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We holographically engineer a periodic lattice of localized fermionic impurities within a plasma

medium by putting an array of probe D5-branes in the background produced by N D3-branes.

Thermodynamic quantities are computed in the large N limit via the holographic dictionary. We then

dope the lattice by replacing some of the D5-branes by anti-D5-branes. In the large N limit, we determine

the critical temperature below which the system dimerizes with bond ordering. Finally, we argue that for

the special case of a square lattice our system is glassy at large but finite N, with the low temperature

physics dominated by a huge collection of metastable dimerized configurations without long-range order,

connected only through tunneling events.
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I. INTRODUCTION

Recently there has been a flurry of activity applying the
anti-de Sitter (AdS)/conformal field theory (CFT) corre-
spondence [1–3] to the study of condensed matter systems.
Holographic systems where the CFT exhibits strongly
coupled avatars of metallic phases [4], superfluid-insulator
transitions [5], superconductivity [6,7], and Fermi liquid
theory [8–11] have all been proposed. Also proposed are
gravity duals for scale-invariant nonrelativistic field theo-
ries, enjoying Galilean invariance [12,13] or the smaller
Lifshitz symmetry group [14]. For reviews, see [15–17].
One of the driving forces behind such vigorous activity is
possible applications to condensed matter systems with
quantum critical points, such as heavy fermion materials
and possibly cuprate superconductors. The AdS/CFT cor-
respondence itself may even be thought of as a prime
example of quantum critical phenomena where, at the
conformal fixed point of a family of field theories, there
appear emergent gravitons. At a more concrete level, one
significant advantage the AdS/CFT correspondence offers
over other methods of analyzing model field theories is the
ability to compute real-time correlators, and hence to gain
a handle on transport properties, in strongly coupled field
theories. For a review of this aspect with relevant refer-
ences, see [18].

One limitation of the studies to date is that the systems
considered so far in the literature are spatially homoge-

neous. While such homogeneous systems might suffice for
studies of critical phenomena, where the correlation length
diverges and the microscopic structure of solids does not
play any role, these holographic toy models are completely
inadequate when it comes to questions involving the under-
lying lattice structure of condensed matter systems. In the
first part of this paper, we attempt to remedy this situation
by explicitly constructing holographic systems endowed
with periodic lattice structures, in the context of type IIB
string theory.
To this end, we first consider a probe D5-brane in the

AdS5 � S5 background geometry, wrapping AdS2 � S4.
From the boundary field theory’s point of view, this corre-
sponds to adding localized fermionic degrees of freedom
residing on a pointlike impurity coupled to N ¼ 4 super-
symmetric SUðNÞ gauge theory. This is a particular ex-
ample of the more general structure of defect conformal
field theory, investigated in the AdS/CFT context in, for
example, [19–21]. Placing an array of such D5-branes in
the asymptotically AdS5 � S5 black brane geometry, we
obtain a lattice of impurities immersed in the N ¼ 4
plasma medium at finite temperature [22]. Using the holo-
graphic dictionary, we can compute thermodynamic quan-
tities of this system in the large N and large ’t Hooft
coupling limit, where the gravitational description is
accurate.
We then proceed further and dope the system, replacing

half (say) of the D5-branes by anti-D5-branes. This doping
introduces an interesting phenomenon of dimerization:
whereas both D5- and anti-D5-branes go straight down
into the black brane horizon at high temperature, at low
temperature they pair up by connecting with each other far
from the horizon. Again, in the large N and large ’t Hooft
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coupling limit, we can compute the free energy and deter-
mine the critical temperature at which such dimerization
occurs. With ease, we can also engineer systems with
various plateaux of temperature ranges within which only
a fraction of the unit cell of the lattice dimerizes. In the
special case of a square lattice, we argue that our system
exhibits glassy behavior at large but finite N.

The organization of the paper is as follows. In Sec. II, we
build a holographic lattice and study its thermodynamic
properties. Section III is an intermezzo where we consider
a pair of a D5-brane and an anti-D5-brane in the black
brane background. Equipped with the result in Sec. III, in
Sec. IV, we engineer various systems which dimerize at
low temperature, and determine the critical dimerization
temperature(s). In Sec. V, we briefly argue that a special
case of our construction yields a glassy system. We con-
clude by suggesting numerous future directions in Sec. VI.
The Appendix summarizes our conventions.

II. HOLOGRAPHIC LATTICES

In this section, we gradually work up to a lattice of probe
D5-branes in the black brane background, while explaining
its field theory dual and calculating associated thermody-
namic quantities. The gravitational side of our holographic
systems is governed by the type IIB supergravity action
plus a probe D5 action for each D5-brane, S ¼
SIIB þP

iSD5i (see the Appendix for details). For simplic-

ity, wewill not consider coincident D5-branes in this paper,
and forces between D5-branes, which vanish at zero tem-
perature as the configuration is Bogomol’nyi-Prasad-
Sommerfield, but would be induced at finite temperature,
will not matter at the order to which we work.

A. Black brane background

The type IIB supergravity is well known to have the
following asymptotically AdS5 � S5 black brane solution:

Bð2Þ ¼ Cð0Þ ¼ Cð2Þ ¼ 0;
e�

gs
¼ 1; (2.1)

g��dx
�dx� ¼ �fðrÞdt2 þ dr2

fðrÞ þ
r2

L2

�X3
i¼1

dx2i

�

þ L2ðd�2 þ sin2�d�2
4Þ (2.2)

with fðrÞ ¼ r2

L2

�
1� r4þ

r4

�
and L4 � 4�gsN�02;

(2.3)

Fð5Þ ¼ dCð4Þ

¼ �ð1þ �Þ 4r
3

L4
ðdt ^ dr ^ dx1 ^ dx2 ^ dx3Þ: (2.4)

For later convenience, we foliated S5 by S4s parametrized
by their latitudes �, and d�2

4 is the metric on a unit 4-

sphere. This solution can be obtained as the decoupling
limit of the geometry generated by a stack of N nonextre-
mal D3-branes and, as such, it describes N ¼ 4 super-
symmetric SUðNÞ gauge theory at finite temperature, with
the Yang-Mills (YM) coupling constant of the gauge theory
given in terms of the string coupling constant as g2YM ¼
4�gs [22].
The field theory’s temperature is identified with the

Hawking temperature of the geometry above, namely,
TðrþÞ ¼ 1

2� ½ 1ffiffiffiffiffi
grr

p d
dr

ffiffiffiffiffiffiffiffiffiffi�gtt
p �jr¼rþ ¼ rþ

�L2 . The free energy

F½T� of the macroscopic configuration can be computed
through the holographic dictionary, which reads in the
classical limit as

e�ð1=TÞF½T� ¼ Z½T� ¼ e�I½T�: (2.5)

Here, I½T� is the properly dimensionally reduced (4þ 1)-
dimensional Euclidean action, evaluated for the configura-
tion with temperature T. This is by now a standard practice
and the result is

FIIB½TðrþÞ� ¼ � 1

128
V3

�
r4þ

�4L8

��
L8

g2s�
04

�
¼ ��2

8
V3T

4N2;

(2.6)

where V3 denotes the 3-dimensional volume in ~x direction.

B. D5 embedding

Let us now place a single D5-brane in the black brane
background above. There is a one-parameter family of
analytic solutions for static D5 embeddings, going straight
down into the black brane, characterized by latitudes �� of
S4 that they wrap. The position ~a in the ~x directions and the
direction of the S4 within S5 give other parameters as well.
But for a single D5-brane, we can take these to be fixed at
any value without loss of generality, whereas for multiple
D5-branes to be considered below, their relative values
would matter. Explicitly, by parametrizing the 4-spheres
by ð�1; �2; �3; �4Þ and denoting the coordinates on the D5-
brane by � ¼ ð�; 	; �1; �2; �3; �4Þ, the embeddings are
given by1

ð�; 	; �1; �2; �3; �4Þ � ð�; 	; ~0; ��; �1; �2; �3; �4Þ
with 	 2 ð0;1Þ and � 2 ð�1;1Þ;

(2.7)

where the world volume flux depends on ��, and is given
by

ð2��0F Þ�	 ¼ �ð2��0F Þ	� ¼ cos��

with all other components vanishing:
(2.8)

Actually, as explained in [23], possible values of the lati-

1We choose the orientation of the spacetime so that

tr123��1�2�3�4

¼ þ ffiffiffiffiffiffiffi�g
p

and those of D5-branes so that


�	�1�2�3�4
¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðinducedÞ

q
.
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tude �� 2 ð0; �Þ are quantized: defining a parameter � 2
ð0; 1Þ by

� � 1

�
ð�� � sin�� cos��Þ; (2.9)

we have the quantization condition

n � �N 2 Z: (2.10)

In the dual field theory, introducing such a D5-brane in
the bulk corresponds to coupling localized massless fermi-
ons to the N ¼ 4 gauge theory as

Sfield theory ¼ SN¼4 þ
Z

dt½i�y
b@t�

b

þ �y
b fðA0ðt; ~0ÞÞbc þ vIð�Iðt; ~0ÞÞbcg�c�; (2.11)

where SN¼4 is the action for N ¼ 4 supersymmetric
SUðNÞ gauge theory [24], A� and �I are its gauge and

scalar fields in the adjoint representation of SUðNÞ, respec-
tively, and vI is a unit 6-vector determined by the direction
of the S4 within S5 wrapped by the D5-brane. The parame-
ter n � �N, on the other hand, determines the number of

fermions at the site ~0 [25]. More precisely, it corresponds to
taking the ensemble with the density matrix

n!ðN � nÞ!
N!

X
b1<...<bn

jb1; . . . ; bnihb1; . . . ; bnj (2.12)

where, schematically,2

jb1; . . . ; bni ¼ �y
b1
. . .�y

bn
j0i: (2.13)

Now we would like to compute the D5-brane contribu-
tion to the free energy. Turning it into the appropriate
Euclidean configuration, the Euclidean action of the D5-
brane is evaluated to be [26–28]3

IðbulkÞD5 ¼ L4sin3��volðS4Þ
ð2�Þ5gs�03

1

T
ðrcutoff � rþÞ; (2.14)

where we regulated it with the regulator rcutoff . We need to
holographically renormalize this quantity. To this end, we
subtract off the Euclidean action of the analogous D5
embedding into pure AdS5 � S5 spacetime,

IðcounterÞD5 ¼ L4sin3��volðS4Þ
ð2�Þ5gs�03

1

T0ðTÞ ðrcutoffÞ; (2.15)

where we take its temperature to be T0ðTÞ given by

1

T0ðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r2cutoff
L2

�s
¼ 1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r2cutoff
L2

��
1� r4þ

r4cutoff

�s
(2.16)

so that the induced metric on the surface at rcutoff is the
same as in the relevant black brane configuration [22]. This
procedure is justified in the context of holographic renor-
malization [29] because both configurations are the solu-
tions to the same equations of motion with the same
leading Dirichlet boundary condition at r ¼ rcutoff . Thus,
the renormalized D5 Euclidean action is given by

IðrenormalizedÞ
D5 ¼ lim

rcutoff!1ðI
ðbulkÞ
D5 � IðcounterÞD5 Þ

¼ �L4sin3��volðS4Þ
ð2�Þ5gs�03

rþ
T

: (2.17)

Hence the leading D5 contribution to the free energy is

FD5 ¼ TIðrenormalizedÞ
D5 ¼ �L4sin3��volðS4Þ

ð2�Þ5gs�03 rþ

¼ � sin3��
3�

N
ffiffiffiffi
�

p
T; (2.18)

where we introduced the ’t Hooft coupling � � g2YMN.

C. Lattice of D5-branes

Finally, let us consider an array of D5-branes. For sim-
plicity, we consider a cubic lattice with lattice spacing a,
and let the D5-branes wrap S4s of the same direction in S5

and at the same latitude.4 On the boundary field theory
side, we are just constructing a cubic lattice of impurities.
Assembling the results of preceding subsections, the free
energy of the system is given by

F½T� ¼ V3

�
�N2

�
�2

8
T4 þ . . .

�

� ffiffiffiffi
�

p
N

�
sin3��
3�

1

a3
T þ . . .

��
; (2.19)

and hence the entropy is

S½T� ¼ � dF

dT

¼ V3

�
N2

�
�2

2
T3 þ . . .

�
þ ffiffiffiffi

�
p

N

�
sin3��
3�

1

a3
þ . . .

��
;

(2.20)

where dots in each parenthesis indicate 1ffiffiffi
�

p suppressed

terms coming from stringy corrections in the bulk lan-
guage. When expressed in terms of boundary field theory’s
quantities specifying bulk boundary conditions, as above,
Eqs. (2.19) and (2.20) capture the whole leading contribu-
tions in the large N and large ’t Hooft limit, up to order N1.

2The states as written in Eq. (2.13) are not invariant under
small gauge transformations, and they need to be supplemented
by nonlocal operators for any nonzero coupling.

3To get correct results for free energies, it is very crucial to add
the appropriate surface term for the D5 action, analogous to the
Gibbons-Hawking surface term for the Einstein-Hilbert action,
so that we can consistently impose a Dirichlet boundary condi-
tion at r ¼ rcutoff .

4This guarantees the supersymmetry of the zero temperature
configuration.
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In particular, backreaction of D5-branes onto the geometry
mingles only into the order N0 contribution together with
other bulk quantum effects. For a formal argument within
the context of Einstein gravity and toy examples of how
this works, see [30].5

The formulas above obtained through the bulk geomet-
ric analysis, however, have a limited range of validity: at
extremely low temperature (small horizon radius), our
geometric analysis breaks down. This happens when the
entropy contribution of the D5-branes is comparable to that
of the background black brane geometry, namely, when

T3a3 �
ffiffiffi
�

p
N . The reason behind this breakdown is that the

backreaction of D5-branes at the horizon of the black brane
cannot be treated as small perturbation any more, since the

density of D5-branes at the horizon, L3

r3þa
3 , increases as rþ

decreases. Hence our formulas above are not applicable
outside the regime

Ta �
� ffiffiffiffi

�
p
N

�
1=3

: (2.21)

Nevertheless, there is one ‘‘thermodynamic’’ quantity
which we can evaluate at zero temperature, namely, the
entropy. This comes from the fact that our lattice preserves
supersymmetry at zero temperature, and getting the en-
tropy is tantamount to counting the number of
Bogomol’nyi-Prasad-Sommerfield configurations with
given charges. Carrying out the analysis, the entropy at
zero temperature is

S½T ¼ 0� ¼ ln

��
N!

n!ðN � nÞ!
�
V3=a

3�

¼
�
V3

a3

�
ln

��
N!

n!ðN � nÞ!
��
; (2.22)

which is applicable for any N and gYM, and it asymptotes

to ðV3

a3
Þ � N � f�� ln�� ð1� �Þ lnð1� �Þg for large N.6

This should be contrasted with the finite temperature re-
sults which yields the leading D5 contribution to the en-

tropy of order N
ffiffiffiffi
�

p
, enhanced by

ffiffiffiffi
�

p
. This is analogous to

the strong coupling enhancement of fundamental matter in
the deconfined plasma observed in [31], as opposed to the
zero temperature conformal medium.

III. INTERMEZZO: D5/ANTI-D5 PAIR

In this intermezzo, we consider a pair of a D5-brane and
an anti-D5-brane immersed in the black brane background.
In the bulk gravitational description, the anti-D5-brane
differs from the D5-brane in its orientation, which mani-
fests in a reversal of sign of its coupling to the background
Ramond-Ramond fields. On the boundary field theory side,
localized fermions introduced by the anti-D5-brane trans-
form in the antifundamental representation of SUðNÞwhile
those introduced by the D5-brane transform in the funda-
mental representation.7

We will consider one D5-brane placed at ~x ¼
ðþ �x

2 ; 0; 0Þ and one anti-D5-brane placed at ð� �x
2 ; 0; 0Þ,

both of them wrapping S4s of the same angle and latitude
as r ! 1. Intuitively (see Fig. 1), the ‘‘ends’’ of both the
D5- and anti-D5-branes are sucked into the black brane
when the horizon radius rþ is large (or the separation�x is
large), whereas they reconnect outside the horizon for
small horizon radius (or small separation).

A. Disconnected configuration

The obvious candidate stable configuration of such a
pair is just two separated configurations of the sort consid-
ered in Sec. II B with �� ¼ �� �� [see Fig. 1(a)]. Its free
energy is just twice that of the single D5-brane:

FD5 þ F �D5 ¼ �
�
2
L4sin3��volðS4Þ

ð2�Þ5gs�03 rþ
�
: (3.1)

Note that it is independent of the separation �x.

B. Connected configuration

Another candidate solution with the given boundary
condition is a reconnecting solution [see Fig. 1(b)]: a

reconnecting D5-brane starts at r ¼ 1 with ~x ¼
ð� �x

2 ; 0; 0Þ, dips into the bulk, and then comes back to

FIG. 1. Predimerization transition. (a) Disconnected configu-
ration dominates at high temperature. (b) Connected configura-
tion dominates at low temperature.

5The basic idea is that one expands the full solution to the
coupled supergravity and probe action in a power series in 1

N and
then substitutes this expansion back into the action to obtain the
free energy. At order N1 there are two potential contributions:
the probe action evaluated on the leading solution and the
correction to the contribution from the supergravity action due
to the 1

N correction in the background geometry. The latter
however vanishes due to the equations of motion obeyed by
the background.

6The large entropy at zero temperature is often thought to be
‘‘unphysical.’’ Here we interpret it just as a peculiarity of highly
supersymmetric systems.

7We work in a convention in which the relation between the
number of fermions introduced by the anti-D5-brane �n ¼ ��N
and its latitude �� �� is given by Eqs. (2.9) and (2.10).
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r ¼ 1 now with ~x ¼ ðþ �x
2 ; 0; 0Þ, effectively reversing its

orientation as it should.8 Explicitly, we have

�ð	Þ ¼ �� and

ð2��0F Þ�	 ¼ cos��
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
sin6��

ð L4k2

r4ð	Þ�r4þ
Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@r

@	

�
2

s
; (3.2)

and now ~x is also a function of the coordinate 	 on the D5-
brane. As rð	Þ starts from 1 and goes toward the turning

point rturn ¼ fr4þ þ L4k2

sin6��
g1=4,

~xð	Þ ¼ �ðk; 0; 0Þ �
Z rð	Þ

rturn

dr0
L4

r04 � r4þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin6�� � L4k2

r04�r4þ

q ;

(3.3)

while as rð	Þ goes back up from rturn and ends at 1,

~xð	Þ ¼ þðk; 0; 0Þ �
Z rð	Þ

rturn

dr0
L4

r04 � r4þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin6�� � L4k2

r04�r4þ

q :

(3.4)

Here the parameter k is implicitly determined through

rþ
L2

�x ¼
�
2~k

Z 1

ð1þ~k2Þ1=4
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðz4 � 1Þðz4 � 1� ~k2Þ

s �

with ~k � L2

r2þsin3��
k: (3.5)

The function on the right-hand side is plotted as a function

of ~k in Fig. 2. Note that, for a fixed distance, such a solution
does not exist for large enough rþ. Also, for small enough

rþ, there are two distinct solutions with different ~k. By
computing their free energies, we will determine which
configuration among the two is dominant.

We can follow the same regularization procedure as
presented in Sec. II B to get the free energy of the recon-
necting solution, which yields

Fconnected ¼
�
2
L4sin3��volðS4Þ

ð2�Þ5gs�03 rþ
��

�ð1þ ~k2Þ1=4

þ
Z 1

ð1þ~k2Þ1=4
dz

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 1

z4 � 1� ~k2

s
� 1

��

�
�
2
L4sin3��volðS4Þ

ð2�Þ5gs�03 rþ
�
~Fconnectedð~kÞ: (3.6)

The function ~Fconnectedð~kÞ is plotted in Fig. 3. Comparing
with Fig. 2, we see that when rþ is low enough to allow two

solutions for a given �x, the configuration with higher ~k,
and hence the one that goes less deeply into the bulk, is the
dominant configuration among the two since it has smaller

free energy. All the calculations in this section are virtually
identical to the discussion of Wilson lines at finite tem-
perature from fundamental strings in AdS spacetime
[32,33], the only difference being the overall prefactor
which for us is set by the effective string tension of the
wrapped D5-brane, whereas for the Wilson lines it was set
by the fundamental string tension.

C. Predimerization transition

Here comes the punch line of this intermezzo: for a fixed
separation �x, there is a large N phase transition as we
decrease rþ. To see this, let us start in the regime where
rþ�x
L2 is very large. In such a regime, as we noted earlier,

there is no reconnecting solution and thus the disconnected
configuration dominates [Fig. 4(a)]. As we lower rþ, there
appear two reconnecting solutions, but at the onset they
both have free energies higher than that of the disconnected
solution and thus stay subdominant [Fig. 4(b)]. As we

lower rþ further and reach the value ~k ¼ ~kc � 2 or

rþ�x
L2

� 0:7; (3.7)

we see one of the reconnecting solutions, namely, the one
which goes less deeply into the bulk, emerges as the most

FIG. 2. rþ
L2 �x as a function of ~k.

FIG. 3. ~Fconnectedð~kÞ as a function of ~k.

8Incidentally, this is the reason why a pair of two D5-branes
cannot reconnect.
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dominant configuration [Fig. 4(c)]. Noting that free ener-
gies of the D5-branes have a multiplicative factor N, we
see that this marks a phase transition in the N ¼ 1 limit.

This N ¼ 1 phase transition will be rendered to be a
crossover for large but finite N. We may avoid this by
building a (3þ 1)-dimensional lattice whose unit cell has
pairs of D5- and anti-D5-branes. We expect this system to
have a genuine first-order phase transition in the thermo-
dynamic limit V3 ! 1, surviving a journey away from the
N ¼ 1 limit.

IV. HOLOGRAPHIC DIMERS

Equipped with the result in the previous section, we can
now build holographic dimers, systems which dimerize at
low temperature. Dimer systems are extensively studied in
the condensed matter physics community, especially as a
part of attempts in explaining cuprate superconductivity,
and in trying to get a handle on the physics of Mott
insulators [34]. And since the physics responsible for
cuprate superconductivity is believed to be primarily
(2þ 1)-dimensional ( justifying the use of a Lawrence-
Doniach model) [35], such studies have focused on
(weakly interacting layers of) (2þ 1)-dimensional dimer
systems. To keep the close analogy with such studies, we
will focus on (2þ 1)-dimensional lattices, though it should
be kept in mind that we are thinking of eventually stacking
such (2þ 1)-dimensional lattices so that we can evade the
Coleman-Mermin-Wagner-Hohenberg theorem and have a
phase transition at finite temperature.

A. Dimerization through bond ordering

Let us consider the lattice (see Fig. 5) in which D5-
branes are placed at

a

��
�g0

2
;þ 1

2

�
þ ðð1þ g0Þnx; 2nyÞ

�
and

a

��
þg0

2
;� 1

2

�
þ ðð1þ g0Þnx; 2nyÞ

� (4.1)

and anti-D5-branes are placed at

a

��
þ g0

2
;þ 1

2

�
þ ðð1þ g0Þnx; 2nyÞ

�
and

a

��
� g0

2
;� 1

2

�
þ ðð1þ g0Þnx; 2nyÞ

� (4.2)

with ðnx; nyÞ 2 Z2 and 0< g0 < 1. Working in the large N

and large ’t Hooft coupling limit, then, as we cool down to
rþag0
L2 � 0:7 or

Tc � 0:2

ag0
; (4.3)

our lattice dimerizes through bubble nucleation of dimer-
ized regions. This transition is analogous to the Néel-VBS
(valence bond solid) phase transition [34], though here it is
a first-order phase transition as a function of temperature,
not a quantum critical second-order phase transition at zero

temperature. Keeping
ffiffiffi
�

p
N 	 1, this transition happens

away from the regime where backreaction becomes im-
portant, justifying our geometric analysis.

B. Plateaux

To illustrate how easy it is to engineer variants of the
simple VBS dimerization described above, let us now
consider the lattice (see Fig. 6) in which D5-branes are
placed at

FIG. 4. Free energies as functionals of D5 configurations at various temperature ranges. (a) At high temperature, there is only one
extremum corresponding to the disconnected solution. (b) At intermediate temperature, there appear two new local extrema
corresponding to two connected solutions. (c) At low temperature, the stable connected solution dominates.

FIG. 5. A simple model that experiences the phase transition
analogous to the Néel-VBS phase transition.
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a

��
�g1

2
;þ 1

2

�
þ ðð1þ g2Þnx; 2nyÞ

�
and

a

��
þ g2

2
;� 1

2

�
þ ðð1þ g2Þnx; 2nyÞ

� (4.4)

and anti-D5-branes are placed at

a

��
þg1

2
;þ 1

2

�
þ ðð1þ g2Þnx; 2nyÞ

�
and

a

��
�g2

2
;� 1

2

�
þ ðð1þ g2Þnx; 2nyÞ

� (4.5)

with ðnx; nyÞ 2 Z2 and 0< g1 < g2 < 1. Then, again

working in the large N and large ’t Hooft coupling limit,
as we cool down to T1c � 0:2

ag1
, only a half of each unit cell

dimerizes, while as we cool further down to T2c � 0:2
ag2

, the

entire cell dimerizes. In this way, we can engineer a lattice
with plateaux of temperature ranges within each of which
only a fraction of each unit cell dimerizes.

V. HOLOGRAPHIC GLASSES

Finally, let us consider the case of the square lattice,
which is a special limit of the model considered in
Sec. IVA with g0 ¼ 1. For illustration, let us take N ¼
10100 and

ffiffiffiffi
�

p ¼ 10. Below the critical temperature Tc �
0:2
a , the system again dimerizes through bubble nucleation.

After such dimerization, ‘‘spinon-pair excitation,’’ corre-
sponding to cutting a connected D5-brane into a pair of
separated D5- and anti-D5-branes, is highly suppressed by

a factor of e�10100 and thus the low temperature physics is
dominated by dimerized configurations. But now there are
infinitely many of them. The simple VBS-like configura-
tion [Fig. 7(a)], a ‘‘resonance excitation’’ [Fig. 7(b)] of that
configuration, another ‘‘resonance excitation’’ [Fig. 7(c)],
and much more complicated configurations [like the one in
Fig. 7(d)] all have the same free energy at leading order in
N, starting to differ only at order N0. Furthermore, those
configurations are connected only through highly sup-
pressed tunneling events of brane recombinations in the
bulk. Especially, note that even moving the ‘‘resonance
excitation’’ from site [Fig. 7(b)] to site [Fig. 7(c)] involves
tunneling, and thus such excitations should not be thought

of as usual quasiparticle excitations. This marks a stark
difference from standard dimer models and more closely
resembles glassy systems, with the low temperature phys-
ics dominated by a humongous number of metastable
dimerized configurations. We also believe that this system
does not have any long-range order: interactions between
dimers are presumably mediated by light fields in the bulk,
but, due to the peculiar geometric properties of AdS space-
time, such interactions are effectively rendered short
ranged. Therefore, at large but finite N, we propose that
the system transitions into a glassy phase at Tc � 0:2

a ,

randomly selecting one of the plethora of dimerized con-
figurations as we cool it down.

VI. FUTURE DIRECTIONS

In this paper, we engineered holographic lattices, holo-
graphic dimers, and holographic glasses. In each instance,
we chose to discuss a simple case to facilitate our analysis.
However, by varying the dials in these models, we can
explore a large landscape of possibilities, looking for
qualitatively new phenomena.
First, we can freely dial various parameters that natu-

rally appear in the system. The number of D5-branes (anti-
D5-branes) Nf ( �Nf), their directions v

I, and the number of

localized fermions �N ( ��N) can be chosen independently
for each site within a unit cell. Also, one can think of giving
a mass to the localized fermions by separating the D5-
branes from the D3-branes in the radial direction, although
the D5-brane configurations for such a case are analytically
known only at zero temperature [36]. Turning on back-

FIG. 7. Multitude of dimerized configurations for holographic
glasses. (a) VBS-like configuration. (b) ‘‘Resonance excitation.’’
(c) Another ‘‘resonance excitation.’’ (d) Generic configuration.

FIG. 6. A model with a plateau of temperature range within
which only half of each unit cell dimerizes.
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ground magnetic fields [37] and/or chemical potentials for
various Uð1Þs is another option, and we expect to see the
dimerization transition at zero temperature. We should also
mention that localized fermions can be replaced by local-
ized bosons by replacing D5-branes by appropriate D3-
branes [25,38]. The lattice structure can be chosen at will
and does not even have to be periodic.

Second, we can consider more general background ge-
ometries of the formAdS5 � X5 where X5 is an arbitrary 5-
dimensional Sasaki-Einstein manifold with volume of or-
der L5, following the spirit of [39]. For such studies, flux
quantization conditions analogous to the one found in [23]
need to be worked out for general X5. We can also explore
other dimensions by, for example, considering AdS4 � X7

and M2- or M5-branes in it, where X7 is a 7-dimensional
Sasaki-Einstein manifold. Alternatively, we may also con-
struct ‘‘phenomenological models,’’ abstracting out the
essential ingredients of defects in AdS spacetime to focus
on the applications of interest instead of the details of the
string theory engineering, following the spirit of recent
investigations of Fermi liquids [10].

Third, we can try to engineer more elaborate systems
with desired properties. In particular, it would be nice if we
could make the fermions hop between the lattice sites so
that we might have a holographic dual of the Mott tran-
sition. A conceptually straightforward but practically hard
way to accomplish this is to cutoff our geometry at some
radius or to consider N D3-branes and a lattice of D5-
branes on M4 � CY6 where CY6 is a compact Calabi-Yau
manifold, so that the D5-D5 strings are not completely
decoupled. However it would be nice if we can add such
hoppings without considering compact Calabi-Yau spaces
[40]. Once such hopping is added, if we can completely
liberate localized fermions away from lattice sites in some
phases but not others, we have a chance of having a holo-
graphic dual representation of transitions in which the
volume of the Fermi surface jumps [41].

Turning to technical challenges, it would be interesting
if we can develop reliable calculations of the free energy at
order N0. At this order, the computation is plagued by bulk
quantum effects, but the interaction between dimers should
also become evident. This could lead to a deeper under-
standing of our mysterious holographic glasses by, among
other things, giving a small splitting between the different
approximate ground states.

Finally, one of the most interesting handles on ground
states of strongly correlated systems is the entanglement
entropy. The elegant formulation of Ryu and Takayanagi
allows its computation in the gravity dual of a strongly
coupled field theory, for simple enough choices of the
boundary geometry partitioning the system into two sub-
systems [42]. For bipartite lattice systems, another useful
notion of entanglement entropy, the ‘‘valence bond entan-
glement entropy,’’ which is a priori distinct from the
von Neumann entropy, was introduced in [43]. It may be

interesting to consider such generalized notions of entan-
glement entropy in our gravity duals of bipartite lattice
systems.
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APPENDIX: CONVENTIONS

We set @ ¼ c ¼ kB ¼ 1.
Our conventions are basically those of [44], but we will

exclusively work in the following frame, akin to Einstein

frame: ðg��Þours � g1=2s e�ð�=2Þðg��Þstring, ðB��Þours �
ðB��Þstring, ðCðpÞÞours � gsðCðpÞÞstring, and ðe�Þours �
ðe�Þstring. This frame will nicely segregate out factors of

gs. Explicitly, in our frame,

SIIB ¼ 1

ð2�Þ7�04g2s

Z
d9þ1x

ffiffiffiffiffiffiffi�g
p �

R� 1

2
ð@��Þð@��Þ

� 1

2

�
e�

gs

�
2ð@�Cð0ÞÞð@�Cð0ÞÞ

� 1

12

�
e�

gs

��1ðH���H
���Þ � 1

12

�
e�

gs

�
ð ~Fð3Þ���

~F���
ð3Þ Þ

� 1

480
ð ~Fð5Þ���	

~F���	
ð5Þ Þ

�

� 1

2ð2�Þ7�04g2s

Z
Cð4Þ ^H ^ dCð2Þ (A.1)

with H � dBð2Þ; ~Fð3Þ � dCð2Þ � Cð0ÞH;

~Fð5Þ � dCð4Þ � 1
2Cð2Þ ^H þ 1

2Bð2Þ ^ dCð2Þ
(A.2)

and SD5 ¼ SDBI þ SCS where the Dirac-Born-Infeld (DBI)
action is given by"
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SDBI ¼ � 1

ð2�Þ5�03gs

Z
D5

d5þ1�

�
e�

gs

��1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det

ab

��
e�

gs

�
1=2

gab þ Bð2Þab þ 2��0F ab

�s

(A.3)

and the Chern-Simons (CS) action is given by

SCS ¼ 1

ð2�Þ5�03gs

Z
D5

X
p¼0;2;4;6

CðpÞ ^ eBð2Þþ2��0F ; (A.4)

with the understanding that gab, Bð2Þ, CðpÞ, and e� are all

induced from background geometry. Here, equations of
motion that follow from varying the above action need to
be supplemented by the self-duality condition on ~Fð5Þ,
namely,

� ~Fð5Þ ¼ ~Fð5Þ: (A.5)

We will not explicitly write down appropriate Gibbons-
Hawking surface terms.
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