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We investigate constraints that the requirements of perturbativity and gauge coupling unification

impose on extensions of the standard model and of the minimal supersymmetric standard model. In

particular, we discuss the renormalization group running in several supersymmetric left-right symmetric

and Pati-Salam models and show how the various scales appearing in these models have to be chosen in

order to achieve unification. We find that unification in the considered models occurs typically at scales

below Mmin
B6 ¼ 1016 GeV, implying potential conflicts with the nonobservation of proton decay. We

emphasize that extending the particle content of a model in order to push the grand unified theory scale

higher or to achieve unification in the first place will very often lead to nonperturbative evolution. We

generalize this observation to arbitrary extensions of the standard model and of the minimal super-

symmetric standard model and show that the requirement of perturbativity up to Mmin
B6 , if considered a

valid guideline for model building, severely limits the particle content of any such model, especially in the

supersymmetric case. However, we also discuss several mechanisms to circumvent perturbativity and

proton decay issues, for example, in certain classes of extra dimensional models.
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I. INTRODUCTION

Among the many interesting open problems in particle
physics is the question of whether the standard model (SM)
gauge coupling constants unify at some high energy scale.
Even though such grand unification does not occur in the
SM, one of its best motivated extensions, namely, the
minimal supersymmetric standard model (MSSM), does
predict grand unification at MGUT ’ 1016 GeV [1–5],
opening up the possibility to embed the model into a grand
unified theory (GUT) based, for example, on the gauge
group SOð10Þ.

Grand unification is also possible in more complex
models: Amaldi et al. have identified several extensions
of the SM or MSSM particle content that would lead to
gauge coupling unification [5,6], and Lindner and Weiser
have performed a similar study in left-right symmetric
models [7]. Recently, Calibbi et al. have derived a set of
‘‘magic fields’’ that can be added to the MSSM without
spoiling unification [8]. Model-dependent studies have
been carried out, for example, by Shaban and Stirling [9]
for a nonsupersymmetric left-right symmetric model and
by Perez-Lorenzana and Mohapatra for models with extra
dimensions [10]. The effects of intermediate symmetry
breaking scales were studied in supersymmetric (SUSY)
SOð10Þ models by Aulakh et al. [11] and in non-SUSY
SOð10Þ models by Deshpande et al. [12] and by Bertolini
et al. [13]. A model-independent study of non-SUSY left-
right symmetric models has also been carried out by Perez-
Lorenzana et al. [14]. Recently Aranda et al. carried out a

study of extended Higgs sectors in SUSY GUTs, paying
attention to the constraints coming from the requirements
of perturbativity and freedom from anomalies [15].
Our aim in this work is to emphasize that the often

adopted requirements that (1) all gauge couplings remain
perturbative up to the GUT scale MGUT and (2) MGUT is
large enough to suppress proton decay beyond the experi-
mental limit severely constrain extensions of the SM or the
MSSM. Even though nonperturbativity is not a principle
problem but only a practical one, and proton decay can be
suppressed even for low MGUT in suitably constructed
GUTs, we will in this paper accept both (1) and (2) as
valid guidelines for model building, and investigate in
detail the constraints that a model has to fulfill in order
to be compatible with them.
In Sec. II, we will begin by introducing the formalism of

renormalization group equations (RGEs) in order to fix our
notation. We will then proceed to a detailed investigation
of grand unification in left-right symmetric and Pati-Salam
models in Secs. III and IV, respectively. There, we will
discuss how the various energy scales appearing in these
models are constrained by the requirement of successful
perturbative unification compatible with proton decay
bounds. In Sec. V, we will generalize our results, and
discuss perturbativity issues in arbitrary extensions of the
SM and the MSSM. Finally, in Sec. VI we will outline how
perturbativity and proton decay constraints can be circum-
vented by more elaborate model building constructs such
as extra dimension. We will summarize our results and
conclude in Sec. VII.

II. RENORMALIZATION GROUP EVOLUTION OF
GAUGE COUPLING CONSTANTS

The dependence of the gauge coupling constants gi
on the energy scale � for a theory with gauge group
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G ¼ Q
iGi is given at one-loop order by

16�2 dgiðtÞ
dt

¼ bi½giðtÞ�3; (1)

where t ¼ lnð�=�0Þ and �0 is an arbitrary renormaliza-
tion scale. The coefficients bi, which are determined by the
particle content of the model, have for nonsupersymmetric
models the form [16]

bi ¼
X

R

sðRÞTiðRÞ � 11

3
C2i ðnon-SUSY modelsÞ:

(2)

Here, the sum runs over all representations of the gauge
group factor Gi, counted according to their multiplicity in
the model. For example, in the standard model with its six
left-handed quarks and six right-handed quarks, the three-
dimensional representation of SUð3Þc has a multiplicity of
12. The Dynkin index TiðRÞ of the representation R ofGi is
defined by tr½tai ðRÞtbi ðRÞ� ¼ �abTiðRÞ, with tai ðRÞ being the
generators of Gi in the representation R. If Gi ¼ Uð1Þ,
TiðRÞ ¼ ½qðRÞ�2, where qðRÞ is the charge corresponding
to the representation R. The coefficient sðRÞ has the value
2=3 if R is a multiplet of chiral fermions, while cðRÞ ¼ 1=3
if R is a multiplet of complex scalars. Finally, C2i is the
quadratic Casimir operator of the adjoint representation of
Gi. For supersymmetric models, Eq. (2) has to be replaced
by

bi ¼
X

R

TiðRÞ � 3C2i ðSUSY modelsÞ: (3)

The solution of the one-loop renormalization group Eq. (1)
can be written in the form

��1
i ðtÞ ¼ ��1

i ðt0Þ � 1

2�
biðt� t0Þ; (4)

where �i ¼ ½giðtÞ�2=4�.
An important observation and one of the central points

of this paper is that adding new (nonsinglet) matter parti-
cles to a given model will always increase at least one of
the bi, and hence will lead to larger values for the corre-
sponding �iðtÞ at t > t0. For sufficiently large particle
content, �iðtÞ will reach the nonperturbative regime at
relatively low scales.

All results presented in this paper will be based on the
above one-loop RGEs. In the case of weak couplings this
approximation is certainly justified, but when approaching
the nonperturbative regime, ��1

i & 1, higher order effects
will become relevant. Nevertheless, in the context of our
study it is sufficient to define the nonperturbativity scale as
the scale at which the one-loop approximations breaks
down or, more specifically, as the scale at which the one-
loop value of at least one of the ��1

i becomes negative. (Of
course, the physical��1

i will always remain positive, and it
is just the invalidity of the one-loop approximation that can
lead to negative values.)

Note that to be consistent with our use of the one-loop
beta functions, we consider only the ‘‘match-and-run’’
approach to the threshold corrections. This is sufficient
for our discussion and any more precise treatment of the
threshold corrections would require the use of two-loop
beta functions to be fully consistent. This would also lead
to a certain scheme dependence which is not there in our
approach which is expected to have an uncertainty of
typically up to 1 order of magnitude for the nonperturba-
tivity scale and the GUT scale.

III. GRAND UNIFICATION IN LEFT-RIGHT
SYMMETRIC MODELS

We now illustrate the constraints that perturbativity and
unification place on models with large particle content by
considering three different left-right (LR) symmetric ex-
tensions of the standard model: (i) A nonsupersymmetric
model with Higgs triplets [17–19] (see also [20]), (ii) the
‘‘minimal’’ SUSY LR model (see e.g. [21,22]), and (iii) a
slightly extended SUSY LR model [23,24]. All three mod-
els have in common that quarks and leptons reside in the
following representations under SUð3Þc � SUð2ÞL �
SUð2ÞR �Uð1ÞB�L:

Q

�

3; 2; 1;
1

3

�

¼ u
d

� �

Qc

�

3�; 1; 2;� 1

3

�

¼ dc

�uc

� �

(5)

Lð1; 2; 1;�1Þ ¼ �e

e

� �

Lcð1; 1; 2; 1Þ ¼ e
��e

� �

: (6)

(i) Non-SUSY LR model with triplet Higgs [17–20]. In
the nonsupersymmetric case, the LR symmetry is
broken down to the standard model at a scale MLR

by Higgs triplets

�ð1; 3; 1; 2Þ and �cð1; 1; 3;�2Þ: (7)

The second of these acquires a vacuum expectation
value (vev) of order MLR and thus breaks SUð2ÞR �
Uð1ÞB�L down to Uð1ÞY , while the first one is re-
quired only to keep the particle content left-right
symmetric. Fermion masses are generated by a
Higgs bidoublet

�ð1; 2; 2; 0Þ; (8)

with a vev of the order of the electroweak scale. Even
though we do not need to worry about the details of
the symmetry breaking mechanism in order to study
the renormalization group evolution of the model, it
is crucial to know the mass scales of all particles. A
detailed investigation [19] shows that all Higgs par-
ticles in the model have masses of the order of MLR,
except for an SUð2ÞL doublet emerging from the
bidoublet � and playing the role of the SM Higgs
boson. Note that, even though the model is generi-

KOPP et al. PHYSICAL REVIEW D 81, 025008 (2010)

025008-2



cally nonsupersymmetric, a high scale supersym-
metrization at a scale MSUSY >MLR is imaginable.

(ii) Minimal SUSY LR model (see e.g. [21,22]). The
Higgs sector of this model is given by that of the
non-SUSY model (i) (with all fields promoted to
superfields), supplemented by two additional trip-
lets

��ð1; 3; 1;�2Þ and ��cð1; 1; 3; 2Þ (9)

required for anomaly cancellation and a singlet

Sð1; 1; 1; 0Þ (10)

to ensure charge and R parity conservation.
Moreover, in the SUSY case two Higgs bidoublets
�1 and �2 are required to allow for nonvanishing
quark and lepton mixing angles. Of these Higgs
superfields, four doublets as well as the doubly

charged components of �c and ��c are light and
have masses of OðMSUSYÞ. In this study, we will
make the simplifying assumption that these fields all
have the same mass,MSUSY, whereas in practice, for
low values of MSUSY some of the fields are required
to have slightly higher masses to satisfy constraints
on, for example, flavor changing neutral currents.
We have checked that this simplification has a very
minimal effect on our results.

(iii) Nonminimal SUSY LR model [23,24]. The particle
content of the nonminimal model is similar to that
of the minimal SUSY LR model, with the singlet S
being replaced by two triplets

�ð1; 3; 1; 0Þ and �cð1; 1; 3; 0Þ; (11)

uncharged under Uð1ÞB�L. Breaking of the left-
right symmetry proceeds in two steps in this model:

SUð2ÞR �Uð1ÞB�L !MLR
Uð1ÞR

�Uð1ÞB�L !MB�L
Uð1ÞY: (12)

The set of light particles includes the usual MSSM
Higgses at the electroweak scale, the neutral com-

ponents of �c and ��c at MB�L, and the � field at
maxðM2

B�L=MLR;MSUSYÞ [24].
In Fig. 1 we compare the one-loop renormalization

group running of the three considered models and of the
MSSM. The embedding of the SM or MSSM into the
standard GUT groups SUð5Þ and SOð10Þ requires
�3ðMGUTÞ ¼ �2ðMGUTÞ ¼ 20

3 �1ðMGUTÞ, but for the graph-
ical presentation we have absorbed the factor 20

3 into the

definition of �1, so that atMGUT the curves for �1, �2, and
�3 meet at one point. In the left-right models, the GUT
normalization factor is 8

3 instead of 20
3 . The matching
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FIG. 1 (color online). Renormalization group evolution in (i) a nonsupersymmetric left-right model [19], (ii) the minimal super-
symmetric LR model [21,22], and (iii) a nonminimal SUSY LR model [23,24]. The light curves in the background correspond to the
renormalization group running in the MSSM.
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condition for the GUT-normalizedUð1Þ coupling constants
at MLR reads for models (i) and (ii)

�1;LRðMLRÞ ¼ 2

5

�1;SMðMLRÞ�2ðMLRÞ
�2ðMLRÞ � 3

5�1;SMðMLRÞ
; (13)

where �1;LR is the Uð1ÞB�L coupling constant, while �1;SM

and �2 correspond to Uð1ÞY and SUð2ÞL, respectively. In
model (iii), a condition of the form (13) is imposed not at
MLR but atMB�L, with �2 replaced by the Uð1ÞR coupling
constant.

Figure 1 shows that in all three models, unification is
possible, but, especially in case (ii), tends to occur at rather
low scales, in possible conflict with bounds from proton
decay. In fact, from dimensional analysis, we expect the
proton lifetime to be

�p �M4
GUT

m5
p

: (14)

The bound �p > 2:1� 1029 yrs [25] then impliesMGUT �
Mmin

B6 � 1016 GeV. Therefore, models with MGUT <Mmin
B6

can be embedded into a grand unified theory only if special
measures are taken to forbid or suppress proton decay
operators beyond the estimate (14). Note also that the
unified coupling constant �GUT has a much larger value
in the supersymmetric models than in the non-SUSY case.
The reason is that according to Eqs. (2) and (3) the addi-
tional particle content of SUSY models always increases
the beta function coefficients bi.

In general, in supersymmetric models, besides the
(dimension-six) operators induced by X and Y gauge
boson exchange, proton decay can be induced by addi-
tional dimension-five operators arising from the exchange
of colored Higgsinos. These are really dangerous opera-
tors, since they lead to extremely fast proton decay. Indeed,
if they are present, the proton lifetime �p becomes propor-

tional only to the second power in the GUT scale, instead
of the fourth power, as reported in Eq. (14).

The purely supersymmetric contributions to proton de-
cay have already been used to set limits on SUSY-GUT
models. For example, the minimal supersymmetric SUð5Þ
GUT model has been tightly constrained by the Super-
Kamiokande lower bound on the p ! Kþ �� decay channel
[26], assuming that the gauge coupling unification is sat-
isfied. Even with this constraint, it has been pointed out
that the minimal SUSY SUð5Þ theory is still not completely
ruled out if one is willing to accept someOð1%Þ fine tuning
or include higher dimensional operators [27,28]. Several
other works have also dealt with the possibility of sup-
pressing dimension-five operators. Some of these models
invoke extra dimensions, see e.g. [29,30], or a more com-
plicated Higgs sector [31,32].

However, in our work we decided to pursue a conserva-
tive approach and thus apply only the constraint on the
unification scale derived through Eq. (14). It is, however,

possible that some models with a unification scaleMGUT *

Mmin
B6 could be excluded by rapid proton decay induced by

dimension-five operators.1

Let us now examine how varying the scales MLR,
MSUSY, and MB�L affects the prospects of grand unifica-
tion in left-right symmetric models. For the non-SUSY
model (i), only the choice MLR � 1010 GeV (shown in
Fig. 1) leads to unification. For the SUSY models, the
indicated areas in Fig. 2 show for which combinations of
MLR and MSUSY unification occurs. [For model (iii) (right
panel), for given values of MLR and MSUSY, we chose the
unique valueMB�L in the range ½MSUSY;MLR�which leads
to unification]. The GUT scale is marked on each plot
either explicitly along the line of values leading to uni-
fication [model (ii)], or through the shaded contours
[model (iii)]. Notice that in most of the parameter space
unification is only possible in a narrow band ofMSUSY and
MLR values, and that in virtually all of these cases we find
MGUT <Mmin

B6 , thus causing potential problems with pro-

ton decay.
Let us also remark that we have not found any solutions

with MGUT �MPl, which would have been an interesting
feature in the context of quantum gravity theories. For
model (iii), all unifying solutions we have found corre-
spond toMLR �MGUT. [This observation is similar to what
has been found in [33] for a class of SOð10Þ GUTs.]
One might hope to reconcile LR symmetry with grand

unification above Mmin
B6 (or even at MPl) by extending the

particle content of the LR model. In particular, the addition
of extra colored particles could postpone unification, but,
as discussed above, any new particle will inevitably bring
the model closer to nonperturbativity. The orange shaded
regions in the upper panels of Fig. 2 show for which values
of MSUSY and MLR it is definitely impossible to reconcile
unification, perturbativity, and the proton decay bounds by
adding extra matter because at least one of the �i becomes
nonperturbative below Mmin

B6 , even without additional par-

ticles in the model. For model (iii) there is also a yellow
region in which this happens only for some choices of
MB�L. In these regions of parameter space, any attempt
to increase MGUT by adding new scalar or fermionic par-
ticles would be in even greater conflict with perturbativity.
We see that the problem is particularly severe in the
minimal SUSY LRmodel (ii). The reason is that this model
has many particles with low masses around MSUSY. In
particular, the doubly charged scalars �c�� and ��cþþ
have a very strong impact on the running of �1.

1In principle, beyond gauge boson and Higgsino exchange,
two other sources of proton decay can be present: R parity
violating terms and dimension-five Planck suppressed operators.
However, these operators are not directly related to the unifica-
tion scale (since they can also be present without unification),
and therefore they do not provide a model-independent con-
straint on the value of MGUT.

KOPP et al. PHYSICAL REVIEW D 81, 025008 (2010)

025008-4



IV. GRAND UNIFICATION IN A SUSY PATI-SALAM
MODEL

Let us now investigate grand unification in another well-
motivated class of models, namely, those of the Pati-Salam
(PS) type [34] with the gauge group SUð2ÞL � SUð2ÞR �
SUð4Þ. In particular, we will study the minimal supersym-
metric PS model discussed in [35]. The gauge symmetry
breaking pattern of this model is

SUð2ÞL � SUð2ÞR � SUð4Þ!MPS
SUð3Þc � SUð2ÞL

� SUð2ÞR �Uð1ÞB�L !MLR
SUð3Þc � SUð2ÞL �Uð1ÞY;

(15)

and SUSY is broken atMSUSY <MLR. The matter particles
reside in the representations

c ð2; 1; 4Þ and c cð1; 2; 4�Þ (16)

of the PS gauge group. They get masses from the vevs of
the Higgs bidoublets

�ð2; 2; 1Þ and �ð2; 2; 15Þ: (17)

Symmetry breaking is achieved by introducing Higgs mul-
tiplets

Að1; 1; 15Þ (18)

and

�ð3; 1; 10Þ; ��ð3; 1; 10�Þ;
�cð1; 3; 10�Þ; ��cð1; 3; 10Þ:

(19)

The particles surviving below MPS are the usual matter
particles, a color octet with mass M2
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FIG. 2 (color online). Gauge coupling unification and nonperturbativity constraints on left-right symmetric models. The regions of
parameter space leading to successful unification are marked on each plot, along with the unification scale, MGUT. The dark orange
areas depict combinations of MSUSY and MLR for which the model becomes nonperturbative below the proton decay scale, Mmin

B6 , so
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(whichever is larger) emerging from A, and two SUð2ÞR
triplets �cð1; 1; 3;�2Þ and ��cð1; 1; 3; 2Þ of SUð3Þc �
SUð2ÞL � SUð2ÞR �Uð1ÞB�L. The doubly charged com-

ponents of �c and ��c and a linear combination of their
neutral components have masses of orderMSUSY, while the
remaining components have masses of order MLR.

An example for the running of the gauge couplings in the
minimal SUSY PS model is shown in Fig. 3. After a
detailed investigation of the favored values for MPS,
MLR, and MSUSY we find that the grand unification of all
gauge couplings is only possible in a very narrow region of
parameter space, and even then only by being flexible in
the uncertainty of ��1

3 ðMZÞ. For the example in Fig. 3,

grand unification is only possible for rather high values of
MSUSY, implying that SUSY cannot be considered as a
solution to the hierarchy problem here. Even partial uni-

fication into the Pati-Salam group SUð2ÞL � SUð2ÞR �
SUð4Þ is only possible for certain combinations of MSUSY

and MLR, as shown in Fig. 4. There, we also show the
corresponding Pati-Salam scalesMPS (shaded contours), as
well as the scales at which the Pati-Salam coupling con-
stants enter the nonperturbative regime (dotted lines). We
see that the nonperturbativity scale is always below Mmin

B6 ,

implying that the minimal SUSY Pati-Salam model cannot
be further unified without violating proton decay bounds
(unless fundamentally new concepts such as extra dimen-
sions are introduced, see Sec. VI).

V. MODEL-INDEPENDENT DISCUSSION OF
PERTURBATIVITYAND GRAND UNIFICATION

Let us now generalize our findings from the previous
sections to arbitrary extensions of the standard model. The
observation that models with large particle content enter
the nonperturbativity regime at relatively low scales is
quite generic (for exceptions, see Sec. VI) since it follows
directly from the fact that additional matter particles al-
ways increase the coefficients bi [see Eq. (3)] Therefore, if
perturbativity up to the GUT scale is demanded in such
models, gauge coupling unification must also occur at
relatively low scales, in tension with proton decay bounds
that suggest MGUT * Mmin

B6 � 1016 GeV. Thus, models

with large particle content are disfavoured over more eco-
nomic ones.
To formulate the perturbativity constraints on models of

new physics more quantitatively, let us assume an arbitrary
extension of the SM or MSSM particle content at a scale
�new, with the new particles giving contributions bnewi to
the � function coefficients bi. The three panels of Fig. 5
show the scales where �1, �2, and �3 become infinite in
the one-loop approximation as a function of�new and bnewi .
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FIG. 3 (color online). Renormalization group evolution in the
minimal SUSY Pati-Salam model [35].
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Figure 6 shows similar results for the MSSM. We see that
for new physics at the TeV scale, an increase of b1 by 8 or
of b2 or b3 by 9 would render the SM nonperturbative
below Mmin

B6 , while for the MSSM this would happen al-

ready if any of the bnewi becomes larger than 5. If new
particles are introduced well above the electroweak scale,
the perturbativity constraints become weaker.

In Tables I and II, we list the contributions to the bnewi for
various hypothetical new particle representations. We see
that especially large representations with high hypercharge
are problematic: For example, �3 would become nonper-
turbative below 1016 GeV if the SM is extended by three
vectorlike color octet quarks at 1 TeV. On the other hand,
adding Higgs doublets or triplets to the SM is not a prob-
lem: �2 remains perturbative up to the Planck scale even if
48 new Higgs doublets or 12 Higgs triplets are added at the
electroweak scale. In the MSSM, there is slightly less
freedom to extend the particle content: Perturbativity of
�2 is lost below 1016 GeV if 10 additional SUð2Þ doublets

or 3 triplets are added, and �1 would run to 1 below
1016 GeV if 9 Y ¼ 2 superfields are introduced.
Many extensions of the SM focus especially on the

electroweak sector, which has much more room for inter-
esting new phenomena at high energy than the QCD sector.
Therefore, we will now consider models with no new
colored particles, i.e. bnew3 ¼ 0, but with arbitrary contri-

butions to b1 and b2 from particles at the TeV scale. For
models of this type, we plot in Fig. 7 the nonperturbativity
scales for �1 and �2 (shaded areas), and we indicate those
combinations of bnew1 and bnew2 that lead to (perturbative)
gauge coupling unification (gray points). Dark points cor-
respond to a high GUT scale, while lighter ones stand for
low MGUT. We see that grand unification is possible in a
certain band of bnew1 and bnew2 values. Of course, even in

those cases where no gauge coupling unification has been
found in our plot, it can be forced by adding suitably
chosen colored representations to the model, provided
that the points where ��1

1 and ��1
2 meet lies below the
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FIG. 6 (color online). Similar to Fig. 5, but for extensions of the MSSM with MSUSY � 102 GeV.
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SM/MSSM curve for ��1
3 , but still in the perturbative

regime. We can also read from Fig. 7 that for large beta
function coefficients the GUT scale is always rather low, in

possible conflict with proton decay. Again, one might hope
to increase MGUT by adding more particles, especially
colored ones, but this will inevitably lead to nonperturba-
tive evolution if the beta function coefficients become too
large.
Thus we conclude that, for models in which the SM or

the MSSM is extended only by additional matter fields or
Higgs particles at the electroweak scale, grand unification
above Mmin

B6 is only possible for bnew1 and bnew2 lying in the

unshaded region of Fig. 7. Even then, in all cases except for
the pure MSSM, pushingMGUT aboveM

min
B6 requires exotic

colored particles.
To end this section, we summarize the implications of

perturbativity, unification, and proton decay constraints for
model building in the flow chart shown in Fig. 8.
Perturbativity is particularly problematic in nonminimal
SUSY models [scenarios (A2) and (B2)] because these
tend to have very large particle content. If SUSY does
not exist up toMPl [cases (C1) and (C2)], the perturbativity
constraint can be fulfilled more easily, but we encounter
other difficulties; in particular, the hierarchy problem.
Taking these considerations into account, the most attrac-
tive of the considered scenarios is SUSY in its minimal
form—the MSSM (or, equivalently, the NMSSM, which
differs from the MSSM only by the addition of one gauge
singlet, see [37] and references therein). Since the MSSM
does not provide gauge coupling unification and cannot
solve the hierarchy problem if MSUSY � MZ [case (B1)],
we are left with case (A1), the MSSM with MSUSY around
the LHC scale.

VI. CIRCUMVENTING THE PERTURBATIVITY
CONSTRAINTS

In the analysis carried out in the previous sections, two
main problems with extensions of the standard model have
appeared.
The first one is represented by the nonperturbative run-

ning of the gauge couplings at high scales when the particle
content is increased with respect to the standard model or
the MSSM. In Figs. 5 and 6 we have quantified the limits
that the new contributions to the � function coefficients
have to fulfill to preserve perturbative coupling constants
�i.
In principle, we could also accept the divergent evolu-

tion of the coupling constants at high scales. However this
means that we lose the ability to make predications about
physics above the nonperturbativity scale and, moreover,
we lose the ability to verify one of the main theoretical
justifications for physics beyond the SM, i.e. gauge cou-
pling unification.
A possible way out could be provided by embedding the

gauge group of the model into a larger group at an inter-
mediate scale MI. This ‘‘partial unification’’ will change
the matter contribution TiðRÞ as well as the gauge field
contribution C2i in Eqs. (2) and (3) and could thus decrease

TABLE I. Contributions of hypothetical new particles to the �
function coefficients bi in the Uð1Þ � SUð2Þ � SUð3Þ theory. To
be realistic, we only consider new representations which are
obtainable from the SUð5Þ representations shown in the last
column [36]. Numbers are given for chiral superfields; in the
non-SUSY case, they have to be multiplied by 1=3 for complex
scalars and by 2=3 for chiral fermions.

MSSM Rep. bnew1 bnew2 bnew3 SUð5Þ Rep.
ðY; 2; 1Þ 3

10Y
2 1

2 0 5, 45, 70

ðY; 1; 3Þ 9
20Y

2 0 1
2 5, 45, 50, 70

ðY; 1; 1Þ 3
20Y

2 0 0 10

ðY; 1; 3Þ 9
20Y

2 0 1
2 10, 40

ðY; 2; 3Þ 9
10Y

2 3
2 1 10, 15, 40

ðY; 3; 1Þ 9
20Y

2 2 0 15

ðY; 1; 6Þ 9
10Y

2 0 5
2 15

ðY; 1; 1Þ 3
20Y

2 0 0 24, 75

ðY; 3; 1Þ 9
20Y

2 2 0 24

ðY; 2; 3Þ 9
10Y

2 3
2 1 24, 75

ðY; 2; 3Þ 9
10Y

2 3
2 1 24, 75

ðY; 1; 8Þ 6
5Y

2 0 3 24, 75

ðY; 4; 1Þ 3
5Y

2 5 0 35

ðY; 3; 3Þ 27
20Y

2 6 3
2 35, 40

ðY; 2; 6Þ 9
5Y

2 3 5 35, 40

ðY; 1; 10Þ 3
2Y

2 0 15
2 35

ðY; 2; 1Þ 3
10Y

2 1
2 0 40

ðY; 1; 8Þ 6
5Y

2 0 3 40

ðY; 3; 3Þ 27
20Y

2 6 3
2 45, 70

ðY; 1; 3Þ 9
20Y

2 0 1
2 45

ðY; 2; 3Þ 9
10Y

2 3
2 1 45, 50

ðY; 1; 6Þ 9
10Y

2 0 5
2 45

ðY; 2; 8Þ 12
5 Y

2 4 6 45, 50, 70

ðY; 1; 1Þ 3
20Y

2 0 0 50

ðY; 3; 6Þ 27
10Y

2 12 15
2 50, 700

ðY; 1; 6Þ 9
10Y

2 0 5
2 50

ðY; 4; 1Þ 3
5Y

2 5 0 70

ðY; 3; 3Þ 27
20Y

2 6 3
2 70

ðY; 2; 6Þ 9
5Y

2 3 5 70

ðY; 1; 15:1Þ 9
4Y

2 0 10 70

ðY; 5; 1Þ 3
4Y

2 10 0 700

ðY; 4; 3Þ 9
5Y

2 15 2 700

ðY; 2; 10Þ 3Y2 5 15 700

ðY; 1; 15:2Þ 9
4Y

2 0 35
2 700

ðY; 1; 3Þ 9
20Y

2 0 1
2 75

ðY; 1; 3Þ 9
20Y

2 0 1
2 75

ðY; 2; 6Þ 9
5Y

2 3 5 75

ðY; 2; 6Þ 9
5Y

2 3 5 75

ðY; 3; 8Þ 18
5 Y

2 16 9 75

KOPP et al. PHYSICAL REVIEW D 81, 025008 (2010)

025008-8



TABLE II. Contributions of hypothetical new particles to the � function coefficients bi in the Uð1Þ � SUð2Þ � SUð3Þ theory. In this
case, for realism we only consider new representations which are obtainable from the SUð2ÞL � SUð2ÞR � SUð4Þ and SOð10Þ
representations shown in the last two columns [36]. Numbers are given for chiral superfields; in the non-SUSY case, they have to be
multiplied by 1=3 for complex scalars and by 2=3 for chiral fermions.

MSSM Rep. bnew1 bnew2 bnew3 SUð2ÞL � SUð2ÞR � SUð4Þ Rep. SO 10ð Þ Rep.
ðY; 2; 1Þ 3

10Y
2 1

2 0 (2, 2, 1), (2, 2, 15), (2, 4, 1) 10, 120, 126, 2100, 320
ðY; 1; 3Þ 9

20Y
2 0 1

2 (1, 1, 6), (1, 1, 10), (1, 3, 6), (1, 3, 10), (1, 1, 64) 10, 120, 126, 2100, 320
ðY; 2; 1Þ 3

10Y
2 1

2 0 (2, 1, 4), (2, 3, 4), (2, 1, 36) 16, 144, 560

ðY; 2; 3Þ 9
10Y

2 3
2 1 (2, 1, 4), (2, 3, 4), (2, 1, 20), (2, 1, 36), (2, 3, 20) 16, 144, 560

ðY; 1; 1Þ 3
20Y

2 0 0 (1, 2, 4), (1, 2, 36) 16, 144, 560

ðY; 1; 3Þ 9
20Y

2 0 1
2 (1, 2, 4), (1, 2, 20), (1, 2, 36), (1, 4, 4) 16, 144, 560

ðY; 3; 1Þ 9
20Y

2 2 0 (3, 1, 1), (3, 3, 1), (3, 1, 15) 45, 54, 210

ðY; 1; 1Þ 3
20Y

2 0 0 (1, 3, 1), (1, 1, 15), (1, 1, 1), (1, 3, 15) 45, 54, 210

ðY; 1; 3Þ 9
20Y

2 0 1
2 (1, 1, 15), (1, 3, 15) 45, 210

ðY; 1; 8Þ 6
5Y

2 0 3 (1, 1, 15), ð1; 1; 200Þ, (1, 3, 15) 45, 54, 210

ðY; 2; 3Þ 9
10Y

2 3
2 1 (2, 2, 6), (2, 2, 10) 45, 54, 210

ðY; 1; 6Þ 9
10Y

2 0 5
2 ð1; 1; 200Þ 54

ðY; 1; 1Þ 3
20Y

2 0 0 (1, 1, 10), (1, 3, 10) 120, 126

ðY; 1; 6Þ 9
10Y

2 0 5
2 (1, 1, 10), (1, 3, 10), (1, 1, 64) 120, 126, 320

ðY; 3; 3Þ 27
20Y

2 6 3
2 (3, 1, 6), (3, 1, 10), (3, 3, 6) 120, 126, 2100, 320

ðY; 2; 3Þ 9
10Y

2 3
2 1 (2, 2, 15) 120, 126, 320

ðY; 2; 8Þ 12
5 Y

2 4 6 (2, 2, 15), ð2; 2; 200Þ 120, 126, 2100, 320
ðY; 3; 1Þ 9

20Y
2 2 0 (3, 1, 10) 126

ðY; 3; 6Þ 27
10Y

2 12 15
2 (3, 1, 10) 126

ðY; 3; 1Þ 9
20Y

2 2 0 (3, 2, 4) 144, 560

ðY; 3; 3Þ 27
20Y

2 6 3
2 (3, 2, 4), (3, 2, 20) 144, 560

ðY; 2; 3Þ 9
10Y

2 3
2 1 (2, 1, 20), (2, 3, 20) 144, 560

ðY; 2; 6Þ 9
5Y

2 3 5 (2, 1, 20), (2, 3, 20) 144, 560

ðY; 2; 8Þ 12
5 Y

2 4 6 (2, 1, 20), (2, 1, 36), (2, 3, 20) 144, 560

ðY; 1; 3Þ 9
20Y

2 0 1
2 (1, 2, 20) 144, 560

ðY; 1; 6Þ 9
10Y

2 0 5
2 (1, 2, 20) 144, 560

ðY; 1; 8Þ 6
5Y

2 0 3 (1, 2, 20), (1, 2, 36) 144, 560

ðY; 3; 3Þ 27
20Y

2 6 3
2 (3, 1, 15) 210

ðY; 3; 8Þ 18
5 Y

2 16 9 (3, 1, 15) 210

ðY; 2; 1Þ 3
10Y

2 1
2 0 (2, 2, 10) 210

ðY; 2; 6Þ 9
5Y

2 3 5 (2, 2, 10) 210

ðY; 4; 1Þ 3
5Y

2 5 0 (4, 4, 1), (4, 2, 1) 2100, 320
ðY; 2; 6Þ 9

5Y
2 3 5 ð2; 2; 200Þ 2100, 320

ðY; 1; 10Þ 3
2Y

2 0 15
2 (1, 1, 50) 2100

ðY; 1; 15Þ 9
4Y

2 0 10 (1, 1, 50), (1, 1, 64) 2100, 320
ðY; 1; 8Þ 6

5Y
2 0 3 (1, 1, 64) 320

ðY; 4; 1Þ 3
5Y

2 5 0 (4, 1, 4) 560

ðY; 2; 3Þ 9
10Y

2 3
2 1 (2, 1, 36) 560

ðY; 2; 6Þ 9
5Y

2 3 5 (2, 1, 36) 560

ðY; 2; 15Þ 9
2Y

2 15
2 20 (2, 1, 36) 560

ðY; 1; 3Þ 9
20Y

2 0 1
2 (1, 2, 36) 560

ðY; 1; 6Þ 9
10Y

2 0 5
2 (1, 2, 36) 560

ðY; 1; 15Þ 9
4Y

2 0 10 (1, 2, 36) 560

ðY; 3; 3Þ 27
10Y

2 6 3
2 (3, 2, 20) 560

ðY; 3; 6Þ 27
10Y

2 12 15
2 (3, 2, 20) 560

Y; 3; 8ð Þ 18
5 Y

2 16 9 (3, 2, 20) 560
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bi, keeping the model perturbative up to the Planck scale.
Moreover, the matching conditions at MI could be such
that the coupling of the new gauge group above MI is
smaller than the corresponding coupling constants of the
SM, in the same way as the �1 corresponding to Uð1ÞB�L

in the LR models can be smaller than the �1 corresponding
to Uð1ÞY in the SM by virtue of Eq. (13), see Fig. 1(a). We
extensively investigate different classes of left-right mod-
els in Sec. III and Pati-Salam models in Sec. IV. Our study
shows that also in scenarios with partial unification, one
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can easily run into similar perturbativity problems as in
models that preserve the SM gauge group up to high scales.
Similar difficulties are encountered in other models, for
example, the SUSY Little Higgs model considered in
Ref. [38] which encounters nonperturbativity below the
unification scale when extra matter is added to generate
the top quark mass.

A realistic solution of the perturbativity problem is
represented by extra-dimension models in which only the
gauge fields propagate in the bulk, see e.g. [10]. In this case
the number of gauge degrees of freedom increases thus also
increasing the negative contributions to the� function. The
direct consequence is that the gauge couplings are pulled
away from the Landau pole and can evolve perturbatively
up to the unification scale.

Low energy unification scales, MGUT <Mmin
B6 represent

the second problem that we experience in extensions of the
standard model. Using the naive dimensional estimate of
Eq. (14), it can be found that such low values for MGUT

imply values of the proton lifetime �p that do not fulfill the

experimental constraints provided by the Super-
Kamiokande detector [39,40]. However, the lower limit
on the unification scale can be relaxed if proton decay is
forbidden or sufficiently suppressed so that the proton
lifetime �p becomes much larger than the estimate of

Eq. (14).
One possibility to, in part, evade these experimental

proton decay bounds is to construct a ‘‘contorted flavors’’
GUT model [41]. Indeed, there is no a priori reason to
couple the first quark family with the first lepton family in a
GUT multiplet. For example we could have the ðu; dÞ
quarks in the same representation as the ð��; �Þ or
ð��;�Þ. It has been shown in [41] that this pattern can

lead to the correct fermion masses and can kinematically
suppress the proton decay channels into charged leptons.
However, the decay channels involving neutrinos are still
present and the experimental constraints reported in
[25,40] have to be taken into consideration. In this case,
it is not possible to completely remove the constraints on
the GUT scale arising from the experimental bounds on the
proton lifetime.

An economical way to avoid the constraint on the GUT
scale is achieved by extending the Higgs sector, see e.g.
[42] for the case of an SUð5Þ GUT. In this way the baryon
number violating mixing matrix is, in general, no longer
related to the baryon conserving one and proton decay can
be suppressed by correctly adjusting the mixing angle in
the baryon number violating matrix. On the other hand, as
we have shown, increasing the content of the Higgs sector
of a theory can easily spoil or make difficult the perturba-
tive unification of the gauge couplings, unless the new
Higgses lie at the GUT scale.

Finally, we want to stress that the gauge coupling uni-
fication scale could be different from the grand unification
scale, as recently proposed in [43]. In this model, the

proton can naturally become almost stable if the grand
unification scale is big enough compared to the scale where
the gauge couplings meet.

VII. CONCLUSIONS

In this paper, we have argued that the particle content of
any extension of the standard model or theMSSM is tightly
constrained if gauge coupling unification, perturbativity,
and a GUT scale above the generic scale of proton decay,
Mmin

B6 � 1016 GeV, are demanded. For example, we have

demonstrated that in many left-right symmetric and Pati-
Salam models, it is impossible to fulfill all three require-
ments simultaneously (cf. Figure 2 : Either, one has to live
with unification at lower scales and invent a mechanism to
circumvent proton decay bounds, or one has to extend the
particle content further in order to pushMGUT higher, but at
the price of losing perturbativity and thus predictivity. We
have then generalized our observations to a wider class of
SM or MSSM extensions, and have examined the con-
straints that perturbativity imposes on the scale of new
physics and on its contribution to the � function coeffi-
cients (cf. Figures 5 and 6). Since extra matter particles
will always increase the values of the running gauge cou-
pling constants at high scales, our constraints favor exten-
sions of the standard model that require not too many new
particles at low scales. In other words, the problems of the
SM should be solved in a rather economic way. In our
opinion, this is a hint in favor of the MSSM withMSUSY &
1 TeV, while supersymmetrized extensions with not-to-
high SUSY scales (in order to solve the hierarchy problem)
tend to have systematic problems.
We have finally discussed how the perturbativity con-

straints can be circumvented either by simply accepting
nonperturbativity, by designing models with partial unifi-
cation, by introducing extra dimensions, or by aiming for
grand unification at low to intermediate scales. In the latter
case, special measures have to be taken to forbid or sup-
press proton decay.
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APPENDIX A: ANALYTIC RESULTS FOR THE
MINIMAL SUSY LR MODEL

In the following we define

ta ¼ log

�
Ma

MZ

�

; (A1)

and firstly consider the minimal SUSY LR model detailed
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in Refs. [21,22]. After solving the one-loop RGEs for the 4
gauge couplings, we find that

��1
3 ðMZÞ ¼ 1

4
ð9��1

2 ðMZÞ � 5��1
1 ðMZÞÞ

þ 1

8�
ð30tLR � 9tSUSYÞ: (A2)

In this model the unification scale, MGUT, is given by

tGUT ¼ 2�

135
ð10��1

1 ðMZÞ � 3��1
2 ðMZÞ � 7��1

3 ðMZÞÞ

þ 71

270
tSUSY: (A3)

APPENDIX B: ANALYTIC RESULTS FOR THE
NON-MINIMAL LR MODELWITH
INTERMEDIATE B�L SCALE

We consider the nonminimal LR model of Refs. [23,24]
and assume the hierarchy tZ < tSUSY < tBL < tLR < tGUT,
whereMGUT is the unification scale. In addition we assume
that M2

B�L=MLR >MSUSY, thus ensuring that the light
SUð2ÞL triplet in this model has a mass above the SUSY
breaking scale [to be consistent with the results of [24]].

After solving the one-loop RGEs for the 4 gauge cou-
plings, we find that

��1
3 ðMZÞ ¼ 1

32
ð87��1

2 ðMZÞ � 55��1
1 ðMZÞÞ

þ 1

64�
ð216tBL � 36tLR þ 97tSUSYÞ: (B1)

Thus, given values of MSUSY and MLR, it is possible to
calculate the MB�L needed for successful unification, as-
suming the measured values of the gauge couplings atMZ.
If thisMB�L is self-consistent with the assumptions above,
then unification is possible for the specific choices of
MSUSY and MLR. In this case we find,

tBL ¼ 1

216
f2�ð55��1

1 ðMZÞ � 87��1
2 ðMZÞ

þ 32��1
3 ðMZÞÞ þ 36tLR � 97tSUSYg; (B2)

tGUT ¼ 1

864
f32�ð5��1

1 ðMZÞ � 3��1
2 ðMZÞ

� 2��1
3 ðMZÞÞ þ 288tLR � 128tSUSYg; (B3)

where the value of �GUT at the unification scale is

��1
GUTðMGUTÞ ¼ 1

72�
f4�ð5��1

1 ðMZÞ � 3���1
2 ðMZÞ

þ 16���1
3 ðMZÞÞ þ 36tLR þ 128tSUSYg:

(B4)

It is also possible to find solutions in this model with
gauge coupling unification but with MB�L such that

M2
B�L=MLR <MSUSY. In this case we assume that the light

SUð2ÞL triplet acquires a mass at the SUSY breaking scale
MSUSY. This leads to different unification conditions and
the prediction for ��1

3 ðMZÞ is now

��1
3 ðMZÞ ¼ 1

32
ð87��1

2 ðMZÞ � 55��1
1 ðMZÞÞ

þ 1

64�
ð138tLR � 132tBL þ 271tSUSYÞ: (B5)

As before, one can now predict MB�L and assuming that
the condition tSUSY < tBL < tLR is met then successful
unification is possible with

tBL ¼ 1

132
f2�ð55��1

1 ðMZÞ � 87��1
2 ðMZÞ þ 32��1

3 ðMZÞÞ
þ 138tLR þ 271tSUSYÞg; (B6)

tGUT ¼ 1

1056
f192�ð��1

2 ðMZÞ � ��1
3 ðMZÞÞ þ 480tLR

þ 208tSUSYg; (B7)

��1
GUTðMGUTÞ ¼ 1

88�
f8�ð3��1

2 ðMZÞ þ 8��1
3 ðMZÞÞ

þ 60tLR þ 202tSUSYg: (B8)

APPENDIX C: ANALYTIC RESULTS FOR THE
MINIMAL PATI-SALAM MODEL

In the minimal Pati-Salam model of Ref. [35], we first
assume that M2

LR=MPS >MSUSY, thus ensuring the color
octet remains heavier thanMSUSY. After solving the RGEs,
the following analytic expressions are found:

��1
3 ðMZÞ ¼ 1

2ð5��1
1 ðMZÞ � 3��1

2 ðMZÞÞ
þ 1

�ð4tSUSY � 12tLR � 9tPSÞ; (C1)

where MPS is the Pati-Salam symmetry breaking scale.
Unification occurs at

tGUT ¼ 5�

6
ð��1

2 ðMZÞ � ��1
1 ðMZÞÞ þ tLR þ 13

3
tPS

� 47

36
tSUSY: (C2)

In cases where M2
LR=MPS <MSUSY, we instead assume

that the color octet has a mass ofMSUSY, and the following
analytic expression for ��1

3 ðMZÞ is found:

��1
3 ðMZÞ ¼ 1

2
ð5��1

1 ðMZÞ � 3��1
2 ðMZÞÞ

þ 1

2�
ð5tSUSY � 6tLR � 21tPSÞ: (C3)

The expression for the unification scale however remains
unchanged.
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