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Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all

regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this

work we show how such divergences can be eliminated completely by virtue of a characteristic identity,

valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on

the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation

governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional

advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one

for the gluon mass. This system of integral equations has a unique solution, which unambiguously

determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon

mass displays power-law running in the ultraviolet, in agreement with earlier considerations.
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I. INTRODUCTION

The dynamical generation of a nonperturbative gluon
mass has been first proposed by Cornwall [1], and has
received significant attention over the years, both from
the theoretical and the phenomenological point of view
(see, e.g., [2]). According to this picture, even though the
gluon is massless at the level of the fundamental
Lagrangian, and remains massless to all orders in pertur-
bation theory, the nonperturbative QCD dynamics generate
an effective, momentum-dependent mass, without affect-
ing the local SUð3Þc invariance, which remains intact. The
generation of such a mass has been established by studying
the Schwinger-Dyson equations (SDEs) [3,4] of QCD, in a
gauge-invariant framework based on the pinch technique
(PT) [1,5–8], and its profound correspondence with the
background field method (BFM) [9].

Specifically, when studying the SDE for the PT-BFM
gluon propagator, �ðq2Þ, one looks for infrared finite so-
lutions, i.e. with ��1ð0Þ> 0 (see, e.g.,[1,10–12]). Such
solutions may be fitted by ‘‘massive’’ propagators of the
form ��1ðq2Þ ¼ q2 þm2ðq2Þ, where m2ðq2Þ is not
‘‘hard’’, but depends nontrivially on the momentum trans-
fer q2. In order to obtain massive solutions gauge-
invariantly, it is necessary to invoke the well-known
Schwinger mechanism [13,14]. In particular, one assumes
that the strong QCD dynamics give rise to longitudinally-
coupled composite (bound-state) massless poles [15–20].
These poles play a role rather like Goldstone excitations, in
the sense that they preserve the form of the Ward identities
(WIs) satisfied by the Green’s functions of the theory in the
presence of a mass, but they are not associated with the
breaking of any local or global symmetry.

When the renormalization-group logarithms are prop-
erly taken into account in the SDE analysis, one obtains, in
addition, the nonperturbative generalization of �ðq2Þ, the

QCD running coupling (effective charge), of the form

[1,21,22] ��1ðq2Þ ¼ b lnðq2þ4m2ðq2Þ
�2 Þ. The presence of

m2ðq2Þ in the argument of the logarithm tames the
Landau singularity associated with the perturbative �
function, and the resulting effective charge is asymptoti-
cally free in the ultraviolet, ‘‘freezing’’ at a finite value in
the infrared, namely ��1ð0Þ ¼ b lnð4m2ð0Þ=�2Þ.
As has been emphasized in the literature [23,24], the

generation of a gluon mass is intimately connected with a
variety of other related phenomena, and most importantly
with the center vortex picture of confinement [25–27]. In
particular, an effective low-energy field theory for describ-
ing the gluon mass is the gauged nonlinear sigma model
known as ‘‘massive gauge-invariant Yang-Mills’’ [23].
This model admits vortex solutions, with a long-range
pure gauge term in their potentials, which endows them
with a topological quantum number corresponding to the
center of the gauge group [ZN for SUðNÞ], and is, in turn,
responsible for quark confinement and gluon screening
[24]. Specifically, center vortices of thickness �m�1 are
assumed to form a condensate because their entropy (per
unit size) is larger than their action. This condensation
furnishes an area law to the fundamental representation
Wilson loop, thus confining quarks [28].
The general picture described above appears to be in

qualitative agreement with a plethora of lattice simula-
tions, where the gluon propagators (in various gauges)
reach a finite (nonvanishing) value in the deep infrared,
as would happen in the presence of a ‘‘mass’’ [29]. This
rather characteristic behavior was already observed in
early studies [30], and has been firmly established recently
(in the Landau gauge) using large-volume lattices, for both
SUð2Þ [31] and SUð3Þ [32–34] pure Yang-Mills (no quarks
included).
It is also important to mention that a qualitatively similar

situation emerges within the ‘‘refined’’ Gribov-Zwanziger
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formalism, presented in [35]. In this latter framework the
gluon mass is obtained through the addition of appropriate
condensates to the original Gribov-Zwanziger action
[36,37]. Interestingly enough, one obtains a gluon mass
displaying power-law running, in agreement with a variety
of independent studies [11,38]), as well as the results of the
present article, as explained below.

Since the dynamical generation of an effective gluon
mass is a purely nonperturbative effect, its technical im-
plementation is rather intricate, and requires the harmo-
nious synthesis of several ingredients [15–20]. In
particular, the exact way how the Schwinger’s mechanism
will be employed is crucial for the self-consistency of the
entire picture. Turns out that one characteristic drawback
in the realization of this dynamical scenario can in fact be
traced back to a certain subtlety in the implementation of
the Schwinger’s mechanism at the level of the relevant
SDE.

Specifically, the massless poles necessary for triggering
Schwinger’s mechanism and allowing the possibility of a
nonvanishing ��1ð0Þ, enter into the SDE for the gluon
propagator through the particular Ansatz employed for
the fully-dressed three-gluon vertex. Of course, a physi-
cally motivated Ansatzmust satisfy, in addition, the correct
WI, in order to preserve the transversality of the gluon self-
energy. Even though several such Ansätze have been pro-
posed over the years [1,10–12], they all suffer from a
typical problem: as desired, ��1ð0Þ does not vanish; how-
ever, its value is expressed in terms of seagull integrals, i.e.
divergent integrals of the type

R
k �ðkÞ and

R
k k

2�2ðkÞ.
This fact, in turn, introduces the need to make sense out
of these divergences, given that one is not allowed to
absorb them into a counterterm of the type m2

0ð�2
UVÞA2

�,

because this would compromise the gauge invariance of
the original Lagrangian, which at no point is to be modi-
fied. Even though a variety of regularizations have been
proposed in the literature cited above, it is clear that the
appearance of these divergences, the need to regularize
them, and the ambiguities resulting from such a regulari-
zation, are without a doubt some of the weakest theoretical
points of this entire construction.

In this paper we present a more refined Ansatz for the
three-gluon vertex, which completely eliminates all seagull
divergences. This new Ansatz is inspired from the photon-
scalar vertex of scalar QED, introduced by Ball and Chiu
[39]. When inserted into the gluon SDE obtained within the
PT-BFM formalism, it leads to the elimination of all sea-
gull divergences, by triggering a special identity, valid in
dimensional regularization (DR), yielding finally a non-
vanishing and finite value for ��1ð0Þ.

In the context of scalar QED, the identity in question,
given in Eq. (3.14), is instrumental in enforcing the mass-
lessness of the photon, in the absence of any bound-state
poles, i.e. when the Schwinger mechanism is not in opera-
tion. Specifically, the aforementioned Ansatz of [39], when

incorporated into the SDE for the photon, gives rise to a
��1ð0Þ that is expressed in terms of seagull contributions,
which do not vanish individually, due to the simple fact
that the charged scalars are massive already at tree level.
However, the vertex of Ball and Chiu is such that the
divergent seagull terms appear precisely in the unique
combination that will lead to their mutual annihilation,
due to the identity of Eq. (3.14).
The proposed three-gluon vertex consists of two parts:

(i) a part that leads to the cancellation of all seagull
divergences by virtue of the identity of Eq. (3.14), exactly
as happens in the scalar QED case; the only difference is
that now the seagull terms in question originate from the
gluonic self-interactions, i.e. they are composed by the
(effectively massive) gluon propagator. (ii) a part that
contains massless bound-state poles, thus enforcing the
Schwinger mechanism. It is from this second part of the
vertex that, after solving the resulting integral equation,
one finally obtains a finite value for ��1ð0Þ.
In addition to eliminating the seagull divergences, the

use of the aforementioned vertex brings about a further
important advantage. Specifically, the SDE for the gluon
propagator of the PT-BFM may be separated unambigu-
ously into two distinct but coupled integral equations, one
governing the evolution of the effective charge (running
coupling), �g2ðq2Þ, and one determining the momentum
dependence of the effective gluon mass, m2ðq2Þ. This is
to be contrasted with the standard procedure followed in
the literature, where the SDE equation is solved for the
renormalization-group (RG) invariant combination

d̂ðq2Þ ¼ g2�ðq2Þ, which is subsequently decomposed
into an effective charge and a running mass according to

d̂ðq2Þ ¼ �g2ðq2Þ=ðq2 þm2ðq2ÞÞ, by imposing physically
motivated constraints on the form of �g2ðq2Þ and m2ðq2Þ.
This procedure suffers from the obvious ambiguity of
trying to extract two components out of a given function;
instead, the new procedure, involving two individual equa-
tions, furnishes uniquely �g2ðq2Þ and m2ðq2Þ, and it is the

d̂ðq2Þ that is subsequently obtained uniquely, by combining
these two quantities.
The present article is organized as follows. In Sec. II we

review the salient features of dynamical gauge-boson mass
generation through the Schwinger mechanism, which con-
stitutes the cornerstone of the entire approach. We explain
how the aforementioned mechanism must be judiciously
incorporated into the SDE equations of QCD, and the
crucial role played by the three-gluon vertex. The problem
of the seagull divergences, which is endemic to all existing
approaches, is discussed, and some examples of (not fully
satisfactory) attempts for its resolution are mentioned. In
Sec. III we turn to the instructive case of scalar QED, and
demonstrate in detail how the seagull divergences cancel
out from the SDE for the photon propagator, by virtue of
the identity of Eq. (3.14), which is in turn triggered by the
vertex Ansatz of [39]. A counterexample of a vertex that
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does not trigger the identity is also discussed. In Sec. IV we
apply the lessons of the previous section to the case of
(quarkless) QCD. In particular, an improved Ansatz for the
three-gluon vertex is constructed, which incorporates the
Schwinger mechanism through the appearance of massless
poles, and, at the same time, triggers the identity of
Eq. (3.14), leading to total seagull annihilation. In Sec. V
we obtain the system of two coupled integral equations that
determine the momentum dependence of two RG-invariant
quantities, namely �g2ðq2Þ and m2ðq2Þ, for the entire range
of physical momenta, i.e. from the deep IR to the deep UV.
The system is solved numerically and the obtained solu-
tions are discussed. Most notably, m2ðq2Þ display power-
law running, in agreement with various earlier considera-
tions. Finally, in Sec. VI we summarize our conclusions. In
addition, in three appendixes we derive in detail various
intermediate results used throughout the article.

II. MASS GENERATION AND THE PROBLEM OF
SEAGULL DIVERGENCES

The gluon propagator, ���ðqÞ, in covariant gauges (in

particular, linear, R�-type of gauges, and the BFM) has the

form

���ðqÞ ¼ �i

�
P��ðqÞ�ðq2Þ þ �

q�q�

q4

�
; (2.1)

where � denotes the gauge-fixing parameter, and the trans-
verse projector P��ðqÞ is given by

P ��ðqÞ ¼ g�� �
q�q�

q2
: (2.2)

The scalar factor �ðq2Þ is given by

��1ðq2Þ ¼ q2 þ i�ðq2Þ; (2.3)

where ���ðqÞ ¼ P��ðqÞ�ðq2Þ is the gluon self-energy.

One usually defines the dimensionless vacuum polariza-
tion, to be denoted by �ðq2Þ, as �ðq2Þ ¼ q2�ðq2Þ, and
thus

��1ðq2Þ ¼ q2½1þ i�ðq2Þ�: (2.4)

As Schwinger pointed out long ago [13], the gauge
invariance of a vector field does not necessarily imply
zero mass for the associated particle, if the current vector
coupling is sufficiently strong. Schwinger’s fundamental
observation was that if (for some reason) the vacuum
polarization of the gauge bosons acquires a pole at zero
momentum transfer, then the vector meson becomes mas-
sive, even if the gauge symmetry forbids a mass at the level
of the fundamental Lagrangian [14]. Indeed, casting the
self-energy in the form of (2.4), it is clear that if�ðq2Þ has
a pole at q2 ¼ 0 with positive residue �2, i.e. �ðq2Þ ¼
�2=q2, then (in Euclidean space)

��1ðq2Þ ¼ q2 þ�2: (2.5)

Thus, the vector meson becomes massive, ��1ð0Þ ¼ �2,
even though it is massless in the absence of interactions
(g ¼ 0).
There is no physical principle which would preclude

�ðq2Þ from acquiring a pole [40]. Actually, the appearance
of the required pole may happen for purely dynamical
reasons and, in particular, without the need to introduce
fundamental scalar field in the Lagrangian [41]. Since
bound states are expected to exist in most physical systems
one may suppose that, for sufficiently strong binding, the
mass of such a bound state will be reduced to zero, thus
generating a mass for the vector meson without interfering
with gauge invariance [15–20].
When applying the dynamical concepts described above

to pure Yang-Mills theories, such as quarkless QCD, one
assumes that, in a strongly coupled gauge theory longitu-
dinally coupled zero-mass bound-state excitations are dy-
namically produced [42]. Thus, it is clear that a vital
ingredient for this scenario is strong coupling, which can
only come from the infrared instabilities of a non-Abelian
gauge theories. The aforementioned excitations are like
dynamical Nambu-Goldstone bosons, in the sense that
they are massless, composite, and longitudinally coupled;
but, at the same time, they differ from Nambu-Goldstone
bosons as far as their origin is concerned: they do not
originate from the spontaneous breaking of any global
symmetry. The main role of these excitations is to trigger
the Schwinger mechanism, i.e. to provide the required pole
in the gluon self-energy, and more specifically, the gauge-
independent�ðq2Þ obtained with the PT, thus furnishing a
gauge-independent dynamical mass for the gluons [43].
Of course, in order to obtain the full dynamics, such as,

for example, the momentum dependence of the dynamical
mass, one must turn eventually to the SDE that governs the
corresponding gauge-boson self-energy. The way the
Schwinger mechanism is integrated into the SDE is
through the form of the three-gluon vertex. The latter,
even in the absence of mass generation, constitutes a
central ingredient of the SDE, and plays a crucial role in
enforcing the transversality of the gluon self-energy.
Therefore, an important requirement for any self-
consistent Ansatz used for that vertex is that it should
satisfy the correct WI (or Slavnov-Taylor identity [STI])
of the PT-BFM formulation, namely

q�~���� ¼ ��1
��ðkþ qÞ � ��1

��ðkÞ: (2.6)

In addition, in order to generate a dynamical mass one must
assume that the vertex contains dynamical poles, which
will trigger the Schwinger mechanism when inserted into
the SDE for the gluon self-energy.
The point is that the full realization of the procedure

outlined above is very subtle. In particular, even though the
use of a three-gluon vertex containing massless poles and
satisfying the correct WI leads indeed to a transverse and
infrared finite self-energy (i.e. ��1ð0Þ � 0), as expected,
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the actual value of ��1ð0Þ has always been expressed in
terms of divergent integrals, of the form (see, e.g.,[1,10–
12])

��1ð0Þ ¼ c1
Z
k
�ðkÞ þ c2

Z
k
k2�2ðkÞ; (2.7)

where (in DR)
R
k � �2"ð2�Þ�d

R
ddk, with d ¼ 4� � the

dimension of space-time [44]. This is not a problem, in
principle, provided that the divergent integrals appearing
on the right-hand side of (2.7) can be properly regulated
and made finite, without introducing counterterms of the
form m2

0ð�2
UVÞA2

�, which are forbidden by the local gauge

invariance of the fundamental QCD Lagrangian. However,
various regularization procedures introduced in the litera-
ture have been eventually thwarted by all sorts of addi-
tional complications of variable severity.

The simplest regularization possibility, for example, is
to employ the usual DR trick for eliminating quadratic
divergences, namely, subtract

R
k k

�2 ¼ 0. Assuming a

form �ðkÞ ¼ k2 þm2ðkÞ, this standard (and completely
legitimate) operation,

Z
k
�ðkÞ ¼

Z
k

1

k2 þm2ðkÞ �
Z
k

1

k2

¼ �
Z
k

m2ðkÞ
k2½k2 þm2ðkÞ� ; (2.8)

leads to a finite integral, provided m2ðkÞ drops off suffi-
ciently fast in the UV, a feature which is in any case
expected from a dynamically generated mass. The general
problem with this procedure, however, is the reversal of
sign that it induces [1], which eventually clashes with the
requirement of a positive-definite ��1ð0Þ.

In a recent work [12] the aforementioned procedure was
refined in such a way as to evade the sign problem. The
general idea is to eliminate the perturbative tail of �ðkÞ by
subtracting out DR ‘‘zeros’’, using the generalized formula

Z
k

lnnk2

k2
¼ 0; n ¼ 0; 1; 2; . . . (2.9)

Specifically, for large enough k2, �ðk2Þ goes over to its
perturbative expression, to be denoted by �pertðk2Þ; it has
the form

�pertðk2Þ ¼
XN
n¼0

an
lnnk2

k2
; (2.10)

where the coefficient an are known from the perturbative
expansion. Then one may use (2.9) to regularize the right-
hand side of (2.7), and obtain

16�2��1
regð0Þ ¼ c1

Z s

0
dyy½�ðyÞ � �pertðyÞ�

þ c2
Z s

0
dyy2½�2ðyÞ � �2

pertðyÞ�; (2.11)

which is finite (and has been shown to be positive). As
explained in [12], the obvious ambiguity of this procedure
is the choice of the point s, past which the two curves,�ðyÞ
and �pertðyÞ, are assumed to coincide (and cancel exactly

against each other). Thus, the actual value of ��1
regð0Þ

remains largely undetermined. Even though additional
qualitative arguments may be used to restrict the allowed
interval of s, thus reaching good agreement with recent
lattice data, from the theoretical point of view it is clear
that this issue is far from settled.

III. SCALAR QED AND THE SEAGULL IDENTITY

In this section we will study some of the basic issues
related to the appearance and cancellation of seagull di-
vergences in the context of a theory much simpler than
QCD, namely, scalar QED. Specifically, we will study the
SDE governing the photon, and we will discover a basic
identity, which, in the absence of massless poles (i.e., with
the Schwinger mechanism ‘‘switched off’’) enforces the
masslessness of the photon, despite the fact that individual
seagull contributions do not vanish. In addition, we will see
through an explicit detailed construction that the Ansätze
employed for the all-order photon-scalar vertex entering
into the SDE are crucial for the activation of this identity.
The SDE for the photon of scalar QED is shown in

Fig. 1. It is a straightforward exercise to demonstrate
that, by virtue of the Abelian WI’s satisfied by the full
vertices of the theory, the SDE may be truncated ‘‘loop-
wise’’, without compromising the transversality of the

photon, i.e., q��½ðd1Þþðd2Þ�
�� ¼ q��½ðd3Þþðd4Þþðd5Þ�

�� ¼ 0.
At the ‘‘one-loop dressed’’ level the SDE for the photon

self-energy reads (Fig. 2)

FIG. 1. Diagrams contributing to the SDE for the photon self-
energy in scalar QED.

FIG. 2. The one-loop dressed SDE for the photon self-energy.
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���ðqÞ ¼ e2
Z
k
�ð0Þ
� DðkÞDðkþ qÞ�� þ e2

Z
k
�ð0Þ
��DðkÞ;

(3.1)

where DðkÞ is the fully-dressed propagator of the scalar
field. �� is the fully-dressed photon-scalar vertex, whose

tree-level expression is given by �ð0Þ
� ¼ �ið2kþ qÞ�.

Moreover, the bare quadrilinear photon-scalar vertex is

given by �ð0Þ
�� ¼ 2ig��. The photon-scalar vertex �� and

the scalar propagator D are related by the Abelian all-
order WI

q��� ¼ D�1ðkþ qÞ �D�1ðkÞ: (3.2)

It is fairly easy to demonstrate the transversality of
���ðqÞ, namely, that q����ðqÞ ¼ 0. To that end, act

with q� on the two terms on the right-hand side of (3.1),
and notice that, by virtue of (3.2), the (contracted) first term
(after appropriate shifting of the integration variable, a
legitimate operation in DR), cancels exactly against the
second. Given that ���ðqÞ is transverse, it assumes the

form ���ðqÞ ¼ �ðq2ÞP��ðqÞ; thus one may determine

�ðq2Þ simply by taking the trace of both sides of (3.1), i.e.

�ðq2Þ ¼ �2ie2

d� 1

�Z
k
DðkÞDðkþ qÞk��� � d

Z
k
DðkÞ

�
;

(3.3)

where Eq. (3.2) was used.
Let us compute from (3.3) the one-loop expression for

�ðq2Þ, to be denoted by �ð1Þðq2Þ. We have (we are using
DR throughout)

�ð1Þðq2Þ ¼ �ie2

d� 1

�Z
k
ð4k2 � q2ÞD0ðkÞD0ðkþ qÞ

� 2d
Z
k
D0ðkÞ

�
; (3.4)

where D0ðkÞ ¼ ðk2 �m2Þ�1. Taking the limit q ! 0, we
find

�ð1Þð0Þ ¼ �4ie2

d� 1

�Z
k
k2D2

0ðkÞ �
d

2

Z
k
D0ðkÞ

�
: (3.5)

Of course, there is no doubt that the photon remains mass-

less perturbatively, i.e. we must have that �ð1Þð0Þ ¼ 0.
However, the way this requirement is realized is rather
subtle: the right-hand side of (3.5) vanishes indeed, by
virtue of an identity that is exact in DR, namely

Z
k

k2

ðk2 �m2Þ2 ¼
d

2

Z
k

1

k2 �m2
; (3.6)

or, equivalently,

2m2
Z
k

1

ðk2 �m2Þ2 ¼ ðd� 2Þ
Z
k

1

k2 �m2
: (3.7)

The relations given in (3.6) and (3.7) can be easily verified

using the standard integration rules of the DR [45]. Thus,
the perturbative masslessness of the photon is explicitly
realized and self-consistently enforced within the DR.
Note that Eq. (3.6) may be cast in a form that is particularly
suggestive for the analysis that follows, namely

Z
k
k2

@D0ðkÞ
@k2

¼ � d

2

Z
k
D0ðkÞ: (3.8)

To demonstrate (3.8) directly, i.e. without deducing it from
(3.6), we first go to Euclidean space, use spherical coor-
dinates (see (A2)), and integrate by parts (in d dimensions).
Setting k2E ¼ y, we have (suppressing the angular integral)

Z 1

0
dyyd=2

@D0ðyÞ
@y

¼ ½yd=2D0ðyÞ�10

� d

2

Z 1

0
dyyðd=2Þ�1D0ðyÞ: (3.9)

Evidently, dropping the surface term, an operation that can
be formally justified by the standard analytic continuation
employed within the DR (see, e.g. [46]), yields immedi-
ately Eq. (3.8).
We now return to the general Eq. (3.3). In order to

analyze it further we must furnish some information about
the form of ��. Of course, any meaningful Ansatz for ��

must satisfy the WI of (3.2), or else the transversality of
���ðqÞ will be compromised from the outset. The form

obtained by Ball and Chiu [39], after ‘‘solving’’ the WI,
under the additional requirement of not introducing kine-
matic singularities, is

�� ¼ ð2kþ qÞ�
ðkþ qÞ2 � k2

½D�1ðkþ qÞ �D�1ðkÞ�

þ Aðk; qÞ½ðkþ qÞ � qk� � k � qðkþ qÞ��; (3.10)

where Aðk; qÞ is finite as q ! 0. Clearly the first term
satisfies (3.2), while the part proportional to Aðk; qÞ is
identically conserved.
It is easy to recognize that when this latter term is

inserted into (3.3) it yields a contribution that vanishes as
q ! 0, provided that Aðk; qÞ does not diverge too strongly
in that limit; for example, a logarithmically divergent
Aðk; qÞ will still furnish a vanishing contribution to �ð0Þ.
We will assume that Aðk; qÞ has indeed this property, and
will therefore neglect the identically conserved term in
what follows. On the other hand, the first term of �� yields

�ðq2Þ ¼ ie2

d� 1

�Z
k
ð4k2 � q2ÞDðkþ qÞ �DðkÞ

ðkþ qÞ2 � k2

þ 2d
Z
k
DðkÞ

�
: (3.11)

Taking the limit of Eq. (3.11) as q ! 0, using that

Dðkþ qÞ �DðkÞ
ðkþ qÞ2 � k2

! @DðkÞ
@k2

þOðq2Þ; (3.12)
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we have that

�ð0Þ ¼ 4ie2

d� 1

�Z
k
k2

@DðkÞ
@k2

þ d

2

Z
k
DðkÞ

�
: (3.13)

Of course, we must have that�ð0Þ ¼ 0, given that there is
nothing in the dynamics that could possibly endow the
photon with a mass; in particular, we have not employed
Schwinger’s mechanism, i.e. we have not introduced dy-
namical poles, and, given the form of (3.10), neither kine-
matic ones, which might simulate the dynamical ones at
the level of the SDE (see below). Thus, the right-hand side
of (3.13) must vanish, and therefore, we must have that

Z
k
k2

@DðkÞ
@k2

¼ �d

2

Z
k
DðkÞ; (3.14)

which is the nonperturbative generalization of (3.8); its
demonstration proceeds exactly in the same way (and
under the same assumptions).

Note a crucial point: the seagull terms appearing in
(3.13) cannot be set to zero individually, because the scalar
propagator inside them is massive (already at tree-level):
the only way to keep the photon massless, is to employ
(3.14), which cancels them against each other. For ex-
ample, if the term

R
k DðkÞ on the right-hand side were

multiplied by any factor other than ðd=2Þ one would be
stuck with seagull divergences.

Let us now try a different Ansatz for ��, which, due to its

special form will not trigger Eq. (3.14), and thus will lead
to a nonvanishing (but divergent) value for �ð0Þ.
Specifically, consider the vertex given by

�� ¼ �ð0Þ
� þ q�

q2
½�ðkþ qÞ ��ðkÞ�; (3.15)

where �ðkÞ is the self-energy of the scalar field,D�1ðkÞ ¼
k2 �m2 þ �ðkÞ. Equivalently, we may write

�� ¼ f�ð0Þ
� � q�

q2
½ðkþ qÞ2 � k2�g

þ q�

q2
½D�1ðkþ qÞ �D�1ðkÞ�: (3.16)

The �� in (3.15) and (3.16) satisfies again the WI of (3.2),

and thus, as before, the transversality of the vacuum po-
larization is guaranteed. There is an important difference,
however, between (3.10) and (3.16): the latter contains
massless poles, and thus, is capable of giving rise to a
nonvanishing ��1ð0Þ.

Indeed, substituting �� of Eq. (3.16) into (3.3), after

straightforward algebra we obtain

�ðq2Þ ¼ 4ie2

d� 1

�Z
k
DðkÞDðkÞðkþ qÞ

�ðk � qÞ2
q2

� k2
�

þ d� 1

2

Z
k
DðkÞ

�
: (3.17)

Using that

Z
k

ðk � qÞ2
q2

DðkÞDðkþ qÞ
��������q2!0

¼ 1

4

Z
k
k2D2ðkÞ; (3.18)

we find from (3.17) (setting d ¼ 4)

�ð0Þ ¼ ie2
�
2
Z
k
DðkÞ �

Z
k
k2D2ðkÞ

�
; (3.19)

which has the general form given in (2.7). Evidently, the
Ansatz of (3.15) does not trigger Eq. (3.14), and one ends
up with a nonzero ��1ð0Þ, which, however, is expressed in
terms of divergent seagull-type integrals.
It is evident from the above analysis that the massless

poles, indispensable as they may be for generating a non-
vanishing ��1ð0Þ, must be incorporated into the SDE with
particular care, or else they give rise to seagull divergences.
But even without this pathology, it is clear that the vertex of
(3.15) does not constitute an optimal Ansatz. For example,
if the (1=q2) pole is considered to be of purely nonpertur-
bative origin (as it is supposed to), it has vanishing pertur-
bative expansion, and so, to all orders in perturbation

theory �� ¼ �ð0Þ
� , which is of course not correct.

In the next section we will see that the correct procedure
is to add to the vertex of (3.10) nonperturbative pole terms,
in such a way as to preserve the seagull cancellation
implemented by Eq. (3.14), and, at the same time, obtain
a finite ��1ð0Þ.

IV. FINITE GLUON MASS GENERATION

After having fixed the ideas in the context of a simple
Abelian model, we now turn to a pure Yang-Mills theory.
In particular, we will study the SDE of the gluon propa-
gator in the case of pure (quarkless) QCD, within the PT-
BFM framework, shown in Fig. 3. As has been explained in
detail in the recent literature [10,47,48], this latter formal-
ism allows for a gauge-invariant truncation of the SD
series, in the sense that it preserves manifestly and at
every step the transversality of the gluon self-energy.
Specifically, for the case at hand, we will consider only
the one-loop dressed part of the gluon SDE that contains
gluons shown in Fig. 4, leaving out (gauge-invariantly!) the
one-loop dressed ghost contributions and all ‘‘two-loop
dressed’’ diagrams. Note that the Feynman rules used to
build the SD series for the (background) gluon self-energy,

�̂��ðqÞ, are those of the BFM [9]; in particular, the exter-

nal gluons (distinguished by the grey circles attached to
them) are treated as if they were background gluons. The
two tree-level vertices necessary for our analysis are given
in Fig. 5; as we will see in a moment, the form of these
vertices is crucial for obtaining from the SDE precisely the
right combination of terms (and with the correct relative
weights) that appears in (3.14).
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A. The generalized Feynman gauge

In order to reduce the algebraic complexity of the prob-
lem, without compromising the essential features, we will
choose a special gauge, where the longitudinal terms of
the gluon propagator inside the Feynman integrals can be

dropped to all orders, i.e. one may set ���ðqÞ !
�ig���ðqÞ. This type of generalized Feynman gauge cor-

responds to the so-called ‘‘stagnant gauge’’, presented in
[49]; it may be formally reached by introducing in the
Feynman diagrams a momentum dependent �ðq2Þ, or an
operator �ðhÞ in the original QCD Lagrangian. Note that
the omission of the longitudinal terms inside the integrals
on the right-hand side of the SDE does not compromise the

transversality of the ‘‘external’’ �̂��ðqÞ appearing on the

left-hand side, provided that the WI satisfied by ~���� is

accordingly modified. Specifically, the vertex ~���� must

now satisfy

q�~���� ¼ ½��1ðkþ qÞ � ��1ðkÞ�g��; (4.1)

instead of the full WI given in (2.6). Evidently, while the
inverse gluon propagators appearing on the right-hand side
of (2.6) have longitudinal parts, in (4.1) only the g�� part

survives. As explained in detail in [49], this is exactly what
happens; the stagnant gauge eliminates the longitudinal
parts not only of the gluon propagator but also those of
the other Green’s functions (three-gluon vertex, etc.), so
that WIs of the type shown in (4.1) are indeed satisfied. We
emphasize that this gauge choice leads to simpler integral
equations, but is by no means necessary for the demon-
stration of the crucial seagull cancellations; the latter go
through in any gauge, once some obvious adjustments,

such as, for example, the Ansatz for ~����, have been

properly implemented.
Then, it is straightforward to show that the SDE corre-

sponding to Fig. 4 reduces to

FIG. 3 (color online). The full SDE for the gluon self-energy in the PT-BFM framework. By virtue of the special Abelian-like WIs
satisfied by the various fully-dressed vertices, the contributions of each block are individually transverse.

FIG. 4. The one-loop dressed gluonic graphs contributing to
the SDE for the (background) gluon self-energy, �̂��ðqÞ.

FIG. 5. The trilinear and quadrilinear gluon vertices in the
Feynman gauge of BFM.
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�̂�1ðqÞ ¼ q2 þ ig2CA

2ðd� 1Þ
�Z

k

~�ð0Þ
����ðkÞ�ðkþ qÞ~����

þ 2d2
Z
k
�ðkÞ

�
; (4.2)

where CA the Casimir eigenvalue of the adjoint represen-

tation [CA ¼ N for SUðNÞ]. ~�ð0Þ
���ðq; k;�k� qÞ is the bare

three-gluon vertex in the Feynman gauge of the BFM,

given in Fig. 5, and ~���� denotes its fully-dressed version.

The function �̂ðqÞ appearing on the left-hand side of
(4.2) is the scalar part of the gluon propagator in the BFM,
i.e. two background gluons entering; its relation to the

self-energy �̂��ðqÞ is the same as in (2.3). Note that

�̂ðqÞ is related to the standard �ðqÞ, defined in the R�

gauges, by means of the powerful identity, namely �̂ðqÞ�
½1þGðq2Þ�2 ¼ �ðqÞ, where Gðq2Þ is an auxiliary two-
point function [6,50] whose dynamics have been studied
in detail in the recent literature (see, e.g., [51] and refer-
ences therein). To further simplify the problem, without
compromising its essential features, we will next set
Gðq2Þ ¼ 0, i.e. we effectively assume that, inside the

quantum loops, �ðqÞ ¼ �̂ðqÞ. Thus, in what follows we

will be dealing with a single propagator, namely �̂ðqÞ, and
will suppress the ‘‘hats’’ in order to reduce the notation.

B. The three-gluon vertex

Up until this point the analysis presented in this section
is completely standard within the PT-BFM framework. At
this point enters a new ingredient, namely, the judicious
Ansatz for the three-gluon vertex which, in addition to
satisfying (4.1) will allow us to use the seagull identity
(3.14) and get a nonvanishing and finite ��1ð0Þ.

To begin with, let us first write ��1ðqÞ in the alternative
form (in Minkowski space)

��1ðqÞ ¼ q2H�1ðqÞ � ~m2ðqÞ: (4.3)

The tree-level result for ��1ðqÞ is recovered by setting
H�1ðqÞ ¼ 1 and ~m2 ¼ 0.

Then, an appropriate Ansatz for ~���� is given by

i~���� ¼
�ðkþ qÞ2H�1ðkþ qÞ � k2H�1ðkÞ

ðkþ qÞ2 � k2

�
~�ð0Þ
���

þ V���; (4.4)

where the term V��� contains the nonperturbative contri-

butions due to bound-state poles associated with the
Schwinger mechanism. Thus, V��� represents the term

containing the 1=q2 pole on the right-hand side in Fig. 6.
Note that we must have

q�V��� ¼ ½ ~m2ðkÞ � ~m2ðkþ qÞ�g��; (4.5)

in order for the ~���� of Eq. (4.4) to satisfy (by construc-

tion) the correct WI of (4.1).
The Ansatz of (4.4) mimics that of Eq. (3.10) to the

extent that the first term contains the right structure to
produce, when inserted into the first term on the right-
hand side of (4.2), the derivative term appearing on the left-
hand side of (3.14). The right-hand side of (3.14) is already
there: it is the second term on the right-hand side of (4.2),
originating directly from the seagull diagram (a2) of Fig. 4.
Notice that the first term on the right-hand side of (4.4)

may be expanded perturbatively, whereas V��� vanishes

perturbatively to all orders. Qualitatively speaking,H�1ðqÞ
will have the form (assume for simplicity a constant ~m2)

H�1ðqÞ � 1þ ~bg2
Z 1

0
dx ln½q2xðx� 1Þ þ ~m2� þOðg4Þ;

(4.6)

perturbatively (to all orders), ~m2 ¼ 0, and one recovers the
usual one-loop logarithm bg2 lnðq2Þ (displaying the typical
Landau pole in the IR). Note that ~b ¼ 10CA=48�

2; the
discrepancy from the correct factor b ¼ 11CA=48�

2,
namely, the first coefficient of the QCD one-loop � func-
tion, is due to the (gauge-invariant!) omission of the ghost
loops [see also the related comments following Eq. (4.18)].
Thus the role of the term V��� is two-fold: (i) it tames the

Landau pole inside the dimensionless perturbative loga-
rithm, and (ii) as can be seen directly from Eq. (4.3), it can
furnish an IR-finite propagator, ��1ð0Þ ¼ � ~m2ð0Þ (in

FIG. 6. The SDE for the three-gluon vertex. All kernels are one-particle irreducible, and the 1=q2 pole is not kinematic but
dynamical (purely nonperturbative); physically it corresponds to a (composite) Goldstone mode, necessary for maintaining the local
gauge invariance.
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Minkowski space), provided, of course, that the equation
governing ~m2 has nontrivial solutions (see next section).

An important point related to the form of ~���� is that the

transverse (i.e. identically conserved) component associ-
ated with the first term in Eq. (4.4) has been set to zero [it
would correspond to the term proportional to Aðk; qÞ in
Eq. (3.10)]. As is well-known, such an omission, while of
little importance in the IR, leads to the mishandling of
overlapping divergences in the UV. This, in turn, spoils the
multiplicative renormalizability of the resulting SDE,
which must be renormalized subtractively [see also dis-
cussion following Eq. (5.13)].

An analogous Ansatz for the vertex V��� may be de-

duced following a similar philosophy. For example, a
simple Ansatz that captures the two essential character-
istics of having (composite) longitudinally coupled poles,
and satisfying the WI of (4.5) is

V��� ¼ V‘
��� þ Vt

���; (4.7)

where

V‘
��� ¼ q�

q2
½ ~m2ðkÞ � ~m2ðkþ qÞ�g��; (4.8)

and with the transverse part Vt
��� satisfying

q�Vt
��� ¼ 0: (4.9)

We emphasize that, in principle, the form of Vt
��� may not

be chosen at will, but must ideally be determined from
solving the corresponding SDE for the three-gluon vertex,
shown schematically in Fig. 6. Given that this task lies
beyond our present powers, in what follows we will treat
Vt
��� as being essentially undetermined [see discussion

before Eq. (4.19)].
We can write the vertex of (4.4) equivalently as

i~���� ¼
�
��1ðkþ qÞ � ��1ðkÞ

ðkþ qÞ2 � k2

�
~�ð0Þ
��� þ �V���; (4.10)

with

�V ��� ¼ V��� þ Vr
���; (4.11)

where

Vr
��� ¼

�
~m2ðkþ qÞ � ~m2ðkÞ
ðkþ qÞ2 � k2

�
~�ð0Þ
���: (4.12)

The term Vr
��� is a residual piece, acting as an additional

(nonperturbative) vertex term, originating from forcing the
vertex to assume the form of (4.10). As we will see shortly,

this last way of writing ~���� makes the use of the basic
identity of Eq. (3.14) immediate. Thus, after these rear-
rangements, we have that the final nonperturbative effec-
tive vertex �V��� must be transverse,

q� �V��� ¼ 0: (4.13)

In summary, the vertex Ansatz proposed in (4.4) [and
(4.10)] above has three important properties: (i) satisfies
identically the WIs of (4.1), a fact that ensures the trans-
versality of the resulting gluon self-energy; (ii) the pole
term contained in V��� makes it possible to have a non-

vanishing ��1ð0Þ; (iii) triggers the basic Eq. (3.14), which,
in turn, allows one to dispose of the seagull-type terms.
Thus, as we will see in the next subsection, the ��1ð0Þ
obtained from the SDE is both nonvanishing and finite.

C. The implications for the SDE

Let us now study the effect that the three-gluon vertex of
(4.4) has on the SDE for �ðq2Þ given in (4.2). Substituting

for the ~���� on the right-hand side the expression given in
(4.10) we obtain after simple algebra

��1ðq2Þ ¼ q2 � ig2CA

2ðd� 1Þ ½�ðqÞ þ�~mðqÞ�; (4.14)

with

�ðqÞ ¼ ð7d� 8Þq2
Z
k

�ðkþ qÞ ��ðkÞ
ðkþ qÞ2 � k2

þ 4d

�Z
k
k2

�ðkþ qÞ ��ðkÞ
ðkþ qÞ2 � k2

þ d

2

Z
k
�ðkÞ

�
;

(4.15)

and

�~mðqÞ ¼
Z
k

~�ð0Þ
����ðkÞ�ðkþ qÞ �V���

¼
Z
k

~�ð0Þ
����ðkÞ�ðkþ qÞ½V‘ þ fVt þ Vrg����:

(4.16)

The term in square brackets on the right-hand side of (4.15)
has exactly the structure needed for employing (3.14). In
particular, using the notation introduced in (A1), we can
write (4.15) as

�ðqÞ ¼ ð7d� 8Þq2R�ðqÞ þ 4dT�ðqÞ: (4.17)

Note the perfect balance of relative coefficients required
for the precise term T�ðqÞ to emerge from the SDE. This
becomes possible within the PT-BFM framework thanks to
the special vertices shown in Fig. 5. Instead, in the con-
ventional SD formulation (e.g., in the R� gauges) it would

be very difficult to obtain the precise combination of terms
needed for implementing (3.14).
Perturbatively, at one loop, �ðqÞ of (4.16) reduces to a

simple and rather familiar result [of course, �~mðqÞ van-
ishes perturbatively, to all orders]. Specifically, setting
�ðkÞ ¼ 1=k2 on the right-hand side of (4.15), one imme-
diately recognizes that the term in square brackets van-
ishes, since it becomes proportional to the DR integralR
k k

�2 ¼ 0, while the first term becomes
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�ðqÞ ¼ �ð7d� 8Þq2
Z
k

1

k2ðkþ qÞ2 : (4.18)

This is the one-loop contribution to the gluon self-energy
coming from the graphs containing only gluons.
Remember that the ghosts have been omitted without
interfering with the transversality of the answer; their
omission amounts to having in front of the leading loga-
rithm the coefficient (7d� 8) instead of (7d� 6); as a
result (at d ¼ 4) the coefficient of the one-loop � function
is 10CA=48�

2 instead of 11CA=48�
2 [9,47].

Let us now turn to the basic nonperturbative features of
(4.14). Since by virtue of (3.14) we have that T�ð0Þ ¼ 0, it
is clear that �ð0Þ ¼ 0. Thus, the part of the calculation
determining �ðqÞ is very similar to that of scalar QED, in
the sense that it keeps the gluon (photon) massless. On the
other hand, the term �~mðqÞ, not present in the scalar QED
study, makes it possible to have��1ð0Þ � 0 for the gluons.

To see this explicitly, we focus on the �~mðqÞ given in
(4.16). The integral on the right-hand side of (4.16) re-
ceives two contributions, one from the term containing the
vertex V‘ [given in (4.8)] and one from the term containing
the sum fVt þ Vrg. Let us now assume, for simplicity, that
the (undetermined) transverse vertex Vt will be such that,
when added to Vr [given in (4.12)], will make the contri-
bution from fVt þ Vrg to become numerically subleading
compared to that of V‘. For instance, Vt could be such that
the total contribution from fVt þ Vrg were proportional to
the terms I2ðq2Þ and I4ðq2Þ, shown to be subleading in (C6).
Then, keeping only V‘ in (4.16), we obtain

�~mðqÞ ¼ � 2d

q2

Z
k
k2�ðkÞ�ðkþ qÞ½ ~m2ðkþ qÞ � ~m2ðkÞ�

¼ � 2d

q2

Z
k
~m2ðkÞ�ðkÞ�ðkþ qÞ½ðkþ qÞ2 � k2�:

(4.19)

Then, from Appendix C, Eq. (C3), we have that �~mð0Þ �
0, which in turn gives rise to ��1ð0Þ � 0, as announced.

An important consequence of this analysis is that
Eq. (4.14) can be split unambiguously into two parts, one
that vanishes as q2 ! 0 and one that does not. In fact, using
(4.3) on the left-hand side of (4.14), we can assign the two
types of contributions into two separate (but coupled)
equations, i.e.

q2H�1ðqÞ ¼ q2 � ig2CA

2ðd� 1Þ�ðqÞ; (4.20)

~m 2ðqÞ ¼ ig2CA

2ðd� 1Þ�~mðqÞ: (4.21)

As we will see in the next section, the first equation will
determine the momentum dependence of the effective
charge, and the second the running of the gluon mass.

It is worth mentioning that the splitting of the original
Eq. (4.14) into the two equations given above cannot be

assured simply by the fact that �ð0Þ ¼ 0 (by virtue of the
seagull identity). What could happen, at least in principle,
is that, due to some conspiracy of terms, or some particular
gauge choice, �~mð0Þ might also vanish (of course, in such
a case the whole attempt to obtain an infrared finite gluon
propagator would fail). Another adverse possibility could
be that the resulting mass term might be nonvanishing, but
have the wrong sign. As was demonstrated explicitly
above, �~mð0Þ � 0 for the particular form of the vertex
V‘ that we consider here, and the splitting given in (4.20)
and (4.21) becomes indeed possible (and the sign works out
correctly). However, the final outcome seems to depend
strongly on the details of the V‘; in fact, we are not aware
of a general principle that would determine a priori, i.e.,
before carrying out the actual calculation, whether the
necessary conditions will be fulfilled or not.

V. COUPLED EQUATIONS FOR EFFECTIVE
CHARGE AND GLUON MASS

In this section we will study the system of integral
equations given in Eqs. (4.20) and (4.21), under certain
simplifying assumptions. The first step in our analysis
consists in rewriting Eqs. (4.20) and (4.21) in terms of
RG-invariant quantities, which will correspond to the ef-
fective charge and the physical gluon mass. Then, the two
coupled equations will be expressed in terms of these two
RG-invariant quantities, and will be further evaluated. We
will assume a spectral representation for the gluon propa-
gator [viz. Eq. (B7)], a fact that simplifies enormously the
form of the resulting equations. Finally, we will solve the
system numerically and study the properties of the ob-
tained solutions.

A. RG-invariant quantities

It is well-known that, due to the AbelianWIs satisfied by
the PT-BFM Green’s functions, the propagator ��1ðq2Þ
absorbs all the RG logs, exactly as happens in QED with
the photon self-energy. Specifically, let us define the re-
normalization constants of the gauge-coupling and the
effective self-energy as

gð�2Þ ¼ Z�1
g ð�2Þg0; �ðq2;�2Þ ¼ Z�1

A ð�2Þ�0ðq2Þ;
(5.1)

where the ‘‘0’’ subscript indicates bare quantities. Then,
since the renormalization constants above satisfy the QED-
like relation

Zg ¼ Z�1=2
A ; (5.2)

the product

d̂ 0ðq2Þ ¼ g20�0ðq2Þ ¼ g2�ðq2Þ ¼ d̂ðq2Þ; (5.3)

retains the same form before and after renormalization, i.e.,
it forms a RG-invariant (�-independent) quantity [1]. Let
us now use for the �ðq2Þ appearing in Eq. (5.3) its form
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given in Eq. (4.3). For asymptotically large momenta, one
may drop the ~m2ðq2Þ term, and write

d̂ðq2Þ ¼ �g2ðq2Þ
q2

; (5.4)

with

�g 2ðq2Þ ¼ g2Hðq2Þ: (5.5)

The quantity �g2ðq2Þ is the RG-invariant effective charge of
QCD; at one-loop [see also Eq. (4.6)]

�g 2ðq2Þ ¼ g2

1þ ~bg2 lnðq2=�2Þ ¼
1

~b lnðq2=�2
QCDÞ

; (5.6)

where �QCD denotes a RG-invariant mass scale of a few

hundred MeV. As expected, at q2 ¼ �2
QCD we encounter

the perturbative Landau pole.
The relation given in Eq. (5.3) is valid both perturba-

tively and nonperturbatively, and therefore the quantity

d̂ðq2Þ is RG-invariant for the entire range of physical
momenta. Given that, one may go one step further, and

write the nonperturbative d̂ðq2Þ as the product of two
individually RG-invariant quantities, one dimensionless
and one dimensionful, exactly as we did perturbatively in
(5.4). In fact, one may generalize beyond perturbation
theory the definition of �g2ðq2Þ in terms of Hðq2Þ given in
Eq. (5.5). That would give rise to an effective charge that
would display the expected physical behavior, because,
roughly speaking, in such a case one would have that
[see again Eq. (4.6)]

�g 2ðq2Þ ¼ 1
~b
R
1
0 dx ln½ðq2xðx� 1Þ þ ~m2Þ=�2

QCD�
: (5.7)

Evidently, (i) the presence of ~m2 tames the Landau pole in
the IR; (ii) at q2 ¼ 0 the effective charge reaches a finite
(nonvanishing) value, in conformity with phenomenologi-
cal and theoretical expectations (see, e.g., [22], and refer-
ences therein); and (iii) in the UV we recover the
perturbative expression of Eq. (5.6).

To accomplish that, let us return to the form of �ðq2Þ
given in Eq. (5.3), and write ~m2ðq2Þ as

~m 2ðq2Þ ¼ m2ðq2ÞH�1ðq2Þ; (5.8)

where m2ðq2Þ is assumed to be a RG-invariant quantity, to
be identified with the dynamical gluon mass. Note that the
requirement that m2ðq2Þ be RG-invariant is crucial, be-

cause otherwise the desired factorization of d̂ðq2Þ into
two individually RG-invariant quantities would not be
possible. What Eq. (5.8) essentially says is that, in a theory
where a RG-invariant scale is assumed to exist (namely
�QCD), a dimensionful quantity that is not RG-invariant

(namely ~m2ðq2Þ), can be thought of as having its dimen-
sionality saturated by�2

QCD (times a pure number), with all

the RG dependence (the � dependence) absorbed into the
dimensionless cofactor H�1ðq2Þ.
Then, with the aid of Eq. (5.8), �ðq2Þ assumes the form

�ðq2Þ ¼ Hðq2Þ
q2 þm2ðq2Þ : (5.9)

Therefore, we finally arrive at the RG-invariant combina-
tion

d̂ðq2Þ � g2�ðq2Þ ¼ �g2ðq2Þ ��ðq2Þ; (5.10)

with

��ðq2Þ ¼ 1

q2 þm2ðq2Þ : (5.11)

Thus, the dimensionful RG-invariant quantity d̂ðq2Þ is
decomposed into the product of two individually RG-
invariant quantities, the dimensionful part ½q2 þ
m2ðq2Þ��1 corresponding to a massive propagator (with a
running mass), and the dimensionless �g2ðq2Þ correspond-
ing to the running coupling (effective charge).

B. The equation for the effective charge

Even though in principle the analysis may be carried out
using systematically the formulas of Appendix A without
imposing any additional constraints on �, the presence of
the derivatives makes the numerical treatment rather cum-
bersome. Instead, as shown in Appendix B, the use of the
spectral representation for � results in a spectacular
simplification.
Specifically, assuming that � can be written as in (B7),

and using the expressions in (B11), we have that

�i�ðqÞ ¼ ð7d� 8Þ
16�2

q2
�Z q2=4

0
dz

�
1� 4z

q2

�
1=2

�ðzÞ � C
�

þ 4d

16�2

Z q2=4

0
dzz

�
1� 4z

q2

�
1=2

�ðzÞ: (5.12)

The equation for the effective charge, �ðq2Þ ¼
�g2ðq2Þ=4�, will be derived from (4.20) after substitution of
(5.12). At this point we go to Euclidean momenta; specifi-
cally we set q2 ¼ �q2E, with q2E > 0 the positive square of
a Euclidean four-vector, and define the Euclidean propa-
gator as �Eðq2EÞ ¼ ��ð�q2EÞ (we suppress the subscript E
in what follows). Then, from (4.20) we have

H�1ðq2Þ ¼ K þ ~bg2
�Z q2=4

0
dz

�
1þ 4z

5q2

��
1� 4z

q2

�
1=2

�ðzÞ

� C
�
; (5.13)

where ~b ¼ 10CA=48�
2; as already mentioned, the discrep-

ancy from the full b ¼ 11CA=48�
2 is due to the omission

of the ghost loops. The (infinite) constant K is the gluon
wave-function renormalization, introduced in order to
make the equation finite, i.e. eliminate the infinite constant
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C. Note that, as is typical in this type of SDE analysis, the
renormalization is carried out subtractively instead of mul-
tiplicatively. This is ultimately connected with the fact that
the transverse part of the three-gluon vertex is undeter-
mined by the gauge technique (see discussion in the pre-
vious section).

The constant K may be determined from (5.13) by
imposing a renormalization condition on the function
H�1ðq2Þ. Specifically, using the renormalization condition
H�1ð�2Þ ¼ 1, we have that K is given by

K ¼ 1� ~bg2
�Z �2=4

0
dz

�
1þ 4z

5�2

��
1� 4z

�2

�
1=2

�ðzÞ � C
�
:

(5.14)

Inserting the expression for K given in (5.14) back into
(5.13), we obtain the renormalized equation

H�1ðq2Þ ¼ 1þ ~bg2
�Z q2=4

0
dz

�
1þ 4z

5q2

��
1� 4z

q2

�
1=2

�ðzÞ

�
Z �2=4

0
dz

�
1þ 4z

5�2

��
1� 4z

�2

�
1=2

�ðzÞ
�
:

(5.15)

In order to derive the equation for the effective charge
�ðq2Þ ¼ �g2ðq2Þ=4�, use the relation between Hðq2Þ and
�g2ðq2Þ given in (5.5), to cast (5.15) in the form

1

�g2ðq2Þ ¼
1

�g2ð�2Þþ
~b

�Z q2=4

0
dz

�
1þ 4z

5q2

��
1� 4z

q2

�
1=2

�ðzÞ

�
Z �2=4

0
dz

�
1þ 4z

5�2

��
1� 4z

�2

�
1=2

�ðzÞ
�
: (5.16)

Note that again, because of the mishandling of the trans-
verse part of the three-gluon vertex, the right-hand side of
(5.16) is not RG-invariant. The simplest way to remedy this

(by hand) is to replace�ðzÞ ! ��ðzÞ of Eq. (5.11). Thus, we
arrive at

1

�g2ðq2Þ ¼
1

�g2ð�2Þþ
~b

�Z q2=4

0
dz

�
1þ 4z

5q2

��
1� 4z

q2

�
1=2

��ðzÞ

�
Z �2=4

0
dz

�
1þ 4z

5�2

��
1� 4z

�2

�
1=2

��ðzÞ
�
: (5.17)

Note that

1

�g2ð0Þ ¼
1

�g2ð�2Þ �
~b

�Z �2=4

0
dz

�
1þ 4z

5�2

��
1� 4z

�2

�
1=2

� ��ðzÞ
�
: (5.18)

C. The equation for the gluon mass

Let us now turn to the dynamical equation governing the
evolution of the mass. From (4.21) we obtain

~m 2ðq2Þ ¼ 2

5
~bg2½I1ðq2Þ þ I2ðq2Þ þ I3ðq2Þ þ I4ðq2Þ�;

(5.19)

where the terms IiðqÞ are given in (C6). According to the
discussion in Appendix C, the terms I2ðq2Þ and I4ðq2Þ are
subleading in both the IR and the UV, and may be therefore
safely neglected to a first approximation. Then, keeping
only I1ðq2Þ and I3ðq2Þ, we have

~m2ðq2Þ ¼ 2

5
~bg2

�
�ðq2Þ

Z q2

0
dyy ~m2ðyÞ�ðyÞ

� 1

2

Z 1

q2
dyy2�2ðyÞ½ ~m2ðyÞ�0

�
: (5.20)

The next step is to rewrite this equation in terms of the RG-
invariant quantities. Using (5.5), (5.6), (5.7), and (5.8), we
have that

m2ðq2Þ
�g2ðq2Þ ¼

2

5
~bg2

�
�ðq2Þ

Z q2

0
dyy�ðyÞ½m2ðyÞ= �g2ðyÞ�

� 1

2

Z 1

q2
dyy2�2ðyÞ½m2ðyÞ= �g2ðyÞ�0

�
: (5.21)

Given that �g2ðyÞ is expected to be a much slower varying
function of the momentum compared to m2ðyÞ, both in the
UVand the IR, we will simplify the analysis by neglecting
the derivative ½ �g2ðyÞ�0 next to ½m2ðyÞ�0. Then, we have that
m2ðq2Þ
�g2ðq2Þ ¼ 2~b

5

�
�ðq2Þ

Z q2

0
dyym2ðyÞfg2�ðyÞ= �g2ðyÞg � 1

2

�
Z 1

q2
dyy2½m2ðyÞ�0�ðyÞfg2�ðyÞ= �g2ðyÞg

�
;

(5.22)

which, after using (5.10), becomes

m2ðq2Þ
�g2ðq2Þ ¼

2~b

5

�
�ðq2Þ

Z q2

0
dyym2ðyÞ ��ðyÞ

� 1

2

Z 1

q2
dyy2½m2ðyÞ�0�ðyÞ ��ðyÞ

�
: (5.23)

Finally, the right-hand side of (5.23) is made RG-invariant

by setting�ðq2Þ ! ��ðq2Þ and�ðyÞ ! d̂ðyÞ, thus obtaining
m2ðq2Þ
�g2ðq2Þ ¼

2~b

5

�
��ðq2Þ

Z q2

0
dyym2ðyÞ ��ðyÞ

� 1

2

Z 1

q2
dyy2 ��2ðyÞ �g2ðyÞ½m2ðyÞ�0

�
: (5.24)
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Let us now study the behavior of the solutions of (5.24) for

asymptotically large q2; in this limit we set ��ðxÞ ! 1=x

and ��ðyÞ ! 1=y. Then, the equation reduces to

m2ðq2Þ lnq2 ¼ 2

5

�
1

q2

Z q2

0
dym2ðyÞ

� 1

2

Z 1

q2
dy �g2ðyÞ½m2ðyÞ�0

�
: (5.25)

It is relatively straightforward to establish that the asymp-
totic solutions of (5.25) display power-law running. Indeed,
substituting on both sides of (5.25) a m2ðq2Þ of the form

m2ðq2Þ ¼ �4
0

q2
ðlnq2Þ	�1; (5.26)

it is easy to recognize that the second term on the right-
hand side of (5.26) is subleading. Indeed, in the absence of
�g2ðyÞ ¼ ðb lnyÞ�1 the integrand is a total derivative, which
yields to the right-hand side simply a term 1

2m
2ðq2Þ; this is

suppressed, because it is not multiplied by a lnq2. The
presence of �g2ðyÞ suppresses this integral even further.
Specifically, integration by parts and use of the second
equation in (C7) yields

Z 1

q2
dy �g2ðyÞ½m2ðyÞ�0 ¼ �m2ðxÞ �g2ðxÞ þOð1= lnxÞ;

(5.27)

which is indeed further suppressed by an extra logarithm.
Thus, using the elementary integral

Z dy

yðlnyÞ1þa
¼ � 1

aðlnyÞa ; (5.28)

[first equation in (C7)], we have that (5.26) is a solution of
(5.25) provided that

	 ¼ 2

5
; (5.29)

and so, the asymptotic solution has power-law running,
given by

m2ðq2Þ ¼ �4
0

q2
ðlnq2Þ�3=5: (5.30)

Finally, if we were to assume the approximate validity of
(5.30) for the entire range of momenta, we can set
½m2ðyÞ�0 � �m2ðyÞ=y; that way, we convert (5.25) from
an integro-differential equation to the simpler integral
equation

m2ðq2Þ
�g2ðq2Þ ¼

2~b

5

�
��ðq2Þ

Z q2

0
dyym2ðyÞ ��ðyÞ

þ 1

2

Z 1

q2
dyy ��2ðyÞ �g2ðyÞm2ðyÞ

�
: (5.31)

D. Solving the system numerically

We will next discuss the numerical solutions for the
system of integral equations, namely (5.17) and (5.31)
coupled together.
We solve numerically the two coupled integral

equations, renormalizing them at three different points,
namely � ¼ f4; 10; 91gGeV, with �ð�2Þ ¼ g2ð�Þ=4� ¼
f0:341; 0:229; 0:127g, respectively. In Fig. 7, we show the
results for �ðq2Þ; there we see clearly that the three curves
merge practically into a single one, thus confirming nu-
merically the � independence of �ðq2Þ, expected on for-
mal grounds. These three curves may be accurately fitted
by the physically motivated functional form [1], namely

�ðq2Þ ¼ 1

4�~b ln½ðq2 þ tm2
0Þ=�2� ; (5.32)

with t ¼ 3:7 and � ¼ 645 MeV [see caption of Fig. 7].
In Fig. 8, we show the dynamical gluon mass, m2ðq2Þ,

obtained as solution of Eq. (5.31) at the same renormaliza-
tion points of Fig. 7. Once again, this figure shows us that
m2ðq2Þ is also a RG-invariant quantity, since the three
curves, obtained using the three different (and quite dispa-
rate) renormalization points, are practically on top of each
other. The behavior of m2ðq2Þ in the entire range of mo-

FIG. 7 (color online). Numerical solutions for the effective
charge obtained from Eq. (5.17), renormalized at three different
points: � ¼ 4 GeV and �ð�2Þ ¼ 0:341 (black curve), � ¼
10 GeV and �ð�2Þ ¼ 0:229 (red curve), � ¼ 91 GeV and
�ð�2Þ ¼ 0:127 (blue curve). The three curves practically coin-
cide, showing that indeed �ðq2Þ is independent of the renormal-
ization point chosen. The dashed curve (magenta) is the
perturbative one-loop behavior, and the brown line with circles
depicts the fit of Eq. (5.32), for t ¼ 3:7.
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menta can be accurately described by the following pa-
rametrization:

m2ðq2Þ ¼ m4
0

q2 þm2
0

�
�
ln

�
q2 þ fðq2; m2

0Þ
�2

�
= ln

�
fð0; m2

0Þ
�2

���3=5
;

(5.33)

where the function

fðq2; m2
0Þ ¼ 
1m

2
0 þ 
2

m4
0

q2 þm2
0

; (5.34)

with 
1 ¼ �1=2, 
2 ¼ 5=2, and m0 ¼ 612 MeV. Notice
that in the UV asymptotic limit the above expression goes
over to that of Eq. (5.30), as it should.

Finally, we turn to the RG-invariant quantity d̂ðq2Þ,
which appears in a natural way in all physical processes
involving a gluon exchange. With the help of Eq. (5.10) we

can construct d̂ðq2Þ out of the numerical solutions for�ðq2Þ
and m2ðq2Þ; the result is shown in Fig. 9. Obviously, since

d̂ðq2Þ is built out of two quantities that are individually
independent of�, it too turns out to be� independent; this
property is clearly observed in Fig. 9.

VI. DISCUSSION AND CONCLUSIONS

In this article we have demonstrated how to obtain a
finite gluon mass from the SDE of QCD, formulated in the
PT-BFM framework. Obtaining a finite mass without the
appearance of seagull divergences has been a long-
standing problem, that has afflicted all related studies for
a number of years. The key observation that leads to the
solution of this problem is that a judicious Ansatz for the
three-gluon vertex eliminates all seagull divergences by
means of a basic identity, valid in dimensional regulariza-
tion. In retrospect one realizes that the problem of seagull
divergences is not intrinsic to this approach, but has rather
been caused by the inadvertent mismatch of two field
theoretic mechanisms, induced by an imperfect Ansatz
for the vertex. Specifically, the Schwinger mechanism,
which requires the appearance of massless poles in the
three-gluon vertex, distorts the mechanism responsible
for the cancellation of the seagull divergences, unless the
poles enter into the gluon vertex in a very particular way.
The procedure described in the present work furnishes

eventually two separate but coupled equations for the QCD
effective charge and the gluon mass which, when solved
simultaneously, yield a unique answer for both quantities.
This is a considerable improvement over the existing ap-
proaches (e.g., [1,10,11]) where one had only one dynami-

cal equation, determining d̂ðqÞ, which was subsequently
decomposed according to Eq. (5.10), in order to obtain (not
without a certain ambiguity) the effective charge and gluon
mass. It should be emphasized, however, that even though
the values obtained for �ð0Þ and m0 are very reasonable,
they are not directly comparable with the values obtained
from phenomenological studies, due to the fact that the
gauge used in this work (‘‘stagnant’’ or ‘‘generalized
Feynman’’) is not the canonical Feynman gauge of the
BFM, which, as is well-known, furnishes the PT effective
charge and gluon mass. This may account, in retrospect, for
the slightly elevated value of �ð0Þ � 1 obtained here,
compared to a value of 0.5–0.7, found in recent theoretical
analysis [52], and various phenomenological studies
[53,54].

The fully-dressed three-gluon vertex ~���� used in

Eq. (4.4) satisfies (by construction) the WI given in

FIG. 8 (color online). The effective gluon mass,m2ðq2Þ, for the
same renormalization points used in Fig. 7. Evidently, the three
curves merge into a single one, showing that the numerical
solutions are independent of the renormalization point. The
continuous line in magenta is the fit of Eq. (5.33) with 
1 ¼
�1=2 and 
2 ¼ 5=2.

FIG. 9 (color online). The renormalization-group invariant
product d̂ðq2Þ obtained by combining the results for �ðq2Þ and
m2ðq2Þ according to Eq. (5.10).
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Eq. (4.1) or, after restoring the longitudinal terms, the full
WI of Eq. (2.6), which is crucial for ensuring the trans-
versality of the gluon self-energy. However, this Ansatz

used for ~���� is still incomplete from the point of view of

full Bose symmetry, in the sense that it does not satisfy the
correct STI when contracted with respect to the two other
legs; we remind the reader that the other two legs (internal
lines, irrigated by virtual momenta) correspond to ‘‘quan-
tum’’ gluons, as opposed to the external (background)
gluon, where the physical momentum q enters. The corre-

sponding STI satisfied when contracting ~���� with respect

to the quantum legs is a variant of the well-known STI
satisfied by the conventional vertex [55], and has been
derived in [47]. The construction of a three-gluon vertex
satisfying the correct WI and STIs is currently under
investigation, and we hope to report the results in the
near future.

An additional technical issue related to the form of ~����

is the omission of the identically conserved part, as already
mentioned in the corresponding sections. It would be most
interesting to extend the QED construction of [56,57] to the

case of the three-gluon vertex ~����. Such a task, however,

appears to be of formidable logistic complexity, given that
there are 13 linearly independent tensorial structures, with
their corresponding form factors. The techniques and the
special tensorial bases introduced in [58] may prove useful
for simplifying such a task.

In a similar spirit, the part V��	 of the vertex containing
the massless poles, thus triggering the Schwinger mecha-
nism, should also be appropriately extended, to satisfy the
correct WI with respect to all three legs. A prime candidate
for this role is the vertex proposed in [59], given by

V��	ðk1; k2; k3Þ ¼ k�1 k
�
2 ðk1 � k2Þ�
2k21k

2
2

P	
�ðk3Þm2ðk3Þ

� k	3
k23

½m2ðk2Þ �m2ðk1Þ�P�
�ðk1ÞP��ðk2Þ

þ cp; (6.1)

where cp denotes cyclic permutations. Note that a vertex
such as (6.1) will furnish a concrete (but still not unique)
expression for Vt which, in turn, will allow one to scruti-
nize some of the assumptions made in Sec. IV. Of course,
for self-consistency, one should perform the analysis in,
e.g., the Landau or conventional Feynman gauges, rather
then the ‘‘generalized’’ Feynman gauge employed here;
calculations in this direction are already in progress.

Finally, let us briefly comment on what one might expect
beyond the one-loop dressed approximation that we have
used in this work. Specifically, as mentioned at the begin-
ning of Sec. IV, the full SDE governing the gluon propa-
gator in the PT-BFM framework is given diagrammatically
in Fig. 3, where the four blocks of diagrams are individu-
ally transverse. In the present work we have only consid-
ered the diagrams of the first block, shown separately in

Fig. 4. Even so, we have been forced to make several
assumptions, mostly in an attempt to simplify the picture,
such as (i) we have dropped longitudinal terms by working
in the generalized Feynman gauge; (ii) have taken the

special function Gðq2Þ ¼ 0 or equivalently �̂ ¼ �;
(iii) assumed that Vt þ Vr is numerically subleading;
(iv) Eqs. (5.15) and (5.22) have been made RG-invariant
‘‘by hand’’; and (v) the integro-differential equation (5.24)
has been converted into the simpler integral equation (5.31)
by assuming power-law running for m2ðq2Þ in the entire
range of momenta.
In our opinion, the first question that one would like to

answer in the context of a two-loop dressed analysis is
whether the crucial seagull equation (3.14) will be modi-
fied by higher order corrections. The second question is
whether the resulting two-loop �ð0Þ will be precisely
proportional to the two-loop analogue of Eq. (3.14), ex-
actly as happened in the present work. It is clear that the
best starting point for addressing the first question is again
scalar QED, which has served as the reference theory for
our one-loop dressed analysis. One should therefore exam-
ine what happens to the �ð0Þ of the photon in scalar QED
when the graphs ðd3Þ, ðd4Þ, and ðd5Þ of Fig. 1 are included.
Perturbatively, at two loops, this can be done exactly, and it
will already furnish a valuable clue. However, for the full
SDE analysis one should provide an appropriate Ansatz
[the analogue of Eq. ((3.10)] also for the full four-particle
(photon-photon-scalar-scalar) vertex appearing in ðd5Þ of
Fig. 1 This vertex satisfies a WI that connects it to the
vertex ��, exactly as happens in the PT-BFM framework
with the WI

q�~�amnr
���
ðq; k1; k2; k3Þ ¼ gfadr�drm

�
�ðqþ k2; k3; k1Þ þ cp;

(6.2)

connecting the four-gluon vertex with the three-gluon ver-

tex. An Ansatz for ~�amnr
���
 that satisfies by construction this

WI would be indispensable for such an analysis, because
otherwise the transversality of the answer will be compro-
mised at the level of the two-loop dressed analysis. To the
best of our knowledge no such Ansatz exists in the litera-
ture, neither for scalar QED nor for the Yang-Mills theory.
Obviously, the need to introduce such an Ansatz is bound to
act as a new source of assumptions, but this is to be
expected when going to higher orders. In addition, if one
were to extend the present analysis to two loops, with our
present understanding of the situation and the available
numerical resources, it is clear that, depending on the final
form of the resulting integral or integro-differential equa-
tion, one may be forced to introduce further assumptions in
order to make the numerical treatment possible. Evidently,
a significant amount of work must be invested before any
of the above questions can be conclusively settled.
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APPENDIX A: SOME USEFUL RELATIONS

Let us define the following quantities:

RfðqÞ �
Z
k

fðkþ qÞ � fðkÞ
ðkþ qÞ2 � k2

;

TfðqÞ �
Z
k
k2

fðkþ qÞ � fðkÞ
ðkþ qÞ2 � k2

þ d

2

Z
k
fðkÞ;

(A1)

for an arbitrary function fðxÞ that is finite at the origin.
Let us define q2 ¼ x, k2 ¼ y, ðkþ qÞ2 ¼ z, and let us

write the (Euclidean) integration measure [ddk ¼ iddkE]
in spherical coordinates

Z
ddkE ¼ 2�

Z �

0
d�ðsin�Þd�2

Z 1

0
dyy: (A2)

We then have that z ¼ yþ xþ 2
ffiffiffiffiffi
xy

p
cos�, and we define

w � z� y ¼ xþ 2
ffiffiffiffiffi
xy

p
cos�. Finally, recall the elemen-

tary integral

Z �

0
d�sinm�cosn� ¼

� �ðmþ1
2 Þ�ðnþ1

2 Þ
�ðmþnþ2

2 Þ ; n ¼ 2k

0; n ¼ 2kþ 1:
(A3)

RfðqÞ and TfðqÞ may be expanded systematically as a

power series in q2. To that end we consider the Taylor
expansion of fðzÞ around w ¼ 0, which gives (we are
assuming finite derivatives at the origin)

fðzÞ � fðyÞ
w

¼ f0ðyÞ þ w

2!
f00ðyÞ þ w2

3!
f000ðyÞ þ � � � (A4)

where the primes denote differentiations with respect to y.
Then, one must collect pieces of a given order in q2 from
the various powers of w, using (A3).

It is clear, for example, that when the term f0ðyÞ on the
right-hand side of (A4) is inserted into TfðqÞ it generates
the seagull identity (3.14), while all remaining terms are
proportional to positive powers of w; so

Tfð0Þ ¼ 0: (A5)

As a second example, we determine the term of RfðqÞ
linear in q2, to be denoted by Rð1Þ

f ðqÞ; to accomplish this

one must collect the appropriate contributions coming
from both the second and the third term on the right-
hand side of (A4). Using (3.14) one then obtains

Rð1Þ
f ðqÞ ¼ q2

Z
k

�
1

2
f00ðk2Þ þ 1

6
k2f000ðk2Þ

�
; (A6)

or after partial integration, assuming that ½yf0�10 ¼ 0 and

½y2f00�10 ¼ 0 [valid when fð0Þ is finite, and fðyÞ � y (or

faster) at infinity], we have

Rð1Þ
f ðqÞ ¼ c

6
q2fð0Þ; (A7)

where c � i=16�2.

APPENDIX B: THE SPECTRAL
REPRESENTATION

Let us consider a simple massive tree-level propagator,

dmðqÞ ¼ 1

q2 �m2
; (B1)

and set f ¼ dm directly into (A1). It turns out that both
RdmðqÞ and TdmðqÞ can be calculated exactly; specifically,

using that

dmðkþ qÞ � dmðkÞ
ðkþ qÞ2 � k2

¼ �dmðkÞdmðkþ qÞ; (B2)

it is elementary to show that

RdmðqÞ ¼ c

�Z 1

0
dx ln

�
1þ q2xðx� 1Þ

m2

�
� Cm

�
; (B3)

where the cutoff-dependent constant Cm is given in dimen-
sional regularization by

Cm ¼ 2

�
� 	� ln

�
m2

4��2

�
: (B4)

Evidently, Rdmð0Þ ¼ �cCm. As an additional check, note

that the term of RdmðqÞ linear in q2, obtained by Taylor-

expanding (B3), is given by

Rð1Þ
dm
ðqÞ ¼ � c

6

q2

m2
; (B5)

which coincides with the result obtained when substituting
fð0Þ ¼ dmð0Þ ¼ � 1

m2 in the general formula of (A7).

For TdmðqÞ we have, using the identities (3.6) and (3.7),

TdmðqÞ ¼ m2
Z
k

q2 þ 2q � k
ðk2 �m2Þ2½ðkþ qÞ2 �m2�

¼ �cm2q2
Z 1

0
dx

xð2x� 1Þ
q2xð1� xÞ þm2

¼ cm2
Z 1

0
dx ln

�
1þ q2xðx� 1Þ

m2

�
: (B6)

Evidently, Tdmð0Þ ¼ 0, in agreement with (A5).

The results of (B3)–(B6) may be used in a more general
way. Specifically, if we assume a spectral representation
for the gluon propagator [1,60], namely

�ðq2Þ ¼
Z

d�2 
ð�2Þ
q2 � �2 þ i�

; (B7)

then from (B3) (with m ! �) we have
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R�ðqÞ ¼ c

�Z
d�2
ð�2Þ

Z 1

0
dx ln

�
1þ q2xðx� 1Þ

�2

�
� C

�
;

T�ðqÞ ¼ c
Z

d�2
ð�2Þ�2
Z 1

0
dx ln

�
1þ q2xðx� 1Þ

�2

�
;

(B8)

where

C ¼
Z

d�2
ð�2ÞC�: (B9)

Note that after the renormalization of the corresponding
SDE (see Sec. V) C will eventually drop out. Then, the use
of the following identities [61]

Z
d�2
ð�2Þ

Z 1

0
dx ln

�
1þ q2xðx� 1Þ

�2

�

¼
Z q2=4

0
dz

�
1� 4z

q2

�
1=2

�ðzÞ;
Z

d�2
ð�2Þ�2
Z 1

0
dx ln

�
1þ q2xðx� 1Þ

�2

�

¼
Z q2=4

0
dzz

�
1� 4z

q2

�
1=2

�ðzÞ;

(B10)

allows one to cast R�ðqÞ and T�ðqÞ again as an integral
containing the gluon propagator �, namely

R�ðqÞ ¼ c

�Z q2=4

0
dz

�
1� 4z

q2

�
1=2

�ðzÞ � C
�
;

T�ðqÞ ¼ c
Z q2=4

0
dzz

�
1� 4z

q2

�
1=2

�ðzÞ:
(B11)

Note that the simple change of variables t ¼ 4z=q2 allows
one to cast R�ðqÞ and T�ðqÞ in the alternative form

R�ðqÞ ¼ c

�
ðq2=4Þ

Z 1

0
dtð1� tÞ1=2�ðtq2=4Þ � C

�
;

T�ðqÞ ¼ cðq2=4Þ2
Z 1

0
dttð1� tÞ1=2�ðtq2=4Þ;

(B12)

which makes the identification of the IR behavior of these
quantities immediate, and is particularly useful for their
numerical treatment.

APPENDIX C: THE MASS EQUATION

Let us consider (in Euclidean space) the integral appear-
ing on the right-hand side of (4.19), to be denoted by IðqÞ.
We have

IðqÞ ¼ 1

q2

Z
kE

~m2ðkÞ�ðkÞ�ðkþ qÞ½ðkþ qÞ2 � k2�; (C1)

which, with the notation introduced in Appendix A, reads

IðxÞ ¼
Z
kE

~m2ðyÞ�ðyÞ�ðzÞ
�
1þ 2

ffiffiffi
y

p
ffiffiffi
x

p cos�

�
: (C2)

Then, expand �ðzÞ ¼ �ðyÞ þ w�0ðyÞ þ � � � , and collect
the terms that survive the angular integration, to obtain

Ið0Þ ¼
Z
kE

~m2ðk2Þ�ðk2Þ½�ðk2Þ þ 4k2�0ðk2Þcos2��

¼
Z
kE

~m2ðk2Þ�ðk2Þ½�ðk2Þ þ k2�0ðk2Þ�

¼ � 1

2

Z
kE

k2�2ðk2Þ½ ~m2ðk2Þ�0: (C3)

Note that a monotonically decreasing mass, ½ ~m2ðk2Þ�0 < 0,
guarantees that Ið0Þ> 0 or, equivalently, the positivity of
~m2ð0Þ in Euclidean space.
To write IðxÞ in a form suitable for solving the corre-

sponding dynamical equation, first split the radial integra-
tion into two intervals,

R1
0 dy ¼ R

x
0 dyþ

R1
x dy; in the first

interval apply the usual approximation

Z x

0
dyf1ðzÞf2ðyÞ � f1ðxÞ

Z x

0
dyf2ðyÞ; (C4)

while in the second, since x < y, we can carry out the
Taylor expansion as before. Thus, we obtain

IðxÞ � I1ðxÞ þ I2ðxÞ þ I3ðxÞ þ I4ðxÞ; (C5)

with

I1ðxÞ ¼ �ðxÞ
Z x

0
dyy ~m2ðyÞ�ðyÞ;

I2ðxÞ ¼ ��ðxÞ
x

Z x

0
dyy2 ~m2ðyÞ�ðyÞ;

I3ðxÞ ¼ � 1

2

Z 1

x
dyy2�2ðyÞ½ ~m2ðyÞ�0;

I4ðxÞ ¼ � 1

2
~m2ðxÞx2�2ðxÞ:

(C6)

Note that, as x ! 0, I1ðxÞ, I2ðxÞ, and I4ðxÞ vanish, and one
recovers from I3ðxÞ the exact result for Ið0Þ given in (C3).
Finally, note that for a m2ðxÞ displaying the asymptotic

behavior given in (5.26) the following results are useful
[11]:

1

x

Z x

0
dym2ðyÞ ¼ 	�1m2ðxÞ lnxþ c0

x
;

Z 1

x
dy

m2ðyÞ
y

¼ m2ðxÞ þOð1= lnxÞ;
1

x2

Z x

0
dyym2ðyÞ ¼ m2ðxÞ þOð1= lnxÞ;

(C7)

where c0 is a constant. The first equation is derived using
directly the integral of (5.28), while for the other two we
have employed the asymptotic property of the incomplete
�ða; uÞ function. Specifically,
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�ða; uÞ ¼
Z 1

u
dte�tta�1; (C8)

(with no restriction on the sign of a), and its asymptotic

representation for large values of juj is given by

�ða; uÞ ¼ ua�1e�u þOðjuj�1Þ: (C9)
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