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We study the effects that a nonzero strong-CP-violating parameter � would have on the deuteron and

diproton binding energies and on the triple-alpha process. Both these systems exhibit fine-tuning, so it is

plausible that a small change in the nuclear force would produce catastrophic consequences. Such a

nuclear force is here understood in the framework of an effective Lagrangian for pions and nucleons, and

the strength of the interaction varies with �. We find that the effects are not too dramatic.
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I. INTRODUCTION

The QCD Lagrangian includes a �-term which is usually
written as

L � ¼ � g2�

32�2
F ~F: (1)

For � � 0, this leads to CP-violation in the strong inter-
action. Measurements of the neutron electric dipole mo-
ment set the severe bound j�j< 10�10 [1,2]. The lack of a
satisfactory explanation, within the standard model, of why
this should be the case is referred to as the strong CP
problem.

The strong CP problem remains an outstanding issue in
string theory. In critical string theories, CP is a gauge
symmetry. Typically, these theories exhibit moduli, and
CP is spontaneously broken on most of the moduli space.
The CP odd moduli are candidate axions. If such theories
describe nature, the moduli must somehow be fixed, and it
is not clear whether axions typically survive this process.
For example, in the flux vacua studied in Ref. [3], all of the
moduli are massive and there are no candidate axions.
sinð�Þ looks like a random variable [4–6] whose typical
value is of order one.

In the absence of a principle which ensures a small � ab
initio, or a very light axion, one can ask what might
account for a small �. It has been argued [3,7,8] that in
theories like string theory, the cosmological constant, �,
might be a similar random variable, fixed by anthropic
considerations. This is plausible because for large�, phys-
ics would be drastically different than what we observe.
For �, however, it is clear that, say, � ¼ 10�6 would not
significantly change nuclear physics, so anthropic consid-
erations are likely to be ineffective. It is interesting to ask
for what values of � would physics be significantly differ-
ent. This is the topic of this paper. Our goal will be to
examine different processes, and ask, in order of magni-
tude, when �might make an appreciable difference. This is
similar in spirit to the work recently published by Jaffe
et al. [9]. Varying the quark masses, they investigate which
values satisfy the environmental constraint that the quark
masses allow for stable nuclei, making organic chemistry

possible. In our case, instead, we fix the quark masses to
the values1

mu ¼ 4 MeV; md ¼ 7 MeV (2)

and let � vary. We study the effects that this would produce
on the binding energies of two among the lightest nuclei,
the deuteron and the diproton,2 and on the abundance of
carbon and oxygen. Csoto, Oberhummer and Schlattl
[10,11] determined that the abundance of 12C and 16O is
extremely sensitive to even small changes in the strength of
the nucleon-nucleon force. The models they use to describe
the N-N interaction in their study do not involve explicitly
the angle �. They multiply the strength of theN-N force by
a factor p, which they then vary from 0.996 to 1.004. In our
case, the tool for exploring the consequences of � � 0 on
the systems just mentioned is provided by a sigma model,
intended as an effective Lagrangian that describes the
interactions between pions and nucleons. For nuclei like
12C and 16O, the nuclear force is described by contact
interactions, the strength of which depends on the pion
mass, that in turn depends on �. The analysis will be
somewhat simplistic, since we are only interested in an
order-of-magnitude estimate.
The paper is organized as follows. First we write the

sigma model Lagrangian and we derive formulas for the
pion mass and the proton-neutron mass difference as func-
tions of �. Then, we compute the correction to the binding
energies of the deuteron and the diproton, and we study the
consequences of varying � on the triple-alpha process. We
conclude with a few comments on the results.

II. LAGRANGIAN FOR NUCLEON-PION
INTERACTIONS

A. �-dependence in the quark mass matrix

For the purposes of the following discussion, it is con-
venient to remove the term (1) from the Lagrangian by

1These values of the quark masses are typically taken to apply
at a scale of 1 GeV.

2The diproton does not actually exist as a bound state in
nature, but the effect of � could be such to bind it.
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performing a rotation of the quark fields

u ! ei�uu (3)

d ! ei�dd; (4)

such that

�u þ�d ¼ �: (5)

This introduces an equivalent � dependence in the quark
mass matrix, that we write as MU0, where

M ¼ mu 0
0 md

� �
; U0 ¼ ei�u 0

0 ei�d

� �
: (6)

B. The sigma model

The sigma model Lagrangian provides a framework for
understanding the very low energy limit of QCD. We use
the notation of the text by Srednicki [12], and write our
effective Lagrangian for pions and nucleons as

L ¼ � 1

4
f2�Tr½@�U@�Uy� þ B0Tr½ðMU0ÞUþ ðMU0ÞyUy� þ i �N��@

�N �mN
�NðUyPL þUPRÞN

� 1

2
ðgA � 1Þi �N��ðU@�U

yPL þUy@�UPRÞN � c1 �NððMU0ÞPL þ ðMU0ÞyPRÞN � c2 �NðUyðMU0ÞyUyPL

þUðMU0ÞUPRÞN � c3TrððMU0ÞUþ ðMU0ÞyUyÞ �NðUyPL þUPRÞN � c4TrððMU0ÞU
� ðMU0ÞyUyÞ �NðUyPL �UPRÞN; (7)

whereU ¼ ei�
a�a=f� ,�a is the pion field, �a are the isospin

matrices, f� ¼ 92:4 MeV is the pion decay constant, N is
the nucleon field, PL ¼ 1

2 ð1� �5Þ and PR ¼ 1
2 ð1þ �5Þ are

the projection operators, gA ¼ 1:27 is the axial vector
coupling, and c1, c2, c3, c4 are dimensionless constants.
B0 is a constant with dimension of ½mass�3 that can be
determined from ratios of meson masses in SUð3Þ.
Roughly speaking, B0 ��3

QCD. In this paper we use B0 ¼
7:6� 106 MeV3. In the Lagrangian above we wrote all the
possible terms that are invariant under SUð2ÞL � SUð2ÞR,
with the fields obeying the transformation rules

NL ! LNL; NR ! RNR;

U ! LURy; ðMU0Þ ! RðMU0ÞLy;
(8)

for L, R in SUð2Þ.
The pion mass.We first obtain a formula for the mass of

the pion as a function of �. We can start by writing

U ¼ ei�
a�a=f� ¼ cos

j ~�j
f�

þ i
�a

j ~�j �
a sin

j ~�j
f�

: (9)

It will prove convenient also to adopt the following pa-
rametrization for the quark mass matrix:

MU0 ¼ A12 þ iB12 þ C�3 þ iD�3: (10)

Using (9) and (10), the potential V in the Lagrangian (7)
reduces to

V ¼ �B0Tr½ðMU0ÞUþ ðMU0ÞyUy�

¼ �B0

�
4A cos

j ~�j
f�

� 4D
�3

j ~�j sin
j ~�j
f�

�
: (11)

In order not to have a tadpole in �3, we impose the
condition D ¼ 0

D ¼ 1

2
Tr

�
�3

mu sin�u 0
0 md sin�d

� ��

¼ 1

2
ðmu sin�u �md sin�dÞ ¼ 0: (12)

Solving (5) and (12) we find the useful relations

sin�u ¼ md sin�

½m2
u þm2

d þ 2mumd cos��1=2
(13)

sin�d ¼ mu sin�

½m2
u þm2

d þ 2mumd cos��1=2
(14)

cos�u ¼ mu þmd cos�

½m2
u þm2

d þ 2mumd cos��1=2
(15)

cos�d ¼ md þmu cos�

½m2
u þm2

d þ 2mumd cos��1=2
: (16)

Next we determine A

A ¼ 1

2
Tr

mu cos�u 0
0 md cos�d

� �

¼ 1

2
ðmu cos�u þmd cos�dÞ: (17)

We now have all the ingredients to get an expression for the

pion mass. From Eq. (11), expanding cosj ~�jf�
to second order

we find

m2
� ¼ 2B0

f2�
½m2

u þm2
d þ 2mumd cos��1=2: (18)

Note that this is an even function of �, therefore CP
conserving. This formula generalizes and, for � ¼ 0, re-

duces to the well-known m2
� ¼ 2B0

f2�
ðmu þmdÞ. Note that,
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varying � from 0 to �, the pion mass decreases, and it
attains a minimum at � ¼ �.

All this was done in SUð2Þ. One could be more ambi-
tious and try to find a formula for the pion mass in SUð3Þ.
In that case, the analysis is carried out in the same way.
Requiring the absence of tadpoles translates into two con-
ditions

mu sin�u ¼ md sin�d ¼ ms sin�s; (19)

and Eq. (5) is modified to

�u þ�d þ�s ¼ �: (20)

Now (19) and (20) cannot be solved analytically, but if we
make the reasonable approximation mu, md � ms, they
reduce to

�u þ�d ¼ � (21)

�s ¼ 0 (22)

mu sin�u ¼ md sin�d; (23)

which can be solved, leading to the same solution we found
previously. The pion mass then turns out be the same as in
the SUð2Þ case.
The nucleons. Let us now examine the part of the

Lagrangian involving the nucleons. First we can rewrite
it in a more convenient way, using the following field
redefinition3

N ¼ ðu0uPL þ uy0u
yPRÞN ; (24)

where u2o ¼ U0 and u2 ¼ U. The last five lines in (7)
become

i �N ��@�N �mN
�NN þ �N ��v�N � gA

�N ���5a�N � 1

2
cþ �N ðuðMU0Þuþ uyðMU0ÞyuyÞN

þ 1

2
c� �N ðuðMU0Þu� uyðMU0ÞyuyÞ�5N � c3Tr½ðMU0ÞUþ ðMU0ÞyUy� �NN

þ c4Tr½ðMU0ÞU� ðMU0ÞyUy� �N �5N ; (25)

where v� ¼ i
2 ½uyð@�uÞ þ uð@�uyÞ�, a� ¼ i

2 ½uyð@�uÞ � uð@�uyÞ�, and c� ¼ c1 � c2. This is not yet particularly illumi-
nating. With some more algebra, we can write, to lowest order, the corrections to the nucleon mass

Lmass ¼ � 1

2
ðcþ þ 4c3Þ½m2

u þm2
d þ 2mumd cos��1=2 �NN þ iðc� þ 4c4Þ mumd sin�

½m2
u þm2

d þ 2mumd cos��1=2
�N �5N

� 1

2
cþ

m2
u �m2

d

½m2
u þm2

d þ 2mumd cos��1=2
�N �3N (26)

and the nucleon-pion interactions

L int ¼ �ig�NN�
a �N �a�5N þ i

2
c�½m2

u þm2
d þ 2mumd cos��1=2 �N

�a�a

f�
�5N

þ cþ
mumd sin�

½m2
u þm2

d þ 2mumd cos��1=2
�N
�a�a

f�
N þ i

2f�
ðc� þ 4c4Þ m2

u �m2
d

½m2
u þm2

d þ 2mumd cos��1=2
�3 �N �5N :

(27)

From (26) we get the proton-neutron mass difference

mn �mp ¼ cþ
m2

d �m2
u

½m2
u þm2

d þ 2mumd cos��1=2
: (28)

Note that, varying � from 0 to �, mn �mp increases. It
reaches the maximum value cþðmd þmuÞ at � ¼ �.

Estimation of the constants. The constants cþ, c�, c3, c4
can in principle be related to quantities measured in experi-
ments. Since in our world � is smaller than 10�10 (see e.g.
[1]), we define these quantities to be measured at � ¼ 0.
Note that, with this definition, we do not learn anything

about c� and c4 from the nucleon mass, since the second
term in (26) vanishes at � ¼ 0. It would be good, for the
sake of completeness if nothing else, if we could determine
all the constants, but this task is not so easy and, for the
calculation that we will perform in the next section, only
cþ contributes substantially.
The value of cþ can be estimated in at least two ways:
(i) from the measured proton-neutron mass difference

(� 1:3 MeV at � ¼ 0). Taking into account also the
electromagnetic contribution �EM � 0:5 MeV we
have

ðmn �mpÞmeasured ¼ cþðmd �muÞ � �EM; (29)

yielding cþ ¼ 0:6. This estimation is crude, because
3This is the same field redifinition that the reader finds in [12]
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the second contribution on the right-hand side of the
above equation is of the same order as the first one;

(ii) more accurately, from the mass splitting M� �MN

in the baryon octet, as pointed out in [1]. That yields
cþ ¼ 2:5. This is the value that we are going to use
in the next section.

The constant c� deserves some comments. If we look at

the first line of (27), it appears that c�
2f�

½m2
u þm2

d þ
2mumd cos��1=2 can be considered as some kind of correc-
tion to g�NN. At � ¼ 0, one could interpret the measured
value of g�NN as including such a correction, but that
would not tell us anything about c�. In other words, one
could trade c� for a new constant, say g0�NN ¼ g�NN þ
c�
2f�

ðmu þmdÞ. For � � 0, though, one wants to keep the

contribution coming from c� separate from g�NN and deal
with the fact that there seems to be no obvious physical
quantity from which this constant can be estimated. From
the construction of the Lagrangian, it makes sense to
believe that c� should be of the same order as cþ, namely,
of order unity, because they are both linear combinations of
c1 and c2 that appear in Eq. (7), but there is no proof of
this. On the other hand, a value as big as 10 would be
disturbing because it would cancel the suppression
½m2

uþm2
d
þ2mumd cos��1=2

f�
� 1

10 . As already stated, we will not

need c� for our calculation. We actually need to make
this statement more precise: we can forget about the exact
value of c� as long as it is not much greater than one. The
reason for this will be discussed in the next section.

Equations (18) and (23) are the main results of this
section. They make the �-dependence of the pion mass
and the proton-neutron mass difference explicit and, since
these quantities play key roles in determining nuclear
properties, they can be used to explore the consequences
of a nonzero strong-CP-violating parameter in nuclear
physics.

III. EFFECTS OF � IN NUCLEAR PHYSICS

We do not have yet a complete picture to explain nuclear
physics in terms of effective field theories, but enough
progress has been made to allow us to investigate, at least
qualitatively, the effects that � � 0 would have in nuclear
physics. In this section we focus our attention on:

(i) Two-nucleon systems, namely, the deuteron and the
diproton.4 The former has a binding energy which is
relatively small (2.2 MeV); the latter does not exist
as a bound state in nature, but we know that it fails to
bind by only�70 keV. In principle, one expects that
the �-dependent nucleon-pion interactions in (25)
could give corrections to these energies that might
be big enough to unbind the deuteron or to bind the

diproton. If either one of these possibilities were
realized, the consequences would be dramatic. For
instance, if the diproton were bound, all the hydro-
gen in the Universe would have been burnt to He2

during the early stages of the Big Bang and no
hydrogen compounds or stable stars would exist to-
day. Likewise, an unbound deuteron would signifi-
cantly change the chain of nucleosynthesis that leads
to heavier elements [13]. Another reason for study-
ing these two-nucleon systems is that they are sim-
ple, and we have a good control over the calculation.
Other authors have studied the dependence of the
deuteron binding energy on variations of other pa-
rameters, such as the coupling constant [14,15], or
the quark masses [16–19];

(ii) The triple-alpha process, which is responsible for
the production of carbon in stars. The observed
abundance of carbon and oxygen results from a
peculiar position of various nuclear energy levels,
and it is very sensitive to even small shifts of such
levels. It is hard to relate the spacing between
excited states of a nucleus to first principles, but,
with some assumptions, we can qualitatively study
how variations of � affect the triple-alpha process.

A. Two-nucleon systems

The deuteron. The deuteron exists as a bound state only
in an isospin singlet and spin triplet configuration, and its
binding energy is rather small (E ¼ �2:22 MeV).5

Attempts to derive the nuclear potential starting from a
chiral Lagrangian show that the deuteron binding is pre-
dominantly a consequence of two-pion and three-pion
exchanges. The two-pion can be modeled by �ð600Þ ex-
change, which gives an attractive medium-range contribu-
tion, whereas the three-pion corresponds to an !ð783Þ
exchange, which is short-range and repulsive. The one-
pion exchange is responsible for the long-range
contribution.
For the purpose of our study here, however, we can

content ourselves with a much simpler form for the poten-
tial, a three-dimensional square well

VðrÞ ¼
��V0 r < R
0 r > R

; c ðrÞ ¼
�
A sinkr

r r < R
B e�	r

r r > R

with parameters chosen to fit the experimental measure-
ments: V0 ¼ 41 MeV, R ¼ 8:62� 10�3 MeV�1, k ¼
212 MeV, 	 ¼ 46:4 MeV, A ¼ 2:31 MeV1=2, B ¼ 1:44A.
We want to compute the first-order corrections to the

potential that we get from the theta-dependent terms in the
Lagrangian, and see how significant they are. The interac-
tion terms, that we need to look at, are listed in (27). A
couple of comments are in due order:

4For completeness one could also study the dineutron. The
conclusions would be qualitatively the same as for the diproton.

5We take the convention that the binding energy is a negative
number for a bound state.
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(i) all the terms in (27), except for the first one, are
suppressed by

mq

f�
, where mq stands for the quark

mass and is, roughly speaking, a few MeV;
(ii) the terms containing a �5 get an extra spin-

suppression that goes as m�

2mN
at each nucleon-nu-

cleon-pion vertex. Note that m�

2mN
is of the same order

as
mq

f�
.

Thus, a one-pion exchange diagram with g�NN at one
vertex and c�

mq

f�
at the other vertex is suppressed with

respect to a diagram with cþ
mq

f�
at both vertices, as long

as c� is at the most of order 1. To lowest order, then, we
only need to evaluate the diagram shown in Fig. 1. In the
nonrelativistic limit it gives

þ ic2þ
m2

um
2
dsin

2�

f2�½m2
u þm2

d þ 2mumd cos��
~�n � ~�p

q2 þm2
�

(30)

where q is the three-momentum of the exchanged pion.
Using ~�n � ~�p ¼ �3 for the isosinglet, and Fourier trans-

forming to position space, we find the following correction
to the potential:

V1ðr; �Þ ¼ 3

4�

c2þ
f2�

m2
um

2
dsin

2�

½m2
u þm2

d þ 2mumd cos��
e�m�r

r
:

(31)

This is repulsive for all values of �. We can now use this
result to compute the shift in the deuteron binding energy

using first-order perturbation theory:

�ð�Þ ¼ hc ðrÞjV1ðr; �Þjc ðrÞi: (32)

The energy shift is plotted as a function of � in Fig. 2. At
cos� ’ �0:7, we read from the plot that � ’ 0:15 MeV.
As this shift is positive, the deuteron becomes more weakly
bound. 0.15 MeV is a small number compared to 2.22MeV,
but might still have an appreciable effect on the early
stages of Big Bang nucleosynthesis, since the reaction rates
depend exponentially on the deuteron binding energy.
Before studying the diproton, let us see what would

happen if c� was 10 instead of order 1. In this case, we
would have c�

mq

f�
� 1, and the diagram with g�NN at one

vertex and c�
mq

f�
at the other vertex would not be sup-

pressed anymore with respect to the one in Fig. 1.
Including its contribution we would come to a qualitatively
different conclusion as shown in Fig. 3: the maximum
value of the energy shift would be at � ¼ 0.
The diproton. The diproton almost exists as a bound

state, so it is conceivable that the correction to the poten-
tial, that we get by calculating the diagram analogous to the
one in Fig. 1 (just replacing the neutron with a proton),
might be significant enough to bind this system. We will
proceed along the same line as for the deuteron. Here we
adopt again a three-dimensional square well potential with
the following parameters: V0 ¼ 14 MeV, R ¼ 13:1�
10�3 MeV�1, k ¼ 114 MeV, 	 ¼ 8:2 MeV, A ¼
1:09 MeV1=2, B ¼ 1:11A. With this choice of parameters,

1.0 0.5 0.5 1.0
cos

0.02

0.04

0.06

0.08

0.10

0.12

0.14

MeV

FIG. 2 (color online). Shift in the deuteron binding energy as a
function of cos�.

1.0 0.5 0.5 1.0
cos

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MeV

FIG. 3 (color online). Shift in the deuteron binding energy
with c� ¼ 10.

FIG. 1. Feynman diagram.
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the diproton fails to be bound by an energy E ¼ 72 keV.
The evaluation of the Feynman diagram in the nonrelativ-
istic limit gives (30), with ~�n � ~�p replaced by ~�p � ~�p. If the
diproton were bound, it would be in an isosinglet state, in
which case ~�p � ~�p ¼ þ1. The correction to the potential is

then the following:

V1ðr; �Þ ¼ � 1

4�

c2þ
f2�

m2
um

2
dsin

2�

½m2
u þm2

d þ 2mumd cos��
e�m�r

r
;

(33)

and is attractive. The energy shift �ð�Þ ¼
hc ðrÞjV1ðr; �Þjc ðrÞi is plotted in Fig. 4. At cos� ’ �0:7,
� attains the minimum value of �� 7 keV. This repre-
sents a 10% correction to the energy, which is not enough
to bind the diproton, but might still have consequences on
the early stages of the nucleosynthesis chain.

To summarize, the effects of the angle � on the binding
energies of the deuteron and the diproton are at most 10%
corrections (6–7% for the deuteron), which could be sig-
nificant enough to affect the early stages of the Big Bang
nucleosynthesis. So large values of � might have appre-
ciable consequences.

B. The triple-alpha process

The production of carbon in stars results from the reac-
tion 3
 $ 
þ 8Be $ 12C��. The 8Be nucleus, in the sec-
ond step, is unbound, but it lives long enough to allow for
the possibility of capturing another alpha particle to form
12C. However, to produce the observed abundance of car-
bon, this second reaction must be resonant. The 0þ2 state of
12C, lying at 380 keV, relative to the 3
 threshold (and
7654 keV above the 12C ground state), provides such a
resonance. The reaction rate for the triple-alpha process
goes as [20]

r� �
�rad

�
exp

��Q3


T

�
(34)

where

Q3
 ¼ M12C�� � 3M
; (35)

�
 is the alpha particle width, �rad ¼ �� þ �pair is the sum

of electromagnetic decay widths to the 12C ground state via
gamma-ray emission or via electron-positron pair emission
and � ¼ �
 þ �rad. The following approximations hold:

(i) �
 	 �rad and (ii) �rad ’ ��, so that
�
�rad

� ’ �� and we

can write

r� �� exp

��Q3


T

�
: (36)

The measured values that enter the above equation areQ ¼
380 keV, T ’ 10 keV and �� ’ 3:6 meV. Let us take these

to be our values at � ¼ 0 and let us now see what would
happen if � were not zero. For simplicity, we make the
assumption that the energy of the excited state 12C�� with
respect to the ground state 12C does not vary with �. This
assumption is probably unrealistic, but we use it to get a
feeling for the various possibilities. It follows that �� is

nearly constant as well. But a small variation of Q3
 can
have significant effects, because it appears in the exponen-
tial. We have

M12C�� ¼ 6mp þ 6mn þ BEC þ 7:65;

M
 ¼ 2mp þ 2mn þ BE
;
(37)

where BE is the binding energy (negative) and everything
is measured in MeV. Thus

Q3
 ¼ BEC � 3BE
 þ 7:65: (38)

Following the work done by Furnstahl and Serot [21], and
by Donoghue and Damour [22], we can parametrize the
binding energy per nucleon BE=A as [22]

BE

A
¼ �

�
120� 97

A1=3

�
�S þ

�
67� 57

A1=3

�
�V

þ residual terms: (39)

This formula comes from considering the nuclear force as
due to contact interactions. For all but the lightest nuclei,
the key aspect of binding comes from a spin singlet and
isospin singlet central potential, for which one can write a
scalar and a vector contribution

Hcontact ¼ GSð �NNÞð �NNÞ þGVð �N��NÞð �N��NÞ; (40)

whereGS is negative (i.e. attractive) andGV is positive (i.e.
repulsive). In the traditional meson exchange models, the
scalar component corresponds to the exchange of the
�ð600Þ meson and the vector component to the exchange
of the !ð783Þ meson. We define �S and �V , that appear in
Eq. (39), as6

�S 
 GSð�Þ
GSð� ¼ 0Þ (41)

1.0 0.5 0.5 1.0
cos

0.007

0.006

0.005

0.004

0.003

0.002

0.001

MeV

FIG. 4 (color online). Shift in the diproton binding energy as a
function of cos�.

6Our GS;Vð� ¼ 0Þ is the same as what Damour and Donoghue
[22] call GS;V jphysical.
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�V 
 GVð�Þ
GVð� ¼ 0Þ : (42)

The scalar channel is the only portion of the central force
that receives large effects from low energy. The sensitivity
of the vector channel tom2

� leads to subleading corrections
compared to the effects linked to the m2

� sensitivity of the
scalar channel (the reader should refer to [23] for the
details). For this reason, we will take �V ¼ 1 for our
discussion and focus on the dominant scalar-channel ef-
fects. We parametrize �S from Fig. 2 in [22]

�S ¼ �0:4
m2

�ð�Þ
m2

phys

þ 1:4; (43)

wherem2
phys ¼ m2

�ð� ¼ 0Þ is the physical mass of the pion.

The residual terms in Eq. (39), which we assume not to
depend on �, take care of all the other contributions that are
not encoded by �S or �V , such as the Coulomb repulsion,
for example, and can be adjusted to get the measured BE=A
for each element at �S ¼ �V ¼ 1. For 12C we have�

BE

A

�
C
¼ �7:67� 78ð�S � 1Þ; (44)

for 4He �
BE

A

�


¼ �7:06� 59ð�S � 1Þ: (45)

Thus, we can write Q3
 as a function of �

Q3
ð�Þ ¼ 12

�
BE

A

�
C
� 12

�
BE

A

�


þ 7:65 (46)

¼ 0:38þ 91

�½m2
u þm2

d þ 2mumd cos��1=2
mu þmd

� 1

�
: (47)

For the resonant reaction to occur, Q3
 must be a positive
quantity, which is equivalent to require that the excited
state 12C�� be above threshold. The condition Q3
 > 0
translates into the constraint

cos� > 0:98 ð� < 11�Þ: (48)

We can plot rð�Þ=r vs cos�, where rð�Þ is the reaction rate
(36) as a function of � and r 
 rð� ¼ 0Þ. The result is
shown in Fig. 5.

We see that for � � 0 the reaction rate increases dra-
matically. To understand how the abundance of carbon
varies with such a change in the rate one needs more
astrophysical input about the stellar processes that produce
carbon.7 This is beyond the scope of the current paper.
Here we just note that for �� 2� or 3� the reaction rate
would already be 10 times larger, which would lead to a
greater abundance of carbon in the Universe.

There is a catch in the discussion above. If the 8Be that
appears in the second step of the reaction were bound, the
whole situation would change drastically and the amount
of carbon produced would be greatly increased. It is un-
clear what kind of change in � would bind the 8Be; in this

case it does not make much sense to use the semiempirical
Eq. (39) because we are not dealing with a bound nucleus.
We can have an indication looking at �S, which parame-
trizes the attractive contribution to the potential. From
Eq. (43) we see that this attractive contribution becomes
stronger for negative or small positive values of cos�.
Therefore, for cos� close to 1, as we found in Eq. (48), it
seems safe to assume that the 8Be will stay unbound.
Carbon is then involved in the reaction 12Cþ 
 ! 16O

to produce oxygen. In a world where � ¼ 0, there is no
energy level in 16O to allow for this last reaction to be
resonant, and that is why a substantial amount of 12C
survives. The closest level that could give a resonance is
2.42 MeV above the 12Cþ 
 threshold, too high to be
resonant. There are two levels that are just subthreshold,
though, one at �45 keV, the other at �245 keV. It is
conceivable that in our framework, when we vary �, we
shift these levels enough to allow for a resonant reaction
that would burn most of the carbon to form oxygen. Let us
check if this happens.
We assume again that the energy of the excited states is

fixed with respect to the ground state of 16O, and we
consider the Q-value for the reaction 12Cþ 
 ! 16O

Qð�Þ ¼ MO �MC �M


¼ 16

�
BE

A

�
O
� 12

�
BE

A

�
C
� 4

�
BE

A

�



(49)

where

�
BE

A

�
O
¼ �7:96� 82ð�S � 1Þ: (50)

At � ¼ 0 we get the measured result Q ¼ �7:16 MeV. In
Fig. 6 we plot Qð�Þ in the region of interest that we found
in our study of the triple-alpha reaction.
It is evident from the plot that increasing � shifts the

ground state of 16O down, therefore the subthreshold levels
remain such. We see also that the level that could poten-
tially give a resonance moves down by �120 keV at the

0.9985 0.9990 0.9995 1.0000
cos

2

5

10

20

50

r r

FIG. 5 (color online). Reaction rate for the triple-alpha process
as a function of cos�.

7The interested reader can find more details in Ref. [11]
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most, which is still 2.30 MeVabove the threshold, still too
far. We conclude that there are not any dramatic effects in
the reaction 12Cþ 
 ! 16O, so that the ratio carbon/oxy-
gen does not change appreciably, but even small values of
the angle �would result in a way greater abundance of both
these elements.

IV. CONCLUSIONS

The question raised in this paper can be phrased in the
following way: Would a nonzero angle � change dramati-
cally some aspects of nuclear physics? In order to find an
answer, we singled out two examples, (i) the two-nucleon

systems and (ii) the triple-alpha process, and studied the
effects of � on them.
For (i) we found that the nuclear binding energies of

deuteron and diproton would change by 10% at ��
130�–133�. Even if this effect does not look so dramatic,
we believe that it would still affect the outcome of Big
Bang nucleosynthesis. For (ii) we found that, even for
values of � as small as 2� or 3�, the reaction rate for the
triple-alpha process would be 10 times larger (see Fig. 5),
leading to a greater abundance of carbon and oxygen than
what measured in our Universe. Would such a greater
abundance still be consistent with the evolution of intelli-
gent observer? We do not know with certainty the answer
to this question. If negative, it would pose the anthropic
bound that � be less than �2�; if a factor of 1000 for the
reaction rate, instead of 10, were not compatible with life,
then the constraint on � would be weaker: � < 4:5�.
We must stress that the numerical values given in (ii) are

rough estimates. The main source of error is in the assump-
tion that the energies of the excited states, with respect to
the ground state, are not a function of �, which they most
likely are, but it is very difficult to relate the spacing
between these levels to first principles.
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FIG. 6 (color online). Q-value as a function of � for the
reaction 12Cþ 
 ! 16O.
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