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We consider the grand unified theory (GUT)-compatible formulation of noncommutative QED, as well

as noncommutative SUðNÞ GUTs, for N > 2, with no scalars but with fermionic matter in an arbitrary,

anomaly-free representation, in the enveloping-algebra approach. We compute, to first order in the

noncommutativity parameters ���, the UV divergent part of the one-loop background-field effective

action involving at most two fermion fields and an arbitrary number of gauge fields. It turns out that, for

special choices of the ambiguous trace over the gauge degrees of freedom, for which the Oð�Þ triple
gauge-field interactions vanish, the divergences can be absorbed by means of multiplicative renormaliza-

tions and the inclusion of �-dependent counterterms that vanish on shell and are thus unphysical. For this

to happen in the SUðNÞ, N > 2 case, the representations of the matter fields must have a common second

Casimir; anomaly cancellation then requires the ordinary (commutative) matter content to be nonchiral.

Together with the vanishing of the divergences of fermionic four point functions, this shows that GUT-

inspired theories with U(1) and SUðNÞ, N > 2 gauge groups and ordinary vector matter content not only

have a renormalizable matter sector, but are on-shell one-loop multiplicatively renormalizable at order one

in �.
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I. INTRODUCTION

The enveloping-algebra approach, which makes use of
Seiberg-Witten maps, is the only known approach that
allows to construct noncommutative gauge theories with
arbitrary groups and representations [1]. Much work has
been carried out to analyze the properties of these theories,
in particular, pertaining to their consistency at the quantum
level: though the models involve an infinite number of
interactions that are not power-counting renormalizable,
their properties at the quantum level are better than naively
expected. This includes anomaly cancellation conditions,
which have been shown to be identical to those in commu-
tative gauge theories [2], and also renormalizability prop-
erties. In this respect, the more striking result could be the
observed renormalizability of the gauge sector at one-loop,
for several models with diverse matter content [3–10]; in
fact, the matter determinants contributing to the one-loop
gauge effective action are known to yield renormalizable
contributions to all orders in � [11].

Regarding the renormalizability of theories with fermi-
onic matter, generically the inclusion of noncommutative
Dirac fermion fields gives rise to four fermion UV diver-
gences that spoil the renormalizability; the lack thereof has
been shown explicitly for the non-grand unified theory
(GUT)-compatible version of QED of Ref. [3] and for
the SU(2) gauge theory with fundamental fermions [5],
but the problematic four fermion divergences have been
shown to appear in generic theories with noncommutative
Dirac fermions in arbitrary representations [12]. However,
GUT-compatible theories, which were introduced in

Ref. [13], have been shown to be free of these divergences
for arbitrary choices of the representation of the fermion
fields [12,14]. Moreover, anomaly safe GUTs have been
shown to have, against all odds, a one-loop renormalizable
effective action at order one in the noncommutativity
parameters � [15]; these are the first noncommutative
gauge theories with fermionic matter in representations
other then the adjoint that have been shown to be one-
loop renormalizable. The only other known examples of
one-loop, Oð�Þ renormalizable noncommutative gauge
theories defined by means of Seiberg-Witten maps and
involving fermion fields are ðSÞUðNÞ super Yang Mills
theories [10].
In this paper we continue the study of the renormaliz-

ability properties of noncommutative GUT-compatible
theories with no scalar fields by analyzing models in which
the gauge group is not anomaly safe, i.e., the anomaly
coefficients are nonvanishing, so that anomaly cancellation
conditions restrict the allowed representations, which must
be reducible for the total contribution to the anomaly to
vanish. The main difference with the theories analyzed in
Ref. [15] is, apart from the restrictions in the matter content
coming from the gauge anomaly, that local gauge invariant
contributions of the form Tr�fff, with f being field
strengths, are allowed in both the tree-level and effective
actions. In fact, the tree-level action does include these
Oð�Þ bosonic interactions, which are sensitive to ambigu-
ities in the definition of the trace over the gauge degrees of
freedom; this has the effect of introducing an additional
coupling. We consider, in particular, the GUT-inspired
version of QED [13], and SUðNÞ GUT theories, for N >
2, with fermions in a generic, anomaly-free representation;
it should be recalled that the non-GUT-compatible counter-*tamarit@kitp.ucsb.edu

PHYSICAL REVIEW D 81, 025006 (2010)

1550-7998=2010=81(2)=025006(19) 025006-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.025006


parts of these theories, formulated in terms of noncommu-
tative Dirac fermions, are not renormalizable. To analyze
the renormalizability of the matter sector of these theories,
completing the results concerning four fermion UV diver-
gences of Ref. [12], we compute the UV divergent part of
the one-loop effective action at order � involving two
fermion fields. In order to address the full one-loop renor-
malizability, we also compute the UV divergences in the
bosonic sector. We use the background-field method in
dimensional regularization, which allows to reconstruct
the full one-loop, Oð�Þ, nonevanescent divergent contribu-
tions involving two or no fermion fields from the compu-
tation of the pole part of the two- and three-point Green
functions involving, respectively, two fermion fields, one
gauge field and two fermion fields, and three gauge fields.

The results are the following: both in the QED and
SUðNÞ, N > 2 cases, the divergences can be subtracted
by means of multiplicative renormalizations and the inclu-
sion of redundant interactions in the form of �-dependent
counterterms that vanish on shell, whenever the ambiguous
trace over the bosonic degrees of freedom is chosen so that
the Oð�Þ bosonic interactions cancel—making the situ-
ation similar to that of anomaly safe GUTs [15]. In the
SUðNÞ case, there is a further requirement for renormaliz-
ability, which is that all the irreducible matter representa-
tions must share the same second Casimir; anomaly
cancellation requires then the ordinary matter content to
be nonchiral, consisting of two multiplets in representa-
tions that are conjugate of each other—note, however, that
the noncommutative interactions remain nonchiral in the
sense that they cannot be written in terms of noncommu-
tative Dirac fermions. Together with the results concerning
the absence of four fermion UV divergences in the effec-
tive action, this shows that the models with ordinary non-
chiral matter content not only have a renormalizable matter
sector, but the full one-loop, Oð�Þ effective action is re-
normalizable. This renormalizability holds for the off-shell
effective action, but in such a way that no additional
physical parameters have to be introduced beyond those
already present at tree level, which are the gauge couplings
and the noncommutativity parameters. This is due to the
fact that the counterterms come only from multiplicative
renormalizations of the tree-level fields and parameters and
from redundant interactions that vanish on shell and hence
depend on unphysical couplings. The on-shell effective
action of the nonchiral theories, from which the S-matrix
elements derive, can thus be renormalized simply by
means of multiplicative renormalizations of the fields and
the tree-level physical couplings. The one-loop renormal-
ization does not require the addition of more physical
parameters; this aspect is key in raising hopes that these
theories might be truly renormalizable and predictive when
higher-order corrections are included, yielding finite
S-matrix elements depending on a finite number of physi-
cal couplings.

These results allow to overcome the nonrenormalizabil-
ity observed for both noncommutative QED and SUðNÞ,
N > 2 gauge theories formulated in terms of noncommu-
tative Dirac fermions—and thus not GUT-compatible—
with a nonchiral ordinary matter content. This adds more
models to the list of one-loop, Oð�Þ renormalizable non-
commutative gauge theories with fermion fields defined by
means of Seiberg-Witten maps. This list, empty until very
recently, includes (S)U(N) super Yang-Mills theories, [10],
anomaly safe GUTs with matter in an arbitrary irreducible
representation [15]—with the possibility of adding fields in
the conjugate representation—and the models found in this
paper.
The organization of the paper is as follows: The U(1)

and SU(N), N > 2 theories are defined in Sec. II, which
also outlines the computation by means of the background-
field method. Section III includes the results of the com-
putations of the divergent part of the effective actions
involving two fermion fields, whereas Sec. IV deals with
the divergences in the bosonic sectors. Renormalizability is
analyzed in Sec. V, and the results are discussed in Sec. VI.
Two appendices are also included: Appendix A shows the
Feynman rules relevant to the calculations, and
Appendix B displays the � functions of the physical cou-
plings of the theories.

II. THEMODELS AND THE BACKGROUND-FIELD
METHOD

We consider four-dimensional noncommutative GUT-
compatible theories with gauge groups U(1) and SUðNÞ,
N > 2, and fermionic matter. Paralleling the discussion in
Ref. [15], these theories are defined by means of a non-
commutative left-handed chiral multiplet� in an arbitrary
representation �� of the gauge group, and an enveloping-
algebra valued gauge field A� with action [13]

S ¼
Z

d4x� 1

2�2
TrF�� ? F�� þ ��Li 6D�L;

F�� ¼ @�A� � @�A� � i½A�; A��?;
D�c L ¼ @��L � i��ðA�Þ ?�L:

(2.1)

The noncommutative fields are given in terms of the ordi-
nary ones a�, c by the Seiberg-Witten maps that follow,

A� ¼ a� þ 1

4
���f@�a� þ f��; a�g þOð�2Þ;

�L ¼ c L � 1

2
����c ða�Þ@�c L

þ i

4
����c ða�Þ�c ða�Þc L þOð�2Þ:

(2.2)

�c might be expressed as a direct sum of irreducible

representations, �c ¼ LNF

r¼1 �r. Accordingly, the fermion

fields can be expressed as a direct sum of irreducible

multiplets, �L ¼ LNF

r¼1 �
r
L, c L ¼ LNF

r¼1 c
r
L. The ordi-
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nary field a� takes values in the Lie algebra; we will use

the following notations for the expansion in terms of gen-
erators,

Uð1Þ: a� ¼ ea0�Y;

SUðNÞ: a� ¼ aa�T
a; a ¼ 1; . . . ; N2 � 1: (2.3)

We furthermore consider the following normalization for
the generators in an arbitrary representation:

�rðYÞ2 � Y2
r ¼ 1;

Trf�rðTaÞ; �rðTbÞg � TrrfTa; Tbg ¼ cðrÞ�ab;
(2.4)

cðrÞ denoting the Dynkin index of the representation r of
SUðNÞ. The matter content is chosen so that it is anomaly
free. In the U(1) case, to make contact with QED, we
consider a multiplet with two irreducible representations
��, with �þðYÞ � Yþ ¼ 1 and ��ðYÞ � Y� ¼ �1. In the
SUðNÞ case the representation is kept arbitrary, though
with a vanishing total anomaly.

The action in Eq. (2.1) has an ambiguity that should not
be ignored, and which affects the trace in the noncommu-
tative gauge kinetic term: since the noncommutative fields
are enveloping-algebra valued, the result of the trace is
representation dependent. This ambiguity was irrelevant in
the case of GUT theories with anomaly safe groups, since
the Oð�Þ corrections to the tree-level bosonic action are
proportional to TrfTa; TbgTc, which vanishes for those
theories but not for the groups U(1), SUðNÞ, N > 2 con-
sidered in this paper [13]. We define Tr in the gauge kinetic
term as a sum of the traces along the different representa-
tions,

Tr ¼ X
r

	rTrr: (2.5)

Trr is defined in the non-Abelian case in Eq. (2.4). In the
U(1) case, Trr is understood as the application of �r. It is
natural to consider in the sum of Eq. (2.5) exclusively the
representations of the matter fields; the inclusion of
these—and no others—can be justified from demanding
the renormalizability of the matter determinants that con-
tribute to the bosonic effective action [11]. Note that the
inclusion of a finite number of representations in the sum is
equivalent to consider a finite number of couplings in the
gauge sector, which include the ordinary gauge coupling
present in commutative theories. More precisely, to make
contact with the commutative limit, and taking into ac-
count the normalization in Eq. (2.4), we demand

U ð1Þ:
P

� 	�ðeY�Þ2
�2

¼ e2ð	þ þ 	�Þ
�2

¼ 1

2
;

SUðNÞ:
P

r 	rcðrÞ
�2

¼ 1

2g2
;

(2.6)

where g is the commutative SUðNÞ coupling.

The Oð�Þ pure gauge contribution to the action is then,
using Eqs. (2.1), (2.2), and (2.6), of the form

SNCbos ¼
Z

d4x

P
r 	r

�2
Trr

�
1

4
���f��f��f

��

� ���f��f��f
��

�
þOðh2Þ;

f�� ¼ @�a� � @�a� � i½a�; a��:

(2.7)

In the U(1) case, using the notation in Eq. (2.3), we define

fUð1Þ�� ¼ eYðf��Þ0; ðf��Þ0 ¼ @�a
0
� � @�a

0
�; (2.8)

then the noncommutative bosonic action turns out to be

SNC; Uð1Þbos ¼
Z

d4x

P
� 	�ðeY�Þ3

�2

�
1

4
���ðf��Þ0ðf��Þ0

�ðf��Þ0 � ���ðf��Þ0ðf��Þ0ðf��Þ0
�
þOðh2Þ:

(2.9)

In the SUðNÞ case, using

Tr rT
afTb; Tcg ¼ 1

2AðrÞdabc;

where AðrÞ is the anomaly coefficient of the representation
r [its value in the fundamental representation being
AðFÞ ¼ 1], we can write the action (2.7) as

SNC; SUðNÞ
bos ¼

Z
d4x

P
r 	rAðrÞ
�2

dabc

�
�
1

16
���ðf��Þaðf��Þbðf��Þc

� 1

4
���ðf��Þaðf��Þbðf��Þb

�
þOðh2Þ: (2.10)

We can regard the combinations

P
r
	rðeYrÞ3
�2 and

P
r
	rAðrÞ
�2

appearing in Eqs. (2.9) and (2.10) as new couplings, since,
as the sum over representations of the matter fields in-
cludes at least two different representations—a fact re-
quired by the anomaly cancellation conditions—then the
said combinations are independent of those appearing in
Eq. (2.6); we will denote these new couplings as

P
� 	�ðeY�Þ3

�2
¼ e3ð	þ � 	�Þ

�2
� ~e

2
;P

r 	rAðrÞ
�2

� 1

~g2
:

(2.11)

The definitions have been chosen in such a way that, when
only the fundamental representation is chosen, one gets
from Eqs. (2.6) and (2.11) ~e ¼ e, ~g ¼ g. The bosonic
actions end up being
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SUð1Þbos ¼
Z

d4x� 1

4
g��g

�� þ ~e

�
1

8
���ðf��Þ0ðf��Þ0ðf��Þ0

� 1

2
���ðf��Þ0ðf��Þ0ðf��Þ0

�
þOðh2Þ;

SSUðNÞ
bos ¼

Z
d4x� 1

4g2
ðf��Þaðf��Þa

þ 1

~g2
dabc

�
1

16
���ðf��Þaðf��Þbðf��Þc

� 1

4
���ðf��Þaðf��Þbðf��Þc

�
þOðh2Þ:

(2.12)

Note that, by choosing 	þ ¼ 	� and 	r ¼ 	r� , since the
anomaly coefficients are such that AðrÞ ¼ �Aðr?Þ, one
obtains ~e ¼ 1

~g2
¼ 0. Nevertheless, we will keep the cou-

plings arbitrary, to make contact with previous studies in
the literature in which they were taken as nonzero, and to
see if renormalizability can be achieved for arbitrary values
of ~e, ~g. On the other hand, in principle their cancellation
needs not survive the renormalization procedure, though in
the end it will turn out that it does.

The expanded fermionic action is given for both theories
by

SNCfer ¼ X
r

Z
d4x

�
� i

4
��� �c r�rðf�� 6DÞc r

� i

2
��� �c r


��rðf��D�Þc r

�
þOð�2Þ;

D�c r ¼ @�c r � i�rðc Þr:

(2.13)

We quantize the theory by means of path integral meth-
ods, defining the functional generator in terms of Feynman
diagrams. In order to formulate the Feynman rules in terms
of Dirac fermions, we add a spectator right-handed fer-
mion, as in Ref. [12]

S ! S0 ¼ Sþ
Z

d4x �~c Ri@6 ~c R; c ¼ ~c R

c L

" #
:

We regularize the theory, as in Refs. [12,15] by means of
dimensional regularization in D ¼ 4þ 2� dimensions, us-
ing the Breitenlohner, Maison, t’ Hooft, and Veltman

scheme for defining 
5 [16,17]. The dimensionally regu-
larized action is not unique in this scheme: there is an
infinite number of actions which reduce to (2.1) in the limit
D ¼ 4, differing by evanescent operators [18]. As in
Ref. [18] we will treat the interaction vertices as ‘‘four
dimensional,’’ meaning that we will keep all the vector
indices in them contracted with the ‘‘barred’’ metric �g��.

We will also define the dimensionally regularized ��� as
‘‘four dimensional.’’ Furthermore, in our computations we
will discard any contributions that have a pole in � whose
residue is an evanescent operator. These contributions in-
volving evanescent operators have no physical effects at
the one-loop level for an anomaly-free theory, and are
therefore mere artifacts of the renormalization procedure
[18,19]—nevertheless, they should be taken into account in
the computations at higher loop orders [20].
We wish to obtain the divergent part of the effective

action involving no evanescent operators, at most two
fermion fields and an arbitrary number of gauge fields,
in a manifestly covariant approach, which allows to
reconstruct the full contribution to the effective action
from a minimum number of diagrams, as was done in
Refs. [10,15]. For this we use the background-field method
[21]. Within this framework, the gauge field a� is split in a

background part b� and a quantum part q�,

a� ¼ b� þ q�;

and a gauge fixing which preserves background gauge
transformations is chosen

�q� ¼ �i½q�; c�; �b� ¼ D½b��c;
D½b�� ¼ @� � i½b�; �:

This gauge fixing is

Sgf ¼ � 1

2�

Z
d4xðD½b�

� q�Þ2;

Sgh ¼
Z

d4x �cD½b�
� D½bþq��c:

As discussed in Ref. [21]—see also [10]—introducing the

classical fields b̂�, ĉ , the 1PI functional is given by

�½b̂�; ĉ ; �̂c � ¼
Z

d4x
X
k

X
n

�i

ðk!Þ2
~�ðn;kÞ

i1; . . . ; ik; j1; . . . ; jk;
�1; . . . ; �n

a1; . . . ; ak

Yk
l¼1

�̂c il

Yk
p¼1

ĉ jp

Yn
m¼1

b̂am�m
: (2.14)

The effective action above is gauge invariant under gauge
transformations of the classical fields b̂�, ĉ , �̂c . Its dimen-
sionally regularized version is only gauge invariant modulo
an evanescent operator which, for the reasons stated be-
fore, can be ignored in one-loop calculations of UV diver-
gences in an anomaly-free theory. ~�ðn;kÞ is equivalent to a
background 1PI diagram with n background gauge-field

legs, k fermionic legs and k antifermionic legs. (Note that
our definitions do not involve any symmetrization over the
background gauge fields). The vertices relevant to our
calculations and their associated Feynman rules for � ¼
1 are given in Appendix A.
As was done in Refs. [10,15], the computation is sim-

plified by, on the one hand, choosing the gauge � ¼ 1, and,
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on the other, by only calculating a minimum number of
diagrams. The choice of � ¼ 1 will not affect the on-shell
effective action, which is independent of �, and therefore
the conclusions reached on shell will have general validity
[22]. The method of computing a minimum number of
diagrams consists in reconstructing full gauge invariant
contributions to the divergent part of the effective action
by only calculating 1PI Green functions with the minimum
number of fields appearing in those contributions. Since in
the computation we ignore evanescent contributions that
might break gauge invariance, and we are considering an
anomaly-free matter content, the divergences we aim to
obtain will be local gauge invariant polynomials in the field
strength, fermion fields and their covariant derivatives.
These UV divergent contributions can be expanded in a
basis of independent gauge invariant terms; if the contri-
butions to these terms with a given number and types of
fields are also independent, then one can fix the coefficients
in the expansion by computing the 1PI Green functions
with the same number and types of fields.

To identify the diagrams that must be computed, as well
as for the purpose of matching the counterterms needed to
remove the divergences, we will use a basis of local gauge
invariant terms whose integrals are independent. At first
order in �, we might have purely bosonic terms, terms with
two fermion fields and terms with four fermion fields.

For the bosonic terms we consider the following basis,

r1 ¼ ���TrFf��ff��; f
��g;

r2 ¼ ���TrFf
��ff��; f��g;

(2.15)

where TrF denotes the trace over the fundamental; in the
U(1) case, we define YF ¼ þ1. In the case of terms with
two fermion fields, we choose the following basis, for each
flavor r:

sr1 ¼ ��� �c r

�PLf��D�c r;

sr2 ¼ ��� �c r

�PLf��D�c r;

sr3 ¼ ��� �c r

�PLD�f��c r;

sr4 ¼ ��� �c r
�PLf��D
�c r;

sr5 ¼ ��� �c r
�PLD�f��c r;

sr6 ¼ ��� �c r
��
�PLD�f��c r;

sr7 ¼ ��� �c r
��
�PLf��D

�c r;

sr8 ¼ ��� �c r
�
��PLD�f��c r;

sr9 ¼ ��� �c r
�
��PLf��D�c r;

sr10 ¼ ��� �c r
�
��PLf��D�c r;

sr11 ¼ ��� �c r
�D�D
2c r;

sr12 ¼ ��� �c r
��
�D�D

2c r:

(2.16)

In the previous expressions we omitted the hats in the

background fields and explicit indications of the represen-
tations �r to ease the notation. f�� and D�f�� are short-

hands for �rðf��Þ and �rðD�f��Þ, and will continue being
so for the rest of the paper unless otherwise specified.
D�f�� is defined as D�f�� ¼ @�f�� � i½a�; f���. We

will use the same basis for U(1) or SUðNÞ, by substituting
appropriately the expansions of the U(1) and SUðNÞ gauge
fields given in Eq. (2.3) into the definitions for f�� and the

covariant derivatives of Eqs. (2.7) and (2.13). In the non-
Abelian case, there are other admissible gauge invariant
terms, involving symmetric invariant tensors ta1...ak of the
gauge group, such as ��� �c r


�ta1...ak�rðTa1 . . .Tak�1Þ�
ðf��ÞakD�c r. The only terms of this type that will appear

in the effective action in the SUðNÞ case involve the
combination

�a
r � dabc�rðTbTcÞ; (2.17)

which, for generic representations, does not belong to the
Lie algebra, so that terms constructed with it will be
independent of the si in Eq. (2.16). This is not true, for
example, for the fundamental and antifundamental repre-
sentations F and �F. We will denote by F the set of
representations r0 for which �a is Lie algebra valued; for
these one has

�a
r0 ¼

NAðr0Þ
4c2ðr0Þ�r0 ðTaÞ; (2.18)

c2ðrÞ being the Dynkin index, such that TrrT
aTb ¼

c2ðrÞ�ab. Clearly, for the representations in F no terms
other than those in Eq. (2.16) have to be considered.
However, for representations that do not satisfy analogous
properties, we have to consider the additional terms that
follow:

sr13 ¼ ��� �c r

�PL�

a
r ðf��ÞaD�c r;

sr14 ¼ ��� �c r

�PL�

a
r ðf��ÞaD�c r;

sr15 ¼ ��� �c r

�PL�

a
r ðD�f��Þac r;

sr16 ¼ ��� �c r
�PL�
a
r ðf��ÞaD�c r;

sr17 ¼ ��� �c r
�PL�
a
r ðD�f��Þac r;

sr18 ¼ ��� �c r
��
�PL�

a
r ðD�f��Þac r;

sr19 ¼ ��� �c r
��
�PL�

a
r ðf��ÞaD�c r;

sr20 ¼ ��� �c r
�
��PL�

a
r ðD�f��Þac r;

sr21 ¼ ��� �c r
�
��PL�

a
r ðf��ÞaD�c r;

sr22 ¼ ��� �c r
�
��PL�

a
r ðf��ÞaD�c r:

(2.19)

Finally, we need a basis of terms of order Oð�Þ with four
fermion fields, which will appear when studying the coun-
terterms. It will suffice to consider the following ones
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trs1 ¼ ���ð �c r
�PL�rðTaÞc rÞð �c s
�PL�sðTaÞc sÞ; r < s;

trs2 ¼ ~���ð �c r
�PL�rðTaÞc rÞð �c s
�PL�sðTaÞc sÞ; r < s; ~��� ¼ 1

2
��������:

(2.20)

Ta denote the Lie algebra generators (Y in the U(1) case).

III. COMPUTATION OF THE UV DIVERGENCES
IN THE EFFECTIVE ACTION INVOLVING TWO

FERMION FIELDS

In this section we will proceed to compute the divergent
contributions to the effective action involving two fermion
fields and no evanescent operators, at one-loop and first
order in �, by calculating the background-field 1PI dia-

grams ~�ðn;kÞ with no external quantum field legs of
Eq. (2.14), using the Feynman rules in Appendix A.
Because of the results of Ref. [12], the divergent contribu-
tion with two fermion fields represents the whole divergent
part of the matter sector of the effective action at order �.

To identify the diagrams that must be computed, we
consider the terms with two fermion fields in Eqs. (2.16)
and (2.19). Doing a similar analysis as that of Ref. [15], we
have that the terms si that may appear in the divergent,
nonevanescent part of the effective action are of the form
� �cD3c—spanned by s11, s12, which involve at least two
fermion fields and have independent two-field contribu-
tions—and � �c ðDfÞc , � �c fDc , spanned by s1-s10,
s13-s22, which involve at least two fermion fields and a
gauge field, in such a way that these contributions are
independent of each other (with the exception that for
representations in which �a

r of Eq. (2.17) is Lie algebra

valued, s13-s22 can be expressed in terms of s1-s10). It
follows from the previous discussion that the coefficients
of the expansion of the divergent contributions to the
effective action involving two fermion fields can be ob-
tained by computing only 1PI diagrams with two fermion

fields, ~�ð0;1Þ, and with one gauge field and two fermion

fields, ~�ð1;1Þ. There is, however, a subtlety: the diagrams
with two fermionic legs yield the contribution

�i~�ð0;1Þ
ij

�̂c i ĉ j to the effective action [see Eq. (2.14)], which

fixes the coefficients of s11 and s12 in the expansion of
the effective action in terms of the basis of gauge invariant
terms. Then, the diagrams with an external gauge field
and two external fermion fields contribute as

�i~�ð1;1Þ
ijð�;aÞ �̂c i ĉ jb̂

a
� to the effective action, which will be a

sum of three-field terms coming from both the s11, s12
combination fixed beforehand and from the s1-s22 terms.
The three-field contributions of s11 and s12 have to be
subtracted in order to get the coefficients of the s1-s22
terms.

A. U(1) case

The diagrams from which one computes the gauge
invariant, nonevanescent poles in the effective action at
one-loop and order � are shown in Figs. 1 and 2.
The result of the computations is

�NC; Uð1Þ
div; matter½b�; c � ¼

Z
dDx

�
1

192
2�
���

X
r

ðeYrÞ2 �c r
���PLD
�D2c r

þ i

16
2�

X
r

ðeYrÞ3
��

1

2
� 4xr

3

�
��� �c r


�PLðf��Þ0D�c r þ 2xr
3

��� �c r

�PLðf��Þ0D�c r

þ 1

8
��� �c r


�PLðD�f��Þ0c r þ
�
4xr
3

� 3

2

�
��� �c r
�PLðf��Þ0D�c r

þ
�
2xr
3

� 3

4

�
��� �c r
�PLðD�f��Þ0c r þ

�
1

24
þ 3xr

4

�
��� �c r
�

��PLðD�f��Þ0c r

þ
�
1

6
þ 3xr

4

�
��� �c r
��

�PLðD�f��Þ0c r þ 1

12
��� �c r
��

�PLðf��Þ0D�c r

��
; (3.1)

FIG. 1. Diagrams contributing to ~�ð0;1Þ at order � in the U(1) case.
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where

xr � ~e

eYr

and the field strength and covariant derivatives are eval-
uated on the background field, the field strength ðf��Þ0

being defined in Eq. (2.8). We suppressed the hats over the
classical fields to ease the notation.
In terms of the basis of si terms in Eq. (2.16), the

divergent contribution to the effective action in Eq. (3.1)
can be expressed as

�NC; Uð1Þ
div; matter½b�; c � ¼

Z
dDx

X
r

�ðeYrÞ2i
16
2�

��
1

2
� 4xr

3

�
sr1 þ

2xr
3

sr2 þ
1

8
sr3 þ

�
4xr
3

� 3

2

�
sr4 þ

�
2xr
3

� 3

4

�
sr5 þ

�
1

6
þ 3xr

4

�
sr6

þ 1

12
sr7 þ

�
1

24
þ 3xr

4

�
sr8 �

i

12
s12

��
: (3.2)

B. SUðNÞ, N > 2 case

The diagrams from which one computes the gauge
invariant, nonevanescent poles in the effective action at
one-loop and order � are shown in Figs. 3 and 4.

The reconstruction of the divergent contributions to the
effective action in terms of a basis of gauge invariant terms
is somewhat different in the cases where the fermion

multiplet includes representations such as the fundamental
or antifundamental in which the �a

r of Eq. (2.17) are Lie
algebra valued; this is so since, as we already argued, for
these representations the terms in Eq. (2.19) are not inde-
pendent of those in Eq. (2.16). Nevertheless, we can write
an expression covering all cases as follows:

FIG. 3. Diagrams contributing to ~�ð0;1Þ at order � in the SUðNÞ, N > 2 case.

FIG. 2. Diagrams contributing to ~�ð1;1Þ at order � in the U(1) case.
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�NC; SUðNÞ
div; matter ½b�; c � ¼

Z
dDx

�
g2C2ðrÞ
192
2�

���
X
r

�c r
���PLD
�D2c r

þ ig2N

16
2�

X
r

�
1

6
��� �c r


�PLf��D�c r � 1

3
��� �c r


�PLf��D�c r � 1

8
��� �c r


�PLD�f��c r

þ 5

6
��� �c r
�PLf��D

� þ 5

12
��� �c r
�PLD�f��c r � 1

8
��� �c r
�

��PLD�f��c r

� 1

16
��� �c r
��

�PLD�f��c r

�
þ ig2

16
2�

X
r

C2ðrÞ
�
1

2
��� �c r


�PLf��D�c r

þ 1

8
��� �c r


�PLD�f��c r � 3

2
��� �c r
�PLf��D

� � 3

4
��� �c r
�PLD�f��c r

þ 1

24
��� �c r
�

��PLD�f��c r þ 1

6
��� �c r
��

�PLD�f��c r þ 1

12
��� �c r
��

�PLf��D
�c r

�

þ ig4

16
2~g2�

X
r

�
� 2

3
��� �c r


�PL�
a
r ðf��ÞaD�c r þ 1

3
��� �c r
�PL�

a
r ðD�f��Þac r

þ 2

3
��� �c r
�PL�

a
r ðf��ÞaD�c r þ 1

3
��� �c r


�PL�
a
r ðf��ÞaD�c r

þ 3

8
��� �c r
�

��PL�
a
r ðD�f��Þac r þ 3

8
��� �c r
��

�PL�
a
r ðD�f��Þac r

��
;

where all covariant derivatives and field strengths are evaluated on the background field b�, and we have again suppressed
the hats on the classical fields. In the formulae above, C2ðrÞ represents the second Casimir of the representation r, C2ðGÞ
corresponding to the adjoint representation; it is defined as �rðTaTaÞ ¼ C2ðrÞIr. In terms of the basis si of independent,
gauge invariant terms of Eqs. (2.16) and (2.19), we have, taking into account that s13-s20 are only independent of the s1-s12
for representations other than those in the set F for which �a

r is Lie algebra valued,

FIG. 4. Diagrams contributing to ~�ð1;1Þ at order � in the SUðNÞ, N > 2 case.
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�NC; SUðNÞ
div; matter ½b�; c � ¼

Z
dDx

�
ig2N

16
2�

X
r

�
1

6
sr1 �

1

3
sr2 �

1

8
sr3 þ

5

6
sr4 þ

5

12
sr5 �

1

16
sr6 �

1

8
sr8

�

þ g2i

16
2�

X
r

C2ðrÞ
�
1

2
sr1 þ

1

8
sr3 �

3

2
sr4 �

3

4
sr5 þ

1

6
sr6 þ

1

12
sr7 þ

1

24
sr8 �

i

12
sr12

�

þ ig4

16
2~g2�

X
r=2F

�
� 2

3
sr13 þ

1

3
sr14 þ

2

3
sr16 þ

1

3
sr17 þ

3

8
sr18 þ

3

8
sr20

�

þ ig4N

32
2~g2�

X
r2F

AðrÞ
2c2ðrÞ

�
� 2

3
sr1 þ

1

3
sr2 þ

2

3
sr4 þ

1

3
sr5 þ

3

8
sr6 þ

3

8
sr8

��
: (3.3)

IV. COMPUTATION OF THE UV DIVERGENT
CONTRIBUTIONS IN THE GAUGE SECTOR

In this section we will compute the UV divergences in
the bosonic sector that do not involve any evanescent
operators and are therefore gauge invariant, using the
same strategy employed for the matter sector: choice of
gauge � ¼ 1 and computation of a minimum number of
diagrams. To identify the diagrams that need to be com-
puted, we refer to the basis of bosonic gauge invariant
terms in Eq. (2.15). The contributions of the terms r1, r2
with three gauge fields are independent of each other, and
thus, in order to fix their coefficients in the divergent part of
the effective action, it suffices to compute the pole of the
Green functions involving three background-field legs,
~�ð3;0Þ in the notation of Eq. (2.14).
These diagrams can have internal gauge or fermionic

propagators. We will analyze separately the diagrams with
an internal fermionic loop—whose relevant divergences
will be shown to vanish—and with a gauge-field loop.

A. Cancellation of the nonevanescent UV divergences of
the fermionic loops

The diagrams with internal fermion loops can be ana-
lyzed with the techniques employed in Refs. [2,11]. In
these papers it is argued that by appropriately defining
the dimensionally regularized interactions, a change of
variables can be done in the path integral which is equiva-
lent to inverting the Seiberg-Witten map. This change of
variables has unit Jacobian in dimensional regularization,
and allows to compute Green functions with external gauge
fields by using interaction vertices in terms of the non-
commutative fermions. These diagrams can be computed
to all orders in � due to the fact that the phase factors
generated by the noncommutativity are independent of the
loop momenta. As noted in Ref. [2], their UV divergences
have zero contributions involving � tensors, while the
vector contributions, computed in Ref. [11], are propor-
tional to

P
rTrrF�� ? F��, where F�� is the noncommu-

tative field strength and r labels the irreducible
representations of the fermion fields. Now, expandingR
dDx

P
rTrrF�� ? F�� with the Seiberg-Witten map

yields an Oð�Þ contribution to the effective action of the
form

Z
dDx

X
r

TrrF�� ? F�� ¼
�X

r

AðrÞ
�Z

dDx

�
� 1

4
r1 þ r2

�

þOðh2Þ;

where r1 and r2 are given in Eq. (2.15), while AðrÞ are the
anomaly coefficients, whose sum

P
rAðrÞ must vanish for

the theory to be anomaly free. These results apply for both
the U(1) and SUðNÞ, N > 2 cases.
The choices of dimensionally regularized interactions

that allow for the inversion of the Seiberg-Witten map for
fermions differ by evanescent operators from the choice
that was used in the computations of the previous section.
Recalling that divergences involving evanescent operators
are not physical at one-loop and hence can be ignored, we
conclude that the relevant contributions of the fermion
loops to the divergences of the diagrams with external
gauge-field legs are zero. Thus, it only remains to study
the divergences involving gauge-field loops; we will treat
the U(1) and SUðNÞ cases separately.

B. Gauge-field loop contributions in the U(1) case

At order �, there are no one-loop diagrams involving
only gauge fields, due to the fact that the commutative
action does not have any interaction with three or more
gauge fields. Together with the vanishing of the divergen-
ces of the fermionic loops, we conclude

�NC; Uð1Þ
div; bos ½b�; c � ¼ 0: (4.1)

C. Gauge-field loop contributions in the SUðNÞ,
N > 2 case

The diagrams with three external background-field legs
involving only internal gauge-field propagators are shown
in Fig. 5. Their associated contribution to the UV divergent
part of the effective action is
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�NC; SUðNÞ
div; bos ½b�;c � ¼

Z
dDx

11Ng2

48
2~g2�

�
1

8
r1 � 1

2
r2

�
þOð�2Þ

¼ 11Ng2

48
2�
SNC; SUðNÞ
tree; bos þOð�2Þ; (4.2)

where SNC; SUðNÞ
tree; bos denotes the noncommutative contribution

to the bosonic action of Eq. (2.10).

V. STUDYING RENORMALIZABILITY

In the previous sections we calculated the noncommu-
tative UV divergences in both the matter sector and the
bosonic sector. The results are given, expanded in a basis of
gauge invariant terms whose elements are displayed in
Eqs. (2.15), (2.16), and (2.19), by Eqs. (3.2) and (3.3) for
the matter sector, and Eqs. (4.1) and (4.2) for the bosonic
sector.

In this section we will check whether these noncommu-
tative divergences can be subtracted by means of multi-
plicative renormalizations and the addition of �-dependent
counterterms that vanish on shell. We will consider sepa-
rately the U(1) and SUðNÞ cases.

A. U(1) case

To start, it is known that the one-loop divergences of
QED at order zero in � are renormalizable by means of
multiplicative renormalizations of fields and parameters.
We consider the following form for these multiplicative
renormalizations

b� ¼ Z1=2
b bR�; c r ¼ ðZr

c Þ1=2c R
r ; e ¼ �2�Zee

R;

~e ¼ �2�dZ~e~e
R; ��� ¼ Z��

R
��; (5.1)

with Zi ¼ 1þ �Zi. The gauge invariance present in the
calculated divergences forces �Ze ¼ � 1

2�Zb; the ordinary

commutative calculation yields

�Zb ¼ �2�Ze ¼ e2

12
2�
; �Zr

c ¼ e2

16
2�
: (5.2)

For the renormalization of the noncommutative divergen-
ces we will also consider �-dependent counterterms that
vanish on shell. These redundant interactions are of the
form

�S½b; c � ¼
Z

d4x
�S

�b0�ðxÞ
F0
�½b; c �

þ
�X

r

�S

�c rðxÞGr½b; c � þ c:c:

�
; (5.3)

which vanish on shell due to the equations of motion

�S½b; c �
�b0�ðxÞ ¼ �S½b; c �

�c rðxÞ ¼ 0:

In order to preserve gauge symmetry, F0
�½a; c � and

Gr½a; c � have to transform in four dimensions, under a
U(1) gauge transformation with gauge parameter � ¼
e�0Y, as

sF0
� ¼ 0; sGr ¼ ie�0�rðYÞGr:

We consider the following solutions:

�F0
�½b; c � ¼ y1�

��ðD�f��Þ0 þ y2��
�ðD�f��Þ0

þX
r

yr3��
� �c r
�PLc r

þ i
X
r

yr4�
�� �c r
���PLc r

þ y5 ~��
�ðD�f��Þ0; yi 2 R;

Gr½b; c � ¼ kr1�
��f��PLc r þ k2r�

��
��PLf�
�c r

þ kr3�
��
��PLD�D

�c r

þ kr4�
��
��PLD

2c r þ kr5
~���
5PLf��c r;

ki 2 C: (5.4)

Note that we used f�� ¼ eYðf��Þ0,D�f�� ¼ eYðD�f��Þ0
in Gr. The counterterm action that results at OðhÞ from the
multiplicative renormalizations of Eq. (5.1) and the un-
physical �-dependent counterterms of Eqs. (5.3) and (5.4)
has the following expansion in the basis of Eqs. (2.15),
(2.16), and (2.20) particularized for the U(1) theory

SNC; Uð1Þct ¼ SNC; Uð1Þct; bos þ SNC; Uð1Þnc; matter;

SNC; Uð1Þct; bos ¼
Z

d4x
X
i

Biri;

SNC;Uð1Þct;matter ¼ i
Z

d4x
X
r;i

Cr
i s

r
i þ

Z
d4x

X
i;r<s

Drs
i t

rs
i ;

(5.5)

B1 ¼ ~e

16
ð�Z~e þ �Z� þ 3

2
�ZbÞ;

B2 ¼ � ~e

4
ð�Z~e þ �Z� þ 3

2
�ZbÞ;

FIG. 5. Diagrams contributing to ~�ð3;0Þ at order � in the SUðNÞ,
N > 2 case.
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Cr
1 ¼

1

2
ð�Z� þ �Zc Þ � ðkr2Þ� � kr2;

Cr
2 ¼ � 1

4
ð�Z� þ �Zc Þ þ ðkr1Þ� þ kr1 þ

i

2
ðkr3Þ� �

i

2
kr3;

Cr
3 ¼ �iy1 þ kr1 �

1

2
kr2 þ

i

2
ðkr3Þ�;

Cr
4 ¼ �ðkr2Þ� � kr2 � iðkr3Þ� � ikr3 � 4iðkr4Þ�;

Cr
5 ¼ �2iðkr4Þ� � kr2 þ iy2 � i

eYr

yr3;

Cr
6 ¼ � 1

eYr

yr4 �
1

2
y7 � iðkr4Þ� � ikr5;

Cr
7 ¼ �2iðkr4Þ� � iðkr5Þ� � ikr5;

Cr
8 ¼ � 1

2
kr2 þ

i

2
ðkr3Þ� þ

i

2
kr3 � ikr5;

Cr
9 ¼

i

2
ðkr3Þ� þ

i

2
kr3 � ikr5 � iðkr5Þ�;

Cr
10 ¼ ðkr2Þ� � kr2 þ iðkr3Þ� þ ikr3;

Cr
11 ¼ �ðkr3Þ� � kr3 � 2ðkr4Þ� � 2kr4;

Cr
12 ¼ �ðkr4Þ� þ kr4;

Drs
1 ¼ e

�
ys3
Ys

� yr3
Yr

�
; Drs

2 ¼ 2e

�
ys4
Ys

� yr4
Yr

�
:

The counterterm action above must cancel the divergences
in the bosonic and matter sectors. This means

SNC; Uð1Þct; bos ¼ ��NC; Uð1Þ
div; bos ; SNC; Uð1Þct; matter ¼ ��NC; Uð1Þ

div; matter:

(5.6)

Since we expanded both the divergences and counterterms
in a basis of independent terms ri, si, ti, in order to solve
Eq. (5.6) it suffices to match the real and imaginary parts of
the coefficients of these expansions, which are given in
Eqs. (3.2), (4.1), and (5.5). As a result, we get the following
system of equations:

r1; r2: �Z~eþ�Z� þ 3

2
�Zb ¼ 0;

sr1:
1

2
ð�Z�þ�Zc Þ� 2Rekr2 ¼� ðeYrÞ2

16
2�

�
1

2
� 4xr

3

�
;

sr2: �
1

4
ð�Z� þ�Zc Þþ 2Rekr1 þ Imkr3 ¼�ðeYrÞ2xr

24
2�
;

sr3: y1 �
1

2
Rekr3 � Imkr1 þ

1

2
Imkr2 ¼ 0;

1

2
Imkr3 þRekr1 �

1

2
Rekr2 ¼� ðeYrÞ2

128
2�
;

sr4: Rek
r
3 þ 2Rekr4 ¼ 0; �2Rekr2 � 4Imkr4 ¼� ðeYrÞ2

16
2�

�
�3

2
þ 4xr

3

�
;

sr5: eYrð�y2 þ 2Rekr4 þ Imkr2Þþ yr3 ¼ 0; �Rekr2 � 2Imkr4 ¼� ðeYrÞ2
16
2�

�
�3

4
þ 2xr

3

�
;

sr6: Rek
r
4 þRekr5 ¼ 0; � yr4

eYr

� 1

2
y7 � Imkr4 þ Imkr5 ¼� ðeYrÞ2

16
2�

�
1

6
þ 3xr

4

�
;

sr7: Rek
r
4 þRekr5 ¼ 0; �2Imkr4 ¼� ðeYrÞ2

192
2�
;

sr8: �Rekr3 þRekr5 þ
1

2
Imkr2 ¼ 0; Imkr5 �

1

2
Rekr2 ¼� ðeYrÞ2

16
2�

�
1

24
þ 3xr

4

�
;

sr9: �Rekr3 þ 2Rekr5 ¼ 0;

sr10: Imkr2 �Rekr3 ¼ 0;

sr11: �Rekr3 � 2Rekr4 ¼ 0;

sr12: � 2Imkr4 ¼� ðeYrÞ2
192
s�

;

trs1 ; t
rs
2 :

ys3
Ys

� yr3
Yr

¼ 0¼ ys4
Ys

� yr4
Yr

:

(5.7)
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The equations are compatible; we find the following solutions [making use of Eq. (5.2)]:

�Z� ¼ e2

3
2�
ðxr � 1Þ; �Z~e ¼ e2

24
2�
ð5� 8xrÞ;

yr3 ¼ cYr; c 2 R; yr4 ¼ c0Yr; c0 2 R;

y1 ¼ Imkr1; y2 ¼ c

e
;

y7 ¼ � 2

e
c0 þ e2

24
2�
ðxr � 1Þ; Rekr1 ¼ � 1

2
Imkr3 þ

e2

384
2�
ð8xr � 13Þ;

Imkr5 ¼ � e2

384
2�
ð10xr þ 11Þ; Imkr4 ¼

e2

384
2�
;

Rekr2 ¼
e2

96
2�
ð4xr � 5Þ; Imkr2 ¼ Rekr3 ¼ 2Rekr5 ¼ �2Rekr4:

(5.8)

The couplings ~e and �, as well as y1, y2, y7, must be
independent of the representations r of the fermions.
Imposing this on the solutions of Eq. (5.8), we are forced
to demand

xr ¼ ~e

eYr

¼ 0 ) ~e ¼ 0:

That is, renormalizability is attainable by fixing the trace
ambiguity in the tree-level bosonic action in such a way
that the coupling ~e of Eq. (2.11) is equal to zero. When ~e ¼
0, the noncommutative tree-level contributions in the bo-
sonic sector vanish, as well as the bosonic divergences and
the counterterms along r1, r2; then the equations in
Eq. (5.7) coming from the coefficients along r1, r2, as
well as the solution for �Z~e in Eq. (5.8) can be ignored.
Thus, the choice ~e ¼ 0 is consistent at the one-loop level
and at Oð�Þ.

B. SUðNÞ, N > 2 case

In the SUðNÞ case we consider the multiplicative renor-
malization of fields and parameters that follow

b� ¼ Z1=2
b bR�; c r ¼ ðZr

c Þ1=2c R
r ; g ¼ ���Zgg

R;

~g ¼ ���Z~g~g
R; ��� ¼ Z��

R
��;

Gauge invariance demands now �Zb ¼ 0, and the Oð�0Þ
calculation yields the following results:

�Zr
c ¼ g2C2ðrÞ

16
2�
;

�Zg ¼ g2

16
2�

�
11

6
C2ðGÞ � 2

3

X
r

c2ðrÞ
�
:

(5.9)

As before, we consider �-dependent counterterms that
vanish on shell, of the form

�S½b; c � ¼
Z

d4x
�S

�ba�ðxÞF
a
�½b; c �

þ
�X

r

�S

�c rðxÞGr½b; c � þ c:c:

�
; (5.10)

where now gauge invariance demands—defining
F� ¼ Fa

�T
a—

sF� ¼ �i½F�; ��; sGr ¼ i�Gr;

and we consider the following solutions:

F� ¼ y1�
��D�f�� þ y2��

�D�f��

þX
r

yr3��
�ð �c r
�PLT

ac rÞTa

þ i
X
r

yr4�
��ð �c r
���PLT

ac rÞTa þ y5 ~��
�D�f��;

yi 2 R;

Gr;L ¼ kr1�
��f��PLc r þ k2r�

��
��PLf�
�c r

þ kr3�
��
��PLD�D

�c r þ kr4�
��
��PLD

2c r

þ kr5
~���
5PLf��c r; ki 2 C: (5.11)

If there are representations r =2 F for which the �a
r of

Eq. (2.17) are not Lie algebra valued, we can consider
additional independent contributions toF�,Gr;L, involving

�a
r . These are

G0
r;L ¼ kr6�

���a
r ðf��ÞaPLc r þ kr7�

��
��PL�
a
r ðf��Þac r

þ kr8
~���
5PL�

a
r ðf��Þac r; ki 2 C:

In terms of the elements in the basis of Eqs. (2.15),
(2.16), (2.19), and (2.20), the Oð�Þ counterterm action that
results from the multiplicative renormalizations of
Eq. (5.9) and the �-dependent counterterms that result
from Eqs. (5.10) and (5.11) is, using the same notation as
in the U(1) case, the following

SNC; SUðNÞ
ct ¼ SNC; SUðNÞ

ct; bos þ SNC; SUðNÞ
ct; matter ;

SNC; SUðNÞ
ct; bos ¼

Z
d4x

X
i

Biri;

SNC; SUðNÞ
ct; matter ¼ i

Z
d4x

X
r;i<13

Cr
i s

r
i þ i

Z
d4x

X
r0=2F ;i>12

Cr0
i s

r0
i

þ
Z

d4x
X
r<s;i

Drs
i t

rs
i ; (5.12)
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B1 ¼ 1

8~g2
ð�2�Z~g þ �Z�Þ;

B2 ¼ � 1

2~g2
ð�2�Z~g þ �Z�Þ;

Cr
1 ¼

1

2
ð�Z� þ �Zc Þ � ðkr2Þ� � kr2;

Cr
2 ¼ � 1

4
ð�Z� þ �Zc Þ þ ðkr1Þ� þ kr1 þ

i

2
ðkr3Þ� �

i

2
kr3;

Cr
3 ¼ �iy1 þ kr1 �

1

2
kr2 þ

i

2
ðkr3Þ�;

Cr
4 ¼ �ðkr2Þ� � kr2 � iðkr3Þ� � ikr3 � 4iðkr4Þ�;

Cr
5 ¼ iy2 � i

2g2
yr3 � 2iðkr4Þ� � kr2;

Cr
6 ¼ � 1

2g2
yr4 �

1

2
y5 � iðkr4Þ� � ikr5;

Cr
7 ¼ �2iðkr4Þ� � iðkr5Þ� � ikr5;

Cr
8 ¼ � 1

2
kr2 þ

i

2
ðkr3Þ� þ

i

2
kr3 � ikr5;

Cr
9 ¼

i

2
ðkr3Þ� þ

i

2
kr3 � ikr5 � iðkr5Þ�;

Cr
10 ¼ ðkr2Þ� � kr2 þ iðkr3Þ� þ ikr3;

Cr
11 ¼ �ðkr3Þ� � kr3 � 2ðkr4Þ� � 2kr4;

Cr
12 ¼ �ðkr4Þ� þ kr4;

Cr0
13 ¼ �ðkr07 Þ� � kr

0
7 ; Cr0

14 ¼ ðkr06 Þ� þ kr
0
6 ;

Cr0
15 ¼ kr

0
6 � 1

2
kr

0
7 ; Cr0

16 ¼ �ðkr07 Þ� � kr
0
7 ;

Cr0
17 ¼ �kr

0
7 ; Cr0

18 ¼ �ikr
0
8 ;

Cr0
19 ¼ �iðkr08 Þ� � ikr

0
8 ; Cr0

20 ¼ � 1

2
kr

0
7 � ikr

0
8 ;

Cr0
21 ¼ �ikr

0
8 � iðkr08 Þ�; Cr0

22 ¼ ðkr07 Þ� � kr
0
7 ;

Drs
1 ¼ ys3 � yr3; Drs

2 ¼ 2ys4 � 2yr4:

To demand renormalizability, we impose

SNC; SUðNÞ
ct; bos ¼ ��NC; SUðNÞ

div; bos ; SNC; SUðNÞ
ct; matter ¼ ��NC; SUðNÞ

div; matter :�

(5.13)

Matching the coefficients of the expansion of the terms in
Eq. (5.13) in the basis of elements ri, s

r
i and t

rs
i —where the

expansions are given in Eqs. (3.3), (4.2), and (5.12)—we
obtain a system of equations.
Let us consider first the case in which there are fermions

belonging to representations r0 =2 F : Matching the coef-

ficients of the sr
0
13 and sr

0
16, we get the following equations:

sr
0
13: Rek

r0
7 ¼ � g4N

96
2~g2�
; sr

0
16: Rek

r0
7 ¼ g4N

96
2~g2�
;

which are clearly incompatible unless

1

~g2
¼ 0:

For 1
~g2
¼ 0, the divergences along the terms sr

0
13-s

r0
22 in

Eq. (3.3) vanish, and the corresponding equations for the

counterterms of Eq. (5.13) along sr
0
13-s

r0
22 can be solved by

demanding

kr
0
6 ¼ kr

0
7 ¼ kr

0
8 ¼ 0:

It remains to solve the equations for the coefficients of the
terms along ri and sr1-s

r
13, for arbitrary representations r,

belonging or not to F . From Eq. (3.3), it is clear that for
1
~g2
¼ 0 the matching equations for the counterterms will be

the same for all irreducible representations r. As was done
in the U(1) case, these equations can be obtained straight-
forwardly from Eqs. (3.3), (4.2), (5.12), and (5.13); for the
sake of brevity we will not display them here, but we will
note that they are compatible—but for the identities com-
ing from the matching along r1, r2, they are the same
equations that were found for anomaly safe GUT theories
in Ref. [15]—and have the following solutions:

y1 ¼ Imkr1; yr3 ¼ c 2 R;

yr4 ¼ �y5g
2 � g4

384
2�
ð16C2ðrÞ � 13NÞ; �Z� ¼ ��Zc � g2

48
2�
ð13C2ðrÞ � 4NÞ;

Rekr1 ¼ � 1

2
Imkr3 �

g2

384
2�
ð13C2ðrÞ � 8NÞ; Imkr5 ¼ � g2

384
2�
ð11C2ðrÞ � 8NÞ;

Imkr4 ¼
g2C2ðrÞ
384
2�

; Rekr2 ¼ � 5g2

192
2�
ð2C2ðrÞ � NÞ;

Imkr2 ¼ Rekr3 ¼ 2Rekr5 ¼ �2Rekr4; �Z~g ¼ 1

2
�Z� þ 11g2

96
2�
;

y2 ¼ 1

2g2
c; yr4 ¼ c0 2 R:

(5.14)
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It should be recalled that y1, y2, y5 and �Z� must be flavor
independent [see Eq. (5.11)]. Imposing this in the previous
solutions, one must require that all flavors have identical
C2ðrÞ; this can be achieved without violating the anomaly
cancellation conditions by considering all fields in a single
representation plus its conjugate.

Next, we should analyze the case in which there are no
fermion fields in representations other than those belong-
ing toF , as when the anomaly-free matter content is given
by a multiplet in the fundamental and another one in the
antifundamental. In this case, defining

zr � AðrÞg2
2~g2c2ðrÞ

; (5.15)

the terms sj, j > 12 of Eq. (2.19) are not independent of the

terms si, i < 13; it can be readily seen from Eqs. (2.18) that
one has

srj ¼
~g2Nzr
2g2

srj�12; j ¼ 13; . . . ; 22;

with zr as in Eq. (5.15). Using the previous identity applied
to Eqs. (3.3), (4.2), (5.12), and (5.13), one gets a system of
equations involving the terms ri, si, i ¼ 1; � � � 12; ti of
Eqs. (2.15), (2.16), and (2.20). The system is again com-
patible and has as solutions

y1 ¼ Imkr1; yr3 ¼ c 2 R;

yr4 ¼ �y5g
2 þ g4

384
2�
ðNð4zr þ 13Þ � 16C2ðrÞÞ; �Z� ¼ ��Zc þ g2

48
2�
ð4Nð1þ zrÞ � 13C2ðrÞÞ;

Rekr1 ¼ � 1

2
Imkr3 þ

g2

384
2�
ð2Nðzr þ 4Þ � 13C2ðrÞÞ; Imkr5 ¼ � g2

768
2�
ð22C2ðrÞ þ Nð5zr � 16ÞÞ;

Imkr4 ¼
g2C2ðrÞ
384
2�

; Rekr2 ¼
g2

192
2�
ðNð2zr þ 5Þ � 10C2ðrÞÞ;

Imkr2 ¼ Rekr3 ¼ 2Rekr5 ¼ �2Rekr4; �Z~g ¼ 1

2
�Z� þ 11g2

96
2�
;

y2 ¼ 1

2g2
c; yr4 ¼ c0 2 R:

(5.16)

Again, we have to demand the independence of y1, y2, y5
and �Z� of the representation r. Since zðrÞ, defined in
Eq. (5.15), involves AðrÞ=c2ðrÞ, which will differ in the
representations considered—c2ðrÞ is positive, while some
AðrÞ will have necessarily different signs to make the
cancellation of the anomaly possible—we must have
zðrÞ ¼ 0 by imposing again

1

~g2
¼ 0:

After doing this, the solutions of Eq. (5.16) are equivalent
to those of Eq. (5.14).

From the previous results, it is clear that the SUðNÞ,N >
2 theory is one-loop renormalizable only when the trace
ambiguity is fixed in such a way that ð~gtreeÞ�2 ¼ 0 and
when the ordinary matter content is vectorial, consisting of
two multiplets in representations that are conjugate of each
other; the choice of representation remains arbitrary. Note
that when ð~gtreeÞ�2 ¼ 0, the noncommutative tree-level
contributions, the counterterms and the divergences in
the bosonic sector vanish, and then the equations for the
counterterms along r1, r2, as well as the solutions for �Z~g

of Eqs. (5.14) and (5.16), can be ignored. Hence, the
condition ð~gtreeÞ�2 ¼ 0 survives the renormalization
procedure.

VI. DISCUSSION

In this paper we have computed, at one-loop and first
order in the noncommutativity parameters �, the UV di-
vergent contributions involving zero or two fermion fields
and an arbitrary number of gauge fields, to the background-
field effective action of two types of noncommutative
gauge theories: the GUT-compatible formulation of
QED, and SUðNÞ, N > 2 GUTs with an arbitrary,
anomaly-free matter content. We used the framework of
Breitenlohner, Maison, t’ Hooft, and Veltman dimensional
regularization, neglecting contributions to the divergences
involving operators that vanish in the limit D ! 4, which
are unphysical at one-loop. The results can be summarized
as follows: when the trace ambiguities of the models are
fixed in such way that theOð�Þ triple gauge-field couplings
vanish at tree level, the off-shell divergences of both the
U(1) and SUðNÞ theories can be renormalized by means of
multiplicative renormalizations of fields and couplings—
including the noncommutativity parameters �—and the
addition of unphysical �-dependent counterterms that van-
ish on shell. In the SUðNÞ case, this is possible whenever
the irreducible representations in the matter multiplet share
the second Casimir. When the previous conditions are met,
given the results of Ref. [12] concerning the vanishing of 4
fermion UV divergences in noncommutative GUT-
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compatible theories, the full one-loop, Oð�Þ effective ac-
tion is renormalizable.

The restriction to theories in which the Oð�Þ triple
gauge-field couplings vanish—recall that these interac-
tions are proportional to ~e, 1

~g2
, as shown in Eq. (2.12)—

constrains the ambiguity in the trace of the bosonic degrees
of freedom. Looking at the expressions for the couplings ~e,
1
~g2
in Eq. (2.11), their vanishing can be achieved by sum-

ming over all the matter representations with a common
coefficient, as a consequence of anomaly cancellation
conditions. Thus, the choice ~e ¼ 1

~g2
¼ 0 can be regarded

as the simplest or minimal one, dictated only by the matter
content of the theory, as was already pointed out in
Ref. [13]. Our calculations show that, once ~e ¼ 1

~g2
¼ 0

are fixed to zero at tree level, there is no need to renormal-
ize these parameters due to the vanishing of the bosonic
divergences, so that the choice is consistent with one-loop,
Oð�Þ quantum corrections. As was emphasized in the in-
troduction, the only physical parameters of the theory are
the coupling constants e, g and the noncommutativity
parameters �. The off-shell renormalization only required
the addition of counterterms arising either from multipli-
cative renormalization of the tree-level parameters and
fields, or depending on unphysical couplings.
Renormalisable S-Matrix elements—which are insensitive
to field renormalizations and the on-shell vanishing coun-
terterms—can be obtained by considering only the multi-
plicative renormalization of these physical parameters.
Thus, the one-loop, order � renormalization procedure
did not require an enlargement of the set of physical
couplings; this is essential in raising hopes that the well-
behaved theories found in this paper might be indeed
renormalizable in the proper sense—meaning that they
keep yielding sensible S-matrix elements that only depend
on a finite number of physical couplings—when higher
order corrections are taken into account.

For ~e ¼ 1
~g2
¼ 0 the theories are similar to the anomaly

safe GUTs analyzed in Ref. [15], and the results too.
However, two important distinctions should be made: in
the theories analyzed in this paper, the anomaly cancella-
tion conditions impose constraints on the allowed matter
representations, and, on the other hand, the fact that the
choice ~e ¼ 1

~g2
¼ 0 survives the renormalization procedure

is nontrivial, coming from the vanishing of the fermionic
contributions to the UV divergences in the bosonic sector:
for anomaly safe theories, the contributions to the UV
divergences of the form Tr�fff vanish automatically,
while in the U(1) and SUðNÞ, N > 2 case they vanish
because their coefficient turns out to be proportional to
the total anomaly. In the SUðNÞ case, the condition that the
representations must share the same second Casimir, added
to the condition of anomaly freedom, demands that the
ordinary matter sector has to be nonchiral, in the sense that
it must consist of two multiplets in representations that are

conjugate of each other; the noncommutative interactions,
since they cannot be written in terms of noncommutative
Dirac fermions, remain chiral. Thus, our results overcome
the nonrenormalizability observed for non-GUT-
compatible formulations of noncommutative QED and
SUðNÞ gauge theories with ordinary vector matter, whose
matter sectors have unrenormalizable divergences. This
increases the number of noncommutative gauge theories
in the enveloping-algebra approach with fermionic matter
which have been shown to be one-loop renormalizable at
order �, and further motivates the study of noncommuta-
tive GUT-compatible theories. The list of one-loop, Oð�Þ
renormalizable noncommutative theories so far includes
noncommutative SUðNÞ super Yang-Mills, anomaly safe
GUTs, and the renormalizable theories found in this paper.
It should be pointed out that due to the fact that renorma-
lizable SUðNÞ GUT theories are nonchiral, noncommuta-
tive embeddings of the standard model into renormalizable
anomaly safe GUT theories should be preferred over em-
beddings into SUðNÞGUTs. Nevertheless, when modelling
the strong interactions alone, a GUT-compatible SUðNÞ
model stands out as the simplest renormalizable choice at
one-loop and order �.
Of course, even though we mentioned standard model

embeddings, our results about renormalizability apply for
theories without Higgs sectors. It is an open and very
interesting problem to study the renormalizability of
GUT-compatible theories with a Higgs sector. On the other
hand, our results apply to GUT-compatible theories with
simple groups; it is still pending to analyze the case of
semisimple groups, such as the GUT-compatible standard
model of Ref. [13]. Even though renormalizability could
demand similar restrictions for the matter content as those
found in this paper, such as common second Casimirs for
the different multiplets, this would be satisfied by fields in
the (anti)fundamental representations of SU(3) and SU(2),
as in the standard model itself. On the other hand, a chiral
SU(2) ordinary matter content could be still allowed, since
SU(2) is anomaly free.
Finally, we should briefly comment on phenomenologi-

cal properties of the one-loop, order � renormalizable
models found in this paper. There is ample literature re-
garding phenomenological studies of noncommutative
theories in the enveloping-algebra approach, but to our
knowledge, all studies so far concerned models that are
not GUT compatible. For a very limited list of phenome-
nological studies, we can point out those dealing with
standard model forbidden decays, such as Z ! 

 [23],
K ! 

 [24], or quarkonia decays [25], whose detection
could be taken as a signal of noncommutativity. Other
studies have dealt with noncommutative couplings be-
tween neutrinos and photons, such as in Ref. [26]; more
collider phenomenology was analyzed, for example, in
Ref. [27]. The phenomenological study of GUT-
compatible theories certainly deserves separate efforts,
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and we hope that our results will encourage them. In
general, right-handed and left-handed fermions in GUT-
compatible models couple to the noncommutativity pa-
rameters in different ways [12,13], in contrast to the case
of theories constructed in terms of noncommutative Dirac
fermions, which have been the focus of phenomenological
studies so far. Thus, the results available in the literature
cannot be directly extrapolated to the GUT-compatible
case. Here we will just point out that in the renormalizable
GUT-inspired models found in this paper and in Ref. [15],
there are no triple gauge interactions mixing gauge bosons
belonging to different gauge groups, and also the couplings
considered between matter and fermions in Eq. (2.1) can
not mix neutrinos and photons. Hence, in an embedding of
the standard model into theories similar to those in this
paper and in Ref. [15], there would be no tree-level induced
Z ! 

 decays, and no effects coming from tree-level
neutrino-photon interactions. standard model forbidden
decays involving kaons and quarkonia might still be al-
lowed, but in the absence of Z ! 

 couplings the effects
might be weaker, and there could be further cancellations
due to the fact that the gauge interactions at first order in �
of left-handed fermions have opposite sign to those of
right-handed fermions.
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APPENDIX A: FEYNMAN RULES

We denote the background-field legs with an encircled
‘‘b’’; the rules are defined without symmetrizing over
background-field legs, in accordance with Eq. (2.14).
Barred objects are strictly four dimensional.

1. U(1) theory

The photon fields a0�—see Eq. (2.3)—are denoted with a

wavy line. The fermion multiplet c is—‘‘i’’ denoting the
Dirac index and ‘‘s’’ being the index of the representa-
tion—are represented by single solid lines.
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2. SUðNÞ, N > 2 theory

The nonabelian gauge field aa� is denoted with a curly line, and he fermion multiplet c is is represented by double solid

lines.
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APPENDIX B: � FUNCTIONS FORTHE PHYSICAL
COUPLINGS, e, g, �

The� functions for the couplings of the U(1) and SUðNÞ
theories can be readily shown to be

U ð1Þ: �e ¼ e3

12
2
; �� ¼ 2e2�

3
2
;

SUðNÞ: �g ¼ � g3

16
2

�
11

3
N � 4

3

X
r

c2ðrÞ
�
;

�� ¼ � g2�

6
2
ðN � 4C2ðrÞÞ:

In the formulae above, C2ðrÞ represents the second-degree

Casimir invariant of the representation r, and c2ðrÞ is the
index of the representation. They are related by the relation

C2ðrÞ ¼ c2ðrÞNðGÞ
NðrÞ ;

where NðrÞ is the dimension of the representation r, and G
denotes the adjoint representation. The � functions for the
gauge couplings e, g are the same as in the commutative
theory. The� functions for � are generically positive in the
presence of nonsinglet matter; in the SU(3) case, for ex-
ample, using the tables in Ref. [28], �� is positive for
representations of dimension less than 65, and the same
result applies for SU(5) representations of dimension less
than 800.
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