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Departamento de Fı́sica, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
(Received 27 October 2009; published 11 January 2010)

We consider astrophysical objects such as main-sequence stars, white- dwarfs, and neutron stars in a

noncommutative context. Noncommutativity is implemented via a deformed dispersion relation E2 ¼
p2c2ð1þ �EÞ2 þm2c4 from which we obtain noncommutative corrections to the pressure, particle

number, and energy densities for radiation and for a degenerate fermion gas. The main implications of

noncommutativity for the considered astrophysical objects are examined and discussed.
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I. INTRODUCTION

It is believed that noncommutative geometry might play
an important role in the description of space-time at scales
comparable to Planck length [1,2] given that, for instance,
noncommutative features arise in string theory in the pres-
ence of a constant B field [3,4].

Quantum field theory (QFT) in noncommutative spaces
has been implemented by substituting the usual pointwise
product between fields by the so-called Moyal product.
This procedure introduces a minimum length scale, which
acts as a UV cutoff even though it is found that IR diver-
gences also appear. Furthermore, in the context of QFTone
also encounters problems with causality and unitarity (see,
e.g., Refs. [5,6]). Other issues related to this approach
involve the violation of translational invariance [7], the
standing of noncommutative scalar fields on cosmological
backgrounds [8,9], and their stability in curved spaces [10].
Another way to introduce noncommutativity in field theory
concerns the generalization of the algebra of noncomuta-
tive quantum mechanics [11–16] to field algebra [17]. At
quantum mechanical level, noncommutativity can be im-
plemented via an extension of the Heisenberg-Weyl alge-
bra and many generalizations of quantum mechanics have
been proposed [11–18].

Although there are some proposals for a theory of non-
commutative gravity (see, e.g., Refs. [19,20]), up to now,
there is no consistent theory of noncommutative gravity.
Thus, rather than considering a noncommutative space
over which the fields are defined, one considers instead a
deformed dispersion relation for the fields defined in an
usual (commutative) space-time [21]. This is inspired by
the study of quantum groups [22] and is related to the
question of to what extent the Lorentz symmetry is an
exact symmetry [7,23–25] and how special relativity can
be modified to accommodate a minimum length scale

[26,27]. This approach has also been considered to address
what was believed the puzzle of cosmic rays with energies
beyond the Greisein-Zatsepin-Kuzmin cutoff [7,23–25]
which was later not confirmed observationally [28,29],
and to investigate how noncommutativity can account for
a inflationary period [21,30,31].
The relationship between noncommutativity and a de-

formed dispersion relation can be understood as sketched
in Ref. [22]. The following commutation relations in the
configuration space are considered

½xi; t� ¼ i�xi ½xi; xj� ¼ 0; (1)

where � is constant and i; j ¼ 1; 2; 3. Using quantum group
methods to define a convenient Fourier transform and a
deformed Poincaré group, one can show that, in momenta
variables, the Klein-Gordon operator reads

��2ðe�E þ e��E � 2Þ � p2c2e��E ¼ m2c4; (2)

which is a deformed dispersion relation.
This can also be seen from the fact that noncommutative

theories imply a minimum length, which leads to an ex-
tension of special relativity to take into account this new
invariant. Defining the boost generator [26]

Ki ¼ Li
0 þ LPp

iD (3)

where Li
0 is the usual boost generator, LP is the invariant

length, and D ¼ p� @
@p� (� ¼ 0; 1; 2; 3) the dilatation gen-

erator, it can be seen that the action on momentum space
becomes nonlinear and that [26]

kpk2 ¼ m2c4 ¼ p�p�

ð1� LPEÞ2
; (4)

which shows once again that noncommutativity leads to a
deformed dispersion relation.
In this work the influence of noncommutativity over

astrophysical objects, namely, main-sequence stars, such
as the Sun, and more compact objects, such as white dwarfs
and neutron stars, is investigated. In the present approach
one considers the low-energy limit of noncommutativity
(cf. below), in opposition to the most common high-
temperature limit, which was presumably relevant at the
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early universe [21,30]. The aim is to identify the leading
noncommutative correction to the thermodynamic quanti-
ties used in the description of astrophysical objects.

The considered approach involves a deformed disper-
sion relation. The grand-canonical formalism of statistical
mechanics is used to obtain the first-order noncommutative
corrections to energy, particle number density, and pres-
sure. The results are then applied to the standard model of
stars (radiation plus nonrelativistic ideal gas) [32], white
dwarfs (degenerate electron gas) [32], and neutron stars
(Oppenheimer-Volkoff model: degenerate neutron gas)
[33].

This manuscript is organized as follows: in Sec. II, the
deformed dispersion relation is presented and some physi-
cal features are discussed. In Sec. III, the formalism of the
grand-canonical ensemble is employed to compute the
leading order noncommutative correction to energy, parti-
cle number density, and pressure. These results are then
applied to obtain noncommutative corrections to radiation,
nonrelativistic ideal gas, and degenerate fermion gas.
Results are used, in Sec. IV, to obtain noncommutative
corrections to the main features of astrophysical objects.
Finally, in Sec. V, one discusses the main physical impli-
cations of the obtained results.

II. DEFORMED DISPERSION RELATION

Inspired in studies of the breaking of Lorentz symmetry
at high energies and in theories that admit an invariant
length, which as discussed above can be regarded as a
noncommutativity expressed by Eqs. (1), one defines the
deformed dispersion relation, generalizing Ref. [21]:

E2 ¼ p2c2ð1þ �EÞ2 þm2c4: (5)

Solving for E, one has

E ¼ �p2c2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4ð1� �2p2c2Þp
1� �2p2c2

: (6)

Here only the particle branch of the dispersion relation is
considered. One then gets four different cases:

(i) �pc < 1, and hence E> 0.
(ii) �pc ! 1, and thus E ! 1.
(iii) �pc > 1 and j1� �2p2c2j � ð pmcÞ2, from which fol-

lows that E< 0. This is a nonphysical region for the
particle branch.

(iv) �pc > 1 and j1� �2p2c2j> ð pmcÞ2, which corre-
sponds to a nonphysical region since E is complex.

In Fig. 1, the general behavior of this deformed disper-
sion relation is depicted. The parameter � is associated
with the maximum momentum, as although all energies
can be attained, one has a maximum momentum, pmax ¼
1=�c [30].

In this work, since one is interested in astrophysical
configurations, and as � is presumably related to the quan-
tum gravity energy scale, one keeps the first-order correc-

tion in �. Thus, from Eq. (6) one obtains

E ¼ �p2c2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

q
: (7)

Clearly, one recovers the usual relativistic dispersion
relation for � ! 0. Notice that the first-order correction
only acts on the kinetic part of the energy.

III. DEFORMED STATISTICAL MECHANICS

Since the noncommutativity is introduced through a
deformation of the dispersion relation and the form of
the dispersion relation does not alter the foundations of
statistical mechanics, one can use the formalism of the
grand-canonical ensemble [21,34,35].
Consider a system of N particles with energy spectrum

given by fEjg. Each state is labeled by j (j ¼ 1; 2; . . . ) and

corresponds to nj particles with energy Ej. The fugacity is

defined as z ¼ e��, where � is the chemical potential and
� ¼ ðkBTÞ�1, being T the temperature and kB the
Boltzmann constant. The grand-canonical partition func-
tion is obtained from the sum over states

Z ¼ X
nj

Y
j

½ze��Ej�nj ¼ X
nj

Y
j

½e�ð��EjÞ�nj : (8)

The connection to thermodynamics is obtained after
introducing the grand-canonical potential defined as

� ¼ �PV ¼ � 1

�
lnZ; (9)

P being the pressure and V the volume. One can show that
[34]

� ¼ � 1

a�

X
j

lnð1þ aze��EjÞ ¼ �PV; (10)

where the parameter a assumes the following values: a ¼
1 for fermions and a ¼ �1 for bosons. The average num-
ber of particles is given by

0 1
c

p
mc2

E

FIG. 1 (color online). Deformed dispersion relation.
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hNi ¼ �
�
@�

@�

�
�
¼ X

E

nðEÞ; (11)

where nðEÞ ¼ ðz�1e�E þ aÞ�1 is the occupation number
of particles with energy E. The average energy is then
obtained:

hEi ¼ X
E

EnðEÞ ¼ X
E

E

z�1e�E þ a
: (12)

To get the pressure, one considers the large-volume

limit:
P

E ! R d3 ~xd3 ~p
ð2�@Þ3 . Equation (10) then reads

� ¼ �PV ¼ � �

a�

Z d3 ~xd3 ~p

ð2�@Þ3 lnð1þ aze��Eð ~x; ~pÞÞ; (13)

where E ¼ Eð ~x; ~pÞ and � is the multiplicity of states due to
spin. Here one has to consider the nature of the energy
function and hence of the deformed dispersion relation.
Notice that E in Eq. (5) does not depend on the position and
on direction but only on p ¼ j ~pj. Therefore in Eq. (13), the
configuration space integration is the trivial and yields the
volume V. The momentum variable integration yields,
after integrating by parts,

P ¼ �

2�2
@
3

Z 1=�c

0
dp

�
p2

z�1e�E þ a

��
p

3

dE

dp

�
: (14)

Taking the large-volume limit and integrating over the
configuration space, one obtains the particle number den-
sity

N

V
¼ �

2�2
@
3

Z 1=�c

0
dp

�
p2

z�1e�E þ a

�
: (15)

By the same token, the energy density reads

u ¼ hEi
V

¼ �

2�2
@
3

Z 1=�c

0
dpp2

�
E

z�1e�E þ a

�
: (16)

One has then to compute these quantities using Eq. (5) or
Eq. (7) depending on the physical model that describes the
astrophysical objects of interest.

A. Deformed radiation

For radiation, a gas of photons, the dispersion relation
Eq. (5) is given by

E ¼ pcð1þ �EÞ; (17)

which, solving for p and changing the integration variable
in Eq. (16), yields1

u ¼ 1

�2
@
3c3

Z 1

0
dE

E3

e�E � 1

1

ð1þ �EÞ4 : (18)

For � ¼ 0, one recovers the Stefan-Boltzmann law. This
integral cannot be solved analytically. As one is interested

in investigating astrophysical objects, one considers the
limit �kBT � 1. This approximation is justified since for
neutron stars, the hottest ones, the central temperature is
around ð1011–1012Þ K, and to satisfy that condition � �
10 GeV�1, if � is related to the inverse of the quantum
gravity energy scale. The deformed radiation in the limit
�kBT � 1 is considered in Ref. [21] to study cosmological
issues concerning the early universe.
Defining a variable y ¼ �E, Eq. (18) can be written as

u ¼ 1

�2
@
3c3�4

Z 1

0
dy

y3

ey=�kBT � 1

1

ð1þ yÞ4 : (19)

As �kBT � 1, ðey=�kBT � 1Þ�1 decays exponentially
and hence one can expand y3=ð1þ yÞ4 in Taylor series
around zero (any other value of y will be exponentially
suppressed). One finds

u ¼ 1

�2
@
3c3�4

�Z 1

0
dy

y3

ey=�kBT � 1

� 4
Z 1

0
dy

y4

ey=�kBT � 1

�
: (20)

Using the formula 3.411.1 of Ref. [36]

Z 1

0

x��1dx

e�x � 1
¼ 1

�� �ð�Þ�ð�Þ ½Re�> 0; Re� > 0�;
(21)

where �ð�Þ and �ð�Þ are gamma and zeta functions, re-
spectively. Thus, one obtains the integrals of Eq. (20)

u ¼ 4�

c
T4 � 96�ð5Þ

�2
@
3c3

�k5BT
5; (22)

where � ¼ �2k4B=60@
3c2 is the Stefan-Boltzmann con-

stant. If � ! 0, one recovers the Stefan-Boltzmann law.
Equation (22) can be written as

u ¼ 4�effðT;�Þ
c

T4; (23)

where the effective Stefan-Boltzmann constant is given by

�effðT;�Þ ¼ �

�
1� 1440�ð5Þ

�4
�kBT

�
: (24)

Notice that the first noncommutative correction reduces
the energy density. For the pressure, Eq. (14):

P ¼ 1

3�2
@
3c3

Z 1

0
dE

E3

e�E � 1

1

ð1þ �EÞ3 : (25)

Changing the variable to y ¼ �E, considering �kBT �
1 and expanding y3

ð1þyÞ3 in Taylor series around zero, one

finds1For photons a ¼ �1, � ¼ 0, and � ¼ 2.
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P ¼ 1

�2
@
3c3�4

�
1

3

Z 1

0
dy

y3

ey=�kBT � 1

�
Z 1

0
dy

y4

ey=�kBT � 1

�

P ¼ 4�

3c
T4 � 24�ð5Þ

�2
@
3c3

�k5BT
5: (26)

Dividing Eq. (26) by Eq. (22) one gets

P

u
¼ 1

3
þ ð�kBTÞ 120�ð5Þ

�4
; (27)

notice that the usual relationship u ¼ 3P is recovered after
taking the limit � ! 0. To obtain an equation of state
(EOS) P ¼ PðuÞ, one has to write T as a power series of
�. It suffices to substitute T ¼ T0 þ �T1 in Eq. (22) and
compare the terms of the same order in �. This yields

T ¼
�
15ð@cÞ3
�2

�
1=4 u1=4

kB
þ 360�ð5Þð15ð@cÞ3Þ1=2

�5

�u1=2

kB
:

(28)

Substituting Eq. (28) into Eq. (27), one finally gets the
first-order noncommutative correction to the EOS:

P ¼ u

3
þ 120�ð5Þ

�4

�
15ð@cÞ3
�2

�
1=4

�u5=4 (29)

¼ u

3

�
1þ 360�ð5Þ

�4

�
15

�2

�
1=4

�ð@cÞ3=4u1=4
�
: (30)

Equation (30) exhibits a noncommutative correction to the

usual EOS of order �ð@cÞ3=4u1=4.

B. Nonrelativistic ideal gas

Let us consider now Eq. (7). In this case one has the first-
order noncommutative correction plus the usual dispersion
relation. For nonrelativistic ideal gas p � mc, and Eq. (7)
becomes

E ¼ �p2c2 þmc2 þ p2

2m
þO

�
p

mc

�
4
: (31)

The noncommutative correction is relevant if the condi-
tion � & ð2mc2Þ�1 is satisfied. However, for the usual
matter of main-sequence stars (hydrogen, for simplicity),
this condition implies that � & 1 GeV�1, which is a too
strong restriction to this problem. So no noncommutative
correction is considered to the nonrelativistic ideal gas.
From the well-known expression for the pressure [34],

P ¼ N

V
kBT; (32)

one can use the definition of the mean molecular weight
�N

�N ¼ 	

nmN

; (33)

where n ¼ N=V, mN is the nucleon mass2 and 	 is the
mass density to obtain

P ¼ 	

�NmN

kBT: (34)

C. Deformed degenerate fermion gas

Consider a low temperature (T ! 0) fermionic system,
so that occupation number takes the form nðEÞ ¼ HðEF �
EÞ, where � ¼ EF is the Fermi energy above which all
levels are not occupied and HðxÞ is the Heaviside function.
The momentum associated to the Fermi energy is the Fermi
momentum pF. The occupation number written in momen-
tum variable reads nðpÞ ¼ HðpF � pÞ. As one investigates
star configurations, the momenta range in the interval
MeV=c–GeV=c, and hence pF � ð�cÞ�1; that is, one
uses the approximate dispersion relation given by Eq. (7).
The particle number density Eq. (15) for spin one-half

particles is given by

n ¼ N

V
¼ 1

�2
@
3

Z 1=�c

0
dpnðpÞp2 ¼ 1

�2
@
3

Z pF

0
dpp2

¼ p3
F

3�2
@
3
¼ ðmcÞ3x3

3�2
@
3
; (35)

where x ¼ pF=mc is defined. The energy density can be
computed with the help of Eqs. (7) and (16)

u ¼ E

V

¼ 1

�2
@
3

Z pF

0
dpp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

q
þ �c2

�2
@
3

Z pF

0
dpp4:

(36)

Changing the integration variable to y ¼ p=mc, one
finds

u ¼ E

V
¼ m4c5

�2
@
3

Z x

0
dyy2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

q
þ �c2ðmcÞ5

�2
@
3

Z x

0
dyy4:

(37)

The first integral can be performed by parts and through
the use of formula 2.273.3 of Ref. [36]

Z x

0
dy

y4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p ¼ fðxÞ
8

¼ 1

8
ðxð2x2 � 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ 3sinh�1xÞ;

(38)

where fðxÞ ¼ xð2x2 � 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ 3sinh�1x as defined

in Ref. [32]. Finally one obtains the energy density

2mN ¼ 1 amu ¼ 931, 494 MeV=c2 [37].
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u ¼ ðmc2Þ4
24�2ð@cÞ3 ð8x

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� fðxÞÞ þ �ðmc2Þ5

5�2ð@cÞ3 x
5

¼ ðmc2Þ4
�2ð@cÞ3

�
x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

3
� fðxÞ

24
þ ð�mc2Þ x

5

5

�
: (39)

Equation (39) shows that the first noncommutative correc-
tion is given by �mc2, and since mc2 is in the range
MeV–GeV, one finds that �mc2 � 1. Taking the limit
� ! 0 one recovers the known results (see, e.g.,
Ref. [32]). One computes the pressure using Eqs. (7) and
(14)

P ¼ c2

3�2
@
3

Z pF

0
dp

p4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

p þ 2�c2

3�2
@
3

Z pF

0
dpp4:

(40)

Following the same procedure to get the energy density,
one obtains

P ¼ ðmc2Þ4
24�2ð@cÞ3 fðxÞ þ

2�ðmc2Þ5
15�2ð@cÞ3 x

5

¼ ðmc2Þ4
�2ð@cÞ3

�
fðxÞ
24

þ ð�mc2Þ 2x
5

15

�
: (41)

IV. APPLICATION TOASTROPHYSICALOBJECTS

A. Main-sequence stars: The Sun

The simplest model of a main-sequence star assumes
that a star is composed by a mixture of nonrelativistic ideal
gas and radiation maintained in hydrostatic equilibrium by
gravity [32]. The total pressure is P ¼ Pgas þ Prad where

Prad is given by Eq. (26) and Pgas is given by Eq. (34).

Defining �S ¼ Pgas=P, or equivalently Prad ¼ ð1� �SÞP,
then P ¼ Pgas=�S ¼ Prad=ð1� �SÞ. Substituting Eqs. (26)
and (34) into this relationship one gets

	

�NmN�S
kBT ¼ 4�

3cð1� �SÞT
4 � �

24�ð5Þk5B
�2

@
3c3ð1� �SÞ

T5:

(42)

One rewrites this equation in function of the density 	
for which one substitutes T ¼ T0 þ �T1 and comparing
the powers in �:

T0 ¼
�
1� �S

�S

3ckB
4��NmN

�
1=3

	1=3; (43)

T1 ¼ 6c�ð5Þk5B
��2ð@cÞ3

�
1� �S

�S

3ckB
4��NmN

�
2=3

	2=3: (44)

Substituting this result into Pgas ¼ �P and using Eq. (34)

one obtains that P ¼ K1	
4=3 þ �K2	

5=3 where

K1 ¼ ð1� �SÞ1=3
ð�S�NÞ4=3

�
3ck4B
4�m4

N

�
1=3

¼ 2:67� 1010
�ð1� �SÞ1=3
ð�S�NÞ4=3

�
Jm

kg4=3
(45)

K2 ¼ ð1� �SÞ2=3
ð�S�NÞ5=3

�
360�ð5Þ

�4

��
3ck4B

4�m5=2
N

�
2=3

¼ 4:52� 10�6

�ð1� �SÞ2=3
ð�S�NÞ5=3

�
J2 m2

kg5=3
: (46)

If one assumes that �S is constant over all stars and that
its chemical composition is unchanged so that �N is also
constant,3 one finds that the matter is a polytrope with
polytropic index n ¼ 3, perturbed by a polytrope with n ¼
3=2. The question of stability can be roughly analyzed in
the following terms: the dominant term is � ¼ 4=3 where
� is defined as � ¼ 1þ 1

n . This represents the point where

a configuration is marginally stable and one shows that this
configuration is stable if �> 4

3 þ 2:25GM
c2R

after general rela-

tivity corrections [38]. So the latter correction has the
effect to decrease the region of stability of this configura-
tion. The noncommutative correction to pressure does not
affect the problem of stability since it yields �> 5

3 and a

positive contribution. Indeed, following Ref. [38], neglect-
ing general relativity corrections, the energy of this con-
figuration comprises the sum of the internal energy, which
is proportional to PV, and the gravitational potential en-

ergy, proportional to GM2

R . The pressure is given by P ¼
K1	

�1 þ �K2	
�2 and �K2

K1
	�2��1 � 1. The energy then

reads

E ¼ k0PV � k1
GM2

R

¼ C1M	�1�1
c þ C2M	�2�1

c � k3M
5=3	1=3

c ; (47)

where k0, k1, k3, C1, C2 are constants and 	c is the central
density. Calculating the value of M at the critical point
@E
@	c

¼ 0, one obtains

M ¼
�
3

k3
ðC1ð�1 � 1Þ	�1�4=3

c þ �C2ð�2 � 1Þ	�2�4=3
c Þ

�
3=2

:

(48)

A necessary, but not sufficient, condition for stability of
the configuration is d lnM

d ln	c
> 0, forM given by @E

@	c
¼ 0 [39].

Using Eq. (48), one gets

d lnM

d ln	c

¼ 3

2

�
�1 � 4

3

�
þ �

3C2ð�2 � 1Þ
2C1ð�1 � 1Þ ð�2 � �1Þ	�2��1

c :

(49)

In the model investigated here, �1¼4=3 and �2¼5=3>
�1, so

dlnM
dln	c

>0. Hence the effect of noncommutativity is to

turn a marginal stable configuration into a stable one.

3This is know as Eddington’s standard model of stars [38].
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As an example, one applies this formalism to the Sun. At
the center, 1� �S � 10�3, 	c ¼ 1:53� 105 kg=m3, and
�N ¼ 0:829 [38]; hence, one can estimate the relevance of
the noncommutative correction over the pressure,

PNC

PC
¼ �K2	

5=3

K1	
4=3

¼ 9:66� 10�16�; (50)

where PNC ¼ �K2	
5=3 is the noncommutative correction

to the pressure, PC ¼ K1	
4=3 is the usual (commutative)

term, and � must be expressed in J�1 units. One computed
this value at the center of the star using Eqs. (45) and (46).
A discussion including the value of � will be postponed
until Sec. V, but one cannot fail to see that this correction
is, as expected, quite small. Notice that given that the Sun
is a fairly typical main-sequence star of its class, the
obtained results can be seen as quite general.

B. White dwarfs

In the previous subsection, one has seen that the non-
commutative correction to main-sequence stars is very
small. Since the noncommutative corrections are supposed
to be relevant for configurations with higher energy per
particle, one considers next white dwarfs. Astronomical
data [40] show that these stars have mass of the order of the
Sun and planet sizes; hence the range of mass density at the
center is 108 kg=m3 & 	c & 1012 kg=m3. This requires
considering the quantum behavior of matter. Given that
all atoms are ionized and so electrons are free, the physical
assumption is that it is the pressure of this electron gas that
balances the gravitational force. Hence the appropriate
formalism to investigate noncommutative correction is
the one developed in Sec. III C. The degeneracy of this
electron gas is justified since the temperature associated to
EF is greater than the temperature of the white dwarfs.4

Indeed, suppose that EF � 1 MeV, so T � 1010 Kwhich is
much larger than the usual internal temperature of these
stars (T � 107 K).

One defines the electronic molecular weight as

�e ¼ 	

nemp

; (51)

where ne is the electronic particle number density and mp

is the proton mass. Substituting Eq. (51) into Eq. (35), one
finds

x ¼ ð3�2Þ1=3 @

mec
n1=3e ¼

�
3�2

mp

�
1=3 @

mec

�
	

�e

�
1=3

¼ 10�3

�
	

�e

�
1=3

; (52)

where me is the mass of the electron and this result is

presented in SI units. Computing now the value of x for
	 ¼ 108 kg=m3, the lowest white-dwarf density, 	 ¼ 2�
109 kg=m3 (region where pF�mec) and 	 ¼ 1012 kg=m3,
the largest white-dwarf density, and �e ¼ 2, which corre-
sponds to a star formed by helium, one obtains, respec-
tively,

x8 ¼ 0:37 (53)

x9 ¼ 1:01 (54)

x12 ¼ 7:99: (55)

To quantify the relevance of noncommutativity, one
divides the first-order noncommutative correction to pres-
sure (PNC) by its commutative part (PC) [cf. Eq. (41)]:

PNC

PC
¼ 48x5

15fðxÞ�mec
2: (56)

In Fig. 2, it is plotted PNC

PC
against x, for 0:3 & x & 8,

usual values found in white dwarfs. Notice that this ratio
has the order of only few �mec

2, as mec
2 � 0:5 MeV, and

� is probably much smaller than this quantity (see Sec. V).
One points out that other corrections have been neglected,
such as the ones due to general relativity, Coulomb inter-
action at low densities, high density matter, and even
corrections due to rotation and magnetic field, which can
presumably be much larger than the corrections due to non-
commutativity.
Finally, in order to tackle the problem of stability, one

has to proceed as in Sec. IVA. One skips the full derivation
(see, e.g., Ref. [38]), but consider instead a quick analysis.
The noncommutative term of Eq. (41), it is proportional to

x5 / 	5=3 [Eq. (52)], and this corresponds to a polytrope
for which � ¼ 5=3, that lies in the range of stability. So the
noncommutative correction does not introduce any insta-
bility to white dwarfs.

2 4 6 8
x0

2

4

6

8

10

12

PNC PC

mec2

FIG. 2 (color online). Ratio between the noncommutative part
and the commutative part of the pressure in units of �mec

2.

4As noted in Ref. [38] this approximation is valid inside the
star but not in its envelope; however, this discussion can be
skipped since it is only relevant in the study of the thermal
evolution of these stars, which is beyond the scope of this work.
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C. Neutron stars

For higher densities (	 * 1012 kg=m3), the stars be-
come richer in neutrons that are formed by the combination
of electrons and protons. These stars have masses compa-
rable to the Sun (M� 1M	) and radius about R� 10 km;
thus, due to this very nature, these objects must be de-
scribed by general relativity, given that GM

Rc2
� 0:1.

One considers the simplest model to describe these stars,
namely, a degenerate neutron ideal gas. This is the well-
known Oppenheimer-Volkoff (OV) model [33]. Although
an ideal gas approximation is unrealistic, since it is neces-
sary to consider the existence of nuclear forces, this is a
good starting point. One first obtains a thermodynamic
description (see Sec. III C). One finds that in this model
the EOS that takes into account the interaction between the
neutrons is of the same order of magnitude of the OV
approximation [39]. Considering perturbative calculations
up to second order in the strong coupling of QCD for a cold
quark model shows that the interaction reduces the pres-
sure of the ideal gas model [41]. So the ideal gas model is
stiffer than an EOS that includes nuclear interaction. By
simplicity, the Oppenheimer-Volkoff model will be used
here. Neutron stars are formed at 1012 K and then, due to
neutrino emission, they quickly attain 109 K (�
10�1 MeV), which is much lower than the corresponding
Fermi energy of neutrons (� 1 GeV); this indicates that
the neutron gas is degenerate.

Using Eqs. (35), (39), and (41), one finds

x ¼ @

mnc
ð3�2nÞ1=3; (57)

u ¼ ðmnc
2Þ4

�2ð@cÞ3
�
x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

3
� fðxÞ

24
þ ð�mnc

2Þ x
5

5

�
; (58)

P ¼ ðmnc
2Þ4

�2ð@cÞ3
�
fðxÞ
24

þ ð�mnc
2Þ 2x

5

15

�
; (59)

where mn is the neutron mass. In order to obtain an EOS
P ¼ PðuÞ, one has to solve Eq. (58) for x and substitute it
into Eq. (59). This can be done numerically. Since one is
interested in getting the order of magnitude of the pertur-
bation, one should examine the ratio between this correc-
tion and the commutative result. For usual baryonic matter,
n ¼ 0:15� 1045 m�3 [39], one gets x ¼ 0:35, and substi-

tuting this into Eq. (59), one obtains that PNC

PC
¼

2:1ð�mnc
2Þ. Thus for typical x values, the results do not

differ from the white-dwarf case: Therefore, the results
shown in Fig. 2 remain valid, after performing me ! mn.
Hence the effect of noncommutativity is a few �mnc

2. The
effect of noncommutativity is more relevant for denser
configurations.

The issue of stability for neutron stars is more evolved
than the stability of main-sequence stars and white dwarfs
given that the description of neutron stars is not
Newtonian. The Oppenheimer-Volkoff equation must be
solved for u and P [Eqs. (58) and (59)], from where the
stability must be analyzed. This will be examined else-
where [42].

V. DISCUSSIONS AND CONCLUSIONS

In this work one has considered the effects of noncom-
mutativity in astrophysical objects. Noncommutativity is
implemented via a deformed dispersion relation and its
implication for the thermodynamical quantities that are
computed through the grand-canonical ensemble formal-
ism. One has examined main-sequence stars, white dwarfs,
and neutron stars.
Up to TeV scale, there is no experimental evidence of a

deformed dispersion relation [37]; hence, a good starting
point would have to consider the value of � �
10�3 ðGeVÞ�1. The value of � can be obtained from ultra-
high energy cosmic rays experiments or by quantum grav-
ity arguments. The most stringent limit to this quantity is
� < 2:5� 10�19 GeV�1 ¼ 1:6� 10�9 J�1 [24]. It justi-
fies one to consider only up to the first-order correction due
to noncommutativity. Noncommutative correction to rele-
vant statistical mechanical quantities is obtained, and these
results are applied in simple models to describe three
different types of stars.
For main-sequence stars one gets for the ratio of non-

commutative correction and the leading term for pressure
PNC

PC
� 10�24, for �� 10�19 GeV�1. Furthermore, it is also

shown that the noncommutative correction moves the
stability region of these stars towards a more stable situ-
ation. For white dwarfs, the relevance of this correction is

of order �mec
2, as mec

2 ¼ 0:5 MeV, one obtains PNC

PC
�

10�22, and for neutron stars PNC

PC
� 10�19 for ��

10�19 GeV�1. Thus, the effects of noncommutativity are
increasingly important from main-sequence stars to neu-
tron stars. This leads one to believe that if the space is
noncommutative it might have a relevant impact on black-
hole physics. Indeed, phase-space noncommutativity ef-
fects are shown to play an important role on the thermo-
dynamics of Schwarzschild black holes [43].
Finally, one finds that likewise for the case of main-

sequence stars, the noncommutative correction turns, how-
ever small, white dwarfs more stable. For neutron stars,
however, a proper analysis has still to be performed.
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[19] L. Alvarez-Gaumé, F. Meyer, and M.A. Vazquez-Mozo,

Nucl. Phys. B753, 92 (2006).
[20] F. Meyer, arXiv:hep-th/0510188.
[21] S. Alexander and J. Magueijo, arXiv:hep-th/0104093.
[22] G. Amelino-Camelia and S. Majid, Int. J. Mod. Phys. A

15, 4301 (2000).
[23] O. Bertolami and C. S. Carvalho, Phys. Rev. D 61, 103002

(2000).
[24] O. Bertolami, Lect. Notes Phys. 633, 96 (2004);

Decoherence and Entropy in Complex Systems, H. T.
Elze (Springer, New York, 2003).

[25] O. Bertolami, in Proceedings of the 38th Rencontres de
Moriond on Gravitational Waves and Experimental
Gravity, Les Arcs, Savoie, France, 2003, edited by J.
Dumarchez and J. Trân Thanh Vân (Thê Giói, Ha Noi,
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