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We have performed a dynamical analysis of the mixing in the pseudoscalar channel with the goal of

understanding the existence and behavior of the pseudoscalar glueball. Our philosophy has not been to

predict precise values of the glueball mass but to exploit an adequate effective theory to the point of

breaking and to analyze which kind of mechanisms restore compatibility with data. Our study has led to

analytical solutions which allow a clear understanding of the phenomena. The outcome of our calculation

leads to a large mass glueballM� > 2000 MeV, to a large glue content of the �0, and to mixing angles in

agreement with previous numerical studies.

DOI: 10.1103/PhysRevD.81.034004 PACS numbers: 12.39.Mk

I. INTRODUCTION

Quantum chomodynamics (QCD) is the theory of the
strong interactions. A particularly good test for understand-
ing its nonperturbative behavior would be to find a good
description of glueballs and their properties. The glueballs
are bound states whose valence constituents are gluons, the
gauge particles of the theory. For this reason the glueball
spectrum has attracted much attention [1]. In particular, the
existence of the pseudoscalar glueball has been a matter of
debate since the Mark II experiment proposed glueball
candidates [2]. It became clear later that only one of
them the �ð1405Þ behaves as a wishful glueball in its
production and decays, i.e. it has not been produced in
��, it has comparably large branching ratios in J=c
decays, and has not been seen to decay to �� [1,3,4].
Besides the �ð1405Þ, other particles below 2 GeV have
been proposed as glueball candidates [1,5]. From the theo-
retical point of view, while some models tend to support
this assignment, others, including quenched lattice QCD,
predict masses over 2 GeV [1,6,7].

For the purposes of this paper we accept the existence of
at least one pseudoscalar glueball state. Note that the
pseudoscalar sector is a complex one. On the one hand it
accommodates the Goldstone nature of the pseudoscalar
multiplet, on the other, not totally unrelated, we encounter
the singlet-octet mixing, which is traditionally associated
with the resolution of the Uð1Þ anomaly. In constituent

models the ideal mixing (�i ¼ tan�1
ffiffiffi
2

p
) is natural, how-

ever the � and �0 mixing is nonideal. In order to describe
this phenomenon a complementary picture of low-energy
QCD, given by an effective Lagrangian [where the under-

lying chiral symmetry is manifest and the resolution of the
Uð1Þ anomaly can be implemented] has been proposed [9–
14]. A modification of this effective theory can be per-
formed which incorporates the pseudoscalar glueball with-
out losing the low-energy realization of the fundamental
properties of QCD [15] and leads to a �� �0 �� mixing
and its consequent phenomenology.
We proceed here by following this effective Lagrangian

prescription, but contrary to other authors, we take the
experimentally known parameters in the meson sector as
input and leave the glueball parameters, its mass and mix-
ing parameters, as unknown. In Sec. II we rediscuss, with
modern phenomenology, the �� �0 mixing in the effec-
tive theory approach, to discover that we are not able to fit
the data. In order to solve the discrepancy, in Sec. III, we
incorporate the pseudoscalar glueball, following the ap-
proach of Ref. [15]. In our approach, consistency implies
that M� > 1500 MeV. In the next sections we proceed to
study the consequences of the theory, i.e. J=c ! �ð�0ÞX,
meson radiative decays V ! �ð�0Þ� and �0 ! V�, and
�ð�0Þ ! 2� decays. These calculations force us to incor-
porate phenomenologically additional glueball couplings
to the octet � meson. We are able to solve exactly the
model with glueball-octet coupling in the approximation of
two mixing angles. Our results are compatible with data for
glueball masses between 2100 � M� � 2300 MeV.

II. THE CHIRAL LAGRANGIAN

Guided by symmetry principles, we can build an effec-
tive Lagrangian describing the low-energy behavior of
QCD. The relevant degrees of freedom are the Goldstone
bosons of the symmetry breaking G ¼ SUð3ÞL �
SUð3ÞR ! H ¼ SUð3ÞV . There are eight pseudoscalar
Goldstone bosons living in the coset G=H and transform-
ing according to
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U!G LURy; L 2 SUð3ÞL; R 2 SUð3ÞR: (1)

Here we assume spontaneously chiral symmetry break-
ing and an implicit integration over the scalar mesons. The
explicit chiral symmetry breaking is provided by a mass
term which mimics the one in the QCD Lagrangian:

L 0 ¼ F2

4
h@�Uy@�Ui þ F2B

2
hMUy þUMyi: (2)

We will work with an isospin SUð2Þ symmetry and the
mass matrix is M ¼ diagð ~m; ~m;msÞ. The eight Goldstone
bosons f�;K;�8g are collectively represented by a non-
linear parametrization

U ¼ exp

�
i

ffiffiffi
2

p
P

F

�
; (3)

with
ffiffiffi
2

p
P ¼ Pa�a or, in terms of physical particles,

P ¼
�0ffiffi
2

p þ �8ffiffi
6

p �þ Kþ

�� �8ffiffi
6

p � �0ffiffi
2

p K0

K� �K0 �
ffiffi
2
3

q
�8

0
BBB@

1
CCCA: (4)

The physical (squared) masses are extracted from the
quadratic term in (2) and we obtain

M2
� ¼ B ~m (5)

M2
K ¼ Bð ~mþmsÞ=2: (6)

The parameter B is related to the quark condensate through

h0jq �qj0i ¼ �@LQCD

@mq

¼ � @L
@M

¼ �F2B: (7)

F is the pion decay constant F� ¼ 132 MeV as it can be
deduced from the conserved current Aa

� ¼ �F@�P
a and

the definition

h0jAa
�jPbi ¼ �iF�p��

ab: (8)

With the Lagrangian (2), all Goldstone bosons have the
same decay constant F ¼ F�.

The ninth pseudoscalar boson is not a Goldstone boson.
However, it can be included in a straightforward way in the
Lagrangian (2). We add to the representation (4), the trace
with the �0 meson properly normalized:

P ! P þ �013=
ffiffiffi
3

p
: (9)

The matrix U now belongs to Uð3Þ. The apparent Uð1ÞA
symmetry of the effective Lagrangian (2) should be broken
by an additional term since this symmetry is not a symme-
try of QCD. The Uð1ÞA symmetry is broken in QCD at the
quantum level by the axial anomaly and the instantons. As
a consequence, the �0 is not a Goldstone boson and its
mass should not be given by the mass term in (2), i.e.
ð2M2

K þM2
�Þ=3. An additional mass term should be added.

Following Refs. [11,12], the Uð1ÞA breaking term involves

detUðyÞ and reads

L A ¼ F2

16

�

N

�
ln

�
detU

detUy

��
2 ¼ � 3

2

�

N
�2
0; (10)

where N is the number of colors, � a dimensionless
coupling, and the equation is valid for three flavors. The
logarithm is essential to avoid the presence of higher order
�0 self-couplings [12]. In (10), we explicitly write the N
dependence to show that in the large-N limit, the anomaly
disappears [16].
The introduction of the isosinglet �0 induces a mixing

with the �8. It is generally assumed that the physical
particles � and �0 should then be a linear combination of
the two fundamental fields [17]

�
�0

� �
¼ cos� � sin�

sin� cos�

� �
�8

�0

� �
: (11)

The masses of the two physical states are the eigenvalues
of the mass matrix for the �8 � �0 system

M 2
80 ¼

1

3

4M2
K �M2

� �2
ffiffiffi
2

p ðM2
K �M2

�Þ
�2

ffiffiffi
2

p ðM2
K �M2

�Þ 2M2
K þM2

� þ 3�

 !
:

(12)

In the SUð3ÞF limit, where all quarks have the same mass,
i.e.ms ¼ ~m, the coupling between the singlet and the octet
disappears. At this stage, � is an unknown parameter. We
can eliminate � in terms of the mixing angle �, which can
be determined from the two photon decays using the
formula

�ð� ! ��Þ
�ð�0 ! ��Þ ¼ 1

3

�
M�

M�0

�
3½cos�� 2

ffiffiffi
2

p
sin��2; (13)

�ð�0 ! ��Þ
�ð�0 ! ��Þ ¼ 1

3

�
M�0

M�0

�
3½sin�þ 2

ffiffiffi
2

p
cos��2: (14)

The experimental input leads to a first determination of the
mixing angle, � ¼ �20� [16].
The physical masses are then functions only of the

mixing angle:

M2
� ¼ 1

3
½4M2

K �M2
� þ 2

ffiffiffi
2

p ðM2
K �M2

�Þ tan��; (15a)

M2
�0 ¼ 1

3
½4M2

K �M2
� � 2

ffiffiffi
2

p ðM2
K �M2

�Þ cot��: (15b)

Nevertheless, it is not possible to fit the two masses simul-
taneously [18]. Indeed, as a check, we can eliminate the
mixing angle

tan 2� ¼ 3M2
� � ð4M2

K �M2
�Þ

ð4M2
K �M2

�Þ � 3M2
�0
: (16)

Plugging this result, � ¼ �11:4�, in (15) does not provide
the physical masses for the � and the �0 [18]. Instead, we
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find ~m� ¼ 530 MeV and ~m�0 ¼ 1181 MeV. Indeed, as

shown by Georgi [19], this mixing scheme cannot provide
the physical ratio M2

�0=M2
�.

We conclude that with only one parameter (� or �) it is
not possible to reproduce simultaneously the masses of the
�� �0 system. We investigate in the next section an
improvement consisting of incorporating a pseudoscalar
glueball into the mixing scheme; another, to be discussed
elsewhere, is the use of different decay constants for non-
strange and strange mesons.

III. THE CHIRAL LAGRANGIAN WITH
PSEUDOSCALAR GLUEBALL

The motivation for the inclusion of the extra term, (10),
was to implement the axial anomaly in the effective
Lagrangian. In terms of the isosinglet current, the axial
anomaly reads in the chiral limit

@�A0
� ¼ ffiffiffi

3
p �s

4�
G�	

~G�	; (17)

with A0
� ¼ ð2 �q���5qþ �s���5sÞ=

ffiffiffi
3

p
. Another way to im-

plement the axial anomaly in the effective Lagrangian is to
introduce a field Y interpolating the topological charge

operator G�	
~G�	 [9]. Since we already have a pseudosca-

lar flavor singlet in the Lagrangian, the �0, Y can then be
considered as an auxiliary field introduced via the term

L A ¼ i
F

4

ffiffiffiffi
�

N

r
Y

�
ln

�
detU

detUy

��
þ 1

2
Y2; (18)

which is equivalent, as can be shown using the equations of

motion, to (10). But the operator G�	
~G�	 may also inter-

polate a pseudoscalar glueball [15]. We split the Y field into
an auxiliary field, �aux, describing the �0 and another, ~g,
describing the glueball. We add a kinetic term and, for the
sake of completeness, a mass term associated also to the
pseudoscalar glueball [15]

LA ¼ ið�aux þ ~gÞ
�
ln

�
detU

detUy

��
þ 1

2
c1�

2
aux � 1

2
c2~g

2

þ 1

2
c3@�~g@

�~g: (19)

The first term induces a coupling between �0 and the
pseudoscalar glueball but we do not have any coupling
between the glueball and �8. The mass matrix has then the
simple form [15]

M 2
80g ¼ 1

3

4M2
K �M2

� �2
ffiffiffi
2

p ðM2
K �M2

�Þ 0

�2
ffiffiffi
2

p ðM2
K �M2

�Þ 2M2
K þM2

� þ 3� 3

0 3
 3�

0
@

1
A; (20)

where we have defined � ¼ 48=c1, 
 ¼ ð4=FÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ðc3c1Þ

p
,

and � ¼ c2=c3. The eigenvalues of the matrix represent the
mass of three physical states, �, �0, and a third pseudo-
scalar state �. In order to simplify the relations, we in-
troduce the following notation:

M 2
80g ¼

W Z 0
Z Y þ � 

0 
 �

0
@

1
A; (21)

with

W ¼ 1

3
ð4M2

K �M2
�Þ; (22)

Z ¼ � 2
ffiffiffi
2

p
3

ðM2
K �M2

�Þ; (23)

Y ¼ 1

3
ð2M2

K þM2
�Þ: (24)

The mass matrix M2
80g is diagonalized using a rotation

matrix R

RM2
80gR

y ¼ ~M2: (25)

~M2 ¼ diagðM2
�;M

2
�0 ;M2

�Þ with M� the unknown mass of

the third, mainly gluonic, state. The rotation matrix R

collects the eigenvectors of the transformation between
the pure states and the physical states. In Ref. [20], the
authors used the eigenvectors R to diagonalize a matrix
linear in the masses but the chiral Lagrangian leads to
relations quadratic in the masses. Obviously, there is no
contradiction between these approaches.
The knowledge of R determines the decay properties of

the physical states. The matrix relation (25) provides six
independent relations since the matrix is symmetric. We
have three unknown parameters inM80g ð�;
; �Þ and one
in ~M, the mass of the third pseudoscalar particleM2

�. If we

could find a rotation matrix in terms of two mixing angles,
all these quantities could be determined. This hypothesis is
often considered in the literature where the rotation matrix
is parametrized with two angles, one for the rotation be-
tween �0 and gluonium and a second angle for the rotation
between �0 and �8 [21]. However, if we accept the exis-
tence of a real glueball state, i.e. � � 0, it is not possible to
obtain a matrix of the form of (21) forM80g with only two

angles. As will be shown in Sec. V, the two-mixing-angle
scheme is recovered in our description if we incorporate an
octet-glueball coupling.
Without any assumptions on R, i.e. with the more gen-

eral three-angle Ansatz, we can only determine the parame-
ters �, 
, � as functions of M�. For this purpose, we have
to equal the three rotation invariants given by the coeffi-
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cients of the characteristic polynomial, PðXÞ ¼
X3 � TX2 þ SX�D, of the matrices. The three invariants

for ~M2 are

D ¼ M2
�M

2
�0M2

�; (26)

S ¼ M2
�M

2
�0 þM2

�0M2
� þM2

�M
2
�; (27)

T ¼ M2
� þM2

�0 þM2
�: (28)

Those three quantities are function ofM� since we take the
physical masses for the � and �0.

It is now easy to extract the values of the parameters in
terms of the known quantities

� ¼ W þ 1

Z2
ðW3 � TW2 þ SW �DÞ; (29a)


2 ¼ ð�þWÞðT �WÞ � ðZ2 þ Sþ �2Þ; (29b)

� ¼ T � ðW þ Y þ �Þ: (29c)

Only if 
2 > 0 will our system have a solution. This
condition restricts the allowed values for the glueball
massM�. The equation 


2 ¼ 0 is quadratic inM2
� leading

to two solutions given by

M2
�1 ¼ W � Z2

M2
�0 �W

; (30a)

M2
�2 ¼ W þ Z2

W �M2
�

; (30b)

which are shown as a function ofM� in Fig. 1. The bounds
onM� are the extension of Georgi’s bound [19] in the case
of a third pseudoscalar particle.

In Ref. [15] the � mass was adjusted, since the lower
bound of 
2 does not depend on the �0 mass, to have a
positive 
2 forM� � 1400 MeV. Their aim was to accom-

modate the �ð1405Þ in the theory [22]. In our study, we
leave the M� as a parameter and therefore the 
2 > 0
condition implies M� > 1500 MeV.

IV. J=c DECAYS

The theory we have just described contains an unique
parameter, the glueball mass M�, out of which we can
extract many consequences which are observable. We will
center our attention in the J=c to �, �0, and �, �0 to two
photon decays. These decays are described in terms of the
components of the eigenvectors, the rows of R in (25), and
correspond to the mixing parameters for the physical states
They will be labeled as VP

x and are defined through jPi ¼P
xV

P
x j�xi with P 2 f�;�0;�g and x 2 f8; 0; gg.

Sometimes we use the strange and nonstrange components
of the eigenvectors which are expressed in terms of the
previous components by a rotation with the ideal angle

( cos�i ¼
ffiffiffiffiffiffiffiffi
1=3

p
)

X
Y

� �
¼ cos�i sin�i

� sin�i cos�i

� �
V8

V0

� �
: (31)

We use the following convention to denote the components
in the nonstrange-strange basis:

jPi ¼ XPj�qi þ YPj�si þ ZPjGi; (32)

where Vg � Z.

The data that we attempt to describe have been taken
from the Particle Data Group compilation [23].
The radiative decays of the J=c into �ð�0Þ take place

through the anomaly h0jG�	
~G�	j�ð�0Þi and their branch-

ing ratio is given by

�ðJ=c ! �0�Þ
�ðJ=c ! ��Þ ¼

�
Z�0

Z�

�
2
�M2

J=c �M2
�0

M2
J=c �M2

�

�
3

¼ 4:81� 0:77: (33)

Other J=c decays which may probe the strange and
nonstrange quark contents of the � and �0 are the ones
producing� and!ð�Þ, respectively. The processes J=c !
�ð�0Þ� violate G parity and isospin. They proceed through
the exchange of a virtual photon [24] and we find

�ðJ=c ! �0�Þ
�ðJ=c ! ��Þ ¼

�
X�0

X�

�
2
�k�

�0

k��

�
3 ¼ 0:54� 0:16: (34)

The pseudoscalar meson momentum in the center-of-mass
is kVP ¼ �ðM2

J=c ;M
2
P;M

2
VÞ=ð2MJ=c Þ defined in terms of

�ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2 � 2xy� 2yz� 2zx

q
: (35)

A standard approximation (M2
J=c 	 MPMV) for the mo-

mentum is kVP ¼ MJ=c ð1� ðM2
V þM2

PÞ=M2
J=c Þ=2 [24].

The processes J=c ! �ð�0Þ! and J=c ! �ð�0Þ� pro-
ceed again through the exchange of a virtual photon but
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FIG. 1 (color online). 
2 as a function of M�.
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also via Okubo-Zweig-Iizuka (OZI) processes. In QCD,
three gluons are emitted from the J=c and give rise to two
light quark-antiquark pairs. In our effective approach, the
degrees of freedom are the mesons and the interaction is
modeled by the Lagrangian �
�	@

�@
ðT�hV 	P iÞ where
T� is the J=c field and all the light axial-vector mesons
are collected in the matrix V 	 in analogy with the repre-
sentation in Eq. (4). Both the isospin violating and OZI
processes have to be taken into account for a complete
description. Since we do not want to add at this stage one
more parameter we compare branching ratios. Assuming
an ideal mixing between ! and �, we find for the sum of
the two contributions

�ðJ=c ! �0!Þ
�ðJ=c ! �!Þ ¼

�
X�0

X�

�
2
�k!�0

k!�

�
3 ¼ 0:105� 0:024;

(36)

�ðJ=c ! �0�Þ
�ðJ=c ! ��Þ ¼

�
Y�0

Y�

�
2
�k�

�0

k��

�
3 ¼ 0:53� 0:15: (37)

With the momenta kVP defined as above. Within this model,
the formulas for the � and ! decays are similar. Since
M� ’ M!, the phase space is almost equal and the model

predicts the same value for their branching ratios.
However, the experimental data give a factor 5 difference.
This discrepancy is eliminated if one incorporates the
contribution of more sophisticated decay processes like
the double OZI processes [21,25].

We display these ratios together with the experimental
data (in gray) in Figs. 2–5.

In order to show the amount of mixing in a specific case
we give the mixing matrix for M� ¼ 2000 MeV (which

corresponds to the red diamonds in the figures):

�
�0
�

0
@

1
A ¼

0:9874 0:1107 �0:1133
0:1492 �0:4085 0:9005
�0:0534 0:9060 0:4198

0
@

1
A �8

�0

gg

0
@

1
A:
(38)

It is worth mentioning that, if there is no coupling
between the glueball and the octet [see Eq. (20)], and if
we force the � and �0 masses to their physical values, the
particle with the most gluonic content is the �0! This
statement, which remains valid for any M�, is clearly in
contradiction with the usual assignment for the �0, since
the most gluonic particle should be �. This is a clear
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/Ψ

−
>

η
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FIG. 3 (color online). �ðJ=c ! �0�Þ=�ðJ=c ! ��Þ as a
function of M� in the scheme without octet-glueball coupling
(Sec. IV).
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FIG. 2 (color online). �ðJ=c ! �0�Þ=�ðJ=c ! ��Þ as a
function of M� in the scheme without octet-glueball coupling
(Sec. IV).
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FIG. 4 (color online). �ðJ=c ! �0!Þ=�ðJ=c ! �!Þ as a
function of M� in the scheme without octet-glueball coupling
(Sec. IV).
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indication of the need for improvement. Moreover, as
shown in Figs. 2–5, this mixing scheme cannot explain
the data on the J=c decays except for J=c ! �ð�0Þ!.

The model thus far developed does not capture the
physics of the pseudoscalar sector with our philosophy
consisting in fixing the meson masses to their experimental
values [26]. One mechanism to cure these incompatibilities
is to introduce a coupling between the octet meson and the
glueball.

V. COUPLING BETWEENOCTETANDGLUEBALL

The fact that the strange quark mass is heavier than the
up- and down-quark masses leads in model calculations
[27,28] which implement QCD in a confined scenario to a
nonvanishing coupling between �8 and G. In Fig. 6 we
show a possible diagram which contributes to the mixing.

We here take a phenomenological point of view which
consists of enlarging the mass matrix to incorporate this
coupling by means of a new parameter � [29],

M 2
80g ¼

W Z �
Z Y þ � 

� 
 �

0
@

1
A: (39)

In order to reduce the number of unknowns, here one
more since we added �, we choose next a rotation parame-
trized with only two angles,

R ¼
1 0 0
0 cos� sin�
0 � sin� cos�

0
@

1
A cos� � sin� 0

sin� cos� 0
0 0 1

0
@

1
A; (40)

with the convention

�
�0
�

0
@

1
A ¼ R

�8

�0

G

0
@

1
A: (41)

This particular form for the eigenvectors assumes no glue
content in the � wave function. The discovery of a phe-
nomenological evidence for glue content in the �0 [30] led
to the introduction of additional angles in the �� �0
mixing scheme (11). Generally only a second angle is
added and the scheme (40) is assumed [21,31–33]. We
present, in Table I, the summary of the most recent studies
on this topic.

From the six equations of the matrix relation M2
80g ¼

Ry ~M2R, we find

tan� ¼ W �M2
�

Z
; (42a)

cos2� ¼
W þ Z2

W�M2
�
�M2

�

M2
�0 �M2

�

: (42b)

The particular Ansatz (40) gives the same mixing scheme
for the � as in (11). Hence the relation (42a) is equivalent
to the previously derived relation (15a). This theoretical
estimate � ¼ �6:4� is M�-independent and agrees to 1�
with the recent numerical study of Escribano [21], � ¼
ð�10:2� 4:3Þ�.
The second of the equations (42) leads to the same

constraint as previously found,

M2
� 
 W þ Z2

W �M2
�

: (43)

In the presence of an octet-glueball coupling we do not find
the unphysical branch (M� <M�) but only the bound

M� > 1:5 GeV. The second angle is displayed in Fig. 7
as a function of M�. It is worth mentioning that we expect
a lower mass bound when including different decay con-
stants for the mesons.
It is also possible to extract analytically the values of the

four couplings in terms of the physical masses

� ¼ M2
�0 þM2

� �W � Z2

W �M2
�

; (44)

Y þ � ¼ T �W � �; (45)FIG. 6. Mechanism within QCD of octet-glueball mixing.
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FIG. 5 (color online). �ðJ=c ! �0�Þ=�ðJ=c ! ��Þ as a
function of M� in the scheme without octet-glueball coupling
(Sec. IV).
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2 ¼ Z2ðM2
�0 � �Þð��M2

�Þ
Z2 þ ðW �M2

�Þ2
; (46)

�2 ¼ ðW �M2
�Þ2

Z2

2: (47)

We see that � 2 ½M2
�0 ;M2

��.
In Figs. 8–10, we compare the calculation with the data.

The experimental values for the ratios are displayed in
gray.

As explained in the previous section, our formulas for �
and ! decays are similar and therefore not consistent with
the data. We are thus not able to fit simultaneously the �
and ! decays of J=c . However, in the case at hand, with
an octet-glueball coupling, the � decay of the J=c is
consistent with the � decay within the interval

2:1 GeV � M� � 2:3 GeV: (48)

In terms of the glue content of the �0, the interval (48)
reads 0:38 
 Z�0 
 0:30. The description of the ! decay

would require a lower glueball mass.
There is no radiative decay J=c ! �� since, in the two-

angle rotation scheme, there is no glue content in the � and
therefore the corresponding branching ratio to the �0 can-
not be defined. In the future one might want to study a

three-angle rotation scheme which however requires nu-
merical treatment.
In order to see the amount of mixing in a specific case we

show the mixing matrix forM� ¼ 2200 MeV (represented

TABLE I. Summary of the recent work on the �� �0 � ðglueÞ mixing. The second column is
given by � ¼ ’� �i.

Ref. Decays ’ (�) � (�) Z2
�0 ¼ sin2�

[31] PðVÞ ! VðPÞ� 41:5� 1:2 �13:2� 1:2 0:04� 0:09
[32] PðVÞ ! VðPÞ� 41:3� 0:7 �13:4� 0:7 0:04� 0:04
[32] J=c ! VP 45� 4 �13:4� 0:7 0:04� 0:04
[21] J=c ! VP 44:5� 4 �9:7� 4 0:28� 0:21
[33] PðVÞ ! VðPÞ� 40:4� 0:6 �14:3� 0:6 0:12� 0:04
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FIG. 7 (color online). M� dependence of sin2�.
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FIG. 8 (color online). �ðJ=c ! �0�Þ=�ðJ=c ! ��Þ in the
two-angle scheme (Sec. V).
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FIG. 9 (color online). �ðJ=c ! �0!Þ=�ðJ=c ! �!Þ in the
two-angle scheme (Sec. V).
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by red diamonds in the figures) which corresponds to � ¼
35:7� (The other angle � ¼ �6:4� does not depend on
M�):

�
�0
�

0
@

1
A ¼

0:9938 0:1114 0
�0:0904 0:8065 0:5842
0:0651 �0:5806 0:8116

0
@

1
A �8

�0

gg

0
@

1
A:
(49)

VI. MESON RADIATIVE DECAYS

In this section, we explore the meson radiative decays
V ! �ð�0Þ� and �0 ! V�. The interacting Lagrangian
modeling those decays is �
�	F

�
@�hV 	P i with F�


the field strength for the photon. In particular, we will use

the following relations and we quote the experimental
values:

�ð�0 ! !�Þ
�ð! ! ��Þ ¼ 3

�
X�0

X�

�
2
�M2

�0 �M2
!

M2
! �M2

�

�
3
�
M�0

M!

�
3

¼ 1:58� 0:43; (50)

�ð�0 ! ��Þ
�ð� ! ��Þ ¼ 3

�
X�0

X�

�
2
�M2

�0 �M2
�

M2
� �M2

�

�
3
�
M�0

M�

�
3

¼ 1:35� 0:24; (51)
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FIG. 10 (color online). �ðJ=c ! �0�Þ=�ðJ=c ! ��Þ in the
two-angle scheme (Sec. V).
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FIG. 11 (color online). Radiative decays �ð�0 ! !�Þ=�ð! !
��Þ in both schemes (dashed line: without octet-coupling and
solid line: with octet-glueball coupling).
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FIG. 12 (color online). Radiative decays �ð�0 ! ��Þ=�ð� !
��Þ in both schemes (dashed line: without octet-coupling and
solid line: with octet-glueball coupling).
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FIG. 13 (color online). Radiative decays �ð� ! �0�Þ=�ð� !
��Þ in both schemes (dashed line: without octet-coupling and
solid line: with octet-glueball coupling).
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�ð� ! �0�Þ
�ð� ! ��Þ ¼

�
Y�0

Y�

�
2
�M2

� �M2
�0

M2
� �M2

�

�
3

¼ ð4:78� 0:25Þ10�3: (52)

We display in Figs. 11–13 the radiative decays between
pseudoscalar and axial-vector involving !, �, and � de-
cays, respectively, in both schemes.

In view of the results, we can discard safely the first
model without octet-glueball coupling. When such a cou-
pling is introduced, the data for � and ! are consistent.
Moreover, the allowed range for physical glueball mass
M� lies in the same range as for the J=c strong decays
(48).

The � radiative decay does not fit the data. We see no
mechanism to lowest order to cure this problem.

VII. DECAYS INTO PHOTONS

The strong and radiative decays allowed us to discard
one model and forced us to introduced an octet-glueball
coupling. In this section, we now study the decays into
photons. Electromagnetic decays are more sensitive to the
decay constants. In our model we use the same decay
constant for all pseudoscalar particles, nevertheless we
expect to have good quantitative results.

In order to calculate the decays of the pseudoscalars into
two photons, we add the Wess-Zumino-Witten (WZW)
term

LWZW ¼ � �

4�
F�	

~F�	hQ2Ui: (53)

Q2 ¼ diagð4=9; 1=9; 1=9Þ is the matrix of the quark
squared charges and F�	 is the field strength for the photon

[34]. This term only couples quarks to photons since the
gluon does not carry electric charge. We obtain for the
branching ratios

�ð� ! ��Þ
�ð�0 ! ��Þ ¼

1

3

�
M�

M�0

�
3½V�

8 þ 2
ffiffiffi
2

p
V
�
0 �2; (54a)

�ð�0 ! ��Þ
�ð�0 ! ��Þ ¼

1

3

�
M�0

M�0

�
3½V�0

8 þ 2
ffiffiffi
2

p
V�0
0 �2; (54b)

�ð� ! ��Þ
�ð�0 ! ��Þ ¼

1

3

�
M�

M�0

�
3½V�

8 þ 2
ffiffiffi
2

p
V�
0 �2: (54c)

All three branching ratios in Eqs. (54), can be recast in
the form

�ðP ! ��Þ
�ð�0 ! ��Þ ¼

�
MP

M�0

�
3
c2P: (55)

The experimental values for these coefficients are [16]

c� ¼ 0:944� 0:040; (56)

c�0 ¼ 1:242� 0:027: (57)

The �, �0 decays into two photons are shown in Figs. 14
and 15 for the two Ansätze used in the previous sections.
We notice that it is not possible to reproduce the data
without glueball-octet-coupling. In Ref. [15], the authors
used the value of the � mass as a parameter to accommo-
date their model to the data. If we use the physical mass of
the �, the branching ratio for the � is quite
M�-independent and not in agreement with the data. The
�0 decays are neither in agreement.
Our second parametrization, the two-angle scheme with

octet-glueball coupling, leads to an � with no glue content
and therefore the value of its branching ratio remains the
same, away from the data. However, the �0, gets a large
glue content, leading to a branching ratio within the data in
the allowed range for M�, Eq. (48). Since these electro-
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FIG. 14 (color online). c� (blue) and c�0 (red) for the scheme
without octet-glueball coupling.
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FIG. 15 (color online). c� (blue) and c�0 (red) in the two-angle
scheme.
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magnetic interactions strongly depend on the decay con-
stants, we hope to improve the � decay into photons by
using different decay constants for the octet [35]. In sum-
mary the results based on electromagnetic decays
strengthen our conclusions based on the analysis of strong
decays.

VIII. DECAYS INVOLVING � AND � DECAYS

The above discussion has fixed not only our theoretical
scheme but also our parameters. We aim now at predictiv-
ity. However, we must keep in mind that our calculation is
a first order calculation (equal decay constants for all the
pseudoscalar meson octets) and therefore we expect
changes at higher order. The present results seem to in-
dicate, however, that we are obtaining a satisfactory mixing
scheme but that we should not trust our � mass range
quantitatively. Primitive estimates indicate that the inclu-
sion of different decay constants for the pseudoscalar
meson octet might change considerably the � mass range,
leading to lower allowed mass values. However, we can
conclude safely that M� >M�0 .

Having said this, we can present our model predictions
for decays involving this third pseudoscalar and its decays.
In Figs. 16 and 17, we plot as function ofM� the branching
ratios �ðJ=c ! ��Þ=�ðJ=c ! ��Þ [36] and �ðJ=c !
��Þ=�ðJ=c ! �0�Þ. In Fig. 18 �ð� ! ��Þ=�ð�0 !
��Þ. We see that these observables are nonoverlapping.
The J=c branching into X � � or �� in the� mass range
is very small while the X� � branching ratio is large.
Unhappily there are no data in this mass range.

IX. CONCLUSION

We have performed a dynamical analysis of the mixing
in the pseudoscalar channel with the goal of understanding

the existence and behavior of the pseudoscalar glueball.
Our philosophy has not been to aim at precise values of the
glueball mass but to exploit an adequate effective theory to
the point of breaking and to analyze which kind of mecha-
nisms restore compatibility with data. Our study has led to
analytical solutions which allow a clear understanding of
the phenomena.
Let us summarize the main findings of the present

investigation. Starting from an effective Lagrangian for-
malism, which incorporates the pseudoscalar glueball, we
try to understand the �� �0 mixing phenomenology and
the dynamics it implies. Our approach differs from others
in the same line [15,37] in that it takes the meson masses
from experiment and only leaves the glueball parameters to
be determined. Moreover, we do not proceed by fitting but
find analytical solutions to the mixing problem.
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FIG. 16 (color online). �ðJ=c ! ��Þ=�ðJ=c ! ��Þ as a
function of M�.
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FIG. 17 (color online). �ðJ=c ! ��Þ=�ðJ=c ! �0�Þ as a
function of M�.
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FIG. 18 (color online). c� as a function of M�.
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The calculation of the J=c decays in the initial effective
Lagrangian is unsuccessful in the explanation of the data.
Implementing, in a phenomenological way, the octet-
glueball coupling inspired by QCD, leads to an exact
solution in terms of two angles which fits the data for large
glueball massesM� > 2000 MeV and leads to a vanishing
glueball component of the � and a large one for the �0. Our
results are compatible with the mixing schemes of
Escribano and KLOE [21,38] which, reinterpreted in terms
of our mass matrix, led to octet-glueball coupling. The
chiral Lagrangian to first order in p2 extended to include
the glueball predicts a mixing angle � compatible at 1�
with previous numerical studies and aM�-dependent angle
� also compatible for a wide range of the pseudoscalar
glueball mass. Our study is a strong theoretical justification
of the previous analysis of the �� �0-glue system.

The 2� decays teach us that the WZW photon coupling
is sufficient to explain the data provided that we incorpo-
rate an octet-glueball coupling in the model. This supports
our conclusion based on strong decays.

Our analysis therefore leads to a new dynamical scenario
which needs to be constructed from the point of view of an
effective Lagrangian theory. Within this scheme we have
obtained a compatibility with the data for large glueball
masses 2100 MeV<M� < 2300 MeV, and large glueball
component for the �0. This large glueball mass raises the
question of the inclusion in the mixing scheme of higher
resonances. Indeed, the pseudoscalar spectrum is rich in
resonances around 1–2 GeV. In this work, we only consid-
ered a third gluonic state in addition to the usual �8 and �0

but at these high energies, it could be relevant to include
other fields in the mixing scheme such as multiquark states
[39–42]. However, even if our result clearly indicates a
large glueball mass, this has to be taken with a pinch of salt

since we have used in our scheme the meson couplings as
F� ¼ FK. If we naively relax this assumption following
the methods of the current algebra schemes [24,43–46] we
can show that the lower mass limit decreases considerably
and that we can expect M� < 2000 MeV. Moreover, as
explained in Sec.II, the chiral Lagrangian at leading order
leaves a lot of room for improvement. We chose to improve
it with a glueball field but we learn from [44,46] that the
room for the glueball, and hence for other multiquark
configurations, is drastically reduced when going at next-
to-leading order.
Our analysis leads to consequences for further studies.

We need to construct the effective Lagrangian that incor-
porates octet-glueball coupling. Moreover, we have to
describe in the effective Lagrangian approach the F� �
FK dynamics. Certainly our analytical solutions are in
some aspects naive, but certainly they allow a clear inter-
pretation of the phenomena and may serve to test all these
improvements.
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