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We show how to obtain a single chiral family of an SOð10Þ grand unified theory (GUT), starting from a

Majorana-Weyl representation of a unifying (GraviGUT) group SOð3; 11Þ, which contains the gravita-

tional Lorentz group SOð3; 1Þ. An action is proposed, which reduces to the correct fermionic grand unified

theory action in the broken phase.
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I. INTRODUCTION

Low-energy chirality poses strong constraints on unified
model building. For example, in Grand Unified Theories
(GUT), the fermionic multiplet must be in a complex
representation of the gauge group. At the same time,
chirality precludes the use of orthogonal groups larger
than SOð10Þ or exceptional groups larger than E6 [1].
This is relevant, for instance, when one tries to put all
fermionic families in a single spinor multiplet [2,3]. The
interplay between Lorentz and internal representations
becomes trickier when gravity is involved. In the Kaluza-
Klein approach to unification, it is difficult to obtain chiral
fermions in four dimensions, even starting from chiral
representations in higher dimensions [4]. In string theory
chirality of the low energy degrees of freedom is achieved
by suitably choosing the topology of the compact dimen-
sions, but then unification comes at the cost of introducing
infinitely many new local degrees of freedom. More re-
cently, an ambitious attempt to unify all known fields into a
single representation of E8 [5] stumbled into chirality
issues [6].

Here, we discuss the issue of chirality in the context of
theories where the Lorentz group, which is gauged in
theories of gravity, is unified with a GUT group in a larger
groupG. By this we mean that the gravitational connection
and the gauge fields of a GUT are components of a con-
nection for the unifying groupG. Wewill call such a theory
a GraviGUT (GGUT). Unlike in [5], we do not insist on
putting all fields in a single representation of G: gravitons,
gauge fields, fermions, and scalars will belong to different
multiplets. The general idea for this kind of unification has
been discussed in [7–9]. It is a rather natural generalization
of the GUT program, encompassing also gravitational
interactions. The main difference is that the order parame-
ter cannot be a scalar but must include a multiplet of one
forms, called the soldering form.1 In [7], the use of G ¼
SOð1; 13Þ was proposed, where the soldering form �i� with

i ¼ 1; . . . ; 14 and � ¼ 1, 2, 3, 4 is in the fundamental
representation.2 If the dynamics generates a vacuum ex-
pectation value (VEV) for �which has rank 4, then one can
choose a gauge where �i� ¼ 0 for i ¼ 5; . . . ; 14. This

‘‘unitary gauge’’ breaks the original gauge group to
SOð10Þ, and the breaking scale is identified with the
Planck scale. The Lorentz and mixed parts of the connec-
tion all become massive at this scale, explaining why we do
not see these degrees of freedom at low energies.
As a preliminary step, in [8] we discussed mainly the

possibilities for a unification of gravity with the weak
interactions. This ‘‘graviweak’’ unification is also the basis
for a model of geometrical origin [9] that predicts also the
right strong interactions, but at the price of duplicating the
unified gravitational sector at high energy. Here, we want
to include also the strong interactions in a single unified
group. Probably the most promising path towards this
unification is via the Pati-Salam model [11], based on the
group SUð2ÞL � SUð2ÞR � SUð4Þ. In view of the fact that
this group is locally isomorphic to SOð4Þ � SOð6Þ, and
that the Lorentz group is also (pseudo)-orthogonal, it
seems natural to chooseG to be a pseudo-orthogonal group
SOðp; qÞ with pþ q ¼ 14. In order to accommodate the
Pati-Salam and Lorentz groups, the possibilities are re-
stricted to SOð1; 13Þ, SOð3; 11Þ, SOð5; 9Þ, SOð7; 7Þ. In
the latter two cases, the weak and strong gauge fields
would belong to subalgebras with different signature, so
that a standard Yang-Mills action would lead to ghosts. We
will restrict our attention to the remaining two possibilities,
which thus contain the full SOð10Þ GUT.
It has already been noticed [7], for the case G ¼

SOð1; 13Þ, that the fermion multiplets occurring at low
energy lend support to this unification scenario. In fact,
the 64, chiral spinor representation of SOð1; 13Þ, breaks

1In some formulations inspired by the Plebanski formalism it
may be preferable to use a two form, dynamically equivalent to
the soldering form on shell [10].

2We observe here that the soldering form used in the grav-
iweak unifications [8,9] carried the tensor product of two vector
representations, because the fermions were in the vector repre-
sentation of the group. In [7], as well as in the present work, the
fermions are in a spinor representation therefore their tensor
product contains the fundamental as an invariant subspace, and it
is consistent to restrict oneself to it.
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under the subgroup SOð1; 3Þ � SOð10Þ into ð2; 16Þ �
ð�2; 16Þ. The fact that the known fermions are spinors of
Lorentz and spinors of SOð10Þ would thus be naturally
explained. Here, we will consider in greater detail the case
G ¼ SOð3; 11Þ, which admits Majorana-Weyl spinors. In
Sec. II, we will show by explicit construction that one such
representation gives rise to a single standard model family,
which can be identified with a chiral ð2; 16Þ. In so doing we
find the transformations that relates a basis for the Clifford
algebra of SOð3; 11Þ to a basis which is adapted to the
subgroup SOð3; 1Þ � SOð10Þ. This will allow us, in
Sec. III, to write the kinetic term for the fermions in an
SOð3; 11Þ–invariant way, and to see how it reduces to the
familiar one at low energy. We also show that the mixed
(Lorentz-GUT) gauge fields mediate new high energy
processes. In Sec. IV we conclude with some further
comments.

II. SOð3; 11Þ SPINORS AND GGUT

We start from a set of (128-dimensional, complex)
gamma matrices �i for SOð3; 11Þ given explicitly in the
Appendix, and the corresponding chirality operator �̂ ¼
�14

i¼1�i and algebra generators �ij ¼ 1
4 ½�i; �j�. It is a

property of the Dirac representation that it is equivalent
to its Hermitian conjugate, its complex conjugate, and its
transpose. These equivalences are realized by three inter-
twining operators A, B, C, defined by:

�y
ijA ¼ �A�ij; �t

ijC ¼ �C�ij; B��
ij ¼ �ijB:

The matrices A and C can be used to construct the invariant

Hermitian and bilinear forms c y
1Ac 2 and c t

1Cc 2. The

matrix B defines charge conjugation c c ¼ ðB � ?Þc �
Bc �, which for SOð3; 11Þ is an antilinear involution be-
cause BB� ¼ 1. One can thus define the left/right eigens-
paces of �̂ by �̂c L=R ¼ �c L=R and theþ=� eigenspaces

of charge conjugation by ðc	Þc ¼ 	c	. An important
property of SOð3; 11Þ is that the matrices �̂ and B com-
mute. Thus one can define simultaneous eigenspaces of
chirality and charge conjugation, i.e. Majorana-Weyl
(MW) spinors

It is possible and convenient to choose a basis that is
adapted to the MW representation, in the sense that

A ¼ C ¼ 164 
 �1; B ¼ 1128; �̂ ¼ �164 
 �3:

(1)

In this basis, charge conjugation is just complex conjuga-
tion, and the MW spinors are just the real and imaginary
parts of chiral spinors: c L ¼ c Lþ þ ic L� (and similarly
for R). It is then useful to define a mapR: Cn ! R2n from
complex n-vectors to real 2n vectors by Rv ¼
ðRev; ImvÞt, and the inverse map which associates to the
vector w ¼ ðw1; w2Þt 2 R2n the vectorR�1w¼w1þ iw2.
Using these maps, we can view the MW spaces either as

complex 32-dimensional or real 64-dimensional
representations.
We wish to identify a standard model fermion family

with a single MW representation of SOð3; 11Þ, for ex-
ample, with the 64 real degrees of freedom of c Lþ.
Then, we need to show that, decomposed as representa-
tions of SOð3; 1Þ � SOð10Þ, these describe precisely the 32
complex components of a chiral spinor of Lorentz and
chiral spinor of SOð10Þ, i.e. the representation ð2; 16Þ.
In order to do this, one has to pick half of the compo-

nents of c Lþ and use them as real parts of a complex
SOð10Þ spinor, while the remaining components give the
imaginary parts. There is no natural way of doing this; in
fact, any such operation corresponds to a choice of a
complex structure in R64. The simplest choice would be
R�1c Lþ, but one should not expect it to have simple
transformation properties under the subgroup SOð3; 1Þ �
SOð10Þ. However, there exist a real (64� 64) orthogonal
transformationWL such thatR�1WLc Lþ do. To find it, we
impose that 51 of the SOð3; 11Þ generators match those of
SOð3; 1Þ � SOð10Þ in the respective (left) Weyl bases:

R�1WL�
ð3;11Þ
Lij Wt

LR ¼
�
�ð3;1Þ

Lmn 
 116 for ij ¼ mn

12 
 �ð10Þ
Lab for ij ¼ ab:

(2)

(We use indices m; n ¼ 1, 2, 3, 4 and a; b ¼ 5; . . . 14.) We
find that the matrixWL is almost completely determined by
these equations, up to a free angle �. Note that we do not
impose any requirement on the remaining 40 generators,

�ð3;11Þ
Lma , mixing Lorentz and SOð10Þ subspaces.
We have thus found the explicit transformation between

a single MW spinor c Lþ of SOð3; 11Þ and a Weyl spinor
�ð2;16Þ of SOð3; 1Þ � SOð10Þ, representing a family in a

SOð10Þ GUT:
�ð2;16Þ ¼ R�1WLc Lþ: (3)

It is useful to observe that the operatorWL is not linear with
respect to the chosen complex structure. Inverting the
above relation, an antilinear part emerges:

c Lþ ¼ Wt
LR�ð2;16Þ ¼ RðXW�ð2;16Þ þ YW�

�
ð2;16ÞÞ; (4)

where XW and YW are certain complex matrices. A con-
sequence of this is that not all generators of SOð3; 11Þ can
be realized linearly on the spinors �ð2;16Þ: by construction,

the Lorentz and SOð10Þ generators act linearly (they are a
representation) but the generators that mix Lorentz and
SOð10Þ turn out to be antilinear. For later reference, they
can be written as

R�1WL�
ð3;11Þ
Lma Wt

LR ¼ e2i�

2
ðCA�mÞð3;1ÞL 
 ðC�aÞð10ÞL � ?:

(5)

We have obtained a ð2; 16Þ family of fermions starting
from the MW representation c Lþ of SOð3; 11Þ. In order to
understand the fate of the other MW representations, we
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need two more facts. The first is that, when (2) holds for
c Lþ, for c Rþ we have

R�1WR�RijW
t
RR ¼

�
�Lmn 
 116 for ij ¼ mn
12 
 �Rab for ij ¼ ab;

(6)

with WR ¼ WL. Therefore c Rþ can be identified with

ð2; 16Þ. Next, we introduce the parity operation, in such a
way that in the broken phase it reduces to spatial parity, i.e.
a matrix that anticommutes with the three spacelike �’s. In
our MW basis, it is:

Pð3;11Þ ¼ i�1�2�3�̂ ¼ 164 
 �2; (7)

where the phase has been chosen so that P2
ð3;11Þ ¼ 1. Since

it is imaginary, we see that it exchanges not only the Weyl
subspaces, but also the Majorana sectors: Pc L	 ¼ 	c R�.
Since spatial parity maps ð2; 16Þ to ð�2; 16Þ, we have the
identification of ðc Lþ; c L�; c Rþ; c R�Þ with
ð�ð2;16Þ; �ð�2;16Þ; �ð2;16Þ; �ð�2;16ÞÞ.

As a check, the action of Pð3;11Þ on the subspace of the

SOð3; 1Þ � SOð10Þ Dirac spinors � ¼ ð�ð2;16Þ; �ð�2;16ÞÞ is

found to be simply the spacetime parity �4:

P ¼ R�1WPð3;11ÞWtR ¼ 132 
 �2 ¼ 116 
 �4: (8)

Thus, in the broken phase parity is inherited by the Lorentz
group.

Let us pause to discuss the physical meaning of these
group theoretic results. It is instructive to think of them
from an SOð10ÞGUT perspective. Each family of fermions
is a (2, 16) complex, chiral representation of SOð3; 1Þ �
SOð10Þ, where SOð3; 1Þ is the Lorentz group. We have
shown that the fields in such a representation can be
rearranged into a real vector and when this is done they
are seen to carry not only a representation of SOð3; 1Þ �
SOð10Þ, but of the larger group SOð3; 11Þ. We have there-
fore successfully identified a group that can be used to
unify the gravitational and GUT gauge sectors. The reason
why the existence of this group is not evident in the
original complex form is that the generators that are not
in SOð3; 1Þ � SOð10Þ act antilinearly on the fields. All the
generators form nevertheless a perfectly well defined real
representation, namely, the MW 64 of SOð3; 11Þ.

This construction evades the restrictions that chirality of
the low-energy spectrum poses on extensions of GUT
theories, which were mentioned in the introduction. First,
it is clear that chiral fermions that are in a real (or pseudor-
eal) representations of a GUT group would always lead to a
nonchiral theory, therefore fermions must be in complex
representations. Then one has to avoid the appearance of
antifamilies, which would also be in disagreement with the
chirality of the spectrum of the standard model. It is in fact
not possible to make antifamilies unobservable by giving
them a very large mass ( � TeV) because any mechanism
giving mass to a chiral (anti)family at some high energy
scale would necessarily break at least the weak SUð2Þ
symmetry at that scale. Therefore also antifamiles should

have mass near the electroweak scale, where there are quite
strong constraints on their observation.3

We also recall that the problem of antifamilies always
arises for orthogonal GUT groups larger than SOð10Þ. For
instance, the MW representation 128 of the group SOð16Þ
has been used in an attempt at family unification [3]. Under
the breaking SOð16Þ ! SOð6Þ � SOð10Þ, it decomposes

as 128 ! ð4; 16Þ � ð�4; 16Þ, where 4 is the chiral spinor of

SOð6Þ. The second factor represents four 16 multiplets of
the same Lorentz chirality of the 16, i.e. four antifamilies,
showing that the theory is nonchiral. A further problem in
this model is that for SOð16Þ, a mass term of the form
c t

LþCð3;1ÞCð16Þc Lþ is allowed because the matrix Cð16Þ is
block-diagonal in Dirac space. Thus one needs additional
symmetries to protect the spinors from a large (Planck or
GUT-size) mass term.
For the MW spinors of the SOð3; 11Þ GGUT suggested

here, these problems are both absent. First, because
Lorentz is included in the unification, the real representa-
tion of the GGUT group is actually a single complex
representation of the GUT group. Second, any bare mass
term is forbidden. This can be seen directly as a conse-
quence of chirality of SOð3; 11Þ: because the matrix Cð3;11Þ
is block-antidiagonal in Dirac space, then
c t

LþCð3;11Þc Lþ ¼ 0.4

Thus, we have shown that GGUTs can be chiral by
construction, in spite of adopting real representations and
orthogonal groups larger than SOð10Þ. In particular, chi-
rality of the GGUT representation is maintained at low
energy. By using SOð3; 11Þ and its Majorana-Weyl repre-
sentation, one can achieve a single standard model family,
while by using the chiral representation of SOð1; 13Þ one
could generate two standard model families. It is also clear
that if we started from a nonchiral (Dirac) representation of
SOð3; 11Þ we would have ended with two families and two
antifamilies.

III. DYNAMICS

Constructing an action for a GGUTs poses new chal-
lenges that go beyond those familiar in GUTs. One would
like to have an action which is well defined both in the
symmetric and broken phase of the theory. But in these
theories the symmetric phase is topological (the metric
�i��

j
��ij vanishes classically) so one cannot use the

standard type of actions. In [7], a sort of mean field
dynamics was proposed, generating the VEV of � self-
consistently. Another approach is to use techniques which
have been studied in the context of topological theories.
We concentrate here only on the action for the fermions.

3Of course, if antifamilies were discovered in the future below
the TeV scale (e.g. [12]) this restriction would have to be
reviewed.

4Also vanishing because Cð3;11Þ is symmetric while c are
anticommuting.
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We begin by defining the SOð3; 11Þ covariant derivative
acting on MW spinors

D�c Lþ ¼
�
@� þ 1

2
Aij
��

ð3;11Þ
Lþij

�
c Lþ: (9)

Note that �ð3;11Þ
L	ij ¼ �ð3;11Þ

Lij are real. Then we define the

covariant differential D, mapping spinors to spinor-valued
one forms: Dc Lþ ¼ D�c Lþdx�. The quadratic form

c y
LþðA�iÞLDc Lþ (10)

is manifestly a vector under SOð3; 11Þ and a one form
under diffeomorphisms.5 Then, to construct a
SOð3; 11Þ-invariant action, we introduce an auxiliary field
�ijk‘ transforming as a totally antisymmetric tensor. The

action is

S ¼
Z

c y
LþðA�iÞLDc Lþ ^ �j ^ �k ^ �‘�ijk‘: (11)

The breaking of the SOð3; 11Þ group to the Lorentz and
SOð10Þ subgroups is induced by the VEVof two fields: the
soldering one-form �i� and the four-index antisymmetric

field �ijk‘.
6 We assume that the VEVof �ijk‘ is 	mnrs, the

standard four-index antisymmetric symbol, in the Lorentz
subspace, and zero otherwise. The VEV of the soldering
form, on the other hand, has maximal rank (four) and is
also nonvanishing only in the Lorentz subspace, m ¼ 1, 2,
3, 4:

�mnrs ¼ 	mnrs �ijk‘ ¼ 0 otherwise

�m� ¼ Mem� �a� ¼ 0 otherwise;
(12)

where em� is a vierbein, corresponding to some solution of

the gravitational field equations which we need not specify
in this discussion (below wewill choose em� ¼ 
m

�) andM

can be identified with the Planck mass. Clearly the break-
ing pattern just described is the one that leads to a theory
which is Lorentz invariant (at each point) but other choices
may be possible (see comments below).

Using (4) and omitting the subscript ð2; 16Þ from the
spinors, the kinetic quadratic form (10) becomes

�yR�1WLðA�iÞLDWt
LR�: (13)

In the broken phase, treating separately the cases i ¼ m ¼
1, 2, 3, 4, and i ¼ a ¼ 5; . . . 14, we find:

R�1WLðA�mÞLWt
LR ¼ iðA�mÞð3;1ÞL 
 116 (14)

R�1WLðA�aÞLWt
LR ¼ ie2i�Cð3;1Þ

L 
 ðC�aÞð10ÞL � ?:

(15)

Therefore, using (14) and the fact that for Lorentz

ðA�mÞð3;1ÞL ¼ �m, together with (2) for the connection
terms in the covariant derivative, the action with a flat
background vierbein reduces to the standard one for a
SOð10Þ family in flat space:

Z
d4x�y��r��; (16)

where nowr� ¼ Dð10Þ
� ¼ @� þ 1

2A
ab
�ð10Þ�

ð10Þ
ab is the SOð10Þ

covariant derivative. Note that this action contains the
standard kinetic term of the fermions, and the interaction
with the SOð10Þ gauge fields, which at this stage can still
be assumed to be massless.
Had we chosen a nonflat gravitational background, the

action would contain the invariant volume factor jej and
the covariant derivative would also contain a nontrivial

Lorentz part: r� ¼ Dð10Þ
� þ 1

2A
mn
�ð3;1Þ�

ð3;1Þ
mn . As discussed

in [7], the Lorentz connection Amn
�ð3;1Þ in the covariant

derivative can be assumed to be the Levi-Civita connection
derived from the vierbein. Its fluctuations around this VEV
are also present but have a mass of the order of the Planck
mass and are negligible at low energies.
The remaining Ama

� components of the SOð3; 11Þ con-
nection, that mix Lorentz and SOð10Þ, also have Planck
mass. These gauge fields, carrying a Lorentz and a SOð10Þ
vector index, can be decomposed in Lorentz representa-
tions by lowering the m index with a vierbein, leading to
the two fields Aa

ð��Þ, A
a
½���. They contain thus a symmetric

and an antisymmetric field, both in the representation 10 of
SOð10Þ, that interact with fermions via the following ver-
tex:

e 2i�Ama
� �t½ðC���mÞð3;1ÞL 
 ðC�aÞð10ÞL ��

¼ e2i��t½Cð3;1ÞðAa
ð��Þg

�� þ Aa
½����

��Þ 
 ðC�aÞð10ÞL ��:
(17)

The first of the two vertices is equivalent to the one
generated by the standard scalar Higgs field 10 of
SOð10Þ, while the second is a new vertex that involves
the spin. The resulting four fermion interactions may lead
to new gravitational contributions to rare processes.
We observe that even though these new interactions

originate from the generators mixing SOð10Þ and Lorentz
indices, if the breaking works as above, global Lorentz
symmetry is not broken by these interactions, because the
original Lagrangian has local Lorentz symmetry as a (sub-
group of the) gauge symmetry, and the background VEVs
(12) preserve the global spacetime remnant of this gauge
symmetry (see [8,13] for a detailed discussion).

5The product A�i is block diagonal in Dirac space, because
both A and �i are block antidiagonal.

6The field �ijkl also appears in Plebanski reformulations of
general relativity, where the vierbein field is traded for a two
form field. If the (Lorentz) gauge group is extended, � serves, as
in the present context, to achieve the symmetry breaking [10].
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IV. SUMMARYAND OUTLOOK

A GraviGUT is a very natural extension of a GUT,
encompassing also gravitational interactions. Given that
the (pseudo)-orthogonal group plays a fundamental role
in the theory of gravity, it is especially attractive to con-
sider GGUTs that are (pseudo)-orthogonal extensions of an
SOð10ÞGUT. The minimal theory of this type can be based
on SOð1; 13Þ or SOð3; 11Þ. We have shown that the latter
choice is slightly more natural from the point of view of the
fermionic content, because it can accommodate three fam-
ilies, whereas SOð1; 13Þ leads to an even number of fam-
ilies. The field content of the simplest GGUTwould thus be
an SOð3; 11Þ Yang-Mills field, three Majorana-Weyl fer-
mions plus whatever is needed to break the original sym-
metry to what we see at low energy. The first step of the
symmetry breaking chain is essentially unique:
SOð3; 11Þ ! SOð3; 1Þ � SOð10Þ. This is achieved by pos-
tulating a nontrivial VEV for a suitable order parameter.
The distinctive feature of this first step is that the order
parameter is not a scalar but rather a one form with values
in the vector representation of the gauge group, �i�. This

so-called soldering form provides the necessary connection
between spacetime and internal transformations, and its
first four components �m� carry the gravitational degrees of

freedom in the broken phase.
At this stage it is less clear what degrees of freedom are

needed to describe the further breaking of SOð10Þ to the
standard model group SUð3Þ � SUð2Þ �Uð1Þ, and the
final breaking of the latter to the electromagnetic Uð1Þ.
This will have to be investigated in the future. In principle,
requiring the GGUT representations to decompose into
well-behaved states at low energy, together with the re-
strictive choice of a GGUT group, should pose constraints
also on the GUT sector. At the same time, we observe that
the breaking of the GUT group is anyway an open issue
(see e.g. [14] for a recent thorough reanalysis of non-SUSY
SOð10Þ), and that even in the context of the standard model
the origin of the electroweak symmetry breaking is still
partly shrouded in mystery. So it should not come as too
much of a surprise if this sector of the GGUT is also less
understood.

In the present paper, we have discussed in detail the
kinematics (Sec. II) and dynamics (Sec. III) of the fermi-
onic sector. In particular, in Sec. II, we have shown ex-
plicitly the equivalence between the MW representation 64
of SOð3; 11Þ and the ð2; 16Þ chiral, complex spinor repre-
sentation of Lorentz and SOð10Þ, representing a family of
standard model fermions. This identification evades the
problems that chirality of the standard model spectrum
poses to unified theories, and thus SOð3; 11Þ can be safely
adopted as a basis for a unified theory. A further conse-
quence of this construction is that SOð3; 11Þ is also the
largest (pseudo-orthogonal) group allowing a chiral low-
energy spectrum, and thus that attempts to achieve family
unification by further enlargement of the group are not

possible in this approach without introducing mirror fam-
ilies. In Sec. III, we have then constructed a diffeomor-
phism- and SOð3; 11Þ-invariant action for fermions and
shown how, under a suitable symmetry breaking realized
by means of the soldering form and an additional antisym-
metric tensor field, this reduces to the correct
SOð10Þ-invariant action coupled to gravity at low energy.
Various hurdles will have to be overcome in the develop-
ment of GGUTs, but we have shown here that the con-
struction of a realistic fermionic sector is not an obstacle.
We can thus claim that, at least on this count, the setup
described here represents the first realistic framework that
unifies gravity with the other known interactions. In the
rest of this section we discuss a few of the open issues.
The bosonic part of the action, including the gauge and

Higgs terms, is probably the most important omission. In a
less ambitious form of unification, it has been discussed in
[8,9], see also [10,15,16] and, for a completely different
approach, [7]. In this connection, an issue that is some-
times raised is the presence of ghosts: given that the gauge
group is noncompact, one expects that some components
of the connection will have wrong sign kinetic terms.
Surely, one wants to avoid ghosts in the low-energy GUT
gauge sector: this problem was already mentioned in the
introduction, and we used it to select some group rather
than others. The GGUT groups we discarded would have
led to ghosts with a mass of the order of the GUT or lower,
while the groups we selected would seem naively to have
ghosts with Planck mass. This is what happens also in
generic gravitational theories with propagating torsion,
independent of unification [17]. Over time, there have
been various proposals to circumvent this problem [18–
20]. Here, we may add that since the ghosts would occur
near or beyond the transition to a different, topological
phase, the standard tree level analysis is certainly not
conclusive.
The detailed phenomenology of a GGUT will depend

upon the details of the symmetry breaking chain. As in
ordinary GUTs, the most characteristic signal will come
from new interactions mediated by the components of the
gauge field on the broken generators of the GGUT group,
in the present case the heavy gauge fields mixing Lorentz
and SOð10Þ indices. Their effect is similar to that of a
SOð10Þ Higgs field in the representation 10. We have
shown that the corresponding generators are antilinear,
and these processes will violate fermion number by two
units. One can expect that interactions similar to proton
decay and neutron-antineutron oscillations would be
present, but with new spin structure. These interactions
would be suppressed by the large mass of Ama

� , so only

extremely rare processes would have a chance of being
observable.
The symmetry breaking VEVs that we proposed con-

serve the Lorentz symmetry, but it is conceivable that, with
different VEVs of � and �, Lorentz symmetry could be
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broken (even locally) as it happens in theories with more
tensor condensates. This may lead to Lorentz violation in
proton decay (as first discussed in [21]), a striking possi-
bility since proton decay experiments have assumed so far
strict Lorentz invariance, possibly missing already occur-
ring events. On the other hand, the coupling of both � and
� to fermions may introduce such a Lorentz-symmetry
breaking also in the matter sector.

Another major issue that we did not mention so far is
that a proper understanding of the GGUT breaking mecha-
nism will require a theory of quantum gravity. It is clear
that at sufficiently low energy the Planck mass fields
decouple and that the remaining ones can be described
by an effective field theory. We are assuming that by add-
ing the Planck mass fields, one can somehow obtain a well
defined quantum theory. Asymptotic safety could be of
help here, see [22] and references therein. We note finally
that if unification works as described here, the mystery of
the origin of flavors appears to be even deeper than the
issues posed by quantum gravity.
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APPENDIX

AWeyl basis for Euclidean SOðnÞ gamma matrices can
be constructed recursively for even n starting from n ¼ 2
with �2;1 ¼ �1, �2;2 ¼ �2, using the rules

�n;i ¼ �n�2;i�̂n�2 
 ð�i�2Þ for i < n� 1

�n;n�1 ¼ 1dðn�2Þ 
 �1; �n;n ¼ �̂n�2 
 �2;
(A1)

where dðnÞ ¼ 2n is the dimension of the representation and

�̂n ¼ ð�iÞn=2�n
i¼1�n;i is the chirality matrix. As one

checks, it has the right form �̂n ¼ 1dðn�2Þ 
 �3. The gen-

erators of the algebra are

�n;ij ¼ 1

4
½�n;i; �n;j�; (A2)

and are anti-Hermitian and block diagonal.
In signature (3, 11) (3 negative, 11 positive eigenvalues),

the gamma matrices are given by

�k ¼
�
i�14;k for 1 � k � 3;
�14;k for 3< k � 14

(A3)

and the definition of �̂ has an additional factor i3 so that
�̂ ¼ �14

i¼1�i. The conjugation operations are

A ¼ �1�3; B ¼ �1�3�4�6�8�10�12�14; (A4)

and C ¼ BA�.

The explicit gamma matrices are:

�1 ¼ i�2 
 �1 
 �1 
 �1 
 �1 
 �1 
 �2

�2 ¼ �i�1 
 �1 
 �1 
 �1 
 �1 
 �1 
 �2

�3 ¼ �i1 
 �2 
 �1 
 �1 
 �1 
 �1 
 �2

�4 ¼ ��3 
 �1 
 �1 
 �1 
 �1 
 �1 
 �2

�5 ¼ �1 
 1 
 �2 
 �1 
 �1 
 �1 
 �2

�6 ¼ 1 
 �3 
 �1 
 �1 
 �1 
 �1 
 �2

�7 ¼ �1 
 1 
 1 
 �2 
 �1 
 �1 
 �2

�8 ¼ 1 
 1 
 �3 
 �1 
 �2 
 �1 
 �2

�9 ¼ �1 
 1 
 1 
 1 
 �2 
 �1 
 �2

�10 ¼ 1 
 1 
 1 
 �3 
 �1 
 �1 
 �2

�11 ¼ �1 
 1 
 1 
 1 
 1 
 �2 
 �2

�12 ¼ 1 
 1 
 1 
 1 
 �3 
 �1 
 �2

�13 ¼ 1 
 1 
 1 
 1 
 1 
 1 
 �1

�14 ¼ 1 
 1 
 1 
 1 
 1 
 �3 
 �2

(A5)

so that one finds:

A ¼ ��3 
 �2 
 �1 
 �1 
 �1 
 �1 
 �2 (A6)

B ¼ þ�1 
 �1 
 �3 
 �2 
 �3 
 �2 
 1 (A7)

C ¼ ��2 
 �3 
 �2 
 �3 
 �2 
 �3 
 �2 (A8)

that are real, symmetric (Hermitian), and orthogonal.
The Weyl basis described is not unique, and any simi-

larity �0 ¼ S�S�1 with ½S; �̂� ¼ 0, preserving the algebra
and the Weyl form, transforms the conjugations as:

A0 ¼ SASy; B0 ¼ SBS��1; C0 ¼ SCST: (A9)

This freedom has been exploited in the text to adapt the
basis to the MW representation and reach the form (1). In
particular, we used

S�1 ¼ SBSASM; (A10)

with

SB ¼ ½�1 
�1 
�1 
�1 
�1 
 ð�1 � i�2 ��3 þ 1Þ
� 1
 1
�2 
�3 
�2 
 ð�1 þ i�2 ��3 � 1Þ� 
 1;

SA ¼ 164 
 ð1��3Þ þF
 ð1þ�3Þ;
SM ¼ 132 
 ð14 þ i�3 
 1Þ; (A11)

where F ¼ i�2 
 �3 
 �2 
 �3 
 �2. (SB and SA bring B
and A to diagonal form, and SM brings B to the identity.)
A twist was also adopted to reach a standard basis in

signature (3, 1).
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