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Drell-Yan pair production is investigated. We reexamine a model where the quark momentum fraction

is defined as the ratio of the corresponding light-cone components of the quark and parent nucleon in a

naive parton-model approach. It is shown that the results differ from the standard parton model. This is

due to unphysical solutions for the momentum fractions within the naive approach which are not present

in the standard parton model. In a calculation employing full quark kinematics, i.e., including primordial

quark transverse momentum, these solutions also appear. A prescription is given to handle these solutions

in order to avoid incorrect results. The impact of these solutions in the full kinematical approach is

demonstrated and compared to the modified result.
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I. INTRODUCTION

The Drell-Yan (DY) process [1] was first described in
the 1970s and provides an important tool to access the
distribution of partons inside the nucleon. While a lot of
information can be gained from deep inelastic scattering
[2], measurements of Drell-Yan events give complemen-
tary insights, especially about sea-quark distributions [3].
This has sparked many studies of this process [4–6] which
are generally inspired by perturbative QCD (pQCD). A lot
of experimental effort is being devoted to measurements of
the DY process: In antiproton-proton collisions at �PANDA
(FAIR) [7] and PAX [8], in proton-proton collisions at
RHIC [9,10], J-PARC [11–13], IHEP [14], and JINR [15]
and in pion-nucleon collisions at COMPASS [16,17]. An
overview of the experimental situation can be found in
[18]. �PANDA, for example, will allow measurements at
hadron c.m. energies of a few GeV, where nonperturbative
effects are expected to become more important. This high-
lights the need to model these effects in a phenomenologi-
cal picture.

In addition the standard pQCD leading-order (i.e.,
parton-model) description does not fully describe the in-
teresting observables. Invariant mass (M) spectra of the DY
pair can only be accounted for by including an additionalK
factor and transverse-momentum (pT) spectra are not ac-
cessible at all [19]. The latter can be partly cured by folding
in a phenomenological Gaussian distribution for the trans-
verse momentum, the width of which has to be fitted to
data. However the absolute size of the cross sections is still
underestimated [20]. Next-to-leading-order calculations
improve the description in some aspects, but also bring
about additional problems. The calculated invariant mass
spectra come closer to the data and the pT spectra are
comparable to data in the region pT �M [19], but not
for pT ! 0 [4]. In fact the pT spectrum is divergent for
pT ! 0 in any fixed order of the strong coupling �s, due to

large logarithmic corrections lnðM=pTÞ. These stem from a
soft gluon exchange and it is possible to remove these
divergencies by an all-order resummation. However since
pT is no longer a hard scale at pT ! 0 additional non-
pertubative (i.e., experimental) input is needed in these
(and all other pQCD) approaches to describe the region
of very small pT [21–23]. Note here that the parton-model
(i.e., leading-order) description is still a very useful starting
point, e.g., for studying spin asymmetries in DY, since
there next-to-leading-order corrections appear to be rather
small [24–26].
A phenomenological model that incorporates full

transverse-momentum dependent quark kinematics and
which in addition allows for mass distributions of quarks
was proposed to resolve these problems [27–29]. The idea
stems from the fact that in the usual collinear approach the
parton momenta are confined to the beam direction, thus
only one momentum component is different from zero. The
other components, namely, the transverse momentum and
the mass of the parton, do not enter into the calculation of
the partonic subprocess cross section. Since at finite ener-
gies these components might influence the cross section to
some extent it is worthwhile to examine this influence in
detail. However it turns out that in these works important
physical constraints were not considered and thus incorrect
results were obtained. In the current paper we examine
these constraints in detail and present a prescription to
properly account for them. Finally we compare the results
of the treatment in [27–29] with our corrected results.
Since the mentioned problems already appear for the
case without mass distributions for partons we restrict
ourselves here to massless partons.
This paper is organized as follows: in Sec. II we compare

the standard collinear parton-model description for DY
with an approach that defines the parton momentum frac-
tion x via light cone components. The latter approach will
be a demonstration of the problems that appear in the
calculation with the full kinematics. Section III contains
two calculations in the full kinematical scheme, i.e., taking*fabian.eichstaedt@theo.physik.uni-giessen.de
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into account the full transverse-momentum dependence of
the partonic subprocess. The approach of [27–29] is dis-
cussed in detail in Sec. III B 1 and the technical details are
given in the Appendix. Section III B 2 then contains our
calculation which respects the physical constraints laid out
in Sec. II B. The numerical results are presented in Sec. IV
where we compare the two calculations of Sec. III quanti-
tatively. Finally we present our conclusions in Sec. V.

In the following we present the conventions and nota-
tions used throughout this paper: It will turn out to be
useful to write four-momenta using light cone coordinates.
We employ the following convention for general four-
vectors a and b

aþ ¼ a0 þ az; (1)

a� ¼ a0 � az; (2)

~a? ¼ ðax; ayÞ; (3)

) a2 ¼ aþa� � ð ~a?Þ2; (4)

) a � b ¼ 1
2ðaþb� þ a�bþ � 2 ~a? � ~b?Þ: (5)

We regard all particles as massless. We define the target
nucleon to carry the four-momentum P1 and the beam
nucleon to carry the four-momentum P2 (see Fig. 1). In
the hadron center-of-mass (c.m.) frame we choose the z
axis as the beam line and the beam (target) nucleon moves
in the positive (negative) direction. Therefore the nucleon
four-momenta read

P1 ¼
� ffiffiffi

S
p
2

; 0; 0;�
ffiffiffi
S

p
2

�
; (6)

P2 ¼
� ffiffiffi

S
p
2

; 0; 0;þ
ffiffiffi
S

p
2

�
: (7)

Note here that with a finite nucleon mass P1 and P2 would
change. We have explicitly conducted the entire calcula-
tion with nonzero nucleon mass and convinced ourselves
that it does not influence our arguments in Secs. II and III.
Our results in Sec. IV would receive only a small correc-

tion, since we are looking at c.m. energies of
ffiffiffi
S

p
>

27 GeV. Thus, in this paper, we have put the nucleon
mass to zero for the sake of simplicity and readability.

We denote the four-momentum of the parton in nucleon 1
(2) as p1 (p2). The on shell condition in light cone coor-
dinates then reads

0 ¼ p2
i ¼ pþ

i p
�
i � ð ~pi?Þ2: (8)

The definition of the Feynman variable xF is [30]

xF ¼ qz
ðqzÞmax

: (9)

For the virtual photon in Fig. 1 the maximal qz is derived

by requiring the invariant mass of the undetected remnants
to vanish and the photon to move collinearly to the nucle-
ons:

ðP1 þ P2 � qÞ2 ¼ X2 ¼! 0 (10)

) Sþ q2 � 2
ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðqzÞ2max

q
¼ 0 (11)

) S� q2

2
ffiffiffi
S

p ¼ ðqzÞmax: (12)

II. COLLINEAR APPROACH

In this section we treat the interacting partons as col-
linear with their parent nucleons. We compare the standard
textbook parton model with a naive approach which uses
the light cone component definition of the parton momen-
tum fractions. It will turn out that in the latter case un-
physical solutions appear that must be removed to be
consistent with the standard parton model.

A. Standard parton model

The leading-order Drell-Yan total differential cross sec-
tion in the standard parton model reads [1]

d� ¼
Z 1

0
dx1

Z 1

0
dx2

X
i

q2i fiðx1; q2Þf�iðx2; q2Þd�̂ðx1; x2; q2Þ:

(13)

Here x1 and x2 are the momentum fractions carried by the
annihilating partons inside the colliding nucleons:

p1 ¼ x1P1; (14)

p2 ¼ x2P2: (15)

The sum runs over all quark flavors and antiflavors, qi
denotes the electric charge of quark flavor i, the functions

FIG. 1. DY production in a nucleon-nucleon collision; X1 and
X2 denote the nucleon remnants. See the main text for details.
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fi are parton distribution functions (PDFs), and d�̂ is the
total differential cross section of the partonic subprocess,

d�̂ ¼ 4��2

9q2
�ðM2 � q2Þ�ð4Þðp1 þ p2 � qÞd4qdM2:

(16)

Here q is the four-momentum of the virtual photon, p1, p2

are the four-momenta of the partons (cf. Fig. 1) and � �
1=137 is the fine-structure constant.

Note that it becomes immediately clear from Eqs. (14)
and (15) that the incoming partons move collinearly with
the nucleons. According to Eq. (16) no transverse momen-
tum can be generated for the virtual photon (and thus for
the DY pair) in the leading-order process:

~p1? ¼ ~p2? ¼ 0 (17)

) �ð4Þðp1 þ p2 � qÞ
¼ �ððp1 þ p2Þ0 � q0Þ�ð2Þð ~q?Þ�ððp1 þ p2Þz � qzÞ: (18)

The maximal information about the DY pair that can be
gained from Eq. (13) is double differential. A common
choice of variables is the squared invariant mass M2 and
Feynman’s xF of the virtual photon:

d�̂

dM2dxF
¼

Z
d4q

4��2

9q2
�ðM2 �q2Þ�ð4Þðp1 þp2 �qÞ

��

�
xF � qz

ðqzÞmax

�

¼ 4��2

9M2
�ðM2 �ðp1 þp2Þ2Þ�

�
xF �ðp1 þp2Þz

ðqzÞmax

�
:

(19)

The two � functions connect x1 and x2 with the chosen
observables

M2 ¼ 2p1p2 ¼ x1x2S; (20)

xF ¼ þ
ffiffiffi
S

p ðx2 � x1Þ
2ðqzÞmax

(21)

with ðqzÞmax ¼ S�M2

2
ffiffi
S

p , cf. Eq. (12).

Solving for x1 and x2 yields

x1� ¼ �ðqzÞmaxxF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððqzÞmaxxFÞ2 þM2

q
ffiffiffi
S

p

¼ �ðqzÞmaxxF � Ecollffiffiffi
S

p ; (22)

x2� ¼ ðqzÞmaxxF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððqzÞmaxxFÞ2 þM2

q
ffiffiffi
S

p

¼ ðqzÞmaxxF � Ecollffiffiffi
S

p ; (23)

with the energy of the collinear DY pair

Ecoll ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ððqzÞmaxxFÞ2

q
: (24)

However the lower solutions are always negative. Only the
upper solutions are in the integration range of Eq. (13) and
are physically meaningful. For the negative solutions the
parton energies would be negative on account of Eqs. (14)
and (15). The hadronic cross section then reads:

d�

dM2dxF
¼

Z 1

0
dx1

Z 1

0
dx2

X
i

q2i fiðx1;M2Þf�iðx2;M2Þ 4��
2

9M2

� �ðM2 � ðp1 þ p2Þ2Þ�
�
xF � ðp1 þ p2Þz

ðqzÞmax

�

¼
Z 1

0
dx1

Z 1

0
dx2

X
i

q2i fiðx1;M2Þf�iðx2;M2Þ 4��
2

9M2

� ðqzÞmax

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqzÞ2maxx

2
F þM2

q �ðx1 � x1þÞ�ðx2 � x2þÞ

¼ X
i

q2i fiðx1þ ;M2Þf�iðx2þ ;M2Þ 4��
2

9M2

ðqzÞmax

SEcoll

:

(25)

In this section we have presented the standard parton-
model solution for the leading-order DY cross section. The
only quantities in this approach not determined by pQCD
are the PDFs. These have to be obtained by fitting parame-
trizations to experimental data, mainly on deep inelastic
scattering, but also on measurements of DY production
itself [31].

B. Naive parton model

In this section we work out the complete collinear
kinematics using the definition of the parton momentum
fraction as the ratio of light cone components of the parton
and the nucleon [32]. We show that there exist other
solutions for the parton momentum fractions xi which are
neglected in the standard parton model right from the start.
These other solutions will turn out to be unphysical and are
derived at this point only to provide insight into difficulties
arising from a transverse-momentum dependent calcula-
tion as discussed in Sec. III B 1.
The partons inside the nucleons carry some fraction of

their parent hadron’s longitudinal momentum. Labeling
the parton momentum inside nucleon i with pi we can
define these fractions as ratios of plus or minus compo-
nents of the partons and the corresponding components of
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the nucleon momenta. In the Drell-Yan scaling limit (S !
1 and M2=S finite) P�

1 ¼ Pþ
2 ¼ ffiffiffi

S
p

become the large
components while all other components vanish. Note
here that with a finite nucleon mass the large components
would be modified and the small components would be
nonzero. This however poses no problem for the following
calculations, c.f. the discussion below Eqs. (6) and (7). We
define

x1 ¼ p�
1

P�
1

¼ p�
1ffiffiffi
S

p ; (26)

~x 1 ¼ pþ
1ffiffiffi
S

p ; (27)

x2 ¼ pþ
2

Pþ
2

¼ pþ
2ffiffiffi
S

p ; (28)

~x 2 ¼ p�
2ffiffiffi
S

p : (29)

Note that Eqs. (26) and (28) are standard definitions [32].
The tilde quantities in Eqs. (27) and (29) are introduced for
later convenience. The kinematical constraints for these
fractions are the on shell conditions

p2
1 ¼ pþ

1 p
�
1 ¼ 0 ) x1~x1 ¼ 0; (30)

p2
2 ¼ pþ

2 p
�
2 ¼ 0 ) x2~x2 ¼ 0; (31)

together with

M2 ¼ ðp1 þ p2Þ2 ¼ 2p1p2 ¼ pþ
1 p

�
2 þ p�

1 p
þ
2

¼ ð~x1~x2 þ x1x2ÞS (32)

and

xF ¼ ðp1 þ p2Þz
ðqzÞmax

¼ 1

2ðqzÞmax

ðpþ
1 � p�

1 þ pþ
2 � p�

2 Þ

¼
ffiffiffi
S

p
2ðqzÞmax

ð~x1 � x1 þ x2 � ~x2Þ: (33)

Wewill show now that the constraints in Eqs. (30)–(33) can
be fulfilled by two different sets of momentum fractions xi,
~xi. Equation (30) implies ~x1 ¼ 0 or x1 ¼ 0. If

~x 1 ¼ 0 (34)

���!Eq: ð32ÞM2

S
¼ x1x2 (35)

���! x1 � 0 � x2 (36)

���!Eq: ð31Þ
~x2 ¼ 0 (37)

���!Eq: ð33Þ
xF ¼ ðx2 � x1Þ

ffiffiffi
S

p
2ðqzÞmax

: (38)

This is just the standard parton-model solution, Eqs. (20)
and (21), as described in Sec. II A. However there exists

another solution, namely, for x1 ¼ 0:

x1 ¼ 0 (39)

���!Eq: ð32ÞM2

S
¼ ~x1~x2 (40)

���! ~x1 � 0 � ~x2 (41)

���!Eq: ð31Þ
x2 ¼ 0 (42)

���!Eq: ð33Þ
xF ¼ ð~x1 � ~x2Þ

ffiffiffi
S

p
2ðqzÞmax

: (43)

Kinematically this second solution represents the (strange)
case where each parton moves into the opposite direction
of its respective parent nucleon. One can see this in the
following example, where we choose xF ¼ 0. Then we
have

~x 1 ¼ ~x2 ¼ Mffiffiffi
S

p (44)

) pz
1 ¼

1

2
ðpþ

1 � p�
1 Þ ¼

1

2

ffiffiffi
S

p
~x1 ¼ M

2
(45)

and analogously

pz
2 ¼ �M

2
: (46)

Since nucleon 1 (2) moves into the negative (positive) z
direction, cf. Eqs. (6) and (7) the partons here move exactly
opposite. The parton momentum fractions xi (not ~xi) enter-
ing the PDFs in Sec. II A however are those of partons that
move into the same direction as their parent nucleon. The
second solution is thus physically not meaningful and it
is discarded right away in the standard parton-model
approach.
The essential difference between the standard and the

naive parton model is the following: In the (collinear)
standard parton model all components of pi are fixed at
once by pi ¼ xiPi. This automatically implies ~xi ¼ 0.
Such a procedure is without problems if one sticks to the
collinear dynamics. In Sec. III below, however, we include
primordial transverse momenta of the partons, i.e., we have
to deviate from pi ¼ xiPi. The natural choice would be to
define xi via one nucleon momentum component (the large
one). This is exactly what we have done here for the
collinear case. In the naive parton model xi and ~xi, i.e.,
pþ
i and p�

i , are introduced as independent variables which
are then constrained by the kinematical and on shell con-
ditions (30)–(33). However in the Bjorken limit (M, S !
1,M2=S ¼ const) the parton momenta should behave like
[6]

p�
1 ¼ OðMÞ; pþ

1 ¼ Oð1=MÞ; (47)

pþ
2 ¼ OðMÞ; p�

2 ¼ Oð1=MÞ: (48)
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For ~xi � 0 this power counting is not fulfilled, cf. Eqs. (27)
and (29). Hence this solution corresponds to nonfactorizing
power suppressed corrections. Therefore in the naive par-
ton model one falls into a trap by picking up this additional
unphysical solution. The same happens for the more com-
plicated case including primordial transverse momenta.

It is worth pointing out the connection between the two
types of parton models (standard vs naive) and QCD.
There, e.g., the DY cross section formula emerges from
factorization. It turns out that in the Bjorken limit a PDF
depends on one variable only [32], which is encoded in xi.
In the final formula the energy-momentum relation, e.g.,
for the DY process takes the form �ðq� x1P1 � x2P2Þ
which suggests the interpretation of xiPi as the parton

four-momentum. Thus the standard (collinear) parton
model emerges from QCD and not the naive one.
Including in addition primordial transverse momenta

one has to model the distributions of these momenta.
However there is a constraint the chosen model has to
obey: in the Bjorken limit one should come back to the
standard parton model and not to the naive one since only
the former emerges from QCD.
In the following we will point out how to modify the

naive parton model such that one ends up with the standard
parton model. This procedure will then be generalized to
the case where primordial transverse momenta of the par-
tons are included. In the naive parton model the hadronic
cross section reads

d�naive

dM2dxF
¼

Z 1

0
dx1

Z 1

0
dx2

X
i

q2i fiðx1;M2Þf�iðx2;M2Þ 4��
2

9M2
�ðM2 � ðp1 þ p2Þ2Þ�

�
xF � ðp1 þ p2Þz

ðqzÞmax

�

¼
Z 1

0
dx1

Z 1

0
dx2

X
i

q2i fiðx1;M2Þf�iðx2;M2Þ 4��
2

9M2

2ðqzÞmaxx1x2ð�ðx1 � x1þÞ�ðx2 � x2þÞ þ �ðx1Þ�ðx2ÞÞ
S3=2jðx1x2 � ~x1~x2Þðx1 þ x2 þ ~x1 þ ~x2Þj

: (49)

The unphysical second solution for the momentum fractions is represented by

�ðx1Þ�ðx2Þx1fiðx1;M2Þx2f�iðx2;M2Þ (50)

in the last expression. Its contribution does not vanish since one obtains for large enough M2 [33]

lim
x!0

ðxfðx;M2ÞÞ> 0: (51)

We now introduce a notation which we will keep throughout this paper. Whenever we explicitly disregard unphysical
solutions of the type of Eqs. (39)–(43) under an integral we denote this integral by �R . Thus

d�naive

dM2dxF
¼

Z 1

0
dx1

Z 1

0
dx2

X
i

q2i fiðx1;M2Þf�iðx2;M2Þ 4��
2

9M2

2ðqzÞmaxx1x2ð�ðx1 � x1þÞ�ðx2 � x2þÞ þ �ðx1Þ�ðx2ÞÞ
S3=2jðx1x2 � ~x1~x2Þðx1 þ x2 þ ~x1 þ ~x2Þj

(52)

whereas

d�

dM2dxF
¼ �

Z 1

0
dx1 �

Z 1

0
dx2

X
i

q2i fiðx1;M2Þf�iðx2;M2Þ 4��
2

9M2

2ðqzÞmaxx1x2ð�ðx1 � x1þÞ�ðx2 � x2þÞ þ �ðx1Þ�ðx2ÞÞ
S3=2jðx1x2 � ~x1~x2Þðx1 þ x2 þ ~x1 þ ~x2Þj

¼
Z 1

0
dx1

Z 1

0
dx2

X
i

q2i fiðx1;M2Þf�iðx2;M2Þ 4��
2

9M2

2ðqzÞmaxðx1x2Þ�ðx1 � x1þÞ�ðx2 � x2þÞ
S3=2ðx1x2Þðx1 þ x2Þ

¼ X
i

q2i fiðx1þ ;M2Þf�iðx2þ ;M2Þ 4��
2

9M2

2ðqzÞmax

S3=2ðx1þ þ x2þÞ
¼ X

i

q2i fiðx1þ ;M2Þf�iðx2þ ;M2Þ 4��
2

9M2

ðqzÞmax

SEcoll

: (53)

Note that in the last expression we have recovered the
standard parton-model result Eq. (25).

The main reason to present this naive approach in detail
will become clear in the next section where we lift the
simplification of a collinear movement of the partons with
the nucleons.

III. FULL KINEMATICS

The Bjorken limit and the corresponding infinite-
momentum frame in which the standard parton model is

well defined and derived from leading-order pQCD is
an idealization of real experiments. There the nucleons
will always move with some finite momentum and thus
the partons inside the nucleons can have nonvanishing
momentum components perpendicular to the beam line.
The factorization into hard (subprocess) and soft
(PDFs) physics is proven in the collinear case at least for
leading twist (expansion in 1=M) in [34] and in the trans-
verse case at least for partons with low transverse momen-
tum in [35].
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A. Transverse-momentum distributions

For the calculation of the hadronic cross sections we will
need transverse-momentum dependent parton distribution

functions. We denote these by ~fi. They are functions of the
light cone momentum fraction xi, the transverse momen-
tum ~pi? , and the hard scale of the subprocess q2. The

general form of these functions however is unknown.
Known rather well are the longitudinal PDFs. Since data
of DY pair production are compatible with a Gaussian form
of the pT spectrum up to a certain pT [36,37], we assume
factorization of the longitudinal and the transverse part of
~fi and make the following common ansatz [20,38,39]

~f iðxi; ~pi? ; q
2Þ ¼ fiðxi; q2Þ � fi?ð ~pi?Þ: (54)

Here fi are the usual longitudinal PDFs and for fi? we

choose a Gaussian form,

fi?ð ~pi?Þ ¼
1

4�D2
exp

�
�ð ~pi?Þ2

4D2

�
: (55)

The width parameterD is connected to the average squared
transverse momentum via

hð ~pi?Þ2i ¼
Z

d ~pi?ð ~pi?Þ2fi?ð ~pi?Þ ¼ 4D2 (56)

and it has to be fitted to the available data.

B. Cross section

Now we calculate the hadronic cross section d� taking
into account the full kinematics. Since it is necessary to

remove the unphysical solutions for the light cone momen-
tum fractions x1 and x2 which correspond to the ones found
in Sec. II B for the collinear case, the calculation has to be
conducted such that it is possible to disentangle the physi-
cal and the unphysical solution. First we will discuss in
Sec. III B 1 a straightforward calculation which however
does not obey this requirement (the details of this calcu-
lation can be found in the Appendix). If one does not
remove the unphysical solutions one produces unphysical
results. This reveals a pitfall which the unawareness of this
problem can create [27–29]. In Sec. III B 2 we will show
how to properly remove the unphysical solutions as we did
for the collinear case at the end of Sec. II B.
In the transverse-momentum dependent approach the

leading-order Drell-Yan total differential cross section
reads [20]

d� ¼
Z 1

0
dx1

Z 1

0
dx2

Z
d ~p1?

Z
d ~p2?

X
i

q2i
~fiðx1; ~p1? ; q

2Þ

� ~f �iðx2; ~p2? ; q
2Þ � d�̂ðx1; ~p1? ; x2; ~p2? ; q

2Þ: (57)

In this approach the transverse momentum (pT ¼ j ~q?j) of
the DY pair is accessible, since the annihilating quark and
antiquark can have finite initial transverse momenta. Note
that in the calculations of [20] the partonic DY cross
section d�̂ was taken in the collinear limit.

1. Naive calculation

In the naive approach the partonic triple-differential
cross section reads

d�̂naive

dM2dxFdp
2
T

¼
Z

d4q
4��2

9q2
�ðM2 � q2Þ�ð4Þðp1 þ p2 � qÞ�

�
xF � qz

ðqzÞmax

�
�ðp2

T � ð ~q?Þ2Þ

¼ 4��2

9M2
�ðM2 � ðp1 þ p2Þ2Þ�

�
xF � ðp1 þ p2Þz

ðqzÞmax

�
�ðp2

T � ð ~p1? þ ~p2?Þ2Þ: (58)

Inserting Eq. (58) in Eq. (57) yields a multiple integral for the triple-differential cross section:

d�naive

dM2dxFdp
2
T

¼
Z 1

0
dx1

Z 1

0
dx2

Z
d ~p1?

Z
d ~p2?Fðx1; ~p1? ; x2; ~p2? ;M

2Þ�ðM2 � ðp1 þ p2Þ2Þ�
�
xF � ðp1 þ p2Þz

ðqzÞmax

�
� �ðp2

T � ð ~p1? þ ~p2?Þ2Þ: (59)

All pieces which do not contain � functions are collected in
Fð. . .Þ. The straightforward, but naive calculation of (59)
was performed in [27–29]. The details of this calculation
can be found in the Appendix. Here we just want to point
out the problems arising from this approach: the naive
calculation with the full kinematics incorporates unphys-
ical solutions for the momentum fractions xi which corre-
spond to the unphysical solutions of the collinear case in
Eqs. (39)–(43). However in the collinear kinematics it is
quite clear that these solutions for xi cannot be the physi-
cally interesting ones, since they are just xi ¼ 0 and the

PDFs are divergent for small x as one can conclude from
(51). In the case of full kinematics the situation is similar,
however due to the introduction of transverse quark mo-
mentum distributions the momentum fractions xi are
smeared out around their collinear values. Nonetheless
the unphysical solutions are still very close to zero and
one picks up very large contributions of the diverging PDFs
at such low x. This leads to a large enhancement of the
cross section in the full kinematical approach and the data
are now overestimated. The effect can be seen in [27–29]
and also in Sec. IV where we compare this naive approach
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and the correct calculation of the next section. In addition,
in Sec. IV it will be shown that the M dependence of the
cross section is not reproduced in the naive approach.

2. Correct calculation

The analogue to Eq. (59) in the correct approach is (for
the notation �R see Sec. II B)

d�

dM2dxFdp
2
T

¼ �
Z 1

0
dx1 �

Z 1

0
dx2

Z
d ~p1?

Z
d ~p2?

� Fðx1; ~p1? ; x2; ~p2? ;M
2Þ

� �ðM2 � ðp1 þ p2Þ2Þ

� �

�
xF � ðp1 þ p2Þz

ðqzÞmax

�
� �ðp2

T � ð ~p1? þ ~p2?Þ2Þ: (60)

The � functions in Eq. (60) must be worked out in a way
that allows one to discern physical and unphysical solu-
tions for the momentum fractions xi in order to perform the
�R integrations. For this aim it is useful to rewrite the parton
momenta in terms of different variables:

q ¼ p1 þ p2; (61)

k ¼ 1
2ðp2 � p1Þ: (62)

Inverting the last two equations, we can use the on shell
conditions for the partons to get

0 ¼ p2
1 ¼ ð12q� kÞ2 ¼ 1

4q
2 � k � qþ k2 (63)

and

0 ¼ p2
2 ¼ ð12qþ kÞ2 ¼ 1

4q
2 þ k � qþ k2: (64)

Adding and subtracting Eqs. (63) and (64) yields

k2 ¼ �1
4M

2; (65)

k � q ¼ 0: (66)

Solving Eq. (65) for kþ yields

kþ ¼
~k2? � 1

4M
2

k�
: (67)

Inserting this result into Eq. (66) gives an equation qua-
dratic in k�:

0 ¼ kþq� þ k�qþ � 2 ~k? � ~q?

¼
~k2? � 1

4M
2

k�
q� þ k�qþ � 2 ~k? � ~q? (68)

) 0 ¼ ðk�Þ2qþ � 2 ~k? � ~q?k� þ ð ~k2? � 1
4M

2Þq�: (69)

The solutions are

ðk�Þ� ¼
~k? � ~q?
qþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ~k? � ~q?

qþ

�
2 þ q�

qþ

�
1

4
M2 � ~k2?

�vuut
:

(70)

Inserting (70) into (68) gives the solutions for kþ:

ðkþÞ� ¼ qþ

q�

� ~k? � ~q?
qþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ~k? � ~q?

qþ

�
2 þ q�

qþ

�
1

4
M2 � ~k2?

�vuut �
: (71)

Rewriting now Eqs. (26) and (28) in terms of q and k we
obtain the solutions for the parton momentum fractions:

ðx1Þ� ¼ p�
1ffiffiffi
S

p ¼ 1ffiffiffi
S

p
�
1

2
q� � ðk�Þ�

�
(72)

and

ðx2Þ� ¼ pþ
2ffiffiffi
S

p ¼ 1ffiffiffi
S

p
�
1

2
qþ þ ðkþÞ�

�
: (73)

Since there are two solutions for k� and kþ, respectively,
we also get two solutions for x1, x2. To determine which set
of x1, x2 and thus k

þ, k� has to be chosen we take the limit
of zero parton transverse momentum. In this way one can
make the connection to the collinear case (then q2 !
qþq� ¼ M2):

ðk�Þ� ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�

qþ
1

4
M2

s
¼ �q�

2
(74)

ðkþÞ� ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ

q�
1

4
M2

s
¼ �qþ

2
: (75)

Inserting expressions (74) and (75) into (72) and (73)
yields two solutions for the momentum fractions, just as
in the collinear case in Sec. II B:

ðx1Þ� ! 1ffiffiffi
S

p
�
0
q� (76)

and

ðx2Þ� ! 1ffiffiffi
S

p
�
0
qþ : (77)

The lower solutions correspond to the standard parton

model Eqs. (35) and (38), since x1x2 ¼ M2

S and x2 � x1 ¼
2qzffiffi
S

p ¼ xF
2ðqzÞmaxffiffi

S
p . The upper solution then corresponds to

the unphysical case x1 ¼ x2 ¼ 0 and ~x1 � 0 � ~x2; see
Eqs. (39)–(43).
This is the crucial point: to receive physically mean-

ingful results from Eq. (60) one has to discard these upper
solutions just as one does in the collinear case in Sec. II B.
This requires that the integrals in Eq. (60) are evaluated in
the correct order, otherwise one cannot disentangle the two
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different solutions for x1 and x2. We will now present a
calculation which respects this requirement. In Sec. IV we
will show that the quantitative difference between this
calculation and the calculation from Sec. III B 1 is huge.

We begin by introducing several integrals over � func-
tions in Eq. (60). In this way we will transform the inte-

gration variables to the above chosen q and ~k?:

d�

dM2dxFdp
2
T

¼ �
Z 1

0
dx1 �

Z 1

0
dx2

Z
d ~p1?

Z
d ~p2?

Z
d ~q?

Z
d ~k?

Z
dqþ

Z
dq�Fðx1; ~p1? ; x2; ~p2? ;M

2Þ

� �ðqþ � ðpþ
1 þ pþ

2 ÞÞ�ðq� � ðp�
1 þ p�

2 ÞÞ�ð2Þð ~q? � ð ~p1? þ ~p2?ÞÞ�ð2Þ
�
~k? � 1

2
ð ~p1? � ~p2?Þ

�

� �ðM2 � ðp1 þ p2Þ2Þ�
�
xF � ðp1 þ p2Þz

ðqzÞmax

�
�ðp2

T � ð ~p1? þ ~p2?Þ2Þ: (78)

First we performZ
d ~p1?

Z
d ~p2?�

ð2Þð ~q? � ð ~p1? þ ~p2?ÞÞ

� �ð2Þ
�
~k? � 1

2
ð ~p2? � ~p1?Þ

�
¼ 1: (79)

Now we calculate the integral

�
Z 1

0
dx1 �

Z 1

0
dx2�ðqþ � ðpþ

1 þ pþ
2 ÞÞ�ðq� � ðp�

1 þ p�
2 ÞÞ:
(80)

According to Eqs. (70)–(73) the � functions in the last
expression have two possible solutions for each p�

1 and
pþ
2 . However as explained above we now have to explicitly

remove the unphysical solutions ðx1Þþ and ðx2Þ�, which
are the ones corresponding to the upper sign in Eqs. (70)
and (71):

�
Z 1

0
dx1 �

Z 1

0
dx2�ðqþ � ðpþ

1 þ pþ
2 ÞÞ�ðq� � ðp�

1 þ p�
2 ÞÞ

¼ �
Z 1

0
dx1 �

Z 1

0
dx2�

�
qþ � ð12 ~q? � ~k?Þ2

x1
ffiffiffi
S

p � x2
ffiffiffi
S

p �
�

�
q� � x1

ffiffiffi
S

p � ð12 ~q? þ ~k?Þ2
x2

ffiffiffi
S

p
�

¼
Z 1

0
dx1

Z 1

0
dx2�

�
qþ � ð12 ~q? � ~k?Þ2

ðx1Þ�
ffiffiffi
S

p � ðx2Þþ
ffiffiffi
S

p �
�

�
q� � ðx1Þ�

ffiffiffi
S

p � ð12 ~q? þ ~k?Þ2
ðx2Þþ

ffiffiffi
S

p
�

¼
��������S� ð12 ~q? � ~k?Þ2ð12 ~q? þ ~k?Þ2

ðx1Þ2�ðx2Þ2þS
���������1

: (81)

Using dqþdq� ¼ 2dq0dqz we can evaluate some of the remaining integrals of Eq. (78) with the help of the � functions:

Z
dqþdq�d ~q?�ðM2 � q2Þ�

�
xF � qz

ðqzÞmax

�
�ðp2

T � ð ~q?Þ2Þ

¼ 2
Z

dq0d ~q?dqz�ðM2 þ ð ~q?Þ2 þ q2z � q20Þ�
�
xF � qz

ðqzÞmax

�
�ðp2

T � ð ~q?Þ2Þ ¼ �ðqzÞmax

E
(82)

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T þ x2FðqzÞ2max

q
. Collecting the pieces, what remains of Eq. (78) is

d�

dM2dxFdp
2
T

¼
Z j ~k?jmax

d ~k?
�ðqzÞmax

E

��������S� ð ~̂p1?Þ2ð ~̂p2?Þ2
ðx1Þ2�ðx2Þ2þS

���������1

Fððx1Þ�; ~̂p1? ; ðx2Þþ; ~̂p2? ;M
2Þ: (83)

FABIAN EICHSTAEDT, STEFAN LEUPOLD, AND ULRICH MOSEL PHYSICAL REVIEW D 81, 034002 (2010)

034002-8



ðx1Þ�, ~̂p1? , ðx2Þþ, and ~̂p2? are now fixed:

ðx1Þ� ¼ 1ffiffiffi
S

p
�
q�

2
�

~k? � ~q?
qþ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ~k? � ~q?

qþ

�
2 þ q�

qþ

�
1

4
M2 � ~k2?

�vuut �
; (84)

ðx2Þþ ¼ 1ffiffiffi
S

p
�
qþ

2
þ

~k? � ~q?
q�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ~k? � ~q?

q�

�
2 þ qþ

q�

�
1

4
M2 � ~k2?

�vuut �
; (85)

~̂p 1? ¼ 1
2
~q? � ~k?; (86)

~̂p 2? ¼ 1
2
~q? þ ~k? (87)

with

qþ ¼ Eþ xFðqzÞmax; (88)

q� ¼ E� xFðqzÞmax; (89)

j ~q?j ¼ pT; (90)

~k? � ~q? ¼ j ~k?jpT cosð�?Þ: (91)

j ~k?jmax is fixed by the condition that ðx1Þ� and ðx2Þþ must
be real numbers:

ð ~k?Þ2 <
ðM2 þ p2

TÞM2

4

M2 þ p2
Tð1� cos2ð�?ÞÞ

¼ ð ~k?Þ2max: (92)

We have convinced ourselves that this condition also guar-
antees that 0< ðx1Þ�, ðx2Þþ < 1. Finally we arrive at the
following expression:

d�

dM2dxFdp
2
T

¼
Z 2�

0
d�?

Z ð ~k?Þ2max

0

1

2
dð ~k?Þ2 �ðqzÞmax

E

�
��������S� ð ~̂p1?Þ2ð ~̂p2?Þ2

ðx1Þ2�ðx2Þ2þS
���������1

� Fððx1Þ�; ~̂p1? ; ðx2Þþ; ~̂p2? ;M
2Þ (93)

with

Fððx1Þ�; ~̂p1? ; ðx2Þþ; ~̂p2? ;M
2Þ

¼ X
i

q2i
~fiððx1Þ�; ~̂p1? ;M

2Þ~f �iððx2Þþ; ~̂p2? ;M
2Þ 4��

2

9M2
(94)

and with ~fi defined in Eq. (54).

IV. RESULTS

In this section we present our quantitative results and
compare the naive approach of Sec. III B 1 and the correct
approach of Sec. III B 2. The data are from the NuSea
Collaboration (E866) [36,37] and from FNAL-E439 [40].
For the collinear PDFs we used the GRV98 LO parametri-
zation [33] available through CERN’s PDFLIB version
8.04 [41].

A. E866-pT-spectra

Experiment E866 measured continuum dimuon produc-
tion in pp collisions at S � 1500 GeV2. The triple-
differential cross section as given by the E866
Collaboration is

E
d�

d3p
� 2E

�
ffiffiffi
S

p d�

dxFdp
2
T

(95)

where an average over the azimuthal angle has been taken.
The data are given in several bins ofM, xF, and pT and for
every data point the average values hMi, hxFi, and hpTi are
given. Since our schemes provide Eqs. (A8) and (93), we
calculate the quantity of Eq. (95) for every data point using
these averaged values and then perform a simple average in
every M2-bin:

2E

�
ffiffiffi
S

p d�

dxFdp
2
T

! 2E

�
ffiffiffi
S

p
Z
M2-bin

d�

dM2dxFdp
2
T

dM2

� 2E

�
ffiffiffi
S

p �M2 d�

dM2dxFdp
2
T

�ðhMi; hxFi; hpTiÞ; (96)

where

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hMi2 þ hpTi2 þ hxFi2hðqzÞmaxi2

q
(97)

and �M2 ¼ M2
max �M2

min with Mmax (Mmin) the upper

(lower) limit of the bin.
We plot the results for the two different approaches in

different M bins in Fig. 2. Everywhere a value of D ¼
0:5 GeV for the transverse-momentum dispersion was
chosen. The solid lines represent the correct approach.
The shape of the spectra is described rather well which is
due to the choice of the parameterD. However the absolute
size is still underestimated and a factor K � 1:75–2:0
would be necessary to reproduce the height of the data.
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The naive approach is plotted with dashes. As already
mentioned in Sec. III B 1 the calculated cross section over-
estimates the data significantly. This can also be seen in
[27–29]. We note that the discrepancy between both ap-
proaches is about 1 order of magnitude and it becomes
worse in the higher mass bin. This already indicates a
wrong M dependence of the naive approach.

B. E866-M-spectrum

The double-differential cross section is given by the
E866 Collaboration as

M3 d�

dMdxF
: (98)

Again the data are given in several bins ofM and xF and for
every data point the average values hMi and hxFi are
provided. Once more we start with Eqs. (A8) and (93)
and calculate the quantity of Eq. (98) by integrating over
p2
T for every data point using these averaged values:

M3 d�

dMdxF
! hMi3

Z ðpT Þ2max

0
dp2

T

d�

dMdxFdp
2
T

¼ hMi3
Z ðpT Þ2max

0
dp2

T2hMi d�

dM2dxFdp
2
T

�ðhMi; hxFiÞ: (99)

The maximal possible pT is determined by the kinematics.

P1 þ P2 ¼ qþ X (100)

) ðP1 þ P2 � qÞ2 ¼ X2 ¼ M2
R (101)

) SþM2 �M2
R ¼ 2ðP1 þ P2Þq ¼ 2

ffiffiffi
S

p
E

¼ 2
ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T þ q2z

q
(102)

) M2 þ ðpTÞ2max þ q2z ¼ E2 ¼ ðSþM2 �M2
RÞ2

4S
(103)

) ðpTÞ2max ¼ ðSþM2 �M2
RÞ2

4S
�M2 � q2z : (104)

M2
R is the minimal invariant mass of the undetected rem-

nants. We choose a value of MR ¼ 1:1 GeV. Note that at

c.m. energies of
ffiffiffi
S

p � 27:4 GeV (E439) and
ffiffiffi
S

p �
38:8 GeV (E866) we are not really sensitive to this value
if it stays at or below a few GeV.
The results are plotted in Fig. 3. Again we use D ¼

0:5 GeV. The solid line represents the correct approach,
the long dashed line the naive one. For comparison the
result of the standard (collinear) parton model is plotted
with the short dashed line. Here the discrepancy between
the naive and the correct approach is fully visible, since
neither the slope nor the size of the M-spectrum is repro-
duced in the naive approach. Instead it gives almost a
constant distribution. (Note here that this data set is not
shown or compared to calculations in [27–29].) The correct
approach however describes the slope well and again a
factor K � 1:75–2:0 is necessary to reach the absolute
height of the data, as expected from the triple-differential
results in the last section. Note that the result of the correct
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FIG. 2. pT-spectrum obtained from the naive and the correct approach with D ¼ 0:5 GeV. Data are from E866 binned with
4:2 GeV<M< 5:2 GeV and 7:2 GeV<M< 8:7 GeV, �0:05< xF < 0:15. Only statistical errors are shown.
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FIG. 3. M-spectrum obtained from naive and correct approach
with D ¼ 0:5 and from the standard parton model. Note that the
results from the latter two approaches are basically on top of
each other. Data are from E866 binned with�0:05< xF < 0:05.
Only statistical errors are shown.
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approach and the standard (collinear) parton model
coincide.

C. E439-M-spectrum

Experiment E439 measured dimuon production in pW
collisions at S � 750 GeV2. The double-differential cross
section

d�

dMdx0F
(105)

has been given with

x0F ¼ xF

1� M2

S

(106)

at a fixed x0F ¼ 0:1.
As before we begin with Eqs. (A8) and (93) and calcu-

late the quantity Eq. (105) by integrating over p2
T and

performing a simple transformation from xF to x0F:

d�

dMdx0F
¼

Z ðpT Þ2max

0
dp2

T

d�

dMdx0Fdp2
T

¼
Z ðpT Þ2max

0
dp2

T2M

�
1�M2

S

�
d�

dM2dxFdp
2
T

�
�
M; xF ¼ x0F

�
1�M2

S

��
: (107)

We plot the results in Fig. 4, the solid line represents the
correct approach, the long dashed line the naive one. With
the same parameter D ¼ 0:5 GeV as for the E866 case we
find the same discrepancy between the two approaches.
Again the correct approach reproduces the slope well and a
factor K � 1:6 is required to fit the data, while the naive
approach fails to describe the slope and absolute size of the
cross section. Once more the result of the correct approach

agrees well with the result of the standard parton model
(short dashed).
Here we note the following: in [27–29] the same data of

experiment E439 are compared to calculations, however
only to an approach including both initial quark transverse
momentum and quark mass distributions. There it is found
that the data can be described well without a K factor.
There is no comparison of E439 data with a transverse
momentum dependent calculation with on shell quarks
(i.e., what we call the naive approach) in [27–29]. We
acknowledge that the introduction of quark mass distribu-
tions lowers the cross section which somewhat compen-
sates for the enhancement in the naive approach.
Nonetheless we want to point out that even with additional
smearing from the quark mass distributions the naive ap-
proach will always lead to the wrongM dependence of the
cross section. The reason is simply that the PDFs are
probed in two areas: around the standard collinear parton
model x, cf. Eq. (25), and in a region very close to x ¼ 0
where the PDFs behave very differently with M and give
much larger contributions than for the physical x, since the
PDFs diverge rapidly for x ! 0. Thus we conclude that the
agreement of the full calculation with the E439 data in [27–
29] must be erroneous.

V. CONCLUSIONS

In this paper we reexamined a phenomenological model
of Drell-Yan pair production [27–29]. This model tried to
describe the DY process in a parton-model scheme which
takes into account the full transverse parton kinematics in
the hard subprocess. The aim was to reproduce the
transverse-momentum spectra of the DY pairs and in addi-
tion to reproduce the absolute size of the cross sections by
introducing mass distributions of the partons.
We have shown that already in the first step of introduc-

ing full transverse kinematics important constraints were
not considered. Unphysical solutions emerging in a (too)
naive parton model contaminate the results. We have de-
rived these constraints in the usual collinear approach and
then made the connection to the more general case of full
kinematics. It turned out that unawareness of these con-
straints can lead to a drastically different result of the
calculations: while in [27–29] the inclusion of the trans-
verse kinematics in the subprocess leads to an overshoot of
the cross section, our corrected approach shows no such
behavior and instead nicely reproduces the standard
parton-model prediction for the invariant mass spectra
and the low transverse-momentum spectrum, however
only up to a K factor. Additionally we find that the naive
approach taken in [27–29] produces a wrong M depen-
dence of the cross section. This is a crucial point since
already the standard parton model reproduces the right
slope of the M-spectrum. Therefore we conclude that the
findings in [27–29] that allow for a K factor free descrip-
tion of DY pair production are unwarranted.
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FIG. 4. M-spectrum obtained from naive and correct approach
with D ¼ 0:5 and from the standard parton model. Note that the
results from the latter two approaches are basically on top of
each other. Data are from E439 with x0F ¼ 0:1.
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APPENDIX A: NAIVE CALCULATION OF THE
HADRONIC CROSS SECTION WITH FULL

KINEMATICS

Rewriting the � functions of Eq. (59) in terms of the
integration variables yields

�ðM2 � ðp1 þ p2Þ2Þ�
�
xF � ðp1 þ p2Þz

ðqzÞmax

�
�ðp2

T � ð ~p1? þ ~p2?Þ2Þ

¼ �ðM2 � pþ
1 p

�
2 � p�

1 p
þ
2 þ 2 ~p1? � ~p2?Þ�

�
xF � pþ

1 � p�
1 þ pþ

2 � p�
2

2ðqzÞmax

�
�ðp2

T � ð ~p1?Þ2 � ð ~p2?Þ2 � 2 ~p1? � ~p2?Þ

¼ �

�
M2 � ð ~p1?Þ2

p�
1

ð ~p2?Þ2
pþ
2

� p�
1 p

þ
2 þ p2

T � ð ~p1?Þ2 � ð ~p2?Þ2
�
�

�
xF �

ð ~p1? Þ2
p�
1

� p�
1 þ pþ

2 � ð ~p2?Þ2
pþ
2

2ðqzÞmax

�
� �ðp2

T � ð ~p1?Þ2 � ð ~p2?Þ2 � 2 ~p1? � ~p2?Þ

¼ �

�
M2 � ð ~p1?Þ2

x1
ffiffiffi
S

p ð ~p2?Þ2
x2

ffiffiffi
S

p � x1
ffiffiffi
S

p
x2

ffiffiffi
S

p þ p2
T � ð ~p1?Þ2 � ð ~p2?Þ2

�
�

�
xF �

ð ~p1?Þ2
x1

ffiffi
S

p � x1
ffiffiffi
S

p þ x2
ffiffiffi
S

p � ð ~p2? Þ2
x2

ffiffi
S

p

2ðqzÞmax

�
� �ðp2

T � ð ~p1?Þ2 � ð ~p2?Þ2 � 2 ~p1? � ~p2?Þ: (A1)

Note here that if one puts all transverse momenta in Eq. (A1) to zero the collinear relations (32) and (33) are recovered.
Note also that the unphysical parts of Eqs. (32) and (33) are included here since

~x 1 ¼ pþ
1ffiffiffi
S

p ! ð ~p1?Þ2
x1

ffiffiffi
S

p ; (A2)

~x 2 ¼ p�
2ffiffiffi
S

p ! ð ~p2?Þ2
x2

ffiffiffi
S

p : (A3)

Now using the first two � functions of Eq. (A1) we can obtain solutions for the squared transverse momenta:

�

�
M2 � ð ~p1?Þ2

x1
ffiffiffi
S

p ð ~p2?Þ2
x2

ffiffiffi
S

p � x1
ffiffiffi
S

p
x2

ffiffiffi
S

p þ p2
T � ð ~p1?Þ2 � ð ~p2?Þ2

�
�

�
xF �

ð ~p1? Þ2
x1

ffiffi
S

p � x1
ffiffiffi
S

p þ x2
ffiffiffi
S

p � ð ~p2?Þ2
x2

ffiffi
S

p

2ðqzÞmax

�

¼ ðqzÞmax

x1x2S

E
�ðð ~p1?Þ2 � ðE� x2

ffiffiffi
S

p þ ðqzÞmaxxFÞx1
ffiffiffi
S

p Þ�ðð ~p2?Þ2 � ðE� x1
ffiffiffi
S

p � ðqzÞmaxxFÞx2
ffiffiffi
S

p Þ; (A4)

with the energy of the virtual photon

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T þ ðqzÞ2maxx
2
F

q
: (A5)

We note that exactly at this point the physical and the unphysical solutions for the momentum fractions xi have been mixed
up by rewriting the � functions, since the unphysical solutions of Eqs. (A2) and (A3) have entered.

Transforming the transverse-momentum integrals

Z
d ~p1?

Z
d ~p2? ¼

Z �

��
d�1?

Z 2�

0
d�2?

Z 1

0

1

2
dð ~p1?Þ2

Z 1

0

1

2
dð ~p2?Þ2 (A6)

we can rewrite the entire expression (59) in the following form:
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Z 1
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2
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2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð ~p1?Þ2ð ~p2?Þ2 � ðp2
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q �ðð ~p1?Þ2 � ðE� x2
ffiffiffi
S

p þ ðqzÞmaxxFÞx1
ffiffiffi
S
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� �ðð ~p2?Þ2 � ðE� x1
ffiffiffi
S

p � ðqzÞmaxxFÞx2
ffiffiffi
S

p Þ�
�
�1? � arccos

�
p2
T � ð ~p1?Þ2 � ð ~p2?Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð ~p1?Þ2ð ~p2?Þ2
q ��

: (A7)

Now all four integrations concerning the partons’ transverse momenta can be carried out, leaving a two-dimensional
integral which must be calculated numerically:

d�naive

dM2dxFdp
2
T

¼
Z

dx1
Z

dx2
�ðqzÞmaxx1x2S

E

Fðx1; ~̂p1? ; x2; ~̂p2? ; q
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð ~̂p1?Þ2ð ~̂p2?Þ2 � ðp2
T � ð ~̂p1?Þ2 � ð ~̂p2?Þ2Þ2

q : (A8)

ð ~̂p1?Þ2 and ð ~̂p2?Þ2 are given by the � functions in Eq. (A4) and the integration boundaries of x1 and x2 have to be chosen
such that the requirements

ð ~̂p1?Þ2 > 0; (A9)

ð ~̂p2?Þ2 > 0; (A10)

4ð ~̂p1?Þ2ð ~̂p2?Þ2 � ðp2
T � ð ~̂p1?Þ2 � ð ~̂p2?Þ2Þ2 > 0 (A11)

are fulfilled. One finds

0< x1 <
E� xFðqzÞmaxffiffiffi

S
p (A12)

and

x1
ffiffiffi
S

p ðM2 � p2
TÞ þ p2

TðE� xFðqzÞmaxÞ � 2MpT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

ffiffiffi
S

p ðE� xFðqzÞmax � x1
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p Þ
q
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p ðE� xFðqzÞmaxÞ2
< x2

<
x1
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