l ! hX,
including all TMD contributions at leading twist, can be
found in Appendix C.

II. FORMALISM

A. Large PT hadron production

We propose to study single spin asymmetries for the
process p"l ! hX in close analogy to the study of the SSAs
for the process p"p ! hX, assuming the validity of the
TMD factorization. The cross section for this process can
then be written as a particular case of the general treatment,
in a factorized scheme, of the ðA; SAÞ þ ðB; SBÞ ! Cþ X
large PT inclusive polarized process [48,78–80]:

Ehd�
ðp;SÞþl!hþX

d3Ph

¼ X
q;f�g

Z dxdz

16�2xz2s
d2k?d3p?�ðp? � p̂0

qÞ

� Jðp?Þ�ðŝþ t̂þ ûÞ
�
�q=p;S
�q;�

0
q

� f̂q=p;Sðx; k?Þ 12 M̂�q;�l;�q;�l
M̂�

�0
q;�l;�

0
q;�l

� D̂�h;�h

�q;�
0
q
ðz;p?Þ

�
; (4)

which can be shortened, with obvious notations, as

d�S ¼ X
q;f�g

Z dxdz

16�2xz2s
d2k?d3p?�ðp? � p̂0

qÞJðp?Þ

� �ðŝþ t̂þ ûÞ�ðSÞql!qlðx; z; k?;p?Þ; (5)

where �ðSÞ is the term in curly brackets of Eq. (4).
Let us recall the main features of these equations.
� We consider the collision of a polarized proton (or, in

general, a nucleon) in a pure transverse spin state S
with an unpolarized lepton, in the proton-lepton cen-
ter of mass frame. The proton p moves along the
positive Zc:m: axis and hadron h is produced in the
ðXZÞc:m: plane. We define as transverse polarization
for the proton the Yc:m: direction, often using the
notation " and # , respectively, for protons polarized
along or opposite to Yc:m:. The Xc:m: axis is defined in
such a way that a hadron h with ðPhÞXc:m:

> 0 is

produced to the left of the incoming proton. The
transverse momentum is denoted as PT . This kine-
matical configuration is shown in Fig. 1. Results for
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the case of leptons moving along the positive Zc:m:

axis (lp" ! hX) will also be discussed in the paper.
� The notation f�g implies a sum over all helicity

indices. x and z are the usual light-cone momentum
fractions, of partons in hadrons (x) and hadrons in
partons (z). k? and p? are, respectively, the trans-
verse momentum of the parton q with respect to its
parent nucleon p, and of hadron h with respect to its
parent parton q. p0

q is the three-momentum of the

final fragmenting parton; it can be expressed in terms
of the integration variables and the observed final
hadron momentum. We consider all partons as mass-
less, neglecting heavy quark contributions. Full de-
tails can be found in Ref. [80] and useful expressions
are given in Appendix A.

� With massless partons, the function J is given by [48]

Jðp?Þ ¼
ðEh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
h � p2

?
q

Þ2
4ðP2

h � p2
?Þ

� (6)

In the kinematical regions which we shall consider J
is close to 1.

� �q=p;S
�q;�

0
q
is the helicity density matrix of parton q inside

the polarized proton p, with spin state S. f̂q=p;Sðx; k?Þ
is the distribution function of the unpolarized parton
q inside the polarized proton p. The products

�q=p;S
�q;�

0
q
f̂q=p;Sðx; k?Þ are directly related to the

leading-twist TMDs, with a dependence on �, the
azimuthal angle of k? [80].

� The M̂�q;�l;�q;�l
’s are the helicity amplitudes for the

elementary process ql ! ql, normalized so that the
unpolarized cross section, for a collinear collision, is
given by

d�̂ql!ql

dt̂
¼ 1

16�ŝ2
1

4

X
�q;�l

jM̂�q;�l;�q;�l
j2: (7)

At lowest perturbative order ql ! ql is the only
elementary interaction which contributes; notice
that, in the presence of parton intrinsic motion, it is
not a planar process in our chosen frame and depends

on the intrinsic momenta, including their phases.
Neglecting lepton and quark masses there are two
independent helicity amplitudes:

M̂þþ;þþðŝ; t̂; û;k?Þ ¼ M̂���;�� ¼ �8�eq�
ŝ

t̂
ei’1

� M̂0
1e

i’1 (8)

M̂þ�;þ�ðŝ; t̂; û;k?Þ ¼ M̂��þ;�þ ¼ 8�eq�
û

t̂
ei’2

� M̂0
2e

i’2 ; (9)

where ’1;2 are phases explicitly given in Appendix B,

Eqs. (B8) and (B9).

� D̂
�h;�

0
h

�q;�
0
q
ðz;p?Þ is the product of fragmentation ampli-

tudes for the q ! hþ X process

D̂
�h;�

0
h

�q;�
0
q
¼

ZX
X;�X

D̂�h;�X ;�q
D̂�

�0
h
;�X ;�

0
q
; (10)

where the⨋X;�X
stands for a spin sum and phase space

integration over all undetected particles, considered
as a system X. The usual unpolarized fragmentation
functionDh=qðzÞ, i.e. the number density of hadrons h

resulting from the fragmentation of an unpolarized
parton q and carrying a light-cone momentum frac-
tion z, is given by

Dh=qðzÞ ¼ 1

2

X
�q;�h

Z
d2p?D̂

�h;�h

�q;�q
ðz;p?Þ: (11)

We shall only consider the case of spinless final
particles (�h ¼ 0), in particular, pions. In general

D̂�q;�
0
q
ðz;p?Þ depends on the azimuthal angle of h

around the direction of motion of the fragmenting
polarized parton [80].

We compute the SSA:

AN ¼ d�"ðPTÞ � d�#ðPTÞ
d�"ðPTÞ þ d�#ðPTÞ

¼ d�"ðPTÞ � d�"ð�PTÞ
2d�unpðPTÞ ;

(12)

which can be measured either by looking at the production
of hadrons at a fixed transverse momentum PT , changing
the incoming proton polarization from " to # , or keeping a
fixed proton polarization and looking at the hadron pro-
duction to the left and the right of the Zc:m: axis, see Fig. 1.
AN is defined (and computed) for a proton polarization
normal (N) to the production plane and a pure spin state (a
pseudovector polarization ST with jSTj ¼ ST ¼ 1). For a
generic transverse polarization along an azimuthal direc-
tion �S (in our chosen reference frame) and a polarization
ST � 1, one has

Að�S; STÞ ¼ ST � ðp̂� P̂TÞAN ¼ ST sin�SAN: (13)

Notice that if, according to the usual procedure in SIDIS
experiments, one defines

FIG. 1 (color online). Kinematical configuration and conven-
tions for the p"l ! hX process.
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Asin�S

TU � 2

ST

R
d�S½d�ð�SÞ � d�ð�S þ�Þ	 sin�SR

d�S½d�ð�SÞ þ d�ð�S þ�Þ	 ; (14)

one simply has

Asin�S

TU ¼ AN: (15)

In order to compute AN , Eq. (12), we need to compute
½�ð"Þ ��ð#Þ	 and ½�ð"Þ þ �ð#Þ	, which can be done by
performing the helicity sum in Eqs. (4) and (5). As our
process is a simple particular case of ðA; SAÞ þ ðB; SBÞ !
Cþ X, the result agrees with Eqs. (82) and (86) of

Ref. [80], simplified to the case in which particle B is a
pointlike lepton and the elementary interaction has only
two independent amplitudes. Notice that several TMDs
appear in the expression for AN; however, numerical evalu-
ations show that the contribution of the Sivers effect is the
dominant one. A modest contribution is given by the
Collins function (coupled to the transversity distribution),
while another contribution involving h?1T (see Appendix C)
is totally negligible. Considering only the Sivers and
Collins effects, one has

AN ¼

P
q;f�g

R
dxdz

16�2xz2s
d2k?d3p?�ðp? � p̂0

qÞJðp?Þ�ðŝþ t̂þ ûÞ½�ð"Þ � �ð#Þ	ql!ql

P
q;f�g

R
dxdz

16�2xz2s
d2k?d3p?�ðp? � p̂0

qÞJðp?Þ�ðŝþ t̂þ ûÞ½�ð"Þ þ �ð#Þ	ql!ql
; (16)

withX
f�g

½�ð"Þ��ð#Þ	ql!ql ¼ 1

2
�Nfq=p" ðx;k?Þcos�½jM̂0

1j2þjM̂0
2j2	Dh=qðz;p?Þþh1qðx;k?ÞM̂0

1M̂
0
2�

NDh=q" ðz;p?Þcosð�0 þ�h
qÞ

(17)

and (dropping negligible contributions from other TMDs
[80])X

f�g
½�ð"Þ þ �ð#Þ	ql!ql

¼ fq=pðx; k?Þ½jM̂0
1j2 þ jM̂0

2j2	Dh=qðz; p?Þ: (18)

� The first term on the right-hand side (rhs) of Eq. (17)
shows the contribution to AN of the Sivers function
�Nfq=p" ðx; k?Þ [10,11,81],
�f̂q=p;Sðx; k?Þ ¼ f̂q=p;Sðx; k?Þ � f̂q=p;�Sðx; k?Þ

� �Nfq=p" ðx; k?ÞST � ðp̂� k̂?Þ

¼ �2
k?
M

f?q
1T ðx; k?ÞST � ðp̂� k̂?Þ;

(19)

coupled to the unpolarized elementary interaction [ /
1
2 ðjM̂0

1j2 þ jM̂0
2j2Þ] and the unpolarized fragmentation

function Dh=qðz; p?Þ; the cos� factor arises from the

ST � ðp̂� k̂?Þ factor, the spin-transverse motion cor-
relation of the Sivers function in the case of a normal
spin direction with ST ¼ 1.

� The second term on the rhs of Eq. (17) shows the
contribution to AN of the unintegrated transversity
distribution h1qðx; k?Þ coupled to the Collins function
�NDh=q" ðz; p?Þ [12,81],
�D̂h=q" ðz;p?Þ¼D̂h=q" ðz;p?Þ�D̂h=q# ðz;p?Þ

��NDh=q" ðz;p?Þsq �ðp̂0
q�p̂?Þ

¼2p?
zmh

H?q
1 ðz;p?Þsq �ðp̂0

q�p̂?Þ; (20)

and to the transverse spin transfer elementary inter-

action (d�";" � d�";# / M̂0
1M̂

0
2). The factor cosð�0 þ

�h
qÞ arises from phases in the k?-dependent trans-

versity distribution, the Collins function, and the
elementary polarized interaction. �0 is the azimuthal
angle of the fragmenting quark (with 3-momentum
p0
q) and �h

q is the azimuthal angle of p? around the

p̂0
q direction [80]. Their expressions in terms of in-

tegration and overall variables can be found in
Appendix A.

� The elementary interaction amplitudes are explicitly
given in Eqs. (8) and (9). Notice that the elementary
Mandelstam variables ŝ, t̂, û are computed taking into
account the full kinematics, and thus depend on the
transverse momenta.

� A final issue which needs to be clarified concerns
perturbative QCD corrections. Our proposed process
involves TMDs coupled to lowest order perturbative
interactions and is driven by a large angle elementary
electromagnetic scattering, ql ! ql. Some QCD ef-
fects, like soft gluon emissions, are taken into account
in the TMDs, as the emission of soft gluons builds up
intrinsic partonic motion. Higher order pQCD correc-
tions due to genuine hard QCD processes, like ql !
qlg or gl ! q �ql are not included in our computation
of AN . These contribute at order �s to the cross
section and can be neglected at large Q2 values;
moreover, one should notice that events induced by
these hard pQCD elementary interactions result in
final states with two fragmenting partons, i.e. two
jets, and could be experimentally excluded.
However, these pQCD corrections might be of some
relevance and difficult to disentangle at HERMES,
COMPASS, or JLab energies.
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B. Large PT jet production

We consider also the most interesting case of SSAs for
the inclusive process p"l ! jetþ X. Although it is a diffi-
cult process to detect experimentally and might require
future higher energy and luminosity machines, it would
certainly give the most direct access to the Sivers effect, as
the lack of any fragmentation mechanism forbids other
contributions. Even more difficult, the observation of
both a jet and a final hadron inside the jet (with a mea-
surement of its transverse momentum p?), would allow a
direct detection of the Collins effect [82].

In the case of the p"l ! jetþ X process, with no obser-
vation of a single final particle, Eq. (4) simplifies to

Ejd�
ðp;SÞþl!jetþX

d3Pj

¼ X
q;f�g

Z dx

16�2xs
d2k?�ðŝþ t̂þ ûÞ

� �q=p;S
�q;�

0
q
f̂q=p;Sðx; k?Þ

� 1

2
M̂�q;�l;�q;�l

M̂�
�0
q;�l;�

0
q;�l

; (21)

while Eq. (16) becomes

A
jet
N ¼

P
q;f�g

R
dx

16�2xs
d2k?�ðŝþ t̂þ ûÞ½�ð"Þ ��ð#Þ	ql!ql

jet

P
q;f�g

R
dx

16�2xs
d2k?�ðŝþ t̂þ ûÞ½�ð"Þ þ�ð#Þ	ql!ql

jet

�

(22)

In this case the kinematics is very simple and is shown
explicitly in Appendix A 2. For a generic azimuthal direc-
tion �S of the transverse spin ST , the Sivers function,
Eq. (19), can be written as

�Nfq=p" ðx;k?ÞST � ðp̂� k̂?Þ¼�Nfq=p" ðx;k?Þ

�
�
sin�S

kx?
k?

�cos�S

ky?
k?

�

¼�Nfq=p" ðx;k?Þsinð�S��Þ;
(23)

and the � kernels in Eq. (22) are

X
f�g

½�ð"Þ ��ð#Þ	ql!ql
jet

¼ 1

2
�Nfq=p" ðx; k?Þ sinð�S ��Þ½jM̂0

1j2 þ jM̂0
2j2	
(24)

X
f�g

½�ð"Þ þ�ð#Þ	ql!ql
jet ¼ fq=pðx; k?Þ½jM̂0

1j2 þ jM̂0
2j2	:

(25)

The elementary amplitudes are the same as given in
Eqs. (8) and (9).

III. ESTIMATES FOR AN

We have computed the SSA, AN , as defined in Eq. (12)
or (14), for the large PT production of pions and jets in
p"l ! hX and p"l ! jetþ X processes, according to the
expressions given, respectively, in Eqs. (16)–(18) and in
Eqs. (22) and (24) (with �S ¼ �=2), and (25).
Analogous results for the case of leptons moving along

the Zc:m: axis, lp
" ! hðjetÞ þ X, in the same chosen had-

ronic frame (that is, keeping fixed the definitions of xF ¼
2PL=

ffiffiffi
s

p
and of the " , # transverse polarization directions)

can be easily obtained using rotational invariance:

Alp"!hðjetÞþX
N ðxF;PTÞ ¼ �Ap"l!hðjetÞþX

N ð�xF;PTÞ: (26)

We have used the Sivers distributions as parametrized
and extracted—from SIDIS data—in Ref. [14]; even if the
Sivers functions, being related to final state interactions
[72], are expected to be process dependent [23], they
should be the same in SIDIS and the (related) processes
considered here, which all originate from the same ql ! ql
elementary interaction and subsequent quark fragmenta-
tion. Similarly, we have used the transversity distributions
and Collins functions as parametrized and extracted in
Ref. [22]. The unpolarized parton distribution functions
(PDFs) and fragmentation functions (FFs) are taken, re-
spectively, from Refs. [83,84].
Our results are given for the kinematical configurations

of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

ffiffiffi
s

p ¼
50 GeV. For hadron production, the Sivers and Collins
contributions are shown separately. We plot AN as a func-
tion of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum
transfer in the hard scattering, say Q2 > 1 GeV2. In col-
linear cases, at LO, it might suffice to have PT > 1 GeV;
however, with TMD factorization, one has to be more
careful, as PT might be partially generated by intrinsic
k?. We have checked that a value of PT ¼ 2:5 GeV cor-
responds to a safe Q2 > 1 GeV2 region in the whole range
of xF, while PT ¼ 1:5 GeV implies a safe Q2 region only
for backward production, xF & 0. We give predictions for
these two values of PT .
Notice also that for positive xF the minimum of x is

given, roughly, by xF. This implies that for xF > 0:2–0:3
we should employ the parametrizations of the Sivers and
transversity functions in a region where they are not con-
strained by SIDIS data. For this reason we will give our
theoretical estimates of AN only up to xF ’ 0:2. On the
other hand, for negative xF the minimum of x is controlled
by the ratio xT ¼ 2PT=

ffiffiffi
s

p
, implying that at moderate c.m.

energies (i.e.
ffiffiffi
s

p ’ 10–20 GeV) and PT ’ 1–2 GeV, we
are sensitive to the valence region of the polarized proton,
i.e. the region where the Sivers (and the transversity)
functions reach their maxima.
Let us comment in detail our results.
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� We first stress some aspects peculiar to the p"l ! hX
process. As in SIDIS processes at leading order ac-
curacy, only one partonic subprocess, ql ! ql, is
active, with a simple 1=t̂2 dependence (a much sim-
pler dynamics than in the pp ! hX case). However,
since the lepton plane is not identified (we do not
require the detection of the outgoing lepton), one
cannot access, separately, the Sivers and the Collins
effects. Nevertheless, in the backward region [with
respect to (w.r.t.) the proton direction] the variable jûj
becomes smaller and so does the partonic spin trans-

fer cross section / M̂0
1M̂

0
2 [see Eqs. (8) and (9)],

entering the Collins contribution to AN [second term
on the rhs of Eq. (17)]. This implies a strong dynami-
cal suppression of the Collins effect (reinforced by
the integration over the azimuthal phases) at largely
and moderately negative values of xF, leaving active
mainly the Sivers contribution. Notice that, contrary
to what happens in the pp ! hX process, no û chan-
nel in the partonic process is present; moreover, the
variable t̂ strongly depends on�, the azimuthal phase
of the Sivers effect [first term on the rhs of Eq. (17)].

� In Fig. 2 we present our estimates, separately, for the
Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect
at PT ¼ 1:5 GeV (left panel) and at PT ¼ 2:5 GeV
(central panel) and the Collins effect at PT ¼
2:5 GeV (right panel). The Collins effect at PT ¼
1:5 GeV (not shown) is almost negligible in the ki-
nematical region considered. For charged pion pro-
duction at PT ¼ 1:5 GeV (left panel) the statistical
uncertainty bands as resulting from our fit [14] are
also shown.
The largest AN values obtained correspond to the x
region (of the polarized proton distributions) where
the Sivers functions, for u and d quarks, reach their

maxima. It is interesting to note that the sizable value
of AN for �� production (larger than the correspond-
ing Sivers contribution to AUT in SIDIS) is due to the
dominance of the d quark with a small contamination
from the u quark. This is related to the fact that the
light-cone momentum fraction z is always bigger than
the maximum between jxFj and xT , implying, at
moderate and large jxFj, a dominance of the leading
fragmentation functions.

� In Fig. 3 we show the analogous results for
COMPASS kinematics. Again at PT ¼ 1:5 GeV
only the Sivers effect gives a sizable contribution
(left panel), while the Collins effect (not shown) is
compatible with zero. At PT ¼ 2:5 GeV the Sivers
effect (central panel) dominates only in the backward
region, while in the forward region the Collins effect
(right panel) becomes sizable. For charged pion pro-
duction at PT ¼ 1:5 GeV (left panel) the statistical
uncertainty bands as resulting from our fit [14] are
also shown. The main difference w.r.t. AN for
HERMES kinematics at PT ¼ 1:5 GeV (compare
Figs. 2 and 3, left panels) is that at the larger
COMPASS energy (

ffiffiffi
s

p ’ 17 GeV) the valence region
for the polarized proton, where the Sivers functions
reach their maxima, starts dominating at larger xF.

� In Fig. 4 we show our results for ENC kinematics atffiffiffi
s

p ¼ 50 GeV. For PT ¼ 1:5 GeV (left panel) only at
the upper range of the safe xF values (i.e. xF & 0) the
Sivers effect gives a sizable contribution, of the order
of a few percent (the Collins effect is once again
negligible). At PT ¼ 2:5 GeV both the Sivers (cen-
tral panel) and the Collins (right panel) contributions
are comparable and sizable around xF ’ 0:2, there-
fore hardly distinguishable. This can be understood
because at such PT and energy values the valence
region for the polarized proton dominates only for
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FIG. 2 (color online). Estimates of AN vs xF for the p"l ! �X process at HERMES (
ffiffiffi
s

p ’ 7 GeV). Left panel: Sivers effect at
PT ¼ 1:5 GeV; central panel: Sivers effect at PT ¼ 2:5 GeV; right panel: Collins effect at PT ¼ 2:5 GeV. The computation has been
performed according to Eqs. (16)–(18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins functions
of Ref. [22], as extracted from SIDIS and eþe� data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In the left panel we
also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].
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xF > 0, where both effects are active (see our com-
ment on the suppression of the Collins effect for
negative xF at the beginning of this section).

� In Fig. 5 we show analogous estimates of the Sivers
contribution to AN for JLab kinematics at the up-
graded energy ELab ¼ 12 GeV, corresponding to a
c.m. energy

ffiffiffi
s

p ’ 4:9 GeV. Again, in order to guar-
antee a sufficiently large momentum transfer we
show results at PT ¼ 1:5 GeV vs xF & 0:1. The re-
sults are comparable to the corresponding estimates
for HERMES kinematics, see Fig. 3 (left panel), with
large asymmetries (in size) for all pions. Given the
lower c.m. energy, however, cross sections are in
general smaller than those for HERMES and
COMPASS kinematics. Larger values of PT are
probably out of reach at Jlab, while the Collins con-
tribution is again negligible in the xF region
considered.

� Finally, in Fig. 6 we show estimates of the Sivers
contribution to AN for the process p"l ! jetþ X for
ENC kinematics (

ffiffiffi
s

p ¼ 50 GeV) at PT ¼ 1:5 GeV
(left panel) and PT ¼ 2:5 GeV (right panel) vs xF.
The results are similar, both in size and shape, to the
corresponding ones for neutral and positive pions, see

Fig. 4, left and central panels (notice the different
scale). The asymmetry is almost negligible at nega-
tive xF and becomes sizable only at the upper range of
the safe xF values. We have found that AN becomes
even smaller at larger c.m. energies.
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FIG. 4 (color online). Same as in Fig. 2 but for ENC kinematics at
ffiffiffi
s

p ¼ 50 GeV.
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FIG. 3 (color online). Same as in Fig. 2 but for COMPASS kinematics (
ffiffiffi
s

p ’ 17 GeV).
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FIG. 5 (color online). Same as in Fig. 2, left panel, but for JLab
kinematics at ELab ¼ 12 GeV (
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p ’ 4:9 GeV).
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IV. COMMENTS AND CONCLUSIONS

In this paper we have presented a phenomenological
study, based on the assumption of TMD factorization, of
transverse single spin asymmetries for the inclusive pro-
duction of large PT pions and jets in lepton-proton colli-
sions, p"l ! hðjetÞ þ X. These asymmetries, measured in
the lepton-proton c.m. frame (since the final lepton is not
observed, the ��-proton c.m. frame cannot be recon-
structed) should involve the same TMD distribution and
fragmentation functions which contribute to the transverse
azimuthal asymmetries measured by the HERMES and
COMPASS collaborations in the last years in semi-
inclusive deep inelastic scattering.

Using best-fit parametrizations of the TMD functions
extracted from HERMES, COMPASS, and Belle data, we
have shown that, in the kinematical regions where our
perturbative approach should be reliable, the asymmetries
dominantly arise from the Sivers effect in the distribution
sector and marginally from the Collins effect in the frag-
mentation sector (not present in the case of jet production).
We have presented results for several kinematical configu-
rations corresponding to present experimental setups
(HERMES and COMPASS), to the forthcoming 12 GeV
upgraded JLab setup and to a class of lepton-proton (ion)
colliders (ENC) currently under active study in the QCD
and hadron physics community. These results show that for
pion production the Sivers AN can be sizable, at least for
HERMES, COMPASS, and JLab at 12 GeV kinematics.
For pion and jet production at typical energies of the
proposed ENC colliders, the asymmetries are much
smaller and become larger only at the boundary of the
safe kinematical regions, where, for pions, both the
Sivers and the Collins contributions play a role and the
two mechanisms cannot be disentangled.

The measurement of these predicted asymmetries allows
a test of the validity of the TMD factorization, largely
accepted for SIDIS processes with two scales (small PT

and large Q), but still much debated for processes with
only one large scale (PT), like the one we are considering
here. A test of TMD factorization in such processes is of
great importance for a consistent understanding of the
large SSAs measured in the single inclusive production
of large PT hadrons in proton-proton collisions.
We stress once more that our predictions refer to large

PT production, in the lepton-proton c.m. frame, at leading
perturbative order. It implies that, in order to compare
experimental data with our results, one has to select large
PT , single-jet events, excluding those events containing a
second jet in the opposite hemisphere w.r.t. to the primary
observed jet (containing the final observed hadron). This
should avoid large PT jets (or hadrons) coming from next-
to-leading order partonic processes (hard pQCD correc-
tions). Although these requirements might correspond to
smaller cross sections and difficult selection procedures,
we believe that the relevance of testing TMD factorization
in this simple process justifies efforts in this direction and
motivates our work.
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APPENDIX A: KINEMATICS

1. Hadron production

Wework in the proton-lepton center of mass frame, with
the incoming proton and lepton moving along the Zc:m: axis
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FIG. 6 (color online). Estimates of AN vs xF for the p"l ! jetþ X process and for ENC kinematics at
ffiffiffi
s

p ¼ 50 GeV. Left panel:
Sivers effect at PT ¼ 1:5 GeV; right panel: Sivers effect at PT ¼ 2:5 GeV. The computation has been performed according to
Eqs. (22), (24), and (25) of the text, adopting the Sivers functions of Ref. [14], as extracted from SIDIS data, and the unpolarized PDFs
of Ref. [83].
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and the outgoing hadron emitted in the ðXZÞc:m: plane:

p ¼
ffiffiffi
s

p
2
ð1; 0; 0; 1Þ (A1)

l ¼
ffiffiffi
s

p
2
ð1; 0; 0;�1Þ (A2)

Ph ¼ ðEh; PT; 0; PLÞ E2
h ¼ P2

T þ P2
L; (A3)

where s is the proton-lepton c.m. square energy and where
we have assumed all particles to be massless. The kine-
matical variables for the elementary underlying process
result in (k? ¼ jk?j, p? ¼ jp?j)

pq ¼
�
x

ffiffiffi
s

p
2

þ k2?
2x

ffiffiffi
s

p ; k?;
x

ffiffiffi
s

p
2

� k2?
2x

ffiffiffi
s

p
�

(A4)

l ¼
ffiffiffi
s

p
2
ð1; 0; 0;�1Þ (A5)

p0
q ¼

Eh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

?
q
2z

�
�
1;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

?
q ðPT � px

?;�py
?; PL � pz

?Þ
�

(A6)

l0 ¼ pq þ l� p0
q; (A7)

with k? being the intrinsic transverse momentum of parton
q inside the parent proton and p? being the intrinsic
transverse momentum of the detected final hadron h with
respect to the fragmenting parton q0. The expression for p0

q

has been obtained by requiring z to be the light-cone
momentum fraction of the emitted hadron, z ¼ ~Pþ

h =~p
0þ
q ,

as defined in the helicity frame of the fragmenting quark q0,
which we will denote as ~S. With this kinematics, the
partonic Mandelstam invariants are

ŝ¼ xs

t̂¼�x
ffiffiffi
s

p
2z

�
1þ Ehffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
h �p2

?
q

���
1þ k2?

x2s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h �p2

?
q

�
�
1� k2?

x2s

�
ðPL �pz

?Þ�
2kx?ðPT �px

?Þ� 2ky?p
y
?

x
ffiffiffi
s

p
�

û¼�
ffiffiffi
s

p
2z

�
1þ Ehffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
h �p2

?
q

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h �p2

?
q

þPL �pz
?Þ: (A8)

Notice that the orthogonality between p0
q and p?, ex-

plicitly guaranteed through the delta function �ðp? � p̂0
qÞ in

Eq. (16), allows us to fix one component of the vector p? in
terms of all the others; in particular, it gives

jp?j2 ¼ PTp
x
? þ PLp

z
?

) py
? ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PTp

x
? þ PLp

z
? � ðpx

?Þ2 � ðpz
?Þ2

q
: (A9)

Similarly, the other delta function in Eq. (16), �ðŝþ t̂þ
ûÞ, can be used to perform the integration over the light-
cone fraction z fixing

z ¼ 1

2x
ffiffiffi
s

p
�
1þ Ehffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
h � p2

?
q

���
1þ xþ k2?

xs

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

?
q

þ
�
1� xþ k2?

xs

�
ðPL � pz

?Þ

� 2kx?ðPT � px
?Þ � 2ky?p

y
?ffiffiffi

s
p

�
; (A10)

with py
? given by Eq. (A9).

The angle �h
q, which identifies the direction of p?

around p0
q, can be expressed in terms of the p? compo-

nents, px
?, p

y
?, and pz

?, simply by noticing that in the

helicity frame of parton q0 (where the ~Z axis coincides
with the direction of p0

q) this angle is the azimuth of p?,
that is,

sin�h
q ¼ p̂? � ~Y cos�h

q ¼ p̂? � ~X: (A11)

The helicity frame ~S of parton q0 can be reached by
performing two rotations, as explained in Appendix C of
Ref. [80], in the following way:

~Z ¼ p̂0
q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
h � p2

?
q ðPT � px

?;�py
?; PL � pz

?Þ

(A12)

~Y ¼ Ẑcm � p̂0
qT ¼ ðpy

?; PT � px
?; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
h � p2

? � ðPL � pz
?Þ2

q (A13)

~X ¼ ~Y � ~Z ¼ ½ðPT � px
?ÞðPL � pz

?Þ;�py
?ðPL � pz

?Þ;�ðpy
?Þ2 � ðPT � px

?Þ2	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

? � ðPL � pz
?Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

?
q ; (A14)
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where p̂0
qT is given by the transverse components of p0

q in
the center of mass reference frame, S:

p̂ 0
qT ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
h � p2

? � ðPL � pz
?Þ2

q ðPT � px
?;�py

?; 0Þ;

(A15)

and py
? is fixed by the orthogonality condition of Eq. (A9).

By replacing Eqs. (A12)–(A14) into Eq. (A11) we find

sin�h
q ¼

py
?

p?
PTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
h � p2

? � ðPL � pz
?Þ2

q

cos�h
q ¼ �pz

?
p?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

?
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

? � ðPL � pz
?Þ2

q :

(A16)

Alternatively, in terms of angles instead of components we
can write

sin�h
q ¼ � PT

p?
sin�0

cos�h
q ¼ �pz

?
p?

1

sin	0
¼ � cos	?

sin	0
;

(A17)

where�0, 	0 are the azimuthal, polar angles of p0
q and 	? is

the polar angle of p? in our c.m. reference frame.
Finally, the cosð�0 þ�h

qÞ azimuthal dependence of the

Collins effect, see Eq. (17), can be expressed as

cosð�0 þ�h
qÞ ¼

pz
?ðpx

? � PTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
h � p2

?
q

þ ðpy
?Þ2PT

p?½E2
h � p2

? � ðPL � pz
?Þ2	

;

(A18)

or, more simply, in terms of angles

cosð�0 þ�h
qÞ ¼ PT

p?
sin2�0 � cos	?

cos�0

sin	0
� (A19)

2. Jet production

The 4-momenta involved, in our reference frame and
neglecting all masses, are

p ¼
ffiffiffi
s

p
2
ð1; 0; 0; 1Þ l ¼

ffiffiffi
s

p
2
ð1; 0; 0;�1Þ (A20)

pq ¼
�
x

ffiffiffi
s

p
2

þ k2?
2x

ffiffiffi
s

p ; k?;
x

ffiffiffi
s

p
2

� k2?
2x

ffiffiffi
s

p
�

(A21)

p0
q ¼ Pj ¼ ðEj; PT; 0; PLÞ E2

j ¼ P2
T þ P2

L; (A22)

so that the partonic Mandelstam invariants are given by

ŝ ¼ xs (A23)

t̂ ¼ 2PTk
x
? � x

ffiffiffi
s

p �
Ej � PL þ k2?

x2s
ðEj þ PLÞ

�
(A24)

û ¼ � ffiffiffi
s

p ðEj þ PLÞ: (A25)

Notice that there is no linear ky? dependence in these

variables and, as a consequence, in the elementary ampli-

tudes M̂0
1;2. The delta function ensuring ŝþ t̂þ û ¼ 0 can

be used to perform the integration on kx? in Eq. (22):

kx? ¼ x
ffiffiffi
s

p �
PT

Ej þ PL



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
p

Ej þ PL

� 1

x
� ðky?Þ2

x2s

vuut �
; (A26)

which implies

xmin ¼
Ej þ PL

2
ffiffiffi
s

p
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðky?Þ2ffiffiffi

s
p ðEj þ PLÞ

vuut �
: (A27)

Note that the term proportional to cos�S in Eq. (23), being
odd in ky?, vanishes when integrating over k

y
?, resulting, as

it should, in a SSA proportional to sin�S.

APPENDIX B: SPINORS AND HELICITY
AMPLITUDES

We compute the helicity amplitudes for the nonplanar
ql ! ql process exploiting the well-known spinor helicity
technique (see, for example, Refs. [85,86]). To be precise,
we adopt the phase convention and gamma matrix repre-
sentation of Ref. [86]; that is, our helicity spinors for a
massless Dirac particle with 4-momentum k ¼
ðk0; kx; ky; kzÞ and helicity 
1=2 are given by

uþðkÞ ¼ v�ðkÞ ¼

ffiffiffiffiffiffi
kþ

p
e�i�=2ffiffiffiffiffiffi

k�
p

ei�=2

0
0

0
BBB@

1
CCCA;

u�ðkÞ ¼ vþðkÞ ¼
0
0

� ffiffiffiffiffiffi
k�

p
e�i�=2ffiffiffiffiffiffi

kþ
p

ei�=2

0
BBB@

1
CCCA;

(B1)

where

e
i� � kx 
 ikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkxÞ2 þ ðkyÞ2p ¼ kx 
 ikyffiffiffiffiffiffiffiffiffiffiffiffi
kþk�

p ; k
 ¼ k0 
 kz:

(B2)

The two independent helicity amplitudes M̂�3;�4;�1;�2
for

the qðk1; �1Þ þ lðk2; �2Þ ! qðk3; �3Þ þ lðk4; �4Þ elemen-
tary lowest order QED interaction are given by

M̂ þþ;þþ ¼ M̂���;�� ¼ �2
eqe

2

t̂
½3 4	h1 2i (B3)
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M̂ þ�;þ� ¼ M̂��þ;�þ ¼ þ2
eqe

2

t̂
½2 3	h1 4i; (B4)

with

�u�ðkiÞuþðkjÞ � hiji ¼ �½ij	�

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kþi k�j

q
e�ið�i��jÞ=2 �

ffiffiffiffiffiffiffiffiffiffiffiffi
k�i kþj

q
eið�i��jÞ=2:

(B5)

Equation (B5) can be rewritten as [85]

hiji ¼ �e�ið�iþ�jÞ=2½
ffiffiffiffiffiffiffiffiffiffiffiffi
k�i kþj

q
ei�i �

ffiffiffiffiffiffiffiffiffiffiffiffi
kþi k�j

q
ei�j	

¼ �e�ið�iþ�jÞ=2
ffiffiffiffiffiffiffiffiffi
jsijj

q
ei�ij ; (B6)

where sij ¼ ðki þ kjÞ2 ¼ 2ki � kj, and

cos�ij ¼
kxi k

þ
j � kxjk

þ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jsijjkþi kþj
q ; sin�ij ¼

kyi k
þ
j � kyjk

þ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jsijjkþi kþj
q ;

�ij ¼ �ji þ �: (B7)

With our kinematical configuration (�2 ¼ �) we obtain

M̂ þþ;þþ ¼ M̂���;��

¼ �8�eq�
ŝ

t̂
e�i�34eið�3þ�4��1þ�Þ=2 (B8)

M̂ þ�;þ� ¼ M̂��þ;�þ ¼ 8�eq�
û

t̂
ei�14e�ið�1þ�4��3þ�Þ=2:

(B9)

In addition, one can show that �34 ¼ �14.
Notice that the combinations of helicity amplitudes

contributing to the SSA, Eq. (17), are simply given by

jM̂þþ;þþj2 � jM̂0
1j2 ¼ 64�2�2e2q

ŝ2

t̂2
(B10)

jM̂þ�;þ�j2 � jM̂0
2j2 ¼ 64�2�2e2q

û2

t̂2
(B11)

M̂ þþ;þþM̂��þ;�þ ¼ 64�2�2e2q
ŝð�ûÞ
t̂2

e�ið�1��3Þ: (B12)

In the (transversity) � (Collins) contribution to the SSA,
the phase dependence of the last term above (�1 ��3 ¼
���0) combines with the k? phase in the transversity
distribution (�) and the Collins function phase (�h

q), re-

sulting in the simple expression given in Eq. (17).

APPENDIX C: DETAILS FOR THE COMPUTATION
OF A

sin�S

TU

In this section we show some details of the explicit
calculation of the transverse single spin asymmetry

Asin�S

TU , Eq. (14), for the process p"l ! hX, starting from
the general expression for the polarized cross section given
in Eq. (4). By performing the sum over all the helicity
indices and taking into account that the helicity density
matrix of a quark q can be written in terms of the quark
polarization vector components, Pq ¼ ðPq

x; P
q
y; P

q
z Þ, as

�q=p;S
�q;�

0
q
¼ �q

þþ �q
þ�

�q
�þ �q��

� �
p;S

¼ 1

2

1þ Pq
z Pq

x � iPq
y

Pq
x þ iPq

y 1� Pq
z

� �
p;S

; (C1)

one obtains, for a spinless hadron h,

Ehd�
ðp;SÞþl!hþX

d3Ph

¼X
q

Z dxdz

16�2xz2s
d2k?d3p?�ðp? � p̂0

qÞJðp?Þ�ðŝþ t̂þ ûÞ

�1

2
ff̂q=p;Sðx;k?ÞðjM̂þþ;þþj2þjM̂�þ;�þj2ÞDh=qðz;p?Þ

þ½Pq
yf̂q=p;Sðx;k?Þ½ReðM̂þþ;þþM̂��þ;�þÞcos�h

q� ImðM̂þþ;þþM̂��þ;�þÞsin�h
q	

�Pq
xf̂q=p;Sðx;k?Þ½ImðM̂þþ;þþM̂��þ;�þÞcos�h

qþReðM̂þþ;þþM̂��þ;�þÞsin�h
q		�NDh=q" ðz;p?Þg: (C2)

In the above expression we have already extracted from the fragmentation functions D̂�q;�
0
q
ðz;p?Þ their azimuthal

dependence and exploited their parity properties (see Ref. [80] for details):

D̂þþðz;p?Þ ¼ D̂��ðz;p?Þ ¼ Dh=qðz; p?Þ (C3)

D̂þ�ðz;p?Þ ¼ Dþ�ðz; p?Þei�h
q ¼ i

2
�NDh=q" ðz; p?Þei�h

q (C4)

D̂þ�ðz;p?Þ ¼ ½D̂�þðz;p?Þ	�: (C5)

When computing the azimuthal asymmetry, one has the difference of cross sections with opposite transverse spin,
d�ð�SÞ � d�ð�S þ �Þ; using Eq. (19) and the definitions [80]
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Pq
yf̂q=p;ST

ðx; k?Þ � Pq
yf̂q=p;�ST

ðx; k?Þ ¼ �f̂sy=ST
ðx; k?Þ � �f̂sy=�ST

ðx; k?Þ ¼ 2��f̂sy=ST
ðx; k?Þ

Pq
xf̂q=p;ST

ðx; k?Þ � Pq
xf̂q=p;�ST

ðx; k?Þ ¼ �f̂sx=ST
ðx; k?Þ � �f̂sx=�ST

ðx; k?Þ ¼ 2�f̂sx=ST
ðx; k?Þ;

(C6)

one obtains

d�ð�SÞ�d�ð�Sþ�Þ ¼X
q

Z dxdz

16�2xz2s
d2k?d3p?�ðp? � p̂0

qÞJðp?Þ�ðŝþ t̂þ ûÞ

�
�
1

2
�f̂q=p;ST

ðx;k?ÞðjM̂þþ;þþj2þjM̂�þ;�þj2ÞDh=qðz;p?Þ
þ ½��f̂sy=ST

ðx;k?Þ½ReðM̂þþ;þþM̂��þ;�þÞcos�h
q� ImðM̂þþ;þþM̂��þ;�þÞ sin�h

q	

þ�f̂sx=ST
ðx;k?Þ½ImðM̂þþ;þþM̂��þ;�þÞcos�h

qþReðM̂þþ;þþM̂��þ;�þÞ sin�h
q		�NDh=q" ðz;p?Þ

�
:

(C7)

Finally, using Eqs. (8), (9), (19), (23), and (B10)–(B12) and the relations [80]

��f̂sy=ST
ðx; k?Þ ¼

�
h1ðx; k?Þ �

k2?
2M2

h?1Tðx; k?Þ
�
sinð�S ��Þ (C8)

�f̂sx=ST
ðx; k?Þ ¼

�
h1ðx; k?Þ þ

k2?
2M2

h?1Tðx; k?Þ
�
cosð�S ��Þ; (C9)

yields

d�ð�SÞ � d�ð�S þ �Þ ¼ X
q

Z dxdz

16�2xz2s
d2k?d3p?�ðp? � p̂0

qÞJðp?Þ�ðŝþ t̂þ ûÞ

�
�
1

2
�Nfq=p" ðx; k?Þ sinð�S ��ÞðjM̂0

1j2 þ jM̂0
2j2ÞDh=qðz; p?Þ

þ h1qðx; k?Þ sinð�S ��0 ��h
qÞM̂0

1M̂
0
2�

NDh=q" ðz; p?Þ

� k2?
2M2

h?q
1T ðx; k?Þ sinð�S � 2�þ�0 þ�h

qÞM̂0
1M̂

0
2�

NDh=q" ðz; p?Þ
�
: (C10)

The first term on the rhs of Eq. (C10) gives the Sivers contribution while the second term gives the transversity� Collins
effect. We have numerically checked that the third term gives negligible contributions. Notice that the various terms of the
type sinð�S ��Þ appearing in Eq. (C10) can be decomposed as sin�S cos�� cos�S sin�: similarly to what has been
explicitly shown in Appendix A 2 [see the comment after Eq. (A27)], the cos�S terms integrate to zero. Thus, one obtains
the simple expression of Eq. (17), given for �S ¼ �=2.
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