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Patterns in the fermion mixing matrix, a bottom-up approach
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We first obtain the most general and compact parametrization of the unitary transformation diagonal-
izing any 3 X 3 Hermitian matrix H, as a function of its elements and eigenvalues. We then study a special
class of fermion mass matrices, defined by the requirement that all of the diagonalizing unitary matrices
(in the up, down, charged lepton, and neutrino sectors) contain at least one mixing angle much smaller
than the other two. Our new parametrization allows us to quickly extract information on the patterns and
predictions emerging from this scheme. In particular we find that the phase difference between two
elements of the two mass matrices (of the sector in question) controls the generic size of one of the
observable fermion mixing angles: i.e. just fixing that particular phase difference will predict the generic
value of one of the mixing angles, irrespective of the value of anything else.
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L. INTRODUCTION

In the absence of flavor symmetries, the Yukawa cou-
plings between the standard model (SM) fermions and the
Higgs field are in general complex arbitrary matrices
which, after electroweak symmetry breaking, become the
mass matrices of the quarks and charged leptons. In the
case of neutrinos, the mass matrix will be, in general,
complex symmetric. All these matrices contain more pa-
rameters than physical observables and an explicit compu-
tation of these observables (fermion masses and mixings)
in terms of the original matrix elements can be quite
cumbersome in general. Indeed this would require us to
solve a 3 X 3 eigenvalue problem for each fermion matrix,
and then compose the unitary transformations (formed
with the calculated eigenvectors) of the up and down quark
sectors and then also of the charged lepton and neutrino
sectors.! We observe, however, that it may be useful to
address the question not as an eigenvalue problem, but as
an eigenvector problem, treating the eigenvalues as input
parameters and not as output. The first reason for this is
that, except for the neutrino sector, all the mass eigenvalues
are quite well known. But the main point we make is that
by keeping explicitly the mass eigenvalues as input pa-
rameters, the eigenvector solutions of each mass matrix
become surprisingly simple and can be written as compact
functions of both the mass matrix elements and the eigen-
values (the fermion masses). Such a parametrization of the
mixing matrices, directly in terms of the original mass
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parameters and the fermion masses might prove to be
useful in the studies aiming to explain the observed flavor
structure of the SM by way of symmetries or textures or
patterns [1-4] at the level of the fermion mass matrices.

It is true, though, that to proceed we need to work with
Hermitian matrices, but it is always possible to render the
quark mass matrices Hermitian in the standard model
without loss of generality [5,6]. The procedure to obtain
Hermitian matrices is quite standard, and it involves either
working with the Hermitian matrix H; = GGt where G is
the original fermion mass matrix, or using its polar decom-
position, i.e. solving G = H,Qg;, where Qg is a unitary
matrix converting the general complex matrix G into a
positive semidefinite Hermitian matrix H, (if G is inver-
tible, with distinct nonvanishing eigenvalues, then H, is
positive definite and therefore Q. is unique).

We will first present our parametrization (in fact 9 differ-
ent types) for the unitary matrix W which diagonalizes a
general Hermitian matrix A in the most compact way
possible. Then, to start taking advantage of it, we then
propose a simple and mildly constraining ansatz for the
flavor structure of the SM fermion sector. It assumes that
the unitary transformations diagonalizing H, and H, can
each be decomposed as only two rotations, instead of three.
The idea is to assume that the third rotation angle is zero
(or much smaller than the other two) and therefore one of
the entries of each transformation matrix W, and W, will
be zero or close to zero. We call this setup the two-angle
ansatz and we will concentrate in only one of the many
possible cases. Our parametrization allows us to quickly
obtain very simple dependences of the fermion mixing
matrices Vg and Vpyns [7] in terms of the masses and
the original mass matrix elements. We can thus study easily
the interesting properties of this type of ansatz as well as
the consequences it has in the original mass matrices, in
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both the quark and the lepton sectors. A particularly inter-
esting observation is that the specific value of some ele-
ments of H, and H,; has no effect (or very mild effect) on
the observed values of masses and mixings.

II. MIXING MATRIX PARAMETRIZATION

As explained before, we are going to concentrate on
Hermitian matrices with the assumption that the fermion
mass matrices are either Hermitian or that one can con-
struct a Hermitian matrix out of them. All the results
presented in this work are valid for general Hermitian
matrices, but for simplicity we will only consider the
case of positive definite Hermitian matrices. Let H be

one such matrix:
Yy X &
H=\|x" a b|, (1)
g b a

with eigenvalues A, A,, and A;. A compact parametriza-
tion of the unitary matrix W which diagonalizes it, is”

(a—)\l)(ﬂ—)\l)—|b|2 gb"—x(a—A,;) xb—gla—A3)
N, N, N
W = gh—x"(a—Ay) (y=M)a—2y)—gl? x'g—bly—A3)
Ny N, N3
¥bh—g (a—)) b y=d)  (y=A)(e—Ag) —lxl?
N, N, N

2

After some algebra the normalization parameters are found
to have the simple form

NT = (A3 = 2D = A)[(a — A)(a — Ap) — |b]*],
3)

N3 = (A3 — ) — ADl@ — )4 —y) + [gl*] @)

N3 = (A3 — )43 = AP[(A3 — Y)(A3 — a) — |xI?].
)

The surprisingly simple and compact form of this parame-
trization might make it suitable to treat flavor models
keeping always an explicit dependence on all the matrix
elements of the Hermitian mass matrices. Of course, if the
three eigenvalues Aq, A,, and A5 are fixed, there must be
three constraint equations on the elements of the matrix H.
These equations are found from the three invariants Tr(H),
Tr(H?), and Det(H):

Tr(H)=a+a+y=)\1+/\2+/\3, (6)

>There are 9 different ways of parametrizing it, depending on
the choice of which diagonal mass parameter (y, «, or a) is
explicitly absent in each vector column (see Appendix A for
details). In the parametrization shown here, the rotation matrix
W has the correct limit when the off-diagonal entries in the
original mass matrices H are set to zero, avoiding (apparent)
divergences in this limit.
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Tr(H?) = 2(|x]> + |b|*> + |g]?) + a* + a® + 2
= A+ A3+ A3 (7)

Det(H) = y(aa — |b|*) — alx|* — alg|* + 2Re(bxg*)
= )\1/\2)\3. (8)

By choosing g as an independent variable, it is possible to
rewrite these constraint relations on the rest of variables as®

a=)xl+/\2+/\3—a—’)/, (9)

x|2 = (¥ = ADA =) (A3 —y) = [g|*(a — ) + 2Re(bxg")
(a=y)

>

(10)

(a= A= A0k @) +1gP(a — @) ~ 2Re(brg’)

2 —
1 @)

(11

The interesting thing of this notation is that the constraint
formulas on x and b actually become algebraic solutions
for both x and b when the term Re(bxg*) vanishes identi-
cally. In particular, this is the case when one deals with
mass matrices with texture zeroes in the off-diagonal
elements.

III. FLAVOR IN THE TWO-ANGLE ANSATZ

Equipped with an exact and simple parametrization of
the fermion mixing matrix in both up and down sectors (or
charged lepton and neutrino sectors), we look for economi-
cal patterns among the mixing matrices by following a
bottom-up approach in the hope that it might be comple-
mentary to more top-down approaches such as imposing
flavor symmetries or texture zeroes mass matrices (see [1—
4] as well as the probably incomplete surveys of [8,9]).
One avenue is to find a similar ansatz for the flavor struc-
ture of the mixing matrices in both quark and leptonic
sectors. Such a possibility exists in the sense that in both
sectors, the mixing elements (Vegy) 1z and (Vpyns) 13 are
known to be small. This feature is very interesting and it is
known to lead to a simple parametrization of the mixing
matrix. Note that in the limit V{3 = 0 we have two addi-
tional conditions, since V|3 is a complex number. This
means that in this limit, the mixing matrix will have only
two independent parameters instead of four. We can choose
these four independent parameters to be |V, ], |Vasl, [Vi3l,
and |V,;| [10]. In the limit of V|5 = 0, we have the extra
constraint |V,,| = |V},]/1 — |V,5]|%. This means that the
whole mixing matrix is described by |V,| and |Vy3]|. Note
also that in this limit, there is no CP violation a la Dirac in
both quark and leptonic sectors.

The same type of relations can be written when choosing x or
b as the independent variable.
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In what follows, the subscript O stands for the values of the mixing matrix elements in the limit V;3 = 0. Since V3 is
known to be very small, we believe that the values of the mixing matrix elements |V | and |V bI are not far from their
measured values. For the quarks, we have

VI =1Vl Vil 0
Vo = | =IVOIWIT = IVO,P Ja—vopa—-weR  vol | (12)
Vsl IVE,l — VO, INT = TVE,I? 1— Vo,

Note that this zero-order V2, can be decomposed as a product of two rotations, namely, one is purely the Cabbibo angle
and the other one is purely made out of beauty, namely, |V,

Ve = VaVe, (13)
with
1 0 0 JI—TVO P
— 1— Vo |? VO 0
_ 0 12 us us
VB — O 1 |Vcb| |V | and VC = _|V33| ,1 _ |V3_g|2 O . (14)
0 Vo] \/1 — vy |2 0 0 1
In the leptonic sector we have
J1— VP2 [Vl 0
Vowns = | —IVRIYT = IVRP i —IvePa—ve;p)  visl |~ (15)
|V62|| M3| _|V23| 1 - |V22|2 1 - |V23|2

which can be decomposed also as a product of two rota-
tions, namely, one is purely solar (sol) and the other one is
purely atmospheric (atm):

1 0 0 X X 0
W3=(0 X X), Wgz(x X 0), (19)
0 X X 0 0 1

Vovns = Vam Vsol P (16)  and then to be as general as possible while still keeping the
. original motivation we consider all mixing patterns emerg-
with . g . :
ing from the original structure, but with only one zero in
( 1 0 0 each mixing matrix. Now, we establish all the corrected
Vo = 0 41— IVoI? Vsl and mixing patterns for both up and down quark sectors:
0 =Vl 1/1 — Vo, X 0 Cor X Cor 0
( - an  wé=|cor X Xx | Cor X X|,
V.o — Vl_lvl lVl 0 Cor X X Cor X X
! \ — 1Vl Vl — vyl 0 X Cor Cor X Cor Cor
0 0 ! 0 X X |, Cor X X |,
The diagonal phase matrix P which contains the Majorana Cor X X 0 X X
phases is defined as
(20)
1 0 O
P=10 €7 0| (18) X X 0 X X Cor
0 0 ¢ c
wy;=1 X X Cor | X X 0 1
This structure for the physical fermion mixing matrices, Cor Cor X Cor Cor X
decomposed mainly into just two rotations is quite sugges-
tive and we will use this observation as the starting point of X X Cor X X Cor
our analysis. In this context we ask ourselves how many X X Cor |, X X Corl, (2D
economical possibilities one has to restore minimally and 0 Cor X Cor 0 X

fully the mixing elements and CP violation. We start with
the structure

where X stands for a nonzero value and Cor for a corrected
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originally zero mixing matrix element. These mixing ma-
trices with one texture zero in them can be decomposed
themselves into only two rotations instead of three. We call
this the two-angle ansatz, in which both the up and down
quark sectors are diagonalized by unitary transformations
containing just two angles (i.e. having one vanishing ele-
ment). There are obviously many possibilities for this
ansatz but, in particular, there are 16 cases such that one
can recover in a specific limit the case Vi3 = 0. In this
work we are going to focus only on one specific example of
this type of ansatz, although a full case by case study is
underway. We feel that the main features of this ansatz do
reveal themselves in the example studied here, and we
prefer to continue elsewhere a more systematic
exploration.

Notation—Before we proceed further, we will set up our
notation for all the matrices in both up and down quark
sectors as well as charged lepton and neutrino sectors. We
will define the Hermitian matrices H,,, H;, H;, and H, by

Yy x 8 p y h
H,=|x" «a b, H, =y B f| 22
g b a ot od

with eigenvalues m,, m., m,, my, mg, and m; and

,y/ XI gl pl yl h/
Hl — x/* Cll b/ , HV — yl* B/ f/ ,
gl* b/* al h/* f/* d/

(23)

with eigenvalues m,, m,, m;, A;, A,, and Aj.
In the text, we will also need to refer to the phases of the
off-diagonal terms, denoted as

arg(H,)1, = 6,,  arg(H,)13 =98,  arg(H,),s =6,

(24)
arg(H) 1, = Oy,

arg(Hy)3 = 6, arg(Hy)as = 6y,
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and similarly for the leptons. The matrices diagonalizing
these mass matrices will be denoted, respectively, as W,
Wd’ Wl’ and W,,.

A. THE CASE (13-13): [i.e. (W,);3 = (W;);3 = 0 and/or
Wiz = (W,)13 = 0]

We will now consider the mass matrices from Egs. (22)
and (23) with the extra constraints of (W,);3 = 0 and
(W13 =0 in the quark sector and (W,;);3 =0 and
(W,)13 = 0 in the lepton sector.*

1. The quark sector

For example in the down quark sector imposing
(W4)13 = 0 corresponds to the requirement yf — h(8 —
m;) = 0. After a short computation, we obtain simpler
relations among the elements of the mass matrix:

Iy2 = (p — mg)(m; — p)(m;, — B)

2my, — B —d) '
|]’l|2 — (p B md)(ms B p)(mb - d)
2my, — B — d) '

IfI? = (my, = B)(my, — ), o0, =0, +o6,=m.

(26)

These relations will simplify significantly the general form
of the down quark mixing matrix W, as well as the up
quark mixing matrix W, [see Eq. (2) and Appendix B for
details].

It is then straightforward to show that the quark mixing
matrix takes the form

V=WIW, = PlVexuPa (27)

where P, and P, are unphysical diagonal phase matrices

(25)  given below and
|
cyc, t+ sps7|C|ei? —cys, + sycp|C|€i9 sy1S]
Verm = | —sy¢, T ¢ys5,1Cle® 5,5, + cyc,|Cle” cylfl'a (28)
—5,|S] —c, S| |Cle
The complex rotation parameters C, S, ¢, and c, are given by
((m, — a)(m, — d)e'®r=%) + \[(m, — a)(m, — B)) .
¢ = Wom =, vom Z@0m =B e el = v, 9)
Vem, — a —a)2m, — B — d)
s — oo, WO =0, = ) = 550, = @), = ) 60)

Vem, —a —a)2m, — B —d)

*“In the quark sector, this limit was shown to lead to acceptable patterns in the limit p = 0 and y = 0 [11] and similar limits were

considered in the lepton sector in [12].
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c, = L—)” (31)
\Imc—mu

c, = [P (32)
mg — my

Note that s; = ‘/l — ¢? and that |C|* + |S|> = 1. The CP
phase 6 and the two unphyswal phase matrices P,, and Pd
are given, respectively, by 6 =6, — &, — 50, P, =
diag(1, e, ¢/®%)) and P, = dlag(l eidy oo, *55))
with §; = arg(z).

The previous form of the mixing matrix implies the
following exact relations for the quark sector:

Vil _ |y —m, Vil _ |p = mq (33)
Vel \me— 7 Vil mg—p
and
Vsl _ [y = m)lm, — my)
Vv, m. —m,)(p — my)
| tdl ( )(P d) (34)
|Vcb| _ (mc - ‘Y)(ms - md)
|Vts| (mc - mu)(ms - p),

which really correspond to two independent constraints
(i.e. the third and fourth relations can be obtained using
the first two along with the unitary constraints).

As can be seen only two original mass matrix elements y
(from H,) and p (from H,) appear explicitly in these last
four relations showing the first effect of the (13-13) ansatz,
i.e. linking each of the previous ratios to a different quark
mass matrix, and, in particular, to the first diagonal ele-
ments of each mass matrix. Once we fix these two elements
to fit the experimental value of the ratios given in Egs. (33)
and (34), we will still have 6 free parameters (including 4
phases) to fit the rest of the data (i.e we need to fit two more
scalar observables from the experimental data, which, for
example, can be taken to be the absolute value of |V,;,| and
the value of the CP phase of the fermion mixing matrix).
We can choose to use a, d and the phases of x, g, f, and b as
the free parameters. It is also useful to define the phase
combinations:

Ayy = arg(H,)o3 — arg(H, )3 = 85 — 6, (35)
Ay, = arg(Hy)y, — arg(H,);, = 6, — 8, (36)
Az = arg(Hy) 3 — arg(H,) 13 = 8, — 3, (37)

which have the constraint
Ay + A=Ay, (38)

due to the (13-13) ansatz imposition.
Of course, we have more than enough free parameters to
fit the two remaining observables, but as we will shortly
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see, of the 4 free phases, only two phase differences can be
relevant, and the 2 real parameters a and d turn out to be
statistically irrelevant if the two phases are properly
chosen. In other words, in most of the parameter space of
the six free parameters needed to produce the two remain-
ing physical observables, 4 directions are more or less
irrelevant, with two phase differences being the two pa-
rameters required to obtain a good experimental fit. This
situation is somewhat surprising because the amount of
“useful” free parameters is less than the total number of
free parameters. Let us see how this is played out.

Equation (33) shows that y = O(m,) and p = O(m,)
are required in order to obtain a good fit with experimental
data [13]. This has interesting implications for V,;, since it
means that a + o« =m, + m, + O(m,) and d+ B =
my, + mg + O(m,) after using the trace identity of H,
and H,;. We can therefore write

_Am,—a)(my,— d)e*> +fla—m,)(d—m,)
Vip(a,d,Ays) =~ N .

mc)(mb - m.\')
(39)

It turns out that when the phase A,3 is small (modulo 27),
statistically we find that |V, (a, d, 0)| ~ 1 for any randomly
chosen value of a and d. In fact, the generic value of
|V.p(a, d, Ayz)| is very much correlated with the value of
A»3, with little dependence on the values of the other two
variables, at least for small enough A,;. This is shown in
Fig. 1, where we plot the distribution of |V,,(a, d, Ays)|
with respect to A,; for randomly chosen values of «a, d, and
A,s. It is apparent that there is a clear correlation between
the value of the phase A,; and the value of |V,,|. The two
black curves correspond to the 25% and 75% quantiles of
the distribution of |V, | for a given value of A, (i.e. 50% of
the randomly generated points lie between the two curves,
with 25% above them and 25% below).

All this shows that the generic value of V,;, in this ansatz
is actually governed by the specific value of the phase A3,
with very mild dependence on the other 2 parameters a and
d. Tt is not clear though, that demanding A,; ~ 0 will be
enough to fit the observed data in the quark sector since
Vit~ 0.999, i.e it is quite close to 1. The random scan of
Fig. 1 does not show the distribution of V,;, for A,; = 0, but
once we fix A,; we just have two free parameters, a and d.
In Fig. 2 we show the complete allowed phase space for a
and d, which are subject to the experimental constraints
m, <a<m, and my < d < m,. The different shaded re-
gions are the points where V,;, > 0.995, for three different
values of the phase difference A,;. When this last one is
zero, the region is quite large, and it decreases very fast as
the phase is increased. Because the area of parameter space
can be quite large we may still say that the value of |V, |
consistent with experimental data could be considered
“generic” as long as the phase difference A,; is vanish-
ingly small.
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Random Distribution of | Vy, (a, d, As3) |

[ Vip |

_ ex
Vub = Vub P

_ ex|
Via = VP

00 L L L
0 /6 /3 /2

Azz

2r/3

FIG. 1 (color online).
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Random Distribution of J (a, d, Ayz) | J&P

J / Jexp

0.0

0 7r}6 /3 n}2 27;/3 57rl/6 Vs

Az

Distribution of |V, (a, d, A,3)| with random a, d, and A,; with respect to A, (left panel), where @ and d are

two diagonal elements of the quark mass matrices H, and H,, and Ay; is the difference between the phases of the H 3 elements of
these matrices. On the right panel, we present the distribution of the Jarlskog invariant J(a, d, A},) with random a, d, and A ,, for
A,3 = 0. On the two panels, the black curves represent the 25% and 75% quantiles of the distribution for fixed A,; (left) and A,
(right). In other words 50% of the random points lie between the curves, with 25% above it and 25% below it.

Finally, one can also compute quite easily the Jarlskog
invariant [ 14] in this context. From Eq. (28), and using, for
example, the definition J = Im(V ., V}, V>, V,,), itis easy to

Regions where | V| >0.995 for various A,;

Az3=0

A23=7l'/12
0

100
a (GeV)

o 50

FIG. 2 (color online). Regions in the plane (a, d) where
[V,,| >0.995, for three different values of A,;. The dashed
curve is a contour of the experimental fit for V,, =~ 0.9991 in
the case A3 = 0. One sees quite clearly that as soon as A,; is
increased, the parameter space favorable for large values of V,,
shrinks dramatically.

see that it will have the form:

_ 2
J = c,cys,5,|C||S|* sind,

(40)

where ¢;, C, and S were given in Egs. (29)—(32), and where
0 =0,— 0, dc with . = argC.

Before analyzing in more detail the dependence on the
original mass matrix elements, it is interesting to relate the
phase 6 not just to the Jarlskog invariant but also to the
angles of the unitarity triangle ¢; = B, ¢, = a, and ¢3 =
v. These angles are defined as

V.,V
¢ =B=arg(——“ ';;*’), 1)
! thth
Via t*b)
— o = arg( - , 42
4= 0= ang{ — @2)
— = — ZudZub) 43
b= arg( P 43)

and the relation between them and the Jarlskog J is
J =V ViallVip[1Voal, sina = |V IV IV Veal,
SinB = |Vub||Vcb||Vcd”Vud| Sin)’- (44)

In the case of our ansatz, we can rewrite our J as
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T=1WVullVallVile,e,,  sing = [VllVellVile,s,,
sin = |V, ||V, [Vl s, sind. (45)

For example, from the first identities of Eq. (44) and (45)

one sees that we must have

c,c, sind

sina =
|Vud|

(46)
|
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Since ¢, ¢, = |V,4, it follows from the above equation that
a = . The experimental constraints on « are such that
a = (88f§’)° [13], which basically means that the phase 6
is constrained to be 0 = 77/2.

A more revealing way to see what this means for the
original elements of the mass matrices, we can actually

rewrite the Jarlskog in a more explicit way as

J = 1VullVile,c,

(W(m, — a)(m;, — d)sin(Ar; + Ayp) + /(m, — a)(m;, — B)sinA,)

(47)

(W(m, — a)(m;, — d) sin(Ay; + Ayy) + /(@ — m)(d — my) sinA )

Vem, —a = a)2m, — B = d)

= |Vuh||th|Cpcy

where the approximation of the second line comes from
assuming that a + @« = m, + m, + O(m,) and d + B =
my, + mg + O(my).

We showed earlier that the imposition of A3 = (&, —
8),) ~ 0 gives a nice statistical reason for the large value of
|V,,|. With that extra condition, one actually has A, ~ 6,
which then means that A, ~ 7/2 due to experimental
bounds. The experimental best fit value of the Jarlskog
invariant is |Jg,| = 3.05 X 107> [13]; in the right panel of
Fig. 1 we present a scan of values of the function of J
shown in Eq. (48), for random values of a, d, and A,
(assuming A,3; = 0). It is apparent that the observed value
of J can be obtained quite generically when A}, = 7/2, in
a quite insensitive way to the specific values of a and d.

It is quite suggestive that some specific phase differ-
ences between the elements (H,),; = f and (H;),; = b,
and between the elements (H,,);, = y and (H,;);, = x,and
between the elements (H,);3 = h and (H;);; = g, given
by

A23 = 5] - 517 = O, (49)
T

Ap=206,-6,= X (50)
T

Ay=46,—-6,= bR 51

do lead to good generic values of both V,;, and J. We are
left with four parameters a, d and two combinations of
phases independent of A, and A,s, all from the original
mass matrices, which do not seem to play any important
role in obtaining a good overall fit in the quark sector.

Before we finish this subsection on the quark sector, we
would like to point out that since a and d can take almost
any value (inside their allowed range), one might actually
get very close to a symmetric limit, namely, a (2 < 3)
family symmetry, relating second and third families (see
[9] for implementations mostly in the lepton sector).

(48)

'\/(mt - mc)(mb - ms)

[

Forgetting for a moment our ansatz but assuming the
(2 < 3) limit for both up and down quark mass matrices,
one is then guaranteed to have vanishing elements (W,,),5
and (W,),3 (i.e. we recover our ansatz). Moreover some of
the elements of the mass matrix are subject to the con-
straints

x=g y=h, (52)
a = a, B=4d (53)

From these equations, we must have Ay; = 6, — &, =0
and using Eq. (29) it is easy to see that |V,,| = 1 exactly,
which means also that |V,,| = |V | = |V,4| = |V,| = 0.
Since the fitted values of |V, |, |V |, |V,4l, and |V 4| are at
most 1072 and much smaller than V,,, then it seems
plausible that a small deviation from this symmetric limit
can easily restore the experimental values of these V;’s.
To obtain a correct experimental fit, one would also have
to require the phases of x and y to be separated by /2 (as

remarked earlier), and moreover the values of p and y will

[V |

and
[Vepl

have to be chosen so as to obtain the correct ratios

ll‘\//’,dl [see Eq. (33)].

Although we imposed a flavor ansatz mainly for empiri-
cal reasons and simplicity, it is interesting that the patterns
emerging from it do actually lead to a possible type of
symmetry. Of course we just considered one of the possible
cases of our scheme, and others cases might lead to differ-
ent patterns or reveal some other feature and for this a more
systematic study is required, some of it being already
underway.

2. The lepton sector

In the lepton sector, the mixing matrix takes the same
form as for the quarks in the (13-13) ansatz, i.e.

033010-7
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= P! Veuns. (55)

where P, is an unphysical diagonal phase matrix given below and

CyCy + 58, |C' e

VpMns = TSy Cpy + cy/sp/|C’|ei9/
_spllsll

—cys, + sy,cp,|c'|¢f/9’ s8]
Sy/Spr + cy/cp/|C’|e“9 cy/|S’| PV, (56)
—cpllS’l |C’|e”"9/

where P, is the Majorana phase matrix given below and the complex rotation parameters C’, §', ¢/, and ¢, are given by

R

De" % + Jn, = a (ks = )

(ie. [C'] = [Vasl), (57)

Jom, —a —a)2h, - B — )

—B) — "

10 fm, — a)(A; — d)

(58)

Vem, —a' —ad2r; — g = d)

g _ o, Wlm, = a0y
m, — vy
Cy =4[ (59)
Vmu —m,
A —p/ (60)
c, = .
P )12 - Al

Note that s? = 1 — ¢? and that |C'|> + |§'|*> = 1. The CP
phase 6’ and the Majorana phase matrix P,,, as well as the
unphysical phase matrix P; are given, respectively, by 6 =
Oy 8 r— 8¢, P, = diag(l, 615/ ié, '+6C’)), and P, =
diag(l e’é’ i@, ’*86’)) where §; = arg(i).

Again, the previous form of the mixing matrix implies
the relations:

vV, — Vv ’ F— A
| 3| Y m,, | ¢1|: P 1/ (61)
/’v’;l Y |V72| )‘2 - p
an
Vsl [(¥Y = m)(Ay — Ay)

|VTI| a (mp, - me)(pl - /\l)’

[Vl _ (m, —¥)(A — Ay)

|v7'2| (m,u - me)()‘Z - P/)’
with again only two parameters from the original mass
matrices separately controlling each ratio.

But, the lepton case is different, obviously, because the
lepton mixing matrix contains two large angles and also
because the neutrino mass structure is unknown and might
not be as hierarchical as in the quark sector (see, for
example, [15] for the latest global fits coming from neu-
trino oscillation experiments). In the (13-13) ansatz we see
that we must still enforce the charged lepton mass matrix to
have a very small first diagonal element, i.e y' = O(m,) in
order to obtain a small value for the ratio |V,3|/|V ;3|. This
will imply that @' + &' = m, + m, + O(m,) (from the
trace identity of H;) which will simplify the functional
form of V3 of Eq. (57). Before doing so, we need to

(62)

|look also into the required value of p’ to obtain a correct
fit for %'v 1/4/2 in the approximate tribimaximal
scheme (TBM) [16]. This leads to p’ ~ A, + 2A;, and
we can now use this relation to obtain the simplified

form of V 5:
r3(f1 d', A23, 1)
W=Dy + A = d)e s+, (@ = m,)(A, +d)

Yz —m, ) (D3 +24)

5

(63)

where D3 = (A3 — A;) is fixed by the measured atmos-
pheric neutrino mass difference.’

We now have 7 free parameters (including 4 phases),
since one of the neutrino masses is unknown, and we
choose it to be A; = m%. As seen in Fig. 3, when m; <
0.1 eV, the correlation between the phase A/, and the
value of |V | is basically the same as it was in the quark
sector, and this is basically due to the fact that this feature
happens for masses which are hierarchical (and in fact, for
larger values of m; the correlation between the phase A/,
and the value of |V 3| starts to wash out). It is quite
suggestive, that if m; <0.1 eV and A}, = 7/2, then we
obtain a generic size of |V 3| ~ 1/+/2, as shown in Fig. 3.
Because ' is small, ¢,, ~ 1 and we will also have |V ;| ~
1/7/2. These two values of |V 3| and |V5] are consistent
with the TBM where |VIEM| = IVlTEMI = 1/+/2 and so we

find that in the lepton case the preferred value of the phase
combination A% is 7, which statistically predicts a large
value for both the mixing angles V.3 and V3. It is also
interesting to note that the charged fermion mass matrix
must have the same structure as the up and down quark

5Although we have been writing Ay, A,, and A3 for the
neutrino eigenvalues, these could in fact correspond to the
squared physical masses if we consider the neutrino mass matrix
squared as our starting point. In this case, D13 = (Am?) .
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Random Distributionof |V_3(a’, d’, A’y3, my) |

|V1'3|

m; < 0.1eV

0.0 :
0 /6

/2 2n/3  57/6 b/g

A’y

71}3

PHYSICAL REVIEW D 81, 033010 (2010)
Random Distribution of J(a’,d’, A’13, m1) /| Ves

0.5
L ANyy=m /2
my <0.1eV |Vﬂ3 |2 ~1/2_
0.4} IVal? ~1/6
L ¥ ] L %
)
L]
0.3

J/1 Vel

0 71}6 71'}3 /2

9
A’y

FIG. 3 (color online). Distribution of |V 3(d’, d’, A}, m;)| with random o', d’, Ab;, and m; (defined as the mass of the lightest
neutrino) with respect to A}, (left panel). On the right panel, we present the distribution of the Jarlskog invariant J(a', &', Al,, m;)
normalized to the value of | V3|, with random o', d', A},, and m, for fixed A}; = 7/2. On the two panels, the black curves represent
the 25% and 75% quantiles of the distribution for fixed A}, (left) and A/, (right). In other words 50% of the random points lie between

the curves, with 25% above it and 25% below it.

mass matrices, namely, that the first diagonal element is of
the order of the lightest eigenvalue.

Since the mixing element V_; is not small, we also
conclude that the neutrino mass structure must be different
from the other three matrices. This could be due to the fact
that the eigenvalues are not as hierarchical as for the
charged fermions. As in the quark case, it is interesting
to note that further imposing some flavor symmetry might
simplify the relations obtained in this ansatz. In particular
one could ask what is the effect of imposing the (2 < 3)
family symmetry (see, for example, [9]) only in the neu-
trino sector. In our case this is a natural question to ask
since this symmetry imposes automatically the element
(W,)15 to be zero, which is the defining condition of our
ansatz. But it also imposes the following constraints on the
mass matrix elements

(H)), = (H,)3 ey ="n, (64)
(HV)22 = (HV)33’ Le. BI = d/’ (65)
arg(H,)y; = m, ie 6p = . (66)

o’
CyCy + Sysy e {\/5
_ i0
S),/Cp/ + cy/sp/e’ /\/E

_Sp’/\/5

Vemns =

_ i0'

Cy/Sp/ + sy/cp/e’ /\/E
il

SySy + cy/cp/e‘e /\/i

This will have interesting consequences on the lepton
mixing matrix because in this case we will have

VT3 - Cl
1 @ = my) = = e )
V2 (m, —m,)
+ O(m,/m,,), (67)

where we have assumed that y' = O(m,). Now one can see
that when 8, = 77/2, independent of anything else, we
will have |V 5| = 1//2, as well as |$'| = 1/+/2. Thus the
2 < 3 symmetry, along with the requirement of the phase
of b’ to be /2, forces the appearance of a large mixing
angle in the Vpyng matrix, and we remind the reader that
we are not considering a diagonal charged lepton mass
matrix, although all our matrices are taken in the (13-13)
ansatz. The form of the Vpyng matrix under these assump-
tions is

sy’/\/i
c)/’/\/5 Pw
v

(68)
_Cp//\/i
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p M

the Majorana phase matrix P, is given by

where as before, ¢, = 1'::"_yl and ¢, = 1, t:j: and where 6’ is the Dirac CP phase given by 6/ = 6, —

The phase d is given by sindo =

m;—m

Al O(m,/m,,).

PHYSICAL REVIEW D 81, 033010 (2010)
6y’ - BC’ and

0
0 ) (69)

ei(5x1+5c/)

Finally, in the more general case where one does not consider (2 < 3) symmetry in the neutrino sector, the leptonic

Jarlskog invariant J is computed to be

J = |Ve3||VTI||V73|C;)C/y sing’, (70)

= |V€3||VT1 |ClpC{y

Wn, = a")(my — d')sin(Aj; + A}y) + y(m, — a')(my — B) sind1,)

(71)

V@em, —a' —a2m; — g — d')

For the preferred value of Aj; = 7/2, such that statistically it is more favorable to obtain a V,; mixing angle close to

1/ \/2, we obtain

, (i, = a)my — d)cosAl, + lm, — a)ms — B)sinAty)

(72)

J= |V83||V’rl|c;)cy

This suggests that now, the value A}, ~ 77/4 will max-
imize the possible value of J (normalized to |V ,3]), and this
is confirmed in the random scan shown in Fig. 3.

IV. DISCUSSION AND OUTLOOK

In this work, we started by obtaining the simplest pa-
rametrization for the diagonalization of a 3 X 3 Hermitian
matrix, as a function of both its matrix elements and its
eigenvalues. Since the masses of fermions in the SM are
well known, the problem to attack is not an eigenvalue
problem, but an eigenvector problem. In other words, we
are able to obtain the eigenvectors of a Hermitian matrix in
an algebraically compact form because we treated the
eigenvalues as known parameters, instead of unknown.
With this parametrization in hand, we wanted then to
show how it could simplify and make quite transparent
the analysis and study of some flavor schemes. To this end
we defined a new flavor scheme which imposes some
(arguably obscure) constraints on the flavor structure in
the fermion sector. The constraint imposed is the require-
ment of the vanishing of one of the mixing angles of the
diagonalization matrix of each Hermitian fermion mass
matrix of the SM. We called this the “two-angle” ansatz
(i.e. out of three angles to diagonalize a Hermitian matrix,
we consider the family of Hermitian matrices diagonalized
by only two angles), and it is bottom-up motivated, i.e. it is
inspired on the observed structure of both Vi and Vpyng
matrices. Nevertheless we also observe that in flavor mod-
els where one requires a full symmetry between two of the
three families, like the u — 7 symmetry models, one of the
consequences is precisely the vanishing of one of the

Vem, — o' —a)2m; — g — d)

[

mixing angles.® But we mainly decided to keep the
bottom-up approach motivation and study the patterns
emerging from our two-angle ansatz and focused on just
one possible implementation, the (13-13) case, in which
the (W),3 entries of all the diagonalizing matrices happen
to vanish. Using our parametrization, one can actually
write both Vg and Vpyng in terms of the original matrix
elements and eigenvalues. In particular we found a peculiar
dependence of one of the mixing angles with the model
parameters. We observed that by fixing the phase differ-
ence A3 between two parameters of the up and down mass
matrices (or the neutrino and charged lepton mass matri-
ces), the mixing angle V,;, (or V3) can be “predicted” in a
statistical sense, i.e. if one makes a random scan allowing
the remaining free parameters to take any possible value,
including the eigenvalues, one obtains a narrow distribu-
tion for the value of |V,,| (or |V 5]), and the central value is
a monotonic function of the phase difference A,3. This can
be seen by rewriting the general formula for V,, in the (13-
13) ansatz [see Eq. (29)] as

Vil = F(@, & d, B, Ayz)

(Y1 = a) (1 = d)es +4/(1 —a)(1 - E)))

= Abs( =
Je-a-ae-5-a
(73)

“In the case of a complex symmetric neutrino mass matrix, the
authors of [17] studied the symmetry conditions required for the
vanishing of one of the mixing angles of the rotation matrix.
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where @ = a/m,, & = a/m,, d = d/my, and B = B/m,,
and a, o and d, B are diagonal elements of the up and down
mass matrices, respectively. If the mass eigenvalues m; =
A?’d are unconstrained, the only constraints on the parame-
ters required for a random scan are

N/ <@a<1 and M/M<Bd<l (74

since the diagonal elements of a Hermitian matrix must be
bounded by its largest and lowest eigenvalues. The result of
a scan over all these parametersbs (including the eigenval-
ues) but for fixed A,; is a highly peaked distribution
centered at some value. This means that the generic value
of |V,,| is controlled almost exclusively by A,5. Of course,
one may think that after fixing the masses to the experi-
mental values, as well as the other mixing angles, maybe
we might lose this statistical prediction. This is not the case
as was shown in Fig. 1, where the scan is performed now
with only two free parameters, the rest having been fixed
by other experimental observables. There is still a clear
correlation between the value of the phase difference and
the value of the angle V.

The imposition of this specific two-angle ansatz [the
(13-13) case] on the fermion mass matrices amounts to 2
constraints per mass matrix, and therefore 4 constraints in
the quark sector. What we have noted is that with only one
more constraint, i.e. the fixing of the phase difference A,;,
we are able to give a statistical prediction for the value of
the angle |V,;,| (or |V _5]), and this, irrespective of any other
parameter. In particular if A,; =0 we would expect
|V,,] ~ 1 and in the lepton sector, if we fix Al = 7/2,
then we would expect |V,3] ~ 1/+/2, both cases being
close to the experimental fits. Two Hermitian matrices
contain 18 free parameters altogether and so it is nontrivial
that after imposing only 5 constraints on the whole set we
obtain one prediction, irrespective of anything else.

Once noted, this nontrivial property, we continued ana-
lyzing the rest of consequences of our scheme and showed,
for example, how the CP violating phases in both quark
and lepton sectors depend on the phases of the original
mass matrix elements. Another interesting outcome was
the realization of how to treat in a similar way the quarks
and charged lepton mass matrices, and use the special case
of the neutrino matrix to explain in a transparent way the
observed differences between the lepton and quark sectors.
In particular we also analyzed the consequences of further
imposing a (2 < 3) symmetry in the neutrino sector.

It is true that out of many possible implementations of
the two-angle ansatz we chose to study only one case. We
felt that this one case would show the main features of the
scheme in a transparent way, and so we leave the system-
atic case by case study of the scenario for the future,
although part of this work is already underway.
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APPENDIX A: DIAGONALIZATION OF A
HERMITIAN MATRIX

We first note that the diagonal elements of a Hermitian
matrix are bounded by its smallest and largest eigenvalue,
respectively. This means that in order for a Hermitian
matrix to have zeroes in the diagonal entries, we must
have at least one eigenvalue positive and one negative,
the third one can take either sign, to accommodate the
zeroes in the diagonal elements. For simplicity, we do
not consider this case here and instead concentrate on
positive definite Hermitian matrices such that the eigen-
values are all positive. Of course the results can be trivially
extended for the case of a more general Hermitian matrix,
not necessarily definite positive.

Let us introduce our notation by considering the positive
definite Hermitian matrix H

(AL)

The diagonal entries of H must be real and positive and are
bounded by its smallest and largest eigenvalue, respec-
tively. Taking 0 < A; < A, < A5 the bounds are

0< A =y= (A2)
O<A1Sa5/\3, (A3)
0< A =a= A\ (A4)

The off-diagonal entries of H are also bounded by its
smallest and largest eigenvalues in the following ways;
since a 3 X 3 Hermitian matrix has only three blocks of
off-diagonal elements, namely (x, g), (x, b*), and (g, b) up
to conjugation [18]:

0 =qIxI*+ Igl* = 3 — A, (AS)
0 =+lgl> + 6] = 3IA5 — A, (A6)
0= y/IxI? + B2 = A5 — Ayl, (A7)
which means that
0 = |x| = l|A3 - /‘]l, (AS)
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0=lgl =ilrx; — Ayl (A9)

0= bl =4IA; — Ayl (A10)

The above results are valid for any N X N Hermitian
matrix. These bounds might not be very revealing in the
quark and charged lepton sectors, since the difference
between the heaviest and the lightest eigenvalues is of
the order of the largest eigenvalue, and so the constraint
on the off-diagonal entries is quite mild. On the other hand,
if the difference between the heaviest and lightest eigen-
value is very small then one sees that the off-diagonal
entries must actually be smaller than half that difference,
and so the Hermitian matrix must be close to diagonal
form. This case might be possible in the neutrino sector
in the case of quasidegenerate masses. We now write the
three invariants Tr(H), Tr(H?), and Det(H):

Tr(H) =a+a+y=2A + 4+ Ay, (A11)
Tr (H?) = 2(|x|> + |b)* + |g|?) + a® + a* + »?
— R+ A2+ (A12)

Det(H) = y(aa — |b|?) — alx|* — alg|* + 2Re(bxg*)

= A A As. (A13)
They can be rewritten as
a=A+ A+ A3 —a—v, (A14)

(¥ = 2D =) (A3 —y) = Ig|*(a — y) + 2Re(bxg*)

2
I @)

s

(A15)

(a—A)(a—A)(A3 —a) +|gl*(a — a) — 2Re(bxg")
(a—vy) '

b =

(A16)

As noted in the text, the interesting thing of this notation is
that the constraint formulas on x and b actually become
algebraic solutions for both x and b when the term

Re(bxg") vanishes identically.
When one is interested in finding the eigenvalues of the
mass matrix given in Eq. (Al), it is necessary to find
|

A —
]

and obtain finally the eigenvector

) . (a—A)
—

If instead, we choose row 2 as linearly dependent we obtain

(afm-)l’_

Cl_/\l‘
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solutions of the characteristic equation:
0=(a= DA =yA—-a)—x)+ Q- bl

+ (A — a)lgl® + 2Re(bxg®). (A17)

In our case, however, we do know the eigenvalues, which
are quantities measured experimentally. Therefore it is
preferable to treat them as known parameters instead of
unknown variables. In this case, we can obtain simple
analytical forms for the unitary matrices W, and W,
responsible for diagonalizing the mass matrices H, and
H,. Here is the simple procedure: let E,, = (Ef", Eg", Eg\")
be one eigenvector of the mass matrix H,, i.e. H,E,), =
AiE,),, where A; is one of the eigenvalues of H,. This
means that H,, E,, = 0, or simply

Det (H,,) = 0, (A18)

which is in fact the characteristic equation of H, given in
Eq. (A17) and where

((7 —A) x g

x* (@ —A)) b ) (A19)
g" b* (a—Ay)

Hu/\~ =

i

Because, the Det(H,,, ) vanishes, we know that one row of
the matrix must be a linear combination of the other two.
Depending on which row we choose to treat as linearly
dependent, we can obtain different (but equivalent) pa-
rametrizations for the eigenvectors E,, . Since the homo-
geneous equation (A13) can be multiplied by an arbitrary
number, we will obtain ratios (of 2 X 2 determinants) for
the eigenvector components:
Using the first row as linearly dependent, we obtain

x* b
A * - A)
EAI E)t, — g (a 1 A2
2 / 1 (a _ )\l) b B ( O)
b* (a—Ay)
X (a—=A) |
NiJphi g" b*
E5'/E) @A) b . (A21)
b* (a—Ay)
To simplify the notation, we can choose
b
a — Ai ’
x* b X (a—A) I )
E3 ’ % * ! y A22
g (a—A) I g b (A22)
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2nd row — X (7 )‘ ) (7 )‘ ) X
Eu —( b @ I | (a—)l)l I ) (A23)
and finally when the third row is treated as linearly dependent we have
3 row — (y=A) g| |r=A)
= (LS BL17 ST W (A2

Since there are three eigenvalues, and three parametriza-
tion choices for each, we have 9 equivalent parametriza-
tions of the unitary matrix W, constructed using any of the
previous eigenvectors. Note that the difference between
each parametrization, is the explicit absence of one of the
diagonal elements in the formulas (7 in the first one, « in
the second one, and a in the third one). Of course, the
characteristic equation (A17) relates each ‘“‘basis” with
each other. In the text, we used this parametrization free-
dom to choose a mixing matrix W that has the correct form
when b — 0, g — 0, and x — 0. In that limit, the different
parametrization can be written as

ES™ = (@ — A)(a = A),0,0), (A25)
ELZtr)l\("irOW = (O, —(’)’ - /‘i)(a - /\i)’ O)’ (A26)
EX™ =(0,0,(a = A)(y — X)) (A27)

Some of these can become problematic since in this limit
we have (y — X)) = 0, (& — Ay) — 0, and (a — A3) — 0.
There is, however, out of the 9 possible combinations, one
single choice which has the correct smooth asymptotic
behavior. The choice is to take E,3 " for A;, E;5™ for
Ay, and E)3™V for Aj, ie.

(a=A)(a=A)—|b]? gb*—x(a—A,) xb—g(a—A3)
i N, N;
W = ghb—x"(a—A) (y=M)a—2y)—gl? x'g—b(y—A3)
N N

1 2
Xb*—g*(@—Ay) xg —b* (y— ) (v—As)(a—As)—lez
N, N, N3

(A28)
with the normalization parameters

N? = (A3 = 2Dy = A)[(a = A)(a — Ap) = |bI*],
(A29)

y) + 1gl’]
(A30)

N3 = (A3 = 1)(A — AP[(a — A)(A; —

N3 = (A3 = )3 = 2)[A; — Y(A3 — @) = Ix]*].
(A31)
Of course depending on the specific scenario studied, some

other parametrization might be used. For example, one can
use only the eigenvectors of Eq. (A22), i.e.

(@a=A)a=A)=1bP (a=X)(a=1)=b> (a=A3)(a—A3)—|b]*
N, N N

2 3
W = gb—x*(a—A\y) g b—x"(a—\y) g b—x"(a—A3)
N, N; N; ’
X'b*=g* (a—Ay) X' =g (a—Ay) X'b* —g* (a—A3)
N, N N
(A32)
or use the ones from Eq. (A23):
gb"—x(a—Ay) gb"—x(a—Ay) gb*—x(a—X3)
NT N, N7
(77/\])(“7/\1)7|g|2 (’Y*/\z)(a*}\z)*|g|2 (7*/\3)(0*A3)*|g|2
NT N, N7 )
xg"—b* (y=A) xg" —b* (y=Ay) xg" =b* (y=A3)
N7 N, N7
(A33)
or use the ones from Eq. (A24):
xb—gla—A) xb—gla—2y) xb—gla—23)
N7 N7 N;
W= x'g=bly—=A) x'g— b(y Ay) x'g—bly—»Ay)
N;H 2 ]v3
(y=A)e=a)—Ixl* (y=A)a=A) =[x (y=A3)(@—A3)—Ixl?
N;// Né// ]v3
(A34)

where the normalization constants N, N{’, N}, N}, Nj,
and N can easily be obtained from N;, N,, and N3 by
permutation of the mass eigenvalues.

All in all, one can write the matrix W with 9 different
parametrizations (modulo a diagonal phase matrix), by
permutations of the column vectors from Egs. (A22)-
(A24). Of course, when one takes some special limits
some of the parametrizations will reveal themselves less
useful, as it is possible to find undetermined expressions of
the type 0/0. For example in the parametrization shown in
Eq. (A33) this will happen if we take simultaneously the
limits g — 0 and x — 0. In that situation one simply
chooses the parametrization with a smooth limit.

It is easy to realize from Eqs. (A32)—(A34) that one can
obtain very simple expressions for the absolute value of
each element of W. By taking the real elements of these
three parametrizations and squaring them we obtain, in
terms of the eigenvalues and the parameters vy, a, x, and g

(A = V(A3 = 9) + 1l + [g?

2 =

Wl (A3 = A)(A, = Ay) A
_ Sy — 12— el

|Wol? = (y = A)(A; = y) — Ix gl (A36)

(A3 = (A2 — Ay) ’
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x> + 1gl> = (¥ = 2)(A — ¥) (A3 =y +a— A — ) — xP?

[Wisl* = . (A3T) [W33|* = (A43)
: (A3 = )43 — Ay) ¥ (A3 = )45 — Ay)
2 (A3 = A)(A —Ay) 7 APPENDIX B: THE (13-13) ANSATZ
lg> + (A — Y)(a — Ay) Let us recall the notation for H, and H,:
Wl = 2 =, (A39)
- (A3 = A2) (A3 — Ay) (’}’ x g) (P y h
Hu = x* a b ’ Hd= y* B f . (Bl)
W2 = (A3 = Y)(A3 —a) — |g]? (Ad0) g b oa ot od
» (A3 = A)(A3 = A) . o
W, and W, are the unitary transformations diagonalizing
A+ Ao — v —a) — |x]? H, and H,, respectively. We want to find the parametriza-
W5, | = % l())(t 3_ B )2(/\ 7: )\6;) G ., (A41l)  tion of both W, and W, when the elements (W,),s and
3 1A%2 ! (W,)13 vanish. The requirement for the cancellation of
these elements is xb — g(a — m,) =0 and yf — h(B —
_ Y 2 '
[Ws,|? = (A = VA3 + A =y = a) + |l . (A42) my) =0, and with them we obtain in both sectors the
(A3 = A2) (A3 = Ay) simpler identities:
|
|x|2 — (y B mu)(mc B Y)(mf B CY) | |2 — (p B md)(ms B p)(mb B ﬂ) | |2 — (y B mu)(mc B Y)(mt B a)
2m, — a —a) ’ Y @2m, — B —d) ’ g 2m, — a —a) ’
(p — mg)(m; — p)(m, — d)
P = T P = — @ =), 1P = o, = B, — d),
b
5x_5g+5b:77-’ 5)‘_5h+5f:77' (B2)

From the above expressions we obtain the following simple parametrization of up and down quark mixing matrices, with
(W,)13=0,(Wy);3=0:

(me—y) — | ymm)m—a) s, _y=m)lm—a) ,i(5,+8,)
(m.—m,) (m.—m,)2m,—a—a) (m.—m,)2m,—a—a)
t— | _ [—m) —is, _ (m.—y)(m,—a) (m.—y)(m,—a) i5
u Von—mg€ (n.—m,)2m,~a—a) emm—a—a® | (B3)
(m,—a) —is (m,—a)
0 Voma-a¢ Van a-a

and

(my—p) _ [lp—my) is,
V=g Vo, =€ 0
| _ [wmdmp i, _ [ m—pmB —d)_i5
Wa Vi Cmgam—p-a¢ Gy o2y —B—d) @mp-a¢ | (B4)

(p—mg)my—d) _,~i(8,+8;) (n,=p)lmy—d) i, (my—=p)
(mg—mg)(2my,—B—d) ' (ms—mq)(2my, —B—d) 2my—pB—d)

One can now check that in this ansatz, which basically shows that the structure of the quark mixing matrix is

cyc, + spsye"(afﬁy)C* —cyspe"‘sy + sycpei‘SXC* sySei‘S*
Verm = | —syc e + cys5,e 10 C* s),spei(‘s)'_5~*) +¢yc,C* S | (B5)
—spS*e*"Sy —c,S8* C
where C, S, Cys and ¢, are given by G gity (\/(mt_a)(mb —B)— ei(affab)\/(mt_ a)(m,, _d)),
V@2m,—a—a)2m,— B—d)
i(6,—68,) (B7)
C= W(m; = a)(my, — d)e'®r=%) + /(m, — a)(m; — B))

V@m, — a — a)2m, — B — d) m.— vy
. Cy= |/ (B8)

= Vi (B6) m, — m,
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and s; =

ms — p
—my

mg
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: (B9)

{1 — c¢?and |C|* + |S|*> = 1. The previous form for Vi can then be put in the form given in Eq. (28) by pulling

out two diagonal phase matrices P, and P, as given in the main text.
We can also quickly compute the Jarlskog invariant J for this mixing matrix, for example, by computing

(1]

(3]
(4]

[5]
(6]

(71

J =1m(V, ViV, V),

J =1Im(=c3s?

Nek

+c,c,5,8

CpSyS5,|S[7e 02 ),

(B10)

_ 2
J=cyc,5,5,S]

W(m, — a)(m, — d)sin(8, — 8 + 8, — 8,) + /(m, — a)(m;, — B)sin(8, — 8,)

V@m; —a = a)2m, — B - d)
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