
Vortex lattice for a holographic superconductor

Kengo Maeda*

Faculty of Engineering, Shibaura Institute of Technology, Saitama, 330-8570, Japan

Makoto Natsuume†

KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization,
Tsukuba, Ibaraki, 305-0801, Japan

Takashi Okamura‡

Department of Physics, Kwansei Gakuin University, Sanda, 669-1337, Japan
(Received 29 October 2009; published 7 January 2010)

We investigate the vortex lattice solution in a ð2þ 1Þ-dimensional holographic model of super-

conductors constructed from a charged scalar condensate. The solution is obtained perturbatively near

the second-order phase transition and is a holographic realization of the Abrikosov lattice. Below a critical

value of the magnetic field, the solution has a lower free energy than the normal state. Both the free-energy

density and the superconducting current are expressed by nonlocal functions, but they reduce to the

expressions in the Ginzburg-Landau theory at long wavelengths. As a result, a triangular lattice becomes

the most favorable solution thermodynamically, as in the Ginzburg-Landau theory of type II

superconductors.
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I. INTRODUCTION

The application of AdS/CFT (anti–de Sitter/conformal
field theory) correspondence to condensed matter physics
has recently become one of the most interesting topics in
string theory. (See Refs. [1,2] for reviews.) In Refs. [3,4], a
holographic model of a superconductor is constructed by a
gravitational theory of a complex scalar field coupled to the
Maxwell field. This opens up a window to study super-
conductors in a strongly interacting system via AdS/CFT
correspondence.

The magnetic property of the superconductors, such as
the Meissner effect, is a good place to start the investiga-
tion since it plays a crucial role in distinguishing between
type I and type II superconductors [5]. Recently, many
localized solutions under the external magnetic field B
were constructed numerically, which include a ‘‘droplet’’
solution and a single vortex solution with integer winding
number [6–12]. These numerical solutions imply that the
holographic superconductor belongs to type II, in agree-
ment with the scaling argument in Ref. [13].

There are two critical magnetic fields, Bc1 (the lower
critical value) and Bc2 (the upper critical value), in type II
superconductors. At B ¼ Bc1, the external magnetic field
begins to penetrate into the superconductor and vortices
appear for B> Bc1. At B ¼ Bc2, the second-order phase
transition occurs and the superconductivity disappears.
When B approaches Bc2 from below, a vortex lattice, in

which a single vortex is arranged periodically, should
appear since it is more favorable thermodynamically than
a single vortex.
In this paper, we construct the vortex lattice solution, or

the Abrikosov lattice solution, which is characterized by
two lattice parameters, a1 and a2, perturbatively near the
second-order phase transition. We follow the treatment of
type II superconductors based on Ginzburg-Landau (GL)
equations. The solution includes a triangular lattice solu-
tion, which is known as the most thermodynamically fa-
vorable solution in the GL theory. We determine the
critical value Bc2 and obtain the free energy parametrized
by a1 and a2. It is shown that the free energy is always
smaller than that of the normal state for any choice of two
parameters.
In the conventional Abrikosov lattice, there exists a

circulating superconducting current around the core, and
the current flows along the lines of the constant field for the
condensate [see Eq. (3.33)]. We evaluate the R current to
see if the current in the holographic superconductor has a
similar property.
It turns out that both the free-energy density and the R

current are written by nonlocal functions of the condensate,
unlike the GL theory. However, these expressions reduce to
the ones in the GL theory at long wavelengths.
The plan of our paper is as follows: In Sec. II, we

construct the vortex lattice solution by superposing the
single droplet solutions found in Ref. [7]. We obtain the
upper critical magnetic field Bc2. In Sec. III, we calculate
the free energy and the R current in a power series expan-
sion in the order parameter. In Sec. IV, we take the long-
wavelength limit. In this case, the triangular lattice solution
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minimizes the free energy, and the R current flows along
the lines of the constant field for the condensate. Section V
is devoted to a conclusion and discussion.

II. PHASE DIAGRAM AND SOLUTIONS

We consider a ð2þ 1Þ-dimensional holographic super-
conductor described by a dual gravitational theory in four
dimensions (AdS4) coupled to a charged complex scalar
field � and a Maxwell field A� [4]. To investigate the

superconducting phase near the second-order phase tran-
sition, we consider the equations of motion close to the
phase transition, as considered in Refs. [5,14]. For sim-
plicity, we take a probe limit where the backreaction of the
matter field onto the geometry can be ignored [4].

In this section, we first obtain a droplet solution similar
to the one obtained in Ref. [7] by solving the equations of
motion at the leading order. We also obtain the upper
critical magnetic field Bc2 as a function of T. Then, we
construct the vortex lattice solution by superposing the
droplet solutions.

A. Droplet solution

The background metric is given by an
AdS4-Schwarzschild black hole with the metric

ds2 ¼ L2�2

u2
ð�hðuÞdt2 þ dx2 þ dy2Þ þ L2du2

u2hðuÞ ; (2.1a)

hðuÞ ¼ 1� u3; �ðTÞ ¼ 4�T

3
¼ R0

L2
; (2.1b)

where L, R0, and T are the AdS radius, the horizon radius,
and the Hawking temperature, respectively. We take the
coordinate u such that the horizon is located at u ¼ 1. The

action of the matter system S ¼ ðL2=2�2
4e

2ÞŜ is written by

Ŝ ¼
Z
M

d4x
ffiffiffiffiffiffiffi�g

p �
�F2

4
� jD�j2 �m2j�j2

�
; (2.2)

where m and e are the mass and charge of the scalar field
�, respectively, and

D� ¼ r� � iA�; F�� ¼ @�A� � @�A�: (2.3)

The probe limit is realized by taking the limit e ! 1,
keeping A� and� fixed. The equations of motion are given

by

D2��m2� ¼ 0; (2.4a)

r�F�
� ¼ j� :¼ i½ðD��Þy���yðD��Þ�: (2.4b)

Hereafter, we choose a gauge Au ¼ 0. We will consider
stationary solutions since our interest is in thermodynamics
of the holographic superconductor. Then, Eqs. (2.4) be-
come

�
u2

@

@u

h

u2
@

@u
þ A2

t

�2h
�m2L2

u2

�
�¼� 1

�2
�ijDiDj�;

(2.5a)�
�2h

@2

@u2
þ4

�
At ¼ 2L2�2

u2
Atj�j2; (2.5b)

�
@

@u
�2h

@

@u
þ4

�
Ai�@ið�jk@jAkÞ¼�L2�2

u2
ji; (2.5c)

@uð�ij@iAjÞ¼ 2L2�2

u2
Imð�y@u�Þ;

(2.5d)

where i, j, k ¼ x, y, and 4 ¼ @2x þ @2y.

We solve these equations under the following boundary
conditions:
(i) For the scalar field, we shall confine our interest to

the m2L2 ¼ �2 case. Then, the asymptotic behavior
of � is

�� c1uþ c2u
2 ðu ! 0Þ;

and both modes are normalizable [15]. In this case,
both c1 and c2 can be interpreted as expectation
values of the dual operators with � ¼ 1 and � ¼
2, respectively [4]. For simplicity, we consider only
the case where the faster falloff is dual to the expec-
tation value, i.e., c1 ¼ 0. We also impose that � is
regular at the horizon u ¼ 1.

(ii) The asymptotic values of the gauge field give the
chemical potential � and the external magnetic field
B:

� ¼ Atðx; u ¼ 0Þ; BðxÞ ¼ Fxyðx; u ¼ 0Þ:

The boundary condition at the horizon is given by
requiring that A�dx

� has a finite norm there; i.e.,

Aiðx; u ¼ 1Þ is regular and Atðx; u ¼ 1Þ ¼ 0.
We will only change the external magnetic field B perpen-
dicular to the AdS boundary, keeping the temperature T
and the chemical potential� on the boundary theory fixed.
In this case, the scalar field � begins to condense below a
critical value of the magnetic field Bc2, while the conden-
sation does not occur above the critical value.
Defining the deviation parameter � from the critical

magnetic field Bc2ð>0Þ as � :¼ ðBc2 � BÞ=Bc2, we can
expand the scalar field �, the gauge field, and the current
j� as a series in �1:

1This type of expansion has been applied to the SU(2) model
of the holographic superconductor, and the speed of second
sound was analytically derived [16].
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�ðx; uÞ ¼ �1=2c 1ðx; uÞ þ �3=2c 2ðx; uÞ þ � � � ; (2.6a)

A�ðx; uÞ ¼ Að0Þ
� ðx; uÞ þ �Að1Þ

� ðx; uÞ þ � � � ; (2.6b)

j�ðx; uÞ ¼ �jð1Þ� ðx; uÞ þ �2jð2Þ� ðx; uÞ þ � � � ; (2.6c)

where x ¼ ðx; yÞ.
The zeroth order solutions generating the critical homo-

geneous magnetic field Bc2ð>0Þ and the chemical potential
� are given by

Að0Þ
t ¼ �ð1� uÞ; Að0Þ

x ¼ 0; Að0Þ
y ¼ Bc2x: (2.7)

Substituting Eq. (2.7) into Eq. (2.5a) and taking an
ansatz c 1ð; xuÞ ¼ eipy�ðx; u;pÞ=L for a constant p, the
equation of motion for c 1 reduces to

�
u2

@

@u

�
hðuÞ
u2

@

@u

�
þ ðAð0Þ

t ðuÞÞ2
�2hðuÞ �m2L2

u2

�
�ðx; u;pÞ

¼ 1

�2

�
� @2

@x2
þ ðp� Bc2xÞ2

�
�ðx; u;pÞ: (2.8)

Following the ansatz in Ref. [7], we separate the variable
� as�nðx; u;pÞ ¼ 	nðuÞ
nðx;pÞ=Lwith a separation con-
stant �n. The equations for 	n and 
n are divided into the
following equations:

�
� @2

@X2
þ X2

4

�

nðx;pÞ ¼ �n

2

nðx;pÞ; (2.9a)

h	00
nðuÞ �

�
2h

u
þ 3u2

�
	0
nðuÞ ¼

�
m2L2

u2
� q2

h
ð1� uÞ2

þ q2
Bc2�n

�2

�
	n; (2.9b)

where X :¼ ffiffiffiffiffiffiffiffiffiffi
2Bc2

p ðx� p=Bc2Þ and q :¼ �=� is a dimen-
sionless quantity.

The regular and bounded solution of Eq. (2.9a) satisfy-
ing limjxj!1j
nj<1 is given by Hermite functions Hn as


nðx;pÞ ¼ e�X2=4HnðXÞ; (2.10)

and the corresponding eigenvalue �n is

�n ¼ 2nþ 1; (2.11)

for a non-negative integer n.
This solution corresponds to the droplet solution ob-

tained in an earlier work [7] in the sense that these solu-
tions fall off rapidly at large jxj. A single (localized)
droplet solution is easily obtained by generalizing the
solution with circular symmetry, as shown in Refs. [8–10].

Now, let us consider the phase diagram. Equation (2.9b)
is characterized by two parameters, T=� / 1=q and
Bc2�n=�

2. Also, recall that we impose boundary condi-
tions both at asymptotic infinity and at the horizon. Such a
problem has a nontrivial solution only when there is a
relation between these two sets of parameters. The solution

corresponds to the case where the �ð0Þ ¼ 0 state becomes
marginally stable.

If one has a second-order phase transition from the� ¼
0 state to the ‘‘hairy’’ black hole, one should encounter a
marginally stable state at the point of transition. So, the
solution of Eq. (2.9b) gives the candidate for the phase
transition point.
It is clear which side of the phase transition line is the

superconducting phase. Suppose that one lowers the mag-
netic field with a fixed T=�. The right-hand side of
Eq. (2.9b) suggests that the magnetic field increases
ðeffective massÞ2 and tends to stabilize the state. [On the
other hand, the electric field decreases ðeffective massÞ2
and tends to destabilize the �ð0Þ ¼ 0 state.] Thus, the

�ð0Þ ¼ 0 state should be stable under a large enough
magnetic field, and the state becomes unstable as one
lowers the magnetic field. Then, it is likely that the upper
critical magnetic field is given by the value of the magnetic
field when one first encounters a marginally stable state (as
one lowers the magnetic field). Note that a marginally
stable solution is parametrized by B�n=�

2 for a fixed
T=�. Thus, one has the largest magnetic field when �n

takes the minimum, namely, the n ¼ 0 solution.
Consequently, the upper critical magnetic field Bc2 is

given by the largest B=�2 for the solution of Eq. (2.9b).
Figure 1 shows Bc2 obtained in this manner in the
ðT=Tc; B=�

2Þ phase diagram.2 Here, Tc is the critical
temperature when there is no magnetic field, and it is
determined in the combination Tc=� ¼ 3=ð4�qcÞ with
qc � 4:07 [14].

B. Vortex lattice solution

Let us clarify how the vortex lattice constructed in this
subsection differs from the droplet in the previous subsec-

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

c2/µ2B

T
Tc
/

condensed phase

normal phase

FIG. 1 (color online). Bc2ðþÞ as a function of T=Tc. Dashed
line: B=�2 ¼ ð1=8ÞðT=TcÞ2 (see Sec. IV).

2Obviously, the above argument gives only the necessary
condition for the phase transition and does not give the sufficient
condition. The sufficient condition is given by showing that there
exists a condensate solution for B< Bc2 and that its free energy
is lower than the � ¼ 0 solution. This is shown perturbatively
below.
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tion. A characteristic feature of a vortex is that it has a zero
with a winding number around it. Thus, the droplet which
is nonvanishing everywhere cannot have such a winding
number. However, a superposition of droplets can have
zeros and winding numbers as we will see in a moment.

As shown in the last subsection, it is enough to consider
only the n ¼ 0 solution near Bc2:


0ðx;pÞ ¼ e�X2=4 ¼ exp

�
� 1

2

�
x

r0
� pr0

�
2
�
; (2.12)

where r0 :¼ 1=
ffiffiffiffiffiffiffiffi
Bc2

p
. As �n is independent of p, a linear

superposition of the solutions eipy	nðuÞ
nðx;pÞ with dif-
ferent p is also a solution of the equation of motion for� at

Oð�1=2Þ. To obtain the vortex lattice solution from the
single droplet solution (2.12), consider the following su-
perposition:

c 1ðx; uÞ ¼ 	0ðuÞ
L

X1
l¼�1

cle
iply
0ðx;plÞ; (2.13a)

cl :¼ exp

�
�i

�a2
a21

l2
�
; pl :¼ 2�l

a1r0
; (2.13b)

for arbitrary parameters a1 and a2. In terms of the elliptic
theta function #3 defined by

#3ðv; �Þ :¼
X1

l¼�1
ql

2
z2l ðq :¼ e��i; z :¼ ei�vÞ;

(2.14)

the summation over l in Eq. (2.13a) is expressed by


LðxÞ :¼
X1

l¼�1
cle

iply
0ðx;plÞ ¼ e�x2=2r2
0#3ðv; �Þ;

(2.15)

where

v :¼ �ixþ y

a1r0
; � :¼ 2�i� a2

a21
: (2.16)

The solution (2.13) or (2.15) represents a vortex lattice.
The elliptic theta function #3 has two properties which are
useful to see the vortex lattice structure. First, #3 has a
pseudoperiodicity

#3ðvþ 1; �Þ ¼ #3ðv; �Þ; (2.17a)

#3ðvþ �; �Þ ¼ e�2�iðvþ�=2Þ#3ðv; �Þ; (2.17b)

so c 1 also has a pseudoperiodicity

c 1ðx; y; uÞ ¼ c 1ðx; yþ a1r0; uÞ; (2.18a)
c 1

�
xþ 2�r0

a1
; yþ a2r0

a1
; u

�
¼ exp

�
2�i

a1

�
y

r0
þ a2

2a1

��

� c 1ðx; y; uÞ: (2.18b)

Thus, 
ðxÞ :¼ j
LðxÞj2 represents a lattice in which the
fundamental region V0 is spanned by two vectors, b1 ¼

a1r0@y and b2 ¼ 2�r0=a1@x þ a2r0=a1@y, and the area is

given by 2�r20. This is the well-known result, where the

magnetic flux penetrating the unit cell is given by Bc2 �
ðAreaÞ ¼ 2�. This shows the quantization of the magnetic
flux penetrating a holographic vortex.
Second, #3 vanishes at

x m;n ¼ ðmþ 1
2Þb1 þ ðnþ 1

2Þb2; (2.19)

for any integers m, n. Since the expectation value of the
operator O dual to � is proportional to 
LðxÞ, the con-
densation hOi has a zero at xm;n. Also, it is easily shown

that the phase of hOi / 
LðxÞ rotates by 2� around each
xm;n [5]. Thus, the cores of vortices are located at xm;n.

The triangular lattice, where three adjoining vortices
xm;n form an equilateral triangle, is given by the following

parameters:

a2
a1

¼ a1
2

¼ 3�1=4
ffiffiffiffi
�

p
: (2.20)

Figure 2 shows the configuration of 
ðxÞ ¼ j
LðxÞj2 in the
ðx; yÞ plane for the triangular lattice. It is well known that
this configuration minimizes the free energy in the GL
theory [5].
Obviously, the linear analysis presented here alone can-

not lift the degeneracy of the solution and determine that
the triangular solution is the correct one. To determine the
correct configuration, one needs to compute the free energy
and include nonlinear effects for the holographic super-
conductor as well, which is a goal of later sections.

III. FREE ENERGYAND R CURRENT

In this section, we calculate the free energy of the vortex
lattice solution derived in the previous section. For sim-
plicity, we consider the system in which the region V for
scalar field condensation is compact and very large com-
pared with the unit cell of the lattice. So, we consider the
system in which j�j is zero outside the region V. Since we
fix both the chemical potential � ¼ Atðu ¼ 0Þ and the
temperature T under the variation of the magnetic field,

AðiÞ
t ðu ¼ 0Þ ¼ 0ði ¼ 1; 2; � � �Þ throughout this article.

x

y

L x 2

FIG. 2 (color online). The vortex lattice structure for the
triangular lattice in the ðx; yÞ plane. The vertical line represents

 ¼ j
Lj2, and vortex cores are located at j
Lj ¼ 0.
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A. Preliminaries

Employing the equations of motion (2.4a), the on-shell
action from Eq. (2.2) becomes

Ŝ os ¼ � 1

4

Z
M

d4x
ffiffiffiffiffiffiffi�g

p
F2 þ 1

2

Z
@M

d��r�j�j2;
(3.1)

where d�� is the integral measure normal to the spacetime

boundary @M.
The boundary @M in Eq. (3.1) consists of
(i) two spacelike surfaces (the past and future surfaces),
(ii) the horizon,
(iii) the AdS boundary @M1,
(iv) the boundary in the ðx; yÞ coordinates @M2 (x ¼

const and y ¼ const surfaces).
We consider a stationary problem, so the contributions
from two spacelike surfaces cancel each other. In addition,
there is no contribution from the horizon because of the
regularity condition at the horizon and the ‘‘redshift fac-
tor’’ hðu ! 1Þ ¼ 0. Thus, we need to consider the remain-
ing two surfaces @M1 and @M2 to evaluate the on-shell
action.

Furthermore, one can ignore the second term in Eq. (3.1)
because the scalar field � has a compact support in the
ðx; yÞ coordinates, and it satisfies the boundary condition
c1 ¼ 0 at the AdS boundary. Therefore, the on-shell action
reduces to3

Ŝ os ¼ � 1

4

Z
M

d4x
ffiffiffiffiffiffiffi�g

p
F2: (3.2)

Let us expand the on-shell action (3.2) as

Ŝ os ¼ Ŝð0Þ þ �Ŝð1Þ þ �2Ŝð2Þ þ � � � : (3.3)

In terms of gauge field strength FðiÞ
�� defined by

FðiÞ
�� :¼ @�A

ðiÞ
� � @�A

ðiÞ
� ði ¼ 0; 1; 2; � � �Þ; (3.4)

the coefficient Ŝð1Þ becomes

� Ŝð1Þ ¼
Z
M

d4x

ffiffiffiffiffiffiffi�g
p
2

F
��
ð0ÞF

ð1Þ
�� ¼

Z
@M

d��F
��
ð0ÞA

ð1Þ
� ;

(3.5)

where we used the Maxwell equations r�Fð0Þ
�� ¼ 0.

Similarly, Ŝð2Þ becomes

Ŝð2Þ ¼ �
Z
@M

d��

�
F��
ð0Þ A

ð2Þ
� þ 1

2
F��
ð1ÞA

ð1Þ
�

�

� 1

2

Z
M

d4x
ffiffiffiffiffiffiffi�g

p
j
�
ð1ÞA

ð1Þ
� ; (3.6)

where we used the Maxwell equations r�Fð0Þ
�� ¼ 0 and

r�Fð1Þ
�� ¼ jð1Þ� . The last term of Eq. (3.6) vanishes from

the ‘‘orthogonality condition’’ given in Eq. (A3). Thus, the
on-shell action up to second order in � is given by bound-
ary terms in Eqs. (3.5) and (3.6).
As mentioned above, we need to consider two surfaces,

@M1 and @M2.
4 However, our interest is in the configu-

ration of� which gives the lowest free energy, namely, the
� dependence of the free energy. Thus, it is enough to
extract only the � dependence of the on-shell action.
When � has a compact support in the ðx; yÞ coordinates,
@M2 gives the terms which do not depend on �, so they
are irrelevant.5 Consequently, the boundary terms we are
interested in come entirely from @M1, and the on-shell
action up to second order in � is given by

Ŝos ¼ �
Z
@M1

d��

�
F��
ð0Þ A� þ �2

2
F��
ð1ÞA

ð1Þ
�

�
þOð�3Þ

¼ �2�

2

Z
d3x�ijFð1Þ

ui A
ð1Þ
j

��������u¼0
þOð�3Þ: (3.7)

Note that one can ignore the first term in the first line since

it does not depend on �. Also, we used Að1Þ
t ðx; 0Þ ¼ 0.

According to the AdS/CFT dictionary, the expectation
value of the R current in the boundary theory, hJ�ðxÞi, is
calculated by

hJ�ðt; xÞi ¼ L2

2�2
4e

2
�Fu�ðt; x; u ¼ 0Þ: (3.8)

Since Fð0Þ
ui ¼ 0,

hJiðxÞi ¼ L2

2�2
4e

2
��Fð1Þ

ui ðx; u ¼ 0Þ þOð�2Þ: (3.9)

One can rewrite the on-shell action (3.7) using the
R-current expectation value (3.9) as

Sos ¼ �

2

Z
d3x�ijhJiiAð1Þ

j

��������u¼0
þOð�3Þ: (3.10)

Since the free energy � is related to the Lorentzian on-
shell action as � ¼ �Sos=

R
dt,

� ¼ � �

2

Z
R2

dx�ijhJiiAð1Þ
j

��������u¼0
þOð�3Þ: (3.11)

Note that these expressions ignore the terms which do not
depend on �.

3In principle, one should also take the counterterm action Sct
for the scalar field� into account, but one can easily see that Sct
makes no contribution under the boundary condition at the AdS
boundary.

4The surface @M2 is often negligible in the thermodynamic
limit, but this is not the case in the presence of a magnetic field
[see Eq. (2.7)].

5The field � has a compact support in the ðx; yÞ coordinates.
But the gauge field A� has a noncompact support which depends
on c 1 [see Eq. (3.15)]. Thus, one would have �-dependent
terms from @M2 through the gauge field. However, the
c 1-dependent part of A� decays exponentially, as seen in
Sec. IVA.
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Both for the free energy and for the R current, the

problem amounts to evaluating hJii / Fð1Þ
ui , so we obtain

this quantity in the next section.

B. First order solution of A�

The Maxwell equations at first order are given by

�
�2h

@2

@u2
þ4

�
Að1Þ
t ¼ 2L2�2

u2
Að0Þ
t jc 1j2;
(3.12a)�

@

@u
�2h

@

@u
þ4

�
Að1Þ
i � @ið�jk@jA

ð1Þ
k Þ ¼ �L2�2

u2
jð1Þi ;

(3.12b)

@uð�ij@iA
ð1Þ
j Þ ¼ 0: (3.12c)

We choose the gauge Au ¼ 0, but there is a residual gauge
transformation Ai ! Ai � @i�ðxÞ. From Eq. (3.12c), one

can set �ij@iA
ð1Þ
j ¼ 0 using the residual transformation.

hJ�i / Fu� is of course invariant under the transformation.

In this gauge, �ij@iA
ð1Þ
j ¼ 0, Eq. (3.12) becomes

�
�2h

@2

@u2
þ4

�
Að1Þ
t ¼ 2�2	2

0

u2
Að0Þ
t 
ðxÞ; (3.13a)

�
@

@u
�2h

@

@u
þ4

�
Að1Þ
i ¼ �2	2

0

u2
�i

j@j
ðxÞ: (3.13b)

Here, �ij is the antisymmetric symbol, �12 ¼ ��21 ¼ 1

and �i
j ¼ �ij. We also used

jð1Þx ¼ �	2
0ðuÞ
L2

@
ðxÞ
@y

; jð1Þy ¼ 	2
0ðuÞ
L2

@
ðxÞ
@x

; (3.14)

from Eqs. (2.4b) and (2.15).

The boundary conditions for Eq. (3.13a) are 0 ¼
Að1Þ
t ðu ¼ 1Þ ¼ Að1Þ

t ðu ¼ 0Þ. For Eq. (3.13b), we impose
the boundary conditions such that the solution is regular

at the horizon and �Fð1Þ
xy ¼ B� Bc2 at the AdS boundary,

namely, 2@½xA
ð1Þ
y� ðu ¼ 0Þ ¼ �Bc2.

The solutions are formally written by introducing Green
functions which satisfy the Dirichlet condition at the AdS
boundary:

Að1Þ
t ¼ �2�2

Z 1

0
du0

	2
0ðu0Þ

u02hðu0ÞA
ð0Þ
t ðu0Þ

�
Z

dx0Gtðu; u0jx� x0Þ
ðx0Þ; (3.15a)

Að1Þ
i ¼ aiðxÞ � �2�i

j
Z 1

0
du0

	2
0ðu0Þ
u02

�
Z

dx0GBðu; u0jx� x0Þ@j
ðx0Þ: (3.15b)

Here, aiðxÞ is a homogeneous solution of Eq. (3.13b)
satisfying 2@½xay� ¼ �Bc2 at the AdS boundary, and it is

independent of u. Gt and GB are Green functions of
Eqs. (3.13a) and (3.13b), respectively:

�
�2h

@2

@u2
þ4

�
Gtðu;u0jxÞ¼�hðuÞ�ðu�u0Þ�ðxÞ; (3.16a)

Gtðu¼ 0;u0jxÞ¼Gtðu¼ 1;u0jxÞ¼ 0; (3.16b)

�
�2 @

@u

�
h
@

@u

�
þ4

�
GBðu;u0jxÞ¼��ðu�u0Þ�ðxÞ; (3.17a)

GBðu¼0;u0jxÞ¼ lim
u!1

hðuÞ@uGBðu;u0jxÞ
¼0: (3.17b)

The boundary condition Eq. (3.17b) at u ¼ 1 follows from
the regularity at the horizon. Similar expressions hold for
u $ u0 from Gðu; u0Þ ¼ Gðu0;uÞ.

C. Free energy and R current

Using the Green function GB, one can express the
R-current expectation value as

hJiðxÞi ¼ ��i
j@j�ðxÞ; (3.18)

where

�ðxÞ :¼ �
L2�3

2�2
4e

2

Z
R2

dx0
ðx0Þ@u

�
Z 1

0
du0

	2
0ðu0Þ
u02

GBðu; u0jx� x0Þ
��������u¼0

: (3.19)

Here, we used @GB=@x
0i ¼ �@GB=@x

i. Equation (3.18)
implies a circulating R current which is dictated simply
from the current conservation. It is a different issue though
whether the current actually flows along the lines of a
constant field for the condensate, like in the GL theory.
The free energy can be similarly expressed by the Green

function. The free energy is given by

� ¼ �

2

Z
R2

dx�jkð@k�ÞAð1Þ
j

��������u¼0
þOð�3Þ

¼ � �Bc2

2

Z
R2

dx�þOð�3Þ;

using Eq. (3.11) and 2@½xA
ð1Þ
y� ðu ¼ 0Þ ¼ �Bc2. From

Eqs. (3.17), GB satisfies

�2 d

du

�
h
d

du

�Z
R2

dxGBðu; u0jxÞ ¼ ��ðu� u0Þ

and

�2
Z
R2

dxGBðu;u0jxÞ ¼
Z minðu;u0Þ

0

du00

hðu00Þ : (3.20)

Consequently, one obtains
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� ¼ � L2

2�2
4e

2

�2Bc2�

2
CvolðVÞ �
; (3.21)

where

C :¼
Z 1

0
du

	2
0ðuÞ
u2

> 0; (3.22)

and �f indicates the average of f over V in the ðx; yÞ plane:

�f :¼ 1

volðVÞ
Z
V
dxfðxÞ: (3.23)

From Eq. (3.21), �< 0, which suggests that the free
energy of the vortex lattice state is smaller than the one of
the normal state (� ¼ 0).

Equations (3.18), (3.19), and (3.21) are not our final
results. Because 	0 and 
L are the solutions of the linear
equations (2.9a) and (2.9b), their normalizations have not
been determined yet. Below we eliminate this ambiguity,
so hJ�i and � are characterized only by two lattice pa-

rameters, a1 and a2.
The ambiguity in the normalizations comes from the

linear equations, and it is resolved only after one considers
nonlinearity. So, let us consider the equation of motion for
c 2. As shown in the Appendix, if c 2 obeys the boundary
condition c1 ¼ 0 and the regularity condition at the hori-
zon, we obtain the ‘‘orthogonality condition’’ (A3), which

relates 	0 to the gauge field Að1Þ
� .

Using Eqs. (3.14) and integration by parts, the orthogo-
nality condition (A3) can be written as

Z 1

0
du

	2
0ðuÞ
u2

Z
R2

dxFð1Þ
xy 
ðxÞ ¼ 2

Z 1

0
du

	2
0ðuÞ

u2hðuÞA
ð0Þ
t ðuÞ

�
Z
R2

dxAð1Þ
t 
ðxÞ:

(3.24)

From Eq. (3.15b),

Fð1Þ
xy ¼ �Bc2 þ �2

Z 1

0
du0

	2
0ðu0Þ
u02

4 ½GBðu; u0Þ � 
�ðxÞ;
(3.25)

where ’’�’’ is the convolution in the ðx; yÞ plane:

½f � g�ðxÞ :¼
Z

dx0fðx� x0Þgðx0Þ: (3.26)

Substituting the solutions (3.15a) and (3.25) into Eq. (3.24),
we obtain

Bc2C

�

¼ �2

Z 1

0
du

	2
0ðuÞ
u2

Z 1

0
du0

	2
0ðu0Þ
u02

Iðu; u0Þ; (3.27)

where we define

I :¼ 2Að0Þ
t ðuÞ
hðuÞ


½Gtðu;u0Þ � 
�
ð �
Þ2

2Að0Þ
t ðu0Þ
hðu0Þ

þ 
4 ½GBðu; u0Þ � 
�
ð �
Þ2 ; (3.28)

which is independent of the normalization of 
L.
Then, the free energy (3.21) is expressed by

� ¼ � L2

2�2
4e

2

�2B2
c2�

2

volðVÞ
�

; (3.29)

where

� :¼ Bc2

C �

¼ �2

C2

Z 1

0
du

	2
0ðuÞ
u2

Z 1

0
du0

	2
0ðu0Þ
u02

Iðu; u0Þ

¼ �2
Z 1

0
du

	̂2
0ðuÞ
u2

Z 1

0
du0

	̂2
0ðu0Þ
u02

Iðu; u0Þ: (3.30)

Here, 	̂0 is the solution of Eq. (2.9b) normalized by

Z 1

0
du

	̂2
0ðuÞ
u2

¼ 1: (3.31)

Since the functions I and � do not depend on the normal-
ization of 	0 and 
L, the free energy (3.29) does not
depend on the normalization either.
Similarly, the potential � (3.19) which gives the

R-current expectation value does not have the ambiguity
in normalization. This can be seen by expressing the
potential as

�ðxÞ ¼ �Bc2

L2�3

2�2
4e

2

1

�
@u

Z 1

0
du0

� 	2
0ðu0Þ
u02

½GBðu;u0Þ � 
�ðxÞ
�


��������u¼0
: (3.32)

This is our main result: The free energy (3.29) and the
expectation value of the R current (3.18) are expressed by �
(3.30) and � (3.32).
As seen in these expressions, the free-energy density and

the R current are not only determined by the complex
scalar field 
 ¼ j
Lj2 at x but also by 
 in the entire
region around x. On the other hand, in the GL theory, the
free-energy density is a local function of the order parame-
ter �GLðxÞ. The superconducting current is also expressed
locally by

JGLi ðxÞ ¼ ��i
j@jj�GLðxÞj2: (3.33)

This implies that the superconducting current flows along
the lines of j�GLj2 ¼ const: [5]. These differences are
natural since we have not taken a long-wavelength limit
in evaluating the free energy and the R current, unlike in
the GL theory. By taking a long-wavelength limit, our
result should reduce to the GL theory. As a result, the
triangular lattice solution, which is the most favorable
solution in the GL theory, should also become the most
favorable one in the holographic superconductor. One
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should reproduce Eq. (3.33) as well. We will demonstrate
this in the next section.

IV. THE LONG-WAVELENGTH LIMIT AND THE
TRIANGULAR LATTICE

A. A representation of Green functions

The expression of � in Eq. (3.30) is nonlocal both in the
AdS radius direction and in the ðx; yÞ directions, which
makes the boundary interpretation rather unclear. The non-
localities come from Green functions GB and Gt, so it is
useful to expand the u dependence of the Green functions
by a complete set of orthonormal functions.

First, let us consider eigenfunctions ��ðuÞ satisfying

LB��ðuÞ ¼ ���ðuÞ; LB :¼ ��2 d

du

�
h
d

du

�
; (4.1a)

��ðu ¼ 0Þ ¼ lim
u!1

hðuÞ�0
�ðuÞ ¼ 0: (4.1b)

The operator LB becomes a Hermitian operator for the
inner product defined by

h�jc iB :¼
Z 1

0
du�yðuÞc ðuÞ; (4.2)

for any solutions� and c of Eq. (4.1). One can easily show
� > 0.

The normalized eigenfunctions f��g with respect to the
inner product (4.2) form a complete orthonormal set

h��j��0 iB ¼ ���0 ;
X
�

��ðuÞ�y
�ðu0Þ ¼ �ðu� u0Þ;

(4.3)

and the Green function GB in Eq. (3.17) is represented by
f��g as

GBðu; u0jxÞ ¼
X
�>0

��ðuÞ�y
�ðu0ÞG2ðx;�Þ: (4.4)

Here, G2ðx;m2Þ is the Green function defined on the ðx; yÞ
plane as

ð4 �m2ÞG2ðx;m2Þ ¼ ��ðxÞ: (4.5)

The solution of Eq. (4.5) satisfying limjxj!1jG2j<1 is

given by the modified Bessel function:

G2ðx;m2Þ ¼ 1

2�
K0ðmjxjÞ; (4.6)

for any real positive value of m2.
Similarly, Gt in Eq. (3.16) is constructed as

Gtðu; u0jxÞ ¼
X
�>0

��ðuÞ�y
�ðu0ÞG2ðx;�Þ; (4.7)

where f��g is the complete orthonormal eigensystem of the

equation,

Lt��ðuÞ ¼ ���ðuÞ; Lt :¼ ��2h
d2

du2
; (4.8a)

��ðu ¼ 0Þ ¼ ��ðu ¼ 1Þ ¼ 0; (4.8b)

with

h��j��0 it ¼ ���0 ;
X
�

��ðuÞ�y
�ðu0Þ ¼ hðuÞ�ðu� u0Þ:

(4.9)

The inner product hjit is defined by

h�jc it :¼
Z 1

0

du

hðuÞ�
yðuÞc ðuÞ (4.10)

for any solutions � and c of Eq. (4.8). The operator Lt is
Hermitian with respect to the inner product (4.10), and�>
0.
Substituting Eqs. (4.4) and (4.7) into Eq. (3.28), we

obtain another expression of � as

� ¼ X
�

Pð�Þ�1ð�Þ þ
X
�

Qð�Þ�0ð�Þ; (4.11)

where we introduce �nðm2Þ,

�nðm2Þ :¼ 
4n ½G2ðm2Þ � 
�
ð �
Þ2 ; (4.12)

and the functions P, Q defined by

Pð�Þ :¼
��������
Z 1

0
du�y

�

	2
0

u2

��������
2

; (4.13)

Qð�Þ :¼
��������
Z 1

0

du

h
�y
�ð2Að0Þ

t Þ	
2
0

u2

��������
2

: (4.14)

Similarly, � (3.32) is represented as

�ðxÞ ¼ �Bc2

L2�3

2�2
4e

2

1

�

X
�

�0
�ð0Þ

�Z 1

0
du�y

�

	2
0

u2

�

� ½G2ð�Þ � 
�ðxÞ
�


: (4.15)

The eigenvalues � and � can be obtained numerically by
solving the two differential equations (4.1) and (4.8). Both
are positive, and the minimum values of � and � are given
by � ’ 2:22�2 and � ’ 7:41�2, respectively.
The holographic superconductor is constructed in the

gravity theory with one extra dimension which is extended
perpendicular to the ð2þ 1Þ-dimensional spacetime of the
boundary theory. So, from the ð2þ 1Þ-dimensional point
of view, the bulk gauge fields A�, with a wide variety of

masses
ffiffiffiffi
�

p
and

ffiffiffiffi
�

p
, appear as in Eqs. (4.1) and (4.8).

B. The long-wavelength limit

We find that both the free-energy density and the R
current take nonlocal forms, whereas they take local forms
in the GL theory. This is because the AdS/CFT results
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correspond to the results to all orders in effective theory
expansion. The GL theory takes only the first few terms in
the effective theory expansion, so one needs to take a long-
wavelength limit in the AdS/CFT results to compare with
the GL theory. Taking such a limit is common in hydro-
dynamic studies based on the AdS/CFT duality (see, e.g.,
Refs. [17–19]).

In this subsection, we demonstrate that our results in-
deed reduce to the GL theory ones in the long-wavelength
limit. As a result, the triangular lattice solution becomes
the most favorable one, like in the GL theory.

We have obtained nonlocal expressions, but there is in
fact an analogous situation in a superconductor. A super-
conductor has small length scales, the Pippard/BCS coher-
ence length, and the mean-free path. In the presence of
these small scales, the electromagnetic response, in gen-
eral, takes a nonlocal form. The local form such as the
London equation is the limit where these length scales are
negligible [5].

In our problem, the nonlocalities come from the con-
volution in Eqs. (4.12) and (4.15), i.e.,

½G2ð�Þ � 
�ðxÞ ¼
Z

dx0G2ðx� x0;�Þ
ðx0Þ (4.16)

and a similar expression for G2ð�Þ. The Green’s functions
G2 have the natural length scales 1=

ffiffiffiffi
�

p
and 1=

ffiffiffiffi
�

p
. They

are the small length scales in our problem. Their micro-
scopic interpretation is unclear but they areOðT�1Þ. On the
other hand, the natural length scale of the vortex lattice is
the size of the fundamental region parametrized by r0. This
is the length scale of the condensate 
 ¼ j
Lj2. When

r0 � 1=
ffiffiffiffi
�

p
, 1=

ffiffiffiffi
�

p
, G2 quickly decays compared with 
,

and the convolution reduces to a local form. This is what
we meant by the ‘‘long-wavelength limit.’’

By replacing
ðx0Þ by
ðxÞ in the convolution, we obtain

½G2ð�Þ � 
�ðxÞ ¼ 
ðxÞ
�

�
1þO

�
1

r20�

��
; (4.17)

where we used

Z
R2

dxG2ðx;�Þ ¼ 1

�
:

Subleading terms in Eq. (4.17) can be estimated from a
series expansion 
ðx0Þ ¼ 
ðxÞ þ � � � .

Substituting Eq. (4.17) into Eq. (4.12), one obtains the
coefficient � (4.11) as

� ¼ C1

�
2

ð �
Þ2
�
1þO

�
1

r20�
;
1

r20�

��
; (4.18)

where

C1 :¼
X
�>0

Qð�Þ
�

: (4.19)

�> 0 from its definition (3.30). [The constant C1 is indeed

positive from Eq. (4.14) and from the positivity of �.] One
has the lowest free energy � when � takes its minimum.
Therefore, the thermodynamically realized configuration is
given when

� :¼ �
2

ð �
Þ2 (4.20)

takes the minimum value. This is the same condition as the
one for the Abrikosov lattice in standard type II super-
conductors [5]. As is well known, the minimum is � ’
1:16, which is given by the triangular lattice (2.20).
Similarly, the R current (4.15) becomes

�ðxÞ ¼ �Bc2

L2�

2�2
4e

2

1

�


ðxÞ
�


�
1þO

�
1

r20�

��
; (4.21)

using Eq. (4.17). Thus, like the GL theory, the circulating R
current flows along the lines of the constant field for the
condensate.
Let us consider the validity of our approximation. One

can achieve the long-wavelength limit by taking a small
magnetic field Bc2 since r0 ¼ 1=

ffiffiffiffiffiffiffiffi
Bc2

p
. As shown in Fig. 1,

one can take an arbitrarily small value of Bc2 by suitably
choosing the temperature T. Using q ¼ �=�, �� 2�2,
and qc � 4, the condition Bc2 � �, � gives

Bc2

�2 � 2

q2c

�
T

Tc

�
2 � 1

8

�
T

Tc

�
2
: (4.22)

This condition is implemented in Fig. 1. Our approxima-
tion in this subsection becomes good if the system is
located well below the dashed curve in the phase diagram.
Incidentally, one would incorrectly conclude that the

expanded solution of Eqs. (2.6) exists even for B> Bc2

by replacing the deviation parameter with � ¼
ðB� Bc2Þ=Bc2ð>0Þ. Suppose that this is the case. Then,

this changes the sign in the first term of Fð1Þ
xy in the solution

(3.25). As a result, one has an extra minus sign in the
following: the left-hand side of Eq. (3.27) and the right-
hand side of the second line of Eq. (3.30). But this contra-
dicts with the result in Eq. (4.18). Therefore, the � expan-
sion of � does not exist for B> Bc2, at least when

r0 � 1=
ffiffiffiffi
�

p
, 1=

ffiffiffiffi
�

p
. This agrees with the argument in

Sec. II that the superconducting phase ceases to exist at
B ¼ Bc2 and the normal phase appears for B> Bc2.

V. CONCLUSIONS AND DISCUSSION

We have investigated the vortex lattice solution in the
holographic superconductor. One would interpret the holo-
graphic superconductor as a superfluid, and the computa-
tions described here can equally apply to this case as well
with a slight modification. In this case, the rotation of the
superfluid is analogous to the magnetic field.
One main difference between the conventional super-

conductors in the GL theory and the holographic super-
conductor is that both the free-energy density and the R
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current are expressed by nonlocal quantities, such as the
two-point function G2 in Eq. (4.5). This is because our
results in Sec. III are beyond the applicability of the GL
theory. In fact, we show in Sec. IV that our results reduce to
the results of the GL theory by taking a long-wavelength
limit. Then, one should be able to estimate the corrections
to the GL theory by inspecting our expressions in Sec. III.

Another interesting direction to pursue is the investiga-
tion of the kinetics of the vortex lattice solution. For
example, it is well known that vortices move at a constant
velocity along the direction perpendicular to the magnetic
field by the Lorentz force and the electric resistance ap-
pears if we add an appropriate external electric field per-
pendicular to the magnetic field. This phenomenon is
important for pinning superconductors with irregularities
[5]. We will discuss this in more detail in Ref. [20]. It is
also interesting to consider the dynamic critical phe-
nomena of the vortex lattice solution, as investigated in
Refs. [21,22].
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APPENDIX: ORTHOGONALITY CONDITION

The equations for c 1 and c 2 are given by

ðD2
ð0Þ �m2Þc 1 ¼ 0; ðD2

ð0Þ �m2Þc 2 ¼ J; (A1)

J :¼ ifDð0Þ
� ðA�

ð1Þc 1Þ þ A�
ð1ÞD

ð0Þ
� c 1g; (A2)

where D�
ð0Þ :¼ r� � iA�

ð0Þ.
Recall that the field� has a compact support in the ðx; yÞ

coordinates and satisfies the regularity condition at the
horizon and c1 ¼ 0 at the AdS boundary. Then, using
Eq. (A1) and integration by parts, one obtains the orthogo-
nality condition:

0 ¼
Z
M

d4x
ffiffiffiffiffiffiffi�g

p fc y
1 ðD2

ð0Þ �m2Þc 2 � c y
1Jg

¼
Z
@M

d��fc y
1D

�
ð0Þc 2 � ðD�

ð0Þc 1Þyc 2 � iA�
ð1Þjc 1j2g

þ
Z
M

d4x
ffiffiffiffiffiffiffi�g

p
A�
ð1Þj

ð1Þ
�

¼
Z
M

d4x
ffiffiffiffiffiffiffi�g

p
A
�
ð1Þj

ð1Þ
� : (A3)
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